

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Celery - Distributed Task Queue

Celery is a simple, flexible, and reliable distributed system to
process vast amounts of messages, while providing operations with
the tools required to maintain such a system.

It’s a task queue with focus on real-time processing, while also
supporting task scheduling.

Celery has a large and diverse community of users and contributors,
you should come join us on IRC
or our mailing-list.

Celery is Open Source and licensed under the BSD License [http://www.opensource.org/licenses/BSD-3-Clause].

Donations

This project relies on your generous donations.

If you are using Celery to create a commercial product, please consider becoming our backer [https://opencollective.com/celery#backer] or our sponsor [https://opencollective.com/celery#sponsor] to ensure Celery’s future.

Getting Started

	If you’re new to Celery you can get started by following
the First Steps with Celery tutorial.

	You can also check out the FAQ.

Contents

	Copyright

	Getting Started
	Introduction to Celery

	Brokers

	First Steps with Celery

	Next Steps

	Resources

	User Guide
	Application

	Tasks

	Calling Tasks

	Canvas: Designing Work-flows

	Workers Guide

	Daemonization

	Periodic Tasks

	Routing Tasks

	Monitoring and Management Guide

	Security

	Optimizing

	Debugging

	Concurrency

	Signals

	Testing with Celery

	Extensions and Bootsteps

	Configuration and defaults

	Documenting Tasks with Sphinx

	Django

	Contributing

	Community Resources

	Tutorials

	Frequently Asked Questions

	Change history

	What’s new in Celery 5.0 (singularity)

	API Reference

	Internals

	History

	Glossary

Indices and tables

	Index

	Module Index

	Search Page

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Copyright

Celery User Manual

by Ask Solem

Copyright © 2009-2016, Ask Solem.

All rights reserved. This material may be copied or distributed only
subject to the terms and conditions set forth in the Creative Commons
Attribution-ShareAlike 4.0 International
<https://creativecommons.org/licenses/by-sa/4.0/legalcode>`_ license.

You may share and adapt the material, even for commercial purposes, but
you must give the original author credit.
If you alter, transform, or build upon this
work, you may distribute the resulting work only under the same license or
a license compatible to this one.

Note

While the Celery documentation is offered under the
Creative Commons Attribution-ShareAlike 4.0 International license
the Celery software is offered under the
BSD License (3 Clause) [http://www.opensource.org/licenses/BSD-3-Clause]

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Getting Started

	Release

	5.0

	Date

	Oct 18, 2020

	Introduction to Celery
	What’s a Task Queue?

	What do I need?

	Get Started

	Celery is…

	Features

	Framework Integration

	Quick Jump

	Installation

	Brokers
	Broker Instructions

	Broker Overview

	First Steps with Celery
	Choosing a Broker

	Installing Celery

	Application

	Running the Celery worker server

	Calling the task

	Keeping Results

	Configuration

	Where to go from here

	Troubleshooting

	Next Steps
	Using Celery in your Application

	Calling Tasks

	Canvas: Designing Work-flows

	Routing

	Remote Control

	Timezone

	Optimization

	What to do now?

	Resources
	Getting Help

	Bug tracker

	Wiki

	Contributing

	License

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Introduction to Celery

	What’s a Task Queue?

	What do I need?

	Get Started

	Celery is…

	Features

	Framework Integration

	Quick Jump

	Installation

What’s a Task Queue?

Task queues are used as a mechanism to distribute work across threads or
machines.

A task queue’s input is a unit of work called a task. Dedicated worker
processes constantly monitor task queues for new work to perform.

Celery communicates via messages, usually using a broker
to mediate between clients and workers. To initiate a task the client adds a
message to the queue, the broker then delivers that message to a worker.

A Celery system can consist of multiple workers and brokers, giving way
to high availability and horizontal scaling.

Celery is written in Python, but the protocol can be implemented in any
language. In addition to Python there’s node-celery [https://github.com/mher/node-celery] and node-celery-ts [https://github.com/IBM/node-celery-ts] for Node.js,
and a PHP client [https://github.com/gjedeer/celery-php].

Language interoperability can also be achieved
exposing an HTTP endpoint and having a task that requests it (webhooks).

What do I need?

Version Requirements

Celery version 5.0 runs on

	Python ❨3.6, 3.7, 3.8❩

	PyPy3.6 ❨7.3❩

Celery 4.x was the last version to support Python 2.7,
Celery 5.x requires Python 3.6 or newer.

If you’re running an older version of Python, you need to be running
an older version of Celery:

	Python 2.7 or Python 3.5: Celery series 4.4 or earlier.

	Python 2.6: Celery series 3.1 or earlier.

	Python 2.5: Celery series 3.0 or earlier.

	Python 2.4 was Celery series 2.2 or earlier.

Celery is a project with minimal funding,
so we don’t support Microsoft Windows.
Please don’t open any issues related to that platform.

Celery requires a message transport to send and receive messages.
The RabbitMQ and Redis broker transports are feature complete,
but there’s also support for a myriad of other experimental solutions, including
using SQLite for local development.

Celery can run on a single machine, on multiple machines, or even
across data centers.

Get Started

If this is the first time you’re trying to use Celery, or if you haven’t
kept up with development in the 3.1 version and are coming from previous versions,
then you should read our getting started tutorials:

	First Steps with Celery

	Next Steps

Celery is…

	Simple

Celery is easy to use and maintain, and it doesn’t need configuration files.

It has an active, friendly community you can talk to for support,
including a mailing-list [https://groups.google.com/group/celery-users] and an IRC channel.

Here’s one of the simplest applications you can make:

from celery import Celery

app = Celery('hello', broker='amqp://guest@localhost//')

@app.task
def hello():
 return 'hello world'

	Highly Available

Workers and clients will automatically retry in the event
of connection loss or failure, and some brokers support
HA in way of Primary/Primary or Primary/Replica replication.

	Fast

A single Celery process can process millions of tasks a minute,
with sub-millisecond round-trip latency (using RabbitMQ,
librabbitmq, and optimized settings).

	Flexible

Almost every part of Celery can be extended or used on its own,
Custom pool implementations, serializers, compression schemes, logging,
schedulers, consumers, producers, broker transports, and much more.

It supports

	
	Brokers

	RabbitMQ, Redis,

	Amazon SQS, and more…

	Concurrency

	prefork (multiprocessing),

	Eventlet [http://eventlet.net/], gevent [http://gevent.org/]

	thread (multithreaded)

	solo (single threaded)

	
	Result Stores

	AMQP, Redis

	Memcached,

	SQLAlchemy, Django ORM

	Apache Cassandra, Elasticsearch, Riak

	MongoDB, CouchDB, Couchbase, ArangoDB

	Amazon DynamoDB, Amazon S3

	Microsoft Azure Block Blob, Microsoft Azure Cosmos DB

	File system

	Serialization

	pickle, json, yaml, msgpack.

	zlib, bzip2 compression.

	Cryptographic message signing.

Features

	
	Monitoring

A stream of monitoring events is emitted by workers and
is used by built-in and external tools to tell you what
your cluster is doing – in real-time.

Read more….

	Work-flows

Simple and complex work-flows can be composed using
a set of powerful primitives we call the “canvas”,
including grouping, chaining, chunking, and more.

Read more….

	Time & Rate Limits

You can control how many tasks can be executed per second/minute/hour,
or how long a task can be allowed to run, and this can be set as
a default, for a specific worker or individually for each task type.

Read more….

	
	Scheduling

You can specify the time to run a task in seconds or a
datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime], or you can use
periodic tasks for recurring events based on a
simple interval, or Crontab expressions
supporting minute, hour, day of week, day of month, and
month of year.

Read more….

	Resource Leak Protection

The --max-tasks-per-child
option is used for user tasks leaking resources, like memory or
file descriptors, that are simply out of your control.

Read more….

	User Components

Each worker component can be customized, and additional components
can be defined by the user. The worker is built up using “bootsteps” — a
dependency graph enabling fine grained control of the worker’s
internals.

Framework Integration

Celery is easy to integrate with web frameworks, some of them even have
integration packages:

	Pyramid [http://docs.pylonsproject.org/en/latest/docs/pyramid.html]

	pyramid_celery [https://pypi.python.org/pypi/pyramid_celery/]

	Pylons [http://pylonshq.com/]

	celery-pylons [https://pypi.python.org/pypi/celery-pylons/]

	Flask [http://flask.pocoo.org/]

	not needed

	web2py [http://web2py.com/]

	web2py-celery [https://pypi.python.org/pypi/web2py-celery/]

	Tornado [http://www.tornadoweb.org/]

	tornado-celery [https://pypi.python.org/pypi/tornado-celery/]

	Tryton [http://www.tryton.org/]

	celery_tryton [https://pypi.python.org/pypi/celery_tryton/]

For Django [https://djangoproject.com/] see First steps with Django.

The integration packages aren’t strictly necessary, but they can make
development easier, and sometimes they add important hooks like closing
database connections at fork(2).

Quick Jump

I want to ⟶

	
	get the return value of a task

	use logging from my task

	learn about best practices

	create a custom task base class

	add a callback to a group of tasks

	split a task into several chunks

	optimize the worker

	see a list of built-in task states

	create custom task states

	set a custom task name

	track when a task starts

	retry a task when it fails

	get the id of the current task

	
	know what queue a task was delivered to

	see a list of running workers

	purge all messages

	inspect what the workers are doing

	see what tasks a worker has registered

	migrate tasks to a new broker

	see a list of event message types

	contribute to Celery

	learn about available configuration settings

	get a list of people and companies using Celery

	write my own remote control command

	change worker queues at runtime

Jump to ⟶

	
	Brokers

	Applications

	Tasks

	Calling

	
	Workers

	Daemonizing

	Monitoring

	Optimizing

	
	Security

	Routing

	Configuration

	Django

	
	Contributing

	Signals

	FAQ

	API Reference

Installation

You can install Celery either via the Python Package Index (PyPI)
or from source.

To install using pip:

$ pip install -U Celery

Bundles

Celery also defines a group of bundles that can be used
to install Celery and the dependencies for a given feature.

You can specify these in your requirements or on the pip
command-line by using brackets. Multiple bundles can be specified by
separating them by commas.

$ pip install "celery[librabbitmq]"

$ pip install "celery[librabbitmq,redis,auth,msgpack]"

The following bundles are available:

Serializers

	celery[auth]

	for using the auth security serializer.

	celery[msgpack]

	for using the msgpack serializer.

	celery[yaml]

	for using the yaml serializer.

Concurrency

	celery[eventlet]

	for using the eventlet [https://pypi.python.org/pypi/eventlet/] pool.

	celery[gevent]

	for using the gevent [https://pypi.python.org/pypi/gevent/] pool.

Transports and Backends

	celery[librabbitmq]

	for using the librabbitmq C library.

	celery[redis]

	for using Redis as a message transport or as a result backend.

	celery[sqs]

	for using Amazon SQS as a message transport (experimental).

	celery[tblib]

	for using the task_remote_tracebacks feature.

	celery[memcache]

	for using Memcached as a result backend (using pylibmc [https://pypi.python.org/pypi/pylibmc/])

	celery[pymemcache]

	for using Memcached as a result backend (pure-Python implementation).

	celery[cassandra]

	for using Apache Cassandra as a result backend with DataStax driver.

	celery[couchbase]

	for using Couchbase as a result backend.

	celery[arangodb]

	for using ArangoDB as a result backend.

	celery[elasticsearch]

	for using Elasticsearch as a result backend.

	celery[riak]

	for using Riak as a result backend.

	celery[dynamodb]

	for using AWS DynamoDB as a result backend.

	celery[zookeeper]

	for using Zookeeper as a message transport.

	celery[sqlalchemy]

	for using SQLAlchemy as a result backend (supported).

	celery[pyro]

	for using the Pyro4 message transport (experimental).

	celery[slmq]

	for using the SoftLayer Message Queue transport (experimental).

	celery[consul]

	for using the Consul.io Key/Value store as a message transport or result backend (experimental).

	celery[django]

	specifies the lowest version possible for Django support.

You should probably not use this in your requirements, it’s here
for informational purposes only.

Downloading and installing from source

Download the latest version of Celery from PyPI:

https://pypi.org/project/celery/

You can install it by doing the following,:

$ tar xvfz celery-0.0.0.tar.gz
$ cd celery-0.0.0
$ python setup.py build
python setup.py install

The last command must be executed as a privileged user if
you aren’t currently using a virtualenv.

Using the development version

With pip

The Celery development version also requires the development
versions of kombu [https://pypi.python.org/pypi/kombu/], amqp [https://pypi.python.org/pypi/amqp/], billiard [https://pypi.python.org/pypi/billiard/], and vine [https://pypi.python.org/pypi/vine/].

You can install the latest snapshot of these using the following
pip commands:

$ pip install https://github.com/celery/celery/zipball/master#egg=celery
$ pip install https://github.com/celery/billiard/zipball/master#egg=billiard
$ pip install https://github.com/celery/py-amqp/zipball/master#egg=amqp
$ pip install https://github.com/celery/kombu/zipball/master#egg=kombu
$ pip install https://github.com/celery/vine/zipball/master#egg=vine

With git

Please see the Contributing section.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Brokers

	Release

	5.0

	Date

	Oct 18, 2020

Celery supports several message transport alternatives.

Broker Instructions

	Using RabbitMQ

	Using Redis

	Using Amazon SQS

Broker Overview

This is comparison table of the different transports supports,
more information can be found in the documentation for each
individual transport (see Broker Instructions).

	Name

	Status

	Monitoring

	Remote Control

	RabbitMQ

	Stable

	Yes

	Yes

	Redis

	Stable

	Yes

	Yes

	Amazon SQS

	Stable

	No

	No

	Zookeeper

	Experimental

	No

	No

Experimental brokers may be functional but they don’t have
dedicated maintainers.

Missing monitor support means that the transport doesn’t
implement events, and as such Flower, celery events, celerymon
and other event-based monitoring tools won’t work.

Remote control means the ability to inspect and manage workers
at runtime using the celery inspect and celery control commands
(and other tools using the remote control API).

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Using RabbitMQ

	Installation & Configuration

	Installing the RabbitMQ Server

	Setting up RabbitMQ

	Installing RabbitMQ on macOS

	Configuring the system host name

	Starting/Stopping the RabbitMQ server

Installation & Configuration

RabbitMQ is the default broker so it doesn’t require any additional
dependencies or initial configuration, other than the URL location of
the broker instance you want to use:

broker_url = 'amqp://myuser:mypassword@localhost:5672/myvhost'

For a description of broker URLs and a full list of the
various broker configuration options available to Celery,
see Broker Settings, and see below for setting up the
username, password and vhost.

Installing the RabbitMQ Server

See Installing RabbitMQ [http://www.rabbitmq.com/install.html] over at RabbitMQ’s website. For macOS
see Installing RabbitMQ on macOS.

Note

If you’re getting nodedown errors after installing and using
rabbitmqctl then this blog post can help you identify
the source of the problem:

http://www.somic.org/2009/02/19/on-rabbitmqctl-and-badrpcnodedown/

Setting up RabbitMQ

To use Celery we need to create a RabbitMQ user, a virtual host and
allow that user access to that virtual host:

$ sudo rabbitmqctl add_user myuser mypassword

$ sudo rabbitmqctl add_vhost myvhost

$ sudo rabbitmqctl set_user_tags myuser mytag

$ sudo rabbitmqctl set_permissions -p myvhost myuser ".*" ".*" ".*"

Substitute in appropriate values for myuser, mypassword and myvhost above.

See the RabbitMQ Admin Guide [http://www.rabbitmq.com/admin-guide.html] for more information about access control [http://www.rabbitmq.com/admin-guide.html#access-control].

Installing RabbitMQ on macOS

The easiest way to install RabbitMQ on macOS is using Homebrew [https://github.com/mxcl/homebrew/] the new and
shiny package management system for macOS.

First, install Homebrew using the one-line command provided by the Homebrew
documentation [https://github.com/Homebrew/homebrew/wiki/Installation]:

ruby -e "$(curl -fsSL https://raw.github.com/Homebrew/homebrew/go/install)"

Finally, we can install RabbitMQ using brew:

$ brew install rabbitmq

After you’ve installed RabbitMQ with brew you need to add the following to
your path to be able to start and stop the broker: add it to the start-up file for your
shell (e.g., .bash_profile or .profile).

PATH=$PATH:/usr/local/sbin

Configuring the system host name

If you’re using a DHCP server that’s giving you a random host name, you need
to permanently configure the host name. This is because RabbitMQ uses the host name
to communicate with nodes.

Use the scutil command to permanently set your host name:

$ sudo scutil --set HostName myhost.local

Then add that host name to /etc/hosts so it’s possible to resolve it
back into an IP address:

127.0.0.1 localhost myhost myhost.local

If you start the rabbitmq-server, your rabbit node should now
be rabbit@myhost, as verified by rabbitmqctl:

$ sudo rabbitmqctl status
Status of node rabbit@myhost ...
[{running_applications,[{rabbit,"RabbitMQ","1.7.1"},
 {mnesia,"MNESIA CXC 138 12","4.4.12"},
 {os_mon,"CPO CXC 138 46","2.2.4"},
 {sasl,"SASL CXC 138 11","2.1.8"},
 {stdlib,"ERTS CXC 138 10","1.16.4"},
 {kernel,"ERTS CXC 138 10","2.13.4"}]},
{nodes,[rabbit@myhost]},
{running_nodes,[rabbit@myhost]}]
...done.

This is especially important if your DHCP server gives you a host name
starting with an IP address, (e.g., 23.10.112.31.comcast.net). In this
case RabbitMQ will try to use rabbit@23: an illegal host name.

Starting/Stopping the RabbitMQ server

To start the server:

$ sudo rabbitmq-server

you can also run it in the background by adding the -detached option
(note: only one dash):

$ sudo rabbitmq-server -detached

Never use kill (kill(1)) to stop the RabbitMQ server,
but rather use the rabbitmqctl command:

$ sudo rabbitmqctl stop

When the server is running, you can continue reading Setting up RabbitMQ.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Using Redis

Installation

For the Redis support you have to install additional dependencies.
You can install both Celery and these dependencies in one go using
the celery[redis] bundle:

$ pip install -U "celery[redis]"

Configuration

Configuration is easy, just configure the location of
your Redis database:

app.conf.broker_url = 'redis://localhost:6379/0'

Where the URL is in the format of:

redis://:password@hostname:port/db_number

all fields after the scheme are optional, and will default to localhost
on port 6379, using database 0.

If a Unix socket connection should be used, the URL needs to be in the format:

redis+socket:///path/to/redis.sock

Specifying a different database number when using a Unix socket is possible
by adding the virtual_host parameter to the URL:

redis+socket:///path/to/redis.sock?virtual_host=db_number

It is also easy to connect directly to a list of Redis Sentinel:

app.conf.broker_url = 'sentinel://localhost:26379;sentinel://localhost:26380;sentinel://localhost:26381'
app.conf.broker_transport_options = { 'master_name': "cluster1" }

Visibility Timeout

The visibility timeout defines the number of seconds to wait
for the worker to acknowledge the task before the message is redelivered
to another worker. Be sure to see Caveats below.

This option is set via the broker_transport_options setting:

app.conf.broker_transport_options = {'visibility_timeout': 3600} # 1 hour.

The default visibility timeout for Redis is 1 hour.

Results

If you also want to store the state and return values of tasks in Redis,
you should configure these settings:

app.conf.result_backend = 'redis://localhost:6379/0'

For a complete list of options supported by the Redis result backend, see
Redis backend settings.

If you are using Sentinel, you should specify the master_name using the result_backend_transport_options setting:

app.conf.result_backend_transport_options = {'master_name': "mymaster"}

Connection timeouts

To configure the connection timeouts for the Redis result backend, use the retry_policy key under result_backend_transport_options:

app.conf.result_backend_transport_options = {
 'retry_policy': {
 'timeout': 5.0
 }
}

See retry_over_time() [https://kombu.readthedocs.io/en/master/reference/kombu.utils.functional.html#kombu.utils.functional.retry_over_time] for the possible retry policy options.

Caveats

Visibility timeout

If a task isn’t acknowledged within the Visibility Timeout
the task will be redelivered to another worker and executed.

This causes problems with ETA/countdown/retry tasks where the
time to execute exceeds the visibility timeout; in fact if that
happens it will be executed again, and again in a loop.

So you have to increase the visibility timeout to match
the time of the longest ETA you’re planning to use.

Note that Celery will redeliver messages at worker shutdown,
so having a long visibility timeout will only delay the redelivery
of ‘lost’ tasks in the event of a power failure or forcefully terminated
workers.

Periodic tasks won’t be affected by the visibility timeout,
as this is a concept separate from ETA/countdown.

You can increase this timeout by configuring a transport option
with the same name:

app.conf.broker_transport_options = {'visibility_timeout': 43200}

The value must be an int describing the number of seconds.

Key eviction

Redis may evict keys from the database in some situations

If you experience an error like:

InconsistencyError: Probably the key ('_kombu.binding.celery') has been
removed from the Redis database.

then you may want to configure the redis-server to not evict keys
by setting in the redis configuration file:

	the maxmemory option

	the maxmemory-policy option to noeviction or allkeys-lru

See Redis server documentation about Eviction Policies for details:

https://redis.io/topics/lru-cache

Group result ordering

Versions of Celery up to and including 4.4.6 used an unsorted list to store
result objects for groups in the Redis backend. This can cause those results to
be be returned in a different order to their associated tasks in the original
group instantiation. Celery 4.4.7 introduced an opt-in behaviour which fixes
this issue and ensures that group results are returned in the same order the
tasks were defined, matching the behaviour of other backends. In Celery 5.0
this behaviour was changed to be opt-out. The behaviour is controlled by the
result_chord_ordered configuration option which may be set like so:

Specifying this for workers running Celery 4.4.6 or earlier has no effect
app.conf.result_backend_transport_options = {
 'result_chord_ordered': True # or False
}

This is an incompatible change in the runtime behaviour of workers sharing the
same Redis backend for result storage, so all workers must follow either the
new or old behaviour to avoid breakage. For clusters with some workers running
Celery 4.4.6 or earlier, this means that workers running 4.4.7 need no special
configuration and workers running 5.0 or later must have result_chord_ordered
set to False. For clusters with no workers running 4.4.6 or earlier but some
workers running 4.4.7, it is recommended that result_chord_ordered be set to
True for all workers to ease future migration. Migration between behaviours
will disrupt results currently held in the Redis backend and cause breakage if
downstream tasks are run by migrated workers - plan accordingly.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Using Amazon SQS

Installation

For the Amazon SQS support you have to install additional dependencies.
You can install both Celery and these dependencies in one go using
the celery[sqs] bundle:

$ pip install celery[sqs]

Configuration

You have to specify SQS in the broker URL:

broker_url = 'sqs://ABCDEFGHIJKLMNOPQRST:ZYXK7NiynGlTogH8Nj+P9nlE73sq3@'

where the URL format is:

sqs://aws_access_key_id:aws_secret_access_key@

Please note that you must remember to include the @ sign at the end and
encode the password so it can always be parsed correctly. For example:

from kombu.utils.url import safequote

aws_access_key = safequote("ABCDEFGHIJKLMNOPQRST")
aws_secret_key = safequote("ZYXK7NiynG/TogH8Nj+P9nlE73sq3")

broker_url = "sqs://{aws_access_key}:{aws_secret_key}@".format(
 aws_access_key=aws_access_key, aws_secret_key=aws_secret_key,
)

The login credentials can also be set using the environment variables
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY,
in that case the broker URL may only be sqs://.

If you are using IAM roles on instances, you can set the BROKER_URL to:
sqs:// and kombu will attempt to retrieve access tokens from the instance
metadata.

Options

Region

The default region is us-east-1 but you can select another region
by configuring the broker_transport_options setting:

broker_transport_options = {'region': 'eu-west-1'}

See also

An overview of Amazon Web Services regions can be found here:

http://aws.amazon.com/about-aws/globalinfrastructure/

Visibility Timeout

The visibility timeout defines the number of seconds to wait
for the worker to acknowledge the task before the message is redelivered
to another worker. Also see caveats below.

This option is set via the broker_transport_options setting:

broker_transport_options = {'visibility_timeout': 3600} # 1 hour.

The default visibility timeout is 30 seconds.

Polling Interval

The polling interval decides the number of seconds to sleep between
unsuccessful polls. This value can be either an int or a float.
By default the value is one second: this means the worker will
sleep for one second when there’s no more messages to read.

You must note that more frequent polling is also more expensive, so increasing
the polling interval can save you money.

The polling interval can be set via the broker_transport_options
setting:

broker_transport_options = {'polling_interval': 0.3}

Very frequent polling intervals can cause busy loops, resulting in the
worker using a lot of CPU time. If you need sub-millisecond precision you
should consider using another transport, like RabbitMQ <broker-amqp>,
or Redis <broker-redis>.

Long Polling

SQS Long Polling [https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-long-polling.html] is enabled by default and the WaitTimeSeconds parameter
of ReceiveMessage [https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html] operation is set to 10 seconds.

The value of WaitTimeSeconds parameter can be set via the
broker_transport_options setting:

broker_transport_options = {'wait_time_seconds': 15}

Valid values are 0 to 20. Note that newly created queues themselves (also if
created by Celery) will have the default value of 0 set for the “Receive Message
Wait Time” queue property.

Queue Prefix

By default Celery won’t assign any prefix to the queue names,
If you have other services using SQS you can configure it do so
using the broker_transport_options setting:

broker_transport_options = {'queue_name_prefix': 'celery-'}

Predefined Queues

If you want Celery to use a set of predefined queues in AWS, and to
never attempt to list SQS queues, nor attempt to create or delete them,
pass a map of queue names to URLs using the predefined_queues
setting:

broker_transport_options = {
 'predefined_queues': {
 'my-q': {
 'url': 'https://ap-southeast-2.queue.amazonaws.com/123456/my-q',
 'access_key_id': 'xxx',
 'secret_access_key': 'xxx',
 }
 }
}

Caveats

	If a task isn’t acknowledged within the visibility_timeout,
the task will be redelivered to another worker and executed.

This causes problems with ETA/countdown/retry tasks where the
time to execute exceeds the visibility timeout; in fact if that
happens it will be executed again, and again in a loop.

So you have to increase the visibility timeout to match
the time of the longest ETA you’re planning to use.

Note that Celery will redeliver messages at worker shutdown,
so having a long visibility timeout will only delay the redelivery
of ‘lost’ tasks in the event of a power failure or forcefully terminated
workers.

Periodic tasks won’t be affected by the visibility timeout,
as it is a concept separate from ETA/countdown.

The maximum visibility timeout supported by AWS as of this writing
is 12 hours (43200 seconds):

broker_transport_options = {'visibility_timeout': 43200}

	SQS doesn’t yet support worker remote control commands.

	SQS doesn’t yet support events, and so cannot be used with
celery events, celerymon, or the Django Admin
monitor.

Results

Multiple products in the Amazon Web Services family could be a good candidate
to store or publish results with, but there’s no such result backend included
at this point.

Warning

Don’t use the amqp result backend with SQS.

It will create one queue for every task, and the queues will
not be collected. This could cost you money that would be better
spent contributing an AWS result store backend back to Celery :)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

First Steps with Celery

Celery is a task queue with batteries included.
It’s easy to use so that you can get started without learning
the full complexities of the problem it solves. It’s designed
around best practices so that your product can scale
and integrate with other languages, and it comes with the
tools and support you need to run such a system in production.

In this tutorial you’ll learn the absolute basics of using Celery.

Learn about;

	Choosing and installing a message transport (broker).

	Installing Celery and creating your first task.

	Starting the worker and calling tasks.

	Keeping track of tasks as they transition through different states,
and inspecting return values.

Celery may seem daunting at first - but don’t worry - this tutorial
will get you started in no time. It’s deliberately kept simple, so
as to not confuse you with advanced features.
After you have finished this tutorial,
it’s a good idea to browse the rest of the documentation.
For example the Next Steps tutorial will
showcase Celery’s capabilities.

	Choosing a Broker

	RabbitMQ

	Redis

	Other brokers

	Installing Celery

	Application

	Running the Celery worker server

	Calling the task

	Keeping Results

	Configuration

	Where to go from here

	Troubleshooting

	Worker doesn’t start: Permission Error

	Result backend doesn’t work or tasks are always in PENDING state

Choosing a Broker

Celery requires a solution to send and receive messages; usually this
comes in the form of a separate service called a message broker.

There are several choices available, including:

RabbitMQ

RabbitMQ [http://www.rabbitmq.com/] is feature-complete, stable, durable and easy to install.
It’s an excellent choice for a production environment.
Detailed information about using RabbitMQ with Celery:

Using RabbitMQ

If you’re using Ubuntu or Debian install RabbitMQ by executing this
command:

$ sudo apt-get install rabbitmq-server

Or, if you want to run it on Docker execute this:

$ docker run -d -p 5672:5672 rabbitmq

When the command completes, the broker will already be running in the background,
ready to move messages for you: Starting rabbitmq-server: SUCCESS.

Don’t worry if you’re not running Ubuntu or Debian, you can go to this
website to find similarly simple installation instructions for other
platforms, including Microsoft Windows:

http://www.rabbitmq.com/download.html

Redis

Redis [https://redis.io/] is also feature-complete, but is more susceptible to data loss in
the event of abrupt termination or power failures. Detailed information about using Redis:

Using Redis

If you want to run it on Docker execute this:

$ docker run -d -p 6379:6379 redis

Other brokers

In addition to the above, there are other experimental transport implementations
to choose from, including Amazon SQS.

See Broker Overview for a full list.

Installing Celery

Celery is on the Python Package Index (PyPI), so it can be installed
with standard Python tools like pip or easy_install:

$ pip install celery

Application

The first thing you need is a Celery instance. We call this the Celery
application or just app for short. As this instance is used as
the entry-point for everything you want to do in Celery, like creating tasks and
managing workers, it must be possible for other modules to import it.

In this tutorial we keep everything contained in a single module,
but for larger projects you want to create
a dedicated module.

Let’s create the file tasks.py:

from celery import Celery

app = Celery('tasks', broker='pyamqp://guest@localhost//')

@app.task
def add(x, y):
 return x + y

The first argument to Celery is the name of the current module.
This is only needed so that names can be automatically generated when the tasks are
defined in the __main__ module.

The second argument is the broker keyword argument, specifying the URL of the
message broker you want to use. Here using RabbitMQ (also the default option).

See Choosing a Broker above for more choices –
for RabbitMQ you can use amqp://localhost, or for Redis you can
use redis://localhost.

You defined a single task, called add, returning the sum of two numbers.

Running the Celery worker server

You can now run the worker by executing our program with the worker
argument:

$ celery -A tasks worker --loglevel=INFO

Note

See the Troubleshooting section if the worker
doesn’t start.

In production you’ll want to run the worker in the
background as a daemon. To do this you need to use the tools provided
by your platform, or something like supervisord [http://supervisord.org] (see Daemonization
for more information).

For a complete listing of the command-line options available, do:

$ celery worker --help

There are also several other commands available, and help is also available:

$ celery help

Calling the task

To call our task you can use the delay() method.

This is a handy shortcut to the apply_async()
method that gives greater control of the task execution (see
Calling Tasks):

>>> from tasks import add
>>> add.delay(4, 4)

The task has now been processed by the worker you started earlier.
You can verify this by looking at the worker’s console output.

Calling a task returns an AsyncResult instance.
This can be used to check the state of the task, wait for the task to finish,
or get its return value (or if the task failed, to get the exception and traceback).

Results are not enabled by default. In order to do remote procedure calls
or keep track of task results in a database, you will need to configure Celery to use a result
backend. This is described in the next section.

Keeping Results

If you want to keep track of the tasks’ states, Celery needs to store or send
the states somewhere. There are several
built-in result backends to choose from: SQLAlchemy [http://www.sqlalchemy.org/]/Django [http://djangoproject.com] ORM,
MongoDB [http://www.mongodb.org], Memcached [http://memcached.org], Redis [https://redis.io/], RPC (RabbitMQ [http://www.rabbitmq.com/]/AMQP),
and – or you can define your own.

For this example we use the rpc result backend, that sends states
back as transient messages. The backend is specified via the backend argument to
Celery, (or via the result_backend setting if
you choose to use a configuration module):

app = Celery('tasks', backend='rpc://', broker='pyamqp://')

Or if you want to use Redis as the result backend, but still use RabbitMQ as
the message broker (a popular combination):

app = Celery('tasks', backend='redis://localhost', broker='pyamqp://')

To read more about result backends please see Result Backends.

Now with the result backend configured, let’s call the task again.
This time you’ll hold on to the AsyncResult instance returned
when you call a task:

>>> result = add.delay(4, 4)

The ready() method returns whether the task
has finished processing or not:

>>> result.ready()
False

You can wait for the result to complete, but this is rarely used
since it turns the asynchronous call into a synchronous one:

>>> result.get(timeout=1)
8

In case the task raised an exception, get() will
re-raise the exception, but you can override this by specifying
the propagate argument:

>>> result.get(propagate=False)

If the task raised an exception, you can also gain access to the
original traceback:

>>> result.traceback

Warning

Backends use resources to store and transmit results. To ensure
that resources are released, you must eventually call
get() or forget() on
EVERY AsyncResult instance returned after calling
a task.

See celery.result for the complete result object reference.

Configuration

Celery, like a consumer appliance, doesn’t need much configuration to operate.
It has an input and an output. The input must be connected to a broker, and the output can
be optionally connected to a result backend. However, if you look closely at the back,
there’s a lid revealing loads of sliders, dials, and buttons: this is the configuration.

The default configuration should be good enough for most use cases, but there are
many options that can be configured to make Celery work exactly as needed.
Reading about the options available is a good idea to familiarize yourself with what
can be configured. You can read about the options in the
Configuration and defaults reference.

The configuration can be set on the app directly or by using a dedicated
configuration module.
As an example you can configure the default serializer used for serializing
task payloads by changing the task_serializer setting:

app.conf.task_serializer = 'json'

If you’re configuring many settings at once you can use update:

app.conf.update(
 task_serializer='json',
 accept_content=['json'], # Ignore other content
 result_serializer='json',
 timezone='Europe/Oslo',
 enable_utc=True,
)

For larger projects, a dedicated configuration module is recommended.
Hard coding periodic task intervals and task routing options is discouraged.
It is much better to keep these in a centralized location. This is especially
true for libraries, as it enables users to control how their tasks behave.
A centralized configuration will also allow your SysAdmin to make simple changes
in the event of system trouble.

You can tell your Celery instance to use a configuration module
by calling the app.config_from_object() method:

app.config_from_object('celeryconfig')

This module is often called “celeryconfig”, but you can use any
module name.

In the above case, a module named celeryconfig.py must be available to load from the
current directory or on the Python path. It could look something like this:

celeryconfig.py:

broker_url = 'pyamqp://'
result_backend = 'rpc://'

task_serializer = 'json'
result_serializer = 'json'
accept_content = ['json']
timezone = 'Europe/Oslo'
enable_utc = True

To verify that your configuration file works properly and doesn’t
contain any syntax errors, you can try to import it:

$ python -m celeryconfig

For a complete reference of configuration options, see Configuration and defaults.

To demonstrate the power of configuration files, this is how you’d
route a misbehaving task to a dedicated queue:

celeryconfig.py:

task_routes = {
 'tasks.add': 'low-priority',
}

Or instead of routing it you could rate limit the task
instead, so that only 10 tasks of this type can be processed in a minute
(10/m):

celeryconfig.py:

task_annotations = {
 'tasks.add': {'rate_limit': '10/m'}
}

If you’re using RabbitMQ or Redis as the
broker then you can also direct the workers to set a new rate limit
for the task at runtime:

$ celery -A tasks control rate_limit tasks.add 10/m
worker@example.com: OK
 new rate limit set successfully

See Routing Tasks to read more about task routing,
and the task_annotations setting for more about annotations,
or Monitoring and Management Guide for more about remote control commands
and how to monitor what your workers are doing.

Where to go from here

If you want to learn more you should continue to the
Next Steps tutorial, and after that you
can read the User Guide.

Troubleshooting

There’s also a troubleshooting section in the Frequently Asked Questions.

Worker doesn’t start: Permission Error

	If you’re using Debian, Ubuntu or other Debian-based distributions:

Debian recently renamed the /dev/shm special file
to /run/shm.

A simple workaround is to create a symbolic link:

ln -s /run/shm /dev/shm

	Others:

If you provide any of the --pidfile,
--logfile or
--statedb arguments, then you must
make sure that they point to a file or directory that’s writable and
readable by the user starting the worker.

Result backend doesn’t work or tasks are always in PENDING state

All tasks are PENDING by default, so the state would’ve been
better named “unknown”. Celery doesn’t update the state when a task
is sent, and any task with no history is assumed to be pending (you know
the task id, after all).

	Make sure that the task doesn’t have ignore_result enabled.

Enabling this option will force the worker to skip updating
states.

	Make sure the task_ignore_result setting isn’t enabled.

	Make sure that you don’t have any old workers still running.

It’s easy to start multiple workers by accident, so make sure
that the previous worker is properly shut down before you start a new one.

An old worker that isn’t configured with the expected result backend
may be running and is hijacking the tasks.

The --pidfile argument can be set to
an absolute path to make sure this doesn’t happen.

	Make sure the client is configured with the right backend.

If, for some reason, the client is configured to use a different backend
than the worker, you won’t be able to receive the result.
Make sure the backend is configured correctly:

>>> result = task.delay()
>>> print(result.backend)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Next Steps

The First Steps with Celery guide is intentionally minimal. In this guide
I’ll demonstrate what Celery offers in more detail, including
how to add Celery support for your application and library.

This document doesn’t document all of Celery’s features and
best practices, so it’s recommended that you also read the
User Guide

	Using Celery in your Application

	Calling Tasks

	Canvas: Designing Work-flows

	Routing

	Remote Control

	Timezone

	Optimization

	What to do now?

Using Celery in your Application

Our Project

Project layout:

proj/__init__.py
 /celery.py
 /tasks.py

proj/celery.py

from celery import Celery

app = Celery('proj',
 broker='amqp://',
 backend='amqp://',
 include=['proj.tasks'])

Optional configuration, see the application user guide.
app.conf.update(
 result_expires=3600,
)

if __name__ == '__main__':
 app.start()

In this module you created our Celery instance (sometimes
referred to as the app). To use Celery within your project
you simply import this instance.

	The broker argument specifies the URL of the broker to use.

See Choosing a Broker for more information.

	The backend argument specifies the result backend to use.

It’s used to keep track of task state and results.
While results are disabled by default I use the RPC result backend here
because I demonstrate how retrieving results work later. You may want to use
a different backend for your application. They all have different
strengths and weaknesses. If you don’t need results, it’s better
to disable them. Results can also be disabled for individual tasks
by setting the @task(ignore_result=True) option.

See Keeping Results for more information.

	The include argument is a list of modules to import when
the worker starts. You need to add our tasks module here so
that the worker is able to find our tasks.

proj/tasks.py

from .celery import app

@app.task
def add(x, y):
 return x + y

@app.task
def mul(x, y):
 return x * y

@app.task
def xsum(numbers):
 return sum(numbers)

Starting the worker

The celery program can be used to start the worker (you need to run the worker in the directory above proj):

$ celery -A proj worker -l INFO

When the worker starts you should see a banner and some messages:

--------------- celery@halcyon.local v4.0 (latentcall)
--- ***** -----
-- ******* ---- [Configuration]
- *** --- * --- . broker: amqp://guest@localhost:5672//
- ** ---------- . app: __main__:0x1012d8590
- ** ---------- . concurrency: 8 (processes)
- ** ---------- . events: OFF (enable -E to monitor this worker)
- ** ----------
- *** --- * --- [Queues]
-- ******* ---- . celery: exchange:celery(direct) binding:celery
--- ***** -----

[2012-06-08 16:23:51,078: WARNING/MainProcess] celery@halcyon.local has started.

– The broker is the URL you specified in the broker argument in our celery
module. You can also specify a different broker on the command-line by using
the -b option.

– Concurrency is the number of prefork worker process used
to process your tasks concurrently. When all of these are busy doing work,
new tasks will have to wait for one of the tasks to finish before
it can be processed.

The default concurrency number is the number of CPU’s on that machine
(including cores). You can specify a custom number using
the celery worker -c option.
There’s no recommended value, as the optimal number depends on a number of
factors, but if your tasks are mostly I/O-bound then you can try to increase
it. Experimentation has shown that adding more than twice the number
of CPU’s is rarely effective, and likely to degrade performance
instead.

Including the default prefork pool, Celery also supports using
Eventlet, Gevent, and running in a single thread (see Concurrency).

– Events is an option that causes Celery to send
monitoring messages (events) for actions occurring in the worker.
These can be used by monitor programs like celery events,
and Flower – the real-time Celery monitor, which you can read about in
the Monitoring and Management guide.

– Queues is the list of queues that the worker will consume
tasks from. The worker can be told to consume from several queues
at once, and this is used to route messages to specific workers
as a means for Quality of Service, separation of concerns,
and prioritization, all described in the Routing Guide.

You can get a complete list of command-line arguments
by passing in the --help flag:

$ celery worker --help

These options are described in more detailed in the Workers Guide.

Stopping the worker

To stop the worker simply hit Control-c. A list of signals supported
by the worker is detailed in the Workers Guide.

In the background

In production you’ll want to run the worker in the background,
described in detail in the daemonization tutorial.

The daemonization scripts uses the celery multi command to
start one or more workers in the background:

$ celery multi start w1 -A proj -l INFO
celery multi v4.0.0 (latentcall)
> Starting nodes...
 > w1.halcyon.local: OK

You can restart it too:

$ celery multi restart w1 -A proj -l INFO
celery multi v4.0.0 (latentcall)
> Stopping nodes...
 > w1.halcyon.local: TERM -> 64024
> Waiting for 1 node.....
 > w1.halcyon.local: OK
> Restarting node w1.halcyon.local: OK
celery multi v4.0.0 (latentcall)
> Stopping nodes...
 > w1.halcyon.local: TERM -> 64052

or stop it:

$ celery multi stop w1 -A proj -l INFO

The stop command is asynchronous so it won’t wait for the
worker to shutdown. You’ll probably want to use the stopwait command
instead, which ensures that all currently executing tasks are completed
before exiting:

$ celery multi stopwait w1 -A proj -l INFO

Note

celery multi doesn’t store information about workers
so you need to use the same command-line arguments when
restarting. Only the same pidfile and logfile arguments must be
used when stopping.

By default it’ll create pid and log files in the current directory.
To protect against multiple workers launching on top of each other
you’re encouraged to put these in a dedicated directory:

$ mkdir -p /var/run/celery
$ mkdir -p /var/log/celery
$ celery multi start w1 -A proj -l INFO --pidfile=/var/run/celery/%n.pid \
 --logfile=/var/log/celery/%n%I.log

With the multi command you can start multiple workers, and there’s a powerful
command-line syntax to specify arguments for different workers too,
for example:

$ celery multi start 10 -A proj -l INFO -Q:1-3 images,video -Q:4,5 data \
 -Q default -L:4,5 debug

For more examples see the multi module in the API
reference.

About the --app argument

The --app argument specifies the Celery app instance
to use, in the form of module.path:attribute

But it also supports a shortcut form. If only a package name is specified,
it’ll try to search for the app instance, in the following order:

With --app=proj:

	an attribute named proj.app, or

	an attribute named proj.celery, or

	any attribute in the module proj where the value is a Celery
application, or

If none of these are found it’ll try a submodule named proj.celery:

	an attribute named proj.celery.app, or

	an attribute named proj.celery.celery, or

	Any attribute in the module proj.celery where the value is a Celery
application.

This scheme mimics the practices used in the documentation – that is,
proj:app for a single contained module, and proj.celery:app
for larger projects.

Calling Tasks

You can call a task using the delay() method:

>>> from proj.tasks import add

>>> add.delay(2, 2)

This method is actually a star-argument shortcut to another method called
apply_async():

>>> add.apply_async((2, 2))

The latter enables you to specify execution options like the time to run
(countdown), the queue it should be sent to, and so on:

>>> add.apply_async((2, 2), queue='lopri', countdown=10)

In the above example the task will be sent to a queue named lopri and the
task will execute, at the earliest, 10 seconds after the message was sent.

Applying the task directly will execute the task in the current process,
so that no message is sent:

>>> add(2, 2)
4

These three methods - delay(), apply_async(), and applying
(__call__), make up the Celery calling API, which is also used for
signatures.

A more detailed overview of the Calling API can be found in the
Calling User Guide.

Every task invocation will be given a unique identifier (an UUID) – this
is the task id.

The delay and apply_async methods return an AsyncResult
instance, which can be used to keep track of the tasks execution state.
But for this you need to enable a result backend so that
the state can be stored somewhere.

Results are disabled by default because there is no result
backend that suits every application; to choose one you need to consider
the drawbacks of each individual backend. For many tasks
keeping the return value isn’t even very useful, so it’s a sensible default to
have. Also note that result backends aren’t used for monitoring tasks and workers:
for that Celery uses dedicated event messages (see Monitoring and Management Guide).

If you have a result backend configured you can retrieve the return
value of a task:

>>> res = add.delay(2, 2)
>>> res.get(timeout=1)
4

You can find the task’s id by looking at the id attribute:

>>> res.id
d6b3aea2-fb9b-4ebc-8da4-848818db9114

You can also inspect the exception and traceback if the task raised an
exception, in fact result.get() will propagate any errors by default:

>>> res = add.delay(2, '2')
>>> res.get(timeout=1)

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "celery/result.py", line 221, in get
 return self.backend.wait_for_pending(
 File "celery/backends/asynchronous.py", line 195, in wait_for_pending
 return result.maybe_throw(callback=callback, propagate=propagate)
 File "celery/result.py", line 333, in maybe_throw
 self.throw(value, self._to_remote_traceback(tb))
 File "celery/result.py", line 326, in throw
 self.on_ready.throw(*args, **kwargs)
 File "vine/promises.py", line 244, in throw
 reraise(type(exc), exc, tb)
 File "vine/five.py", line 195, in reraise
 raise value
TypeError: unsupported operand type(s) for +: 'int' and 'str'

If you don’t wish for the errors to propagate, you can disable that by passing propagate:

>>> res.get(propagate=False)
TypeError("unsupported operand type(s) for +: 'int' and 'str'")

In this case it’ll return the exception instance raised instead –
so to check whether the task succeeded or failed, you’ll have to
use the corresponding methods on the result instance:

>>> res.failed()
True

>>> res.successful()
False

So how does it know if the task has failed or not? It can find out by looking
at the tasks state:

>>> res.state
'FAILURE'

A task can only be in a single state, but it can progress through several
states. The stages of a typical task can be:

PENDING -> STARTED -> SUCCESS

The started state is a special state that’s only recorded if the
task_track_started setting is enabled, or if the
@task(track_started=True) option is set for the task.

The pending state is actually not a recorded state, but rather
the default state for any task id that’s unknown: this you can see
from this example:

>>> from proj.celery import app

>>> res = app.AsyncResult('this-id-does-not-exist')
>>> res.state
'PENDING'

If the task is retried the stages can become even more complex.
To demonstrate, for a task that’s retried two times the stages would be:

PENDING -> STARTED -> RETRY -> STARTED -> RETRY -> STARTED -> SUCCESS

To read more about task states you should see the States section
in the tasks user guide.

Calling tasks is described in detail in the
Calling Guide.

Canvas: Designing Work-flows

You just learned how to call a task using the tasks delay method,
and this is often all you need. But sometimes you may want to pass the
signature of a task invocation to another process or as an argument to another
function, for which Celery uses something called signatures.

A signature wraps the arguments and execution options of a single task
invocation in such a way that it can be passed to functions or even serialized
and sent across the wire.

You can create a signature for the add task using the arguments (2, 2),
and a countdown of 10 seconds like this:

>>> add.signature((2, 2), countdown=10)
tasks.add(2, 2)

There’s also a shortcut using star arguments:

>>> add.s(2, 2)
tasks.add(2, 2)

And there’s that calling API again…

Signature instances also support the calling API, meaning they
have delay and apply_async methods.

But there’s a difference in that the signature may already have
an argument signature specified. The add task takes two arguments,
so a signature specifying two arguments would make a complete signature:

>>> s1 = add.s(2, 2)
>>> res = s1.delay()
>>> res.get()
4

But, you can also make incomplete signatures to create what we call
partials:

incomplete partial: add(?, 2)
>>> s2 = add.s(2)

s2 is now a partial signature that needs another argument to be complete,
and this can be resolved when calling the signature:

resolves the partial: add(8, 2)
>>> res = s2.delay(8)
>>> res.get()
10

Here you added the argument 8 that was prepended to the existing argument 2
forming a complete signature of add(8, 2).

Keyword arguments can also be added later; these are then merged with any
existing keyword arguments, but with new arguments taking precedence:

>>> s3 = add.s(2, 2, debug=True)
>>> s3.delay(debug=False) # debug is now False.

As stated, signatures support the calling API: meaning that

	sig.apply_async(args=(), kwargs={}, **options)

Calls the signature with optional partial arguments and partial
keyword arguments. Also supports partial execution options.

	sig.delay(*args, **kwargs)

Star argument version of apply_async. Any arguments will be prepended
to the arguments in the signature, and keyword arguments is merged with any
existing keys.

So this all seems very useful, but what can you actually do with these?
To get to that I must introduce the canvas primitives…

The Primitives

	
	group

	chain

	chord

	
	map

	starmap

	chunks

These primitives are signature objects themselves, so they can be combined
in any number of ways to compose complex work-flows.

Note

These examples retrieve results, so to try them out you need
to configure a result backend. The example project
above already does that (see the backend argument to Celery).

Let’s look at some examples:

Groups

A group calls a list of tasks in parallel,
and it returns a special result instance that lets you inspect the results
as a group, and retrieve the return values in order.

>>> from celery import group
>>> from proj.tasks import add

>>> group(add.s(i, i) for i in range(10))().get()
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

	Partial group

>>> g = group(add.s(i) for i in range(10))
>>> g(10).get()
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Chains

Tasks can be linked together so that after one task returns the other
is called:

>>> from celery import chain
>>> from proj.tasks import add, mul

(4 + 4) * 8
>>> chain(add.s(4, 4) | mul.s(8))().get()
64

or a partial chain:

>>> # (? + 4) * 8
>>> g = chain(add.s(4) | mul.s(8))
>>> g(4).get()
64

Chains can also be written like this:

>>> (add.s(4, 4) | mul.s(8))().get()
64

Chords

A chord is a group with a callback:

>>> from celery import chord
>>> from proj.tasks import add, xsum

>>> chord((add.s(i, i) for i in range(10)), xsum.s())().get()
90

A group chained to another task will be automatically converted
to a chord:

>>> (group(add.s(i, i) for i in range(10)) | xsum.s())().get()
90

Since these primitives are all of the signature type they
can be combined almost however you want, for example:

>>> upload_document.s(file) | group(apply_filter.s() for filter in filters)

Be sure to read more about work-flows in the Canvas user
guide.

Routing

Celery supports all of the routing facilities provided by AMQP,
but it also supports simple routing where messages are sent to named queues.

The task_routes setting enables you to route tasks by name
and keep everything centralized in one location:

app.conf.update(
 task_routes = {
 'proj.tasks.add': {'queue': 'hipri'},
 },
)

You can also specify the queue at runtime
with the queue argument to apply_async:

>>> from proj.tasks import add
>>> add.apply_async((2, 2), queue='hipri')

You can then make a worker consume from this queue by
specifying the celery worker -Q option:

$ celery -A proj worker -Q hipri

You may specify multiple queues by using a comma-separated list.
For example, you can make the worker consume from both the default
queue and the hipri queue, where
the default queue is named celery for historical reasons:

$ celery -A proj worker -Q hipri,celery

The order of the queues doesn’t matter as the worker will
give equal weight to the queues.

To learn more about routing, including taking use of the full
power of AMQP routing, see the Routing Guide.

Remote Control

If you’re using RabbitMQ (AMQP), Redis, or Qpid as the broker then
you can control and inspect the worker at runtime.

For example you can see what tasks the worker is currently working on:

$ celery -A proj inspect active

This is implemented by using broadcast messaging, so all remote
control commands are received by every worker in the cluster.

You can also specify one or more workers to act on the request
using the --destination option.
This is a comma-separated list of worker host names:

$ celery -A proj inspect active --destination=celery@example.com

If a destination isn’t provided then every worker will act and reply
to the request.

The celery inspect command contains commands that
don’t change anything in the worker; it only returns information
and statistics about what’s going on inside the worker.
For a list of inspect commands you can execute:

$ celery -A proj inspect --help

Then there’s the celery control command, which contains
commands that actually change things in the worker at runtime:

$ celery -A proj control --help

For example you can force workers to enable event messages (used
for monitoring tasks and workers):

$ celery -A proj control enable_events

When events are enabled you can then start the event dumper
to see what the workers are doing:

$ celery -A proj events --dump

or you can start the curses interface:

$ celery -A proj events

when you’re finished monitoring you can disable events again:

$ celery -A proj control disable_events

The celery status command also uses remote control commands
and shows a list of online workers in the cluster:

$ celery -A proj status

You can read more about the celery command and monitoring
in the Monitoring Guide.

Timezone

All times and dates, internally and in messages use the UTC timezone.

When the worker receives a message, for example with a countdown set it
converts that UTC time to local time. If you wish to use
a different timezone than the system timezone then you must
configure that using the timezone setting:

app.conf.timezone = 'Europe/London'

Optimization

The default configuration isn’t optimized for throughput. By default,
it tries to walk the middle way between many short tasks and fewer long
tasks, a compromise between throughput and fair scheduling.

If you have strict fair scheduling requirements, or want to optimize
for throughput then you should read the Optimizing Guide.

If you’re using RabbitMQ then you can install the librabbitmq [https://pypi.python.org/pypi/librabbitmq/]
module, an AMQP client implemented in C:

$ pip install librabbitmq

What to do now?

Now that you have read this document you should continue
to the User Guide.

There’s also an API reference if you’re so inclined.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Resources

	Getting Help

	Mailing list

	IRC

	Bug tracker

	Wiki

	Contributing

	License

Getting Help

Mailing list

For discussions about the usage, development, and future of Celery,
please join the celery-users [https://groups.google.com/group/celery-users/] mailing list.

IRC

Come chat with us on IRC. The #celery channel is located at the Freenode [https://freenode.net]
network.

Bug tracker

If you have any suggestions, bug reports, or annoyances please report them
to our issue tracker at https://github.com/celery/celery/issues/

Wiki

https://github.com/celery/celery/wiki

Contributing

Development of celery happens at GitHub: https://github.com/celery/celery

You’re highly encouraged to participate in the development
of celery. If you don’t like GitHub (for some reason) you’re welcome
to send regular patches.

Be sure to also read the Contributing to Celery [http://docs.celeryproject.org/en/master/contributing.html] section in the
documentation.

License

This software is licensed under the New BSD License. See the LICENSE
file in the top distribution directory for the full license text.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

User Guide

	Release

	5.0

	Date

	Oct 18, 2020

	Application

	Tasks

	Calling Tasks

	Canvas: Designing Work-flows

	Workers Guide

	Daemonization

	Periodic Tasks

	Routing Tasks

	Monitoring and Management Guide

	Security

	Optimizing

	Debugging

	Concurrency

	Signals

	Testing with Celery

	Extensions and Bootsteps

	Configuration and defaults

	Documenting Tasks with Sphinx

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Application

	Main Name

	Configuration

	Laziness

	Breaking the chain

	Abstract Tasks

The Celery library must be instantiated before use, this instance
is called an application (or app for short).

The application is thread-safe so that multiple Celery applications
with different configurations, components, and tasks can co-exist in the
same process space.

Let’s create one now:

>>> from celery import Celery
>>> app = Celery()
>>> app
<Celery __main__:0x100469fd0>

The last line shows the textual representation of the application:
including the name of the app class (Celery), the name of the
current main module (__main__), and the memory address of the object
(0x100469fd0).

Main Name

Only one of these is important, and that’s the main module name.
Let’s look at why that is.

When you send a task message in Celery, that message won’t contain
any source code, but only the name of the task you want to execute.
This works similarly to how host names work on the internet: every worker
maintains a mapping of task names to their actual functions, called the task
registry.

Whenever you define a task, that task will also be added to the local registry:

>>> @app.task
... def add(x, y):
... return x + y

>>> add
<@task: __main__.add>

>>> add.name
__main__.add

>>> app.tasks['__main__.add']
<@task: __main__.add>

and there you see that __main__ again; whenever Celery isn’t able
to detect what module the function belongs to, it uses the main module
name to generate the beginning of the task name.

This is only a problem in a limited set of use cases:

	If the module that the task is defined in is run as a program.

	If the application is created in the Python shell (REPL).

For example here, where the tasks module is also used to start a worker
with app.worker_main():

tasks.py:

from celery import Celery
app = Celery()

@app.task
def add(x, y): return x + y

if __name__ == '__main__':
 app.worker_main()

When this module is executed the tasks will be named starting with “__main__”,
but when the module is imported by another process, say to call a task,
the tasks will be named starting with “tasks” (the real name of the module):

>>> from tasks import add
>>> add.name
tasks.add

You can specify another name for the main module:

>>> app = Celery('tasks')
>>> app.main
'tasks'

>>> @app.task
... def add(x, y):
... return x + y

>>> add.name
tasks.add

See also

Names

Configuration

There are several options you can set that’ll change how
Celery works. These options can be set directly on the app instance,
or you can use a dedicated configuration module.

The configuration is available as app.conf:

>>> app.conf.timezone
'Europe/London'

where you can also set configuration values directly:

>>> app.conf.enable_utc = True

or update several keys at once by using the update method:

>>> app.conf.update(
... enable_utc=True,
... timezone='Europe/London',
...)

The configuration object consists of multiple dictionaries
that are consulted in order:

	Changes made at run-time.

	The configuration module (if any)

	The default configuration (celery.app.defaults).

You can even add new default sources by using the app.add_defaults()
method.

See also

Go to the Configuration reference for a complete
listing of all the available settings, and their default values.

config_from_object

The app.config_from_object() method loads configuration
from a configuration object.

This can be a configuration module, or any object with configuration attributes.

Note that any configuration that was previously set will be reset when
config_from_object() is called. If you want to set additional
configuration you should do so after.

Example 1: Using the name of a module

The app.config_from_object() method can take the fully qualified
name of a Python module, or even the name of a Python attribute,
for example: "celeryconfig", "myproj.config.celery", or
"myproj.config:CeleryConfig":

from celery import Celery

app = Celery()
app.config_from_object('celeryconfig')

The celeryconfig module may then look like this:

celeryconfig.py:

enable_utc = True
timezone = 'Europe/London'

and the app will be able to use it as long as import celeryconfig is
possible.

Example 2: Passing an actual module object

You can also pass an already imported module object, but this
isn’t always recommended.

Tip

Using the name of a module is recommended as this means the module does
not need to be serialized when the prefork pool is used. If you’re
experiencing configuration problems or pickle errors then please
try using the name of a module instead.

import celeryconfig

from celery import Celery

app = Celery()
app.config_from_object(celeryconfig)

Example 3: Using a configuration class/object

from celery import Celery

app = Celery()

class Config:
 enable_utc = True
 timezone = 'Europe/London'

app.config_from_object(Config)
or using the fully qualified name of the object:
app.config_from_object('module:Config')

config_from_envvar

The app.config_from_envvar() takes the configuration module name
from an environment variable

For example – to load configuration from a module specified in the
environment variable named CELERY_CONFIG_MODULE:

import os
from celery import Celery

#: Set default configuration module name
os.environ.setdefault('CELERY_CONFIG_MODULE', 'celeryconfig')

app = Celery()
app.config_from_envvar('CELERY_CONFIG_MODULE')

You can then specify the configuration module to use via the environment:

$ CELERY_CONFIG_MODULE="celeryconfig.prod" celery worker -l INFO

Censored configuration

If you ever want to print out the configuration, as debugging information
or similar, you may also want to filter out sensitive information like
passwords and API keys.

Celery comes with several utilities useful for presenting the configuration,
one is humanize():

>>> app.conf.humanize(with_defaults=False, censored=True)

This method returns the configuration as a tabulated string. This will
only contain changes to the configuration by default, but you can include the
built-in default keys and values by enabling the with_defaults argument.

If you instead want to work with the configuration as a dictionary, you
can use the table() method:

>>> app.conf.table(with_defaults=False, censored=True)

Please note that Celery won’t be able to remove all sensitive information,
as it merely uses a regular expression to search for commonly named keys.
If you add custom settings containing sensitive information you should name
the keys using a name that Celery identifies as secret.

A configuration setting will be censored if the name contains any of
these sub-strings:

API, TOKEN, KEY, SECRET, PASS, SIGNATURE, DATABASE

Laziness

The application instance is lazy, meaning it won’t be evaluated
until it’s actually needed.

Creating a Celery instance will only do the following:

	Create a logical clock instance, used for events.

	Create the task registry.

	Set itself as the current app (but not if the set_as_current
argument was disabled)

	Call the app.on_init() callback (does nothing by default).

The app.task() decorators don’t create the tasks at the point when
the task is defined, instead it’ll defer the creation
of the task to happen either when the task is used, or after the
application has been finalized,

This example shows how the task isn’t created until
you use the task, or access an attribute (in this case repr()):

>>> @app.task
>>> def add(x, y):
... return x + y

>>> type(add)
<class 'celery.local.PromiseProxy'>

>>> add.__evaluated__()
False

>>> add # <-- causes repr(add) to happen
<@task: __main__.add>

>>> add.__evaluated__()
True

Finalization of the app happens either explicitly by calling
app.finalize() – or implicitly by accessing the app.tasks
attribute.

Finalizing the object will:

	Copy tasks that must be shared between apps

Tasks are shared by default, but if the
shared argument to the task decorator is disabled,
then the task will be private to the app it’s bound to.

	Evaluate all pending task decorators.

	Make sure all tasks are bound to the current app.

Tasks are bound to an app so that they can read default
values from the configuration.

The “default app”

Celery didn’t always have applications, it used to be that
there was only a module-based API, and for backwards compatibility
the old API is still there until the release of Celery 5.0.

Celery always creates a special app - the “default app”,
and this is used if no custom application has been instantiated.

The celery.task module is there to accommodate the old API,
and shouldn’t be used if you use a custom app. You should
always use the methods on the app instance, not the module based API.

For example, the old Task base class enables many compatibility
features where some may be incompatible with newer features, such
as task methods:

from celery.task import Task # << OLD Task base class.

from celery import Task # << NEW base class.

The new base class is recommended even if you use the old
module-based API.

Breaking the chain

While it’s possible to depend on the current app
being set, the best practice is to always pass the app instance
around to anything that needs it.

I call this the “app chain”, since it creates a chain
of instances depending on the app being passed.

The following example is considered bad practice:

from celery import current_app

class Scheduler(object):

 def run(self):
 app = current_app

Instead it should take the app as an argument:

class Scheduler(object):

 def __init__(self, app):
 self.app = app

Internally Celery uses the celery.app.app_or_default() function
so that everything also works in the module-based compatibility API

from celery.app import app_or_default

class Scheduler(object):
 def __init__(self, app=None):
 self.app = app_or_default(app)

In development you can set the CELERY_TRACE_APP
environment variable to raise an exception if the app
chain breaks:

$ CELERY_TRACE_APP=1 celery worker -l INFO

Evolving the API

Celery has changed a lot from 2009 since it was initially
created.

For example, in the beginning it was possible to use any callable as
a task:

def hello(to):
 return 'hello {0}'.format(to)

>>> from celery.execute import apply_async

>>> apply_async(hello, ('world!',))

or you could also create a Task class to set
certain options, or override other behavior

from celery.task import Task
from celery.registry import tasks

class Hello(Task):
 queue = 'hipri'

 def run(self, to):
 return 'hello {0}'.format(to)
tasks.register(Hello)

>>> Hello.delay('world!')

Later, it was decided that passing arbitrary call-able’s
was an anti-pattern, since it makes it very hard to use
serializers other than pickle, and the feature was removed
in 2.0, replaced by task decorators:

from celery.task import task

@task(queue='hipri')
def hello(to):
 return 'hello {0}'.format(to)

Abstract Tasks

All tasks created using the task() decorator
will inherit from the application’s base Task class.

You can specify a different base class using the base argument:

@app.task(base=OtherTask):
def add(x, y):
 return x + y

To create a custom task class you should inherit from the neutral base
class: celery.Task.

from celery import Task

class DebugTask(Task):

 def __call__(self, *args, **kwargs):
 print('TASK STARTING: {0.name}[{0.request.id}]'.format(self))
 return self.run(*args, **kwargs)

Tip

If you override the task’s __call__ method, then it’s very important
that you also call self.run to execute the body of the task. Do not
call super().__call__. The __call__ method of the neutral base
class celery.Task is only present for reference. For optimization,
this has been unrolled into celery.app.trace.build_tracer.trace_task
which calls run directly on the custom task class if no __call__
method is defined.

The neutral base class is special because it’s not bound to any specific app
yet. Once a task is bound to an app it’ll read configuration to set default
values, and so on.

To realize a base class you need to create a task using the app.task()
decorator:

@app.task(base=DebugTask)
def add(x, y):
 return x + y

It’s even possible to change the default base class for an application
by changing its app.Task() attribute:

>>> from celery import Celery, Task

>>> app = Celery()

>>> class MyBaseTask(Task):
... queue = 'hipri'

>>> app.Task = MyBaseTask
>>> app.Task
<unbound MyBaseTask>

>>> @app.task
... def add(x, y):
... return x + y

>>> add
<@task: __main__.add>

>>> add.__class__.mro()
[<class add of <Celery __main__:0x1012b4410>>,
 <unbound MyBaseTask>,
 <unbound Task>,
 <type 'object'>]

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Tasks

Tasks are the building blocks of Celery applications.

A task is a class that can be created out of any callable. It performs
dual roles in that it defines both what happens when a task is
called (sends a message), and what happens when a worker receives that message.

Every task class has a unique name, and this name is referenced in messages
so the worker can find the right function to execute.

A task message is not removed from the queue
until that message has been acknowledged by a worker. A worker can reserve
many messages in advance and even if the worker is killed – by power failure
or some other reason – the message will be redelivered to another worker.

Ideally task functions should be idempotent: meaning
the function won’t cause unintended effects even if called
multiple times with the same arguments.
Since the worker cannot detect if your tasks are idempotent, the default
behavior is to acknowledge the message in advance, just before it’s executed,
so that a task invocation that already started is never executed again.

If your task is idempotent you can set the acks_late option
to have the worker acknowledge the message after the task returns
instead. See also the FAQ entry Should I use retry or acks_late?.

Note that the worker will acknowledge the message if the child process executing
the task is terminated (either by the task calling sys.exit() [https://docs.python.org/dev/library/sys.html#sys.exit], or by signal)
even when acks_late is enabled. This behavior is intentional
as…

	We don’t want to rerun tasks that forces the kernel to send
a SIGSEGV (segmentation fault) or similar signals to the process.

	We assume that a system administrator deliberately killing the task
does not want it to automatically restart.

	A task that allocates too much memory is in danger of triggering the kernel
OOM killer, the same may happen again.

	A task that always fails when redelivered may cause a high-frequency
message loop taking down the system.

If you really want a task to be redelivered in these scenarios you should
consider enabling the task_reject_on_worker_lost setting.

Warning

A task that blocks indefinitely may eventually stop the worker instance
from doing any other work.

If your task does I/O then make sure you add timeouts to these operations,
like adding a timeout to a web request using the requests [https://pypi.python.org/pypi/requests/] library:

connect_timeout, read_timeout = 5.0, 30.0
response = requests.get(URL, timeout=(connect_timeout, read_timeout))

Time limits are convenient for making sure all
tasks return in a timely manner, but a time limit event will actually kill
the process by force so only use them to detect cases where you haven’t
used manual timeouts yet.

The default prefork pool scheduler is not friendly to long-running tasks,
so if you have tasks that run for minutes/hours make sure you enable
the -Ofair command-line argument to
the celery worker. See Prefetch Limits for more
information, and for the best performance route long-running and
short-running tasks to dedicated workers (Automatic routing).

If your worker hangs then please investigate what tasks are running
before submitting an issue, as most likely the hanging is caused
by one or more tasks hanging on a network operation.

–

In this chapter you’ll learn all about defining tasks,
and this is the table of contents:

	Basics

	Names

	Task Request

	Logging

	Retrying

	List of Options

	States

	Semipredicates

	Custom task classes

	How it works

	Tips and Best Practices

	Performance and Strategies

	Example

Basics

You can easily create a task from any callable by using
the task() decorator:

from .models import User

@app.task
def create_user(username, password):
 User.objects.create(username=username, password=password)

There are also many options that can be set for the task,
these can be specified as arguments to the decorator:

@app.task(serializer='json')
def create_user(username, password):
 User.objects.create(username=username, password=password)

How do I import the task decorator? And what’s “app”?

The task decorator is available on your Celery application instance,
if you don’t know what this is then please read First Steps with Celery.

If you’re using Django (see First steps with Django), or you’re the author
of a library then you probably want to use the shared_task() decorator:

from celery import shared_task

@shared_task
def add(x, y):
 return x + y

Multiple decorators

When using multiple decorators in combination with the task
decorator you must make sure that the task
decorator is applied last (oddly, in Python this means it must
be first in the list):

@app.task
@decorator2
@decorator1
def add(x, y):
 return x + y

Bound tasks

A task being bound means the first argument to the task will always
be the task instance (self), just like Python bound methods:

logger = get_task_logger(__name__)

@task(bind=True)
def add(self, x, y):
 logger.info(self.request.id)

Bound tasks are needed for retries (using app.Task.retry()),
for accessing information about the current task request, and for any
additional functionality you add to custom task base classes.

Task inheritance

The base argument to the task decorator specifies the base class of the task:

import celery

class MyTask(celery.Task):

 def on_failure(self, exc, task_id, args, kwargs, einfo):
 print('{0!r} failed: {1!r}'.format(task_id, exc))

@task(base=MyTask)
def add(x, y):
 raise KeyError()

Names

Every task must have a unique name.

If no explicit name is provided the task decorator will generate one for you,
and this name will be based on 1) the module the task is defined in, and 2)
the name of the task function.

Example setting explicit name:

>>> @app.task(name='sum-of-two-numbers')
>>> def add(x, y):
... return x + y

>>> add.name
'sum-of-two-numbers'

A best practice is to use the module name as a name-space,
this way names won’t collide if there’s already a task with that name
defined in another module.

>>> @app.task(name='tasks.add')
>>> def add(x, y):
... return x + y

You can tell the name of the task by investigating its .name attribute:

>>> add.name
'tasks.add'

The name we specified here (tasks.add) is exactly the name that would’ve
been automatically generated for us if the task was defined in a module
named tasks.py:

tasks.py:

@app.task
def add(x, y):
 return x + y

>>> from tasks import add
>>> add.name
'tasks.add'

Automatic naming and relative imports

Absolute Imports

The best practice for developers targeting Python 2 is to add the
following to the top of every module:

from __future__ import absolute_import

This will force you to always use absolute imports so you will
never have any problems with tasks using relative names.

Absolute imports are the default in Python 3 so you don’t need this
if you target that version.

Relative imports and automatic name generation don’t go well together,
so if you’re using relative imports you should set the name explicitly.

For example if the client imports the module "myapp.tasks"
as ".tasks", and the worker imports the module as "myapp.tasks",
the generated names won’t match and an NotRegistered error will
be raised by the worker.

This is also the case when using Django and using project.myapp-style
naming in INSTALLED_APPS:

INSTALLED_APPS = ['project.myapp']

If you install the app under the name project.myapp then the
tasks module will be imported as project.myapp.tasks,
so you must make sure you always import the tasks using the same name:

>>> from project.myapp.tasks import mytask # << GOOD

>>> from myapp.tasks import mytask # << BAD!!!

The second example will cause the task to be named differently
since the worker and the client imports the modules under different names:

>>> from project.myapp.tasks import mytask
>>> mytask.name
'project.myapp.tasks.mytask'

>>> from myapp.tasks import mytask
>>> mytask.name
'myapp.tasks.mytask'

For this reason you must be consistent in how you
import modules, and that is also a Python best practice.

Similarly, you shouldn’t use old-style relative imports:

from module import foo # BAD!

from proj.module import foo # GOOD!

New-style relative imports are fine and can be used:

from .module import foo # GOOD!

If you want to use Celery with a project already using these patterns
extensively and you don’t have the time to refactor the existing code
then you can consider specifying the names explicitly instead of relying
on the automatic naming:

@task(name='proj.tasks.add')
def add(x, y):
 return x + y

Changing the automatic naming behavior

New in version 4.0.

There are some cases when the default automatic naming isn’t suitable.
Consider having many tasks within many different modules:

project/
 /__init__.py
 /celery.py
 /moduleA/
 /__init__.py
 /tasks.py
 /moduleB/
 /__init__.py
 /tasks.py

Using the default automatic naming, each task will have a generated name
like moduleA.tasks.taskA, moduleA.tasks.taskB, moduleB.tasks.test,
and so on. You may want to get rid of having tasks in all task names.
As pointed above, you can explicitly give names for all tasks, or you
can change the automatic naming behavior by overriding
app.gen_task_name(). Continuing with the example, celery.py
may contain:

from celery import Celery

class MyCelery(Celery):

 def gen_task_name(self, name, module):
 if module.endswith('.tasks'):
 module = module[:-6]
 return super(MyCelery, self).gen_task_name(name, module)

app = MyCelery('main')

So each task will have a name like moduleA.taskA, moduleA.taskB and
moduleB.test.

Warning

Make sure that your app.gen_task_name() is a pure function: meaning
that for the same input it must always return the same output.

Task Request

app.Task.request contains information and state
related to the currently executing task.

The request defines the following attributes:

	id

	The unique id of the executing task.

	group

	The unique id of the task’s group, if this task is a member.

	chord

	The unique id of the chord this task belongs to (if the task
is part of the header).

	correlation_id

	Custom ID used for things like de-duplication.

	args

	Positional arguments.

	kwargs

	Keyword arguments.

	origin

	Name of host that sent this task.

	retries

	How many times the current task has been retried.
An integer starting at 0.

	is_eager

	Set to True if the task is executed locally in
the client, not by a worker.

	eta

	The original ETA of the task (if any).
This is in UTC time (depending on the enable_utc
setting).

	expires

	The original expiry time of the task (if any).
This is in UTC time (depending on the enable_utc
setting).

	hostname

	Node name of the worker instance executing the task.

	delivery_info

	Additional message delivery information. This is a mapping
containing the exchange and routing key used to deliver this
task. Used by for example app.Task.retry()
to resend the task to the same destination queue.
Availability of keys in this dict depends on the
message broker used.

	reply-to

	Name of queue to send replies back to (used with RPC result
backend for example).

	called_directly

	This flag is set to true if the task wasn’t
executed by the worker.

	timelimit

	A tuple of the current (soft, hard) time limits active for
this task (if any).

	callbacks

	A list of signatures to be called if this task returns successfully.

	errback

	A list of signatures to be called if this task fails.

	utc

	Set to true the caller has UTC enabled (enable_utc).

New in version 3.1.

	headers

	Mapping of message headers sent with this task message
(may be None).

	reply_to

	Where to send reply to (queue name).

	correlation_id

	Usually the same as the task id, often used in amqp
to keep track of what a reply is for.

New in version 4.0.

	root_id

	The unique id of the first task in the workflow this task
is part of (if any).

	parent_id

	The unique id of the task that called this task (if any).

	chain

	Reversed list of tasks that form a chain (if any).
The last item in this list will be the next task to succeed the
current task. If using version one of the task protocol the chain
tasks will be in request.callbacks instead.

Example

An example task accessing information in the context is:

@app.task(bind=True)
def dump_context(self, x, y):
 print('Executing task id {0.id}, args: {0.args!r} kwargs: {0.kwargs!r}'.format(
 self.request))

The bind argument means that the function will be a “bound method” so
that you can access attributes and methods on the task type instance.

Logging

The worker will automatically set up logging for you, or you can
configure logging manually.

A special logger is available named “celery.task”, you can inherit
from this logger to automatically get the task name and unique id as part
of the logs.

The best practice is to create a common logger
for all of your tasks at the top of your module:

from celery.utils.log import get_task_logger

logger = get_task_logger(__name__)

@app.task
def add(x, y):
 logger.info('Adding {0} + {1}'.format(x, y))
 return x + y

Celery uses the standard Python logger library,
and the documentation can be found here [https://docs.python.org/dev/library/logging.html#module-logging].

You can also use print() [https://docs.python.org/dev/library/functions.html#print], as anything written to standard
out/-err will be redirected to the logging system (you can disable this,
see worker_redirect_stdouts).

Note

The worker won’t update the redirection if you create a logger instance
somewhere in your task or task module.

If you want to redirect sys.stdout and sys.stderr to a custom
logger you have to enable this manually, for example:

import sys

logger = get_task_logger(__name__)

@app.task(bind=True)
def add(self, x, y):
 old_outs = sys.stdout, sys.stderr
 rlevel = self.app.conf.worker_redirect_stdouts_level
 try:
 self.app.log.redirect_stdouts_to_logger(logger, rlevel)
 print('Adding {0} + {1}'.format(x, y))
 return x + y
 finally:
 sys.stdout, sys.stderr = old_outs

Note

If a specific Celery logger you need is not emitting logs, you should
check that the logger is propagating properly. In this example
“celery.app.trace” is enabled so that “succeeded in” logs are emitted:

import celery
import logging

@celery.signals.after_setup_logger.connect
def on_after_setup_logger(**kwargs):
 logger = logging.getLogger('celery')
 logger.propagate = True
 logger = logging.getLogger('celery.app.trace')
 logger.propagate = True

Note

If you want to completely disable Celery logging configuration,
use the setup_logging signal:

import celery

@celery.signals.setup_logging.connect
def on_setup_logging(**kwargs):
 pass

Argument checking

New in version 4.0.

Celery will verify the arguments passed when you call the task, just
like Python does when calling a normal function:

>>> @app.task
... def add(x, y):
... return x + y

Calling the task with two arguments works:
>>> add.delay(8, 8)
<AsyncResult: f59d71ca-1549-43e0-be41-4e8821a83c0c>

Calling the task with only one argument fails:
>>> add.delay(8)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "celery/app/task.py", line 376, in delay
 return self.apply_async(args, kwargs)
 File "celery/app/task.py", line 485, in apply_async
 check_arguments(*(args or ()), **(kwargs or {}))
TypeError: add() takes exactly 2 arguments (1 given)

You can disable the argument checking for any task by setting its
typing attribute to False:

>>> @app.task(typing=False)
... def add(x, y):
... return x + y

Works locally, but the worker receiving the task will raise an error.
>>> add.delay(8)
<AsyncResult: f59d71ca-1549-43e0-be41-4e8821a83c0c>

Hiding sensitive information in arguments

New in version 4.0.

When using task_protocol 2 or higher (default since 4.0), you can
override how positional arguments and keyword arguments are represented in logs
and monitoring events using the argsrepr and kwargsrepr calling
arguments:

>>> add.apply_async((2, 3), argsrepr='(<secret-x>, <secret-y>)')

>>> charge.s(account, card='1234 5678 1234 5678').set(
... kwargsrepr=repr({'card': '**** **** **** 5678'})
...).delay()

Warning

Sensitive information will still be accessible to anyone able
to read your task message from the broker, or otherwise able intercept it.

For this reason you should probably encrypt your message if it contains
sensitive information, or in this example with a credit card number
the actual number could be stored encrypted in a secure store that you retrieve
and decrypt in the task itself.

Retrying

app.Task.retry() can be used to re-execute the task,
for example in the event of recoverable errors.

When you call retry it’ll send a new message, using the same
task-id, and it’ll take care to make sure the message is delivered
to the same queue as the originating task.

When a task is retried this is also recorded as a task state,
so that you can track the progress of the task using the result
instance (see States).

Here’s an example using retry:

@app.task(bind=True)
def send_twitter_status(self, oauth, tweet):
 try:
 twitter = Twitter(oauth)
 twitter.update_status(tweet)
 except (Twitter.FailWhaleError, Twitter.LoginError) as exc:
 raise self.retry(exc=exc)

Note

The app.Task.retry() call will raise an exception so any
code after the retry won’t be reached. This is the Retry
exception, it isn’t handled as an error but rather as a semi-predicate
to signify to the worker that the task is to be retried,
so that it can store the correct state when a result backend is enabled.

This is normal operation and always happens unless the
throw argument to retry is set to False.

The bind argument to the task decorator will give access to self (the
task type instance).

The exc argument is used to pass exception information that’s
used in logs, and when storing task results.
Both the exception and the traceback will
be available in the task state (if a result backend is enabled).

If the task has a max_retries value the current exception
will be re-raised if the max number of retries has been exceeded,
but this won’t happen if:

	An exc argument wasn’t given.

In this case the MaxRetriesExceededError
exception will be raised.

	There’s no current exception

If there’s no original exception to re-raise the exc
argument will be used instead, so:

self.retry(exc=Twitter.LoginError())

will raise the exc argument given.

Using a custom retry delay

When a task is to be retried, it can wait for a given amount of time
before doing so, and the default delay is defined by the
default_retry_delay
attribute. By default this is set to 3 minutes. Note that the
unit for setting the delay is in seconds (int or float).

You can also provide the countdown argument to retry() to
override this default.

@app.task(bind=True, default_retry_delay=30 * 60) # retry in 30 minutes.
def add(self, x, y):
 try:
 something_raising()
 except Exception as exc:
 # overrides the default delay to retry after 1 minute
 raise self.retry(exc=exc, countdown=60)

Automatic retry for known exceptions

New in version 4.0.

Sometimes you just want to retry a task whenever a particular exception
is raised.

Fortunately, you can tell Celery to automatically retry a task using
autoretry_for argument in the task() decorator:

from twitter.exceptions import FailWhaleError

@app.task(autoretry_for=(FailWhaleError,))
def refresh_timeline(user):
 return twitter.refresh_timeline(user)

If you want to specify custom arguments for an internal retry()
call, pass retry_kwargs argument to task() decorator:

@app.task(autoretry_for=(FailWhaleError,),
 retry_kwargs={'max_retries': 5})
def refresh_timeline(user):
 return twitter.refresh_timeline(user)

This is provided as an alternative to manually handling the exceptions,
and the example above will do the same as wrapping the task body
in a try [https://docs.python.org/dev/reference/compound_stmts.html#try] … except [https://docs.python.org/dev/reference/compound_stmts.html#except] statement:

@app.task
def refresh_timeline(user):
 try:
 twitter.refresh_timeline(user)
 except FailWhaleError as exc:
 raise div.retry(exc=exc, max_retries=5)

If you want to automatically retry on any error, simply use:

@app.task(autoretry_for=(Exception,))
def x():
 ...

New in version 4.2.

If your tasks depend on another service, like making a request to an API,
then it’s a good idea to use exponential backoff [https://en.wikipedia.org/wiki/Exponential_backoff] to avoid overwhelming the
service with your requests. Fortunately, Celery’s automatic retry support
makes it easy. Just specify the retry_backoff argument, like this:

from requests.exceptions import RequestException

@app.task(autoretry_for=(RequestException,), retry_backoff=True)
def x():
 ...

By default, this exponential backoff will also introduce random jitter [https://en.wikipedia.org/wiki/Jitter] to
avoid having all the tasks run at the same moment. It will also cap the
maximum backoff delay to 10 minutes. All these settings can be customized
via options documented below.

New in version 4.4.

You can also set autoretry_for, retry_kwargs, retry_backoff, retry_backoff_max and retry_jitter options in class-based tasks:

class BaseTaskWithRetry(Task):
 autoretry_for = (TypeError,)
 retry_kwargs = {'max_retries': 5}
 retry_backoff = True
 retry_backoff_max = 700
 retry_jitter = False

	
Task.autoretry_for

	A list/tuple of exception classes. If any of these exceptions are raised
during the execution of the task, the task will automatically be retried.
By default, no exceptions will be autoretried.

	
Task.retry_kwargs

	A dictionary. Use this to customize how autoretries are executed.
Note that if you use the exponential backoff options below, the countdown
task option will be determined by Celery’s autoretry system, and any
countdown included in this dictionary will be ignored.

	
Task.retry_backoff

	A boolean, or a number. If this option is set to True, autoretries
will be delayed following the rules of exponential backoff [https://en.wikipedia.org/wiki/Exponential_backoff]. The first
retry will have a delay of 1 second, the second retry will have a delay
of 2 seconds, the third will delay 4 seconds, the fourth will delay 8
seconds, and so on. (However, this delay value is modified by
retry_jitter, if it is enabled.)
If this option is set to a number, it is used as a
delay factor. For example, if this option is set to 3, the first retry
will delay 3 seconds, the second will delay 6 seconds, the third will
delay 12 seconds, the fourth will delay 24 seconds, and so on. By default,
this option is set to False, and autoretries will not be delayed.

	
Task.retry_backoff_max

	A number. If retry_backoff is enabled, this option will set a maximum
delay in seconds between task autoretries. By default, this option is set to 600,
which is 10 minutes.

	
Task.retry_jitter

	A boolean. Jitter [https://en.wikipedia.org/wiki/Jitter] is used to introduce randomness into
exponential backoff delays, to prevent all tasks in the queue from being
executed simultaneously. If this option is set to True, the delay
value calculated by retry_backoff is treated as a maximum,
and the actual delay value will be a random number between zero and that
maximum. By default, this option is set to True.

List of Options

The task decorator can take a number of options that change the way
the task behaves, for example you can set the rate limit for a task
using the rate_limit option.

Any keyword argument passed to the task decorator will actually be set
as an attribute of the resulting task class, and this is a list
of the built-in attributes.

General

	
Task.name

	The name the task is registered as.

You can set this name manually, or a name will be
automatically generated using the module and class name.

See also Names.

	
Task.request

	If the task is being executed this will contain information
about the current request. Thread local storage is used.

See Task Request.

	
Task.max_retries

	Only applies if the task calls self.retry or if the task is decorated
with the autoretry_for argument.

The maximum number of attempted retries before giving up.
If the number of retries exceeds this value a MaxRetriesExceededError
exception will be raised.

Note

You have to call retry()
manually, as it won’t automatically retry on exception..

The default is 3.
A value of None will disable the retry limit and the
task will retry forever until it succeeds.

	
Task.throws

	Optional tuple of expected error classes that shouldn’t be regarded
as an actual error.

Errors in this list will be reported as a failure to the result backend,
but the worker won’t log the event as an error, and no traceback will
be included.

Example:

@task(throws=(KeyError, HttpNotFound)):
def get_foo():
 something()

Error types:

	Expected errors (in Task.throws)

Logged with severity INFO, traceback excluded.

	Unexpected errors

Logged with severity ERROR, with traceback included.

	
Task.default_retry_delay

	Default time in seconds before a retry of the task
should be executed. Can be either int [https://docs.python.org/dev/library/functions.html#int] or float [https://docs.python.org/dev/library/functions.html#float].
Default is a three minute delay.

	
Task.rate_limit

	Set the rate limit for this task type (limits the number of tasks
that can be run in a given time frame). Tasks will still complete when
a rate limit is in effect, but it may take some time before it’s allowed to
start.

If this is None no rate limit is in effect.
If it is an integer or float, it is interpreted as “tasks per second”.

The rate limits can be specified in seconds, minutes or hours
by appending “/s”, “/m” or “/h” to the value. Tasks will be evenly
distributed over the specified time frame.

Example: “100/m” (hundred tasks a minute). This will enforce a minimum
delay of 600ms between starting two tasks on the same worker instance.

Default is the task_default_rate_limit setting:
if not specified means rate limiting for tasks is disabled by default.

Note that this is a per worker instance rate limit, and not a global
rate limit. To enforce a global rate limit (e.g., for an API with a
maximum number of requests per second), you must restrict to a given
queue.

	
Task.time_limit

	The hard time limit, in seconds, for this task.
When not set the workers default is used.

	
Task.soft_time_limit

	The soft time limit for this task.
When not set the workers default is used.

	
Task.ignore_result

	Don’t store task state. Note that this means you can’t use
AsyncResult to check if the task is ready,
or get its return value.

	
Task.store_errors_even_if_ignored

	If True, errors will be stored even if the task is configured
to ignore results.

	
Task.serializer

	A string identifying the default serialization
method to use. Defaults to the task_serializer
setting. Can be pickle, json, yaml, or any custom
serialization methods that have been registered with
kombu.serialization.registry.

Please see Serializers for more information.

	
Task.compression

	A string identifying the default compression scheme to use.

Defaults to the task_compression setting.
Can be gzip, or bzip2, or any custom compression schemes
that have been registered with the kombu.compression [https://kombu.readthedocs.io/en/master/reference/kombu.compression.html#module-kombu.compression] registry.

Please see Compression for more information.

	
Task.backend

	The result store backend to use for this task. An instance of one of the
backend classes in celery.backends. Defaults to app.backend,
defined by the result_backend setting.

	
Task.acks_late

	If set to True messages for this task will be acknowledged
after the task has been executed, not just before (the default
behavior).

Note: This means the task may be executed multiple times should the worker
crash in the middle of execution. Make sure your tasks are
idempotent.

The global default can be overridden by the task_acks_late
setting.

	
Task.track_started

	If True the task will report its status as “started”
when the task is executed by a worker.
The default value is False as the normal behavior is to not
report that level of granularity. Tasks are either pending, finished,
or waiting to be retried. Having a “started” status can be useful for
when there are long running tasks and there’s a need to report what
task is currently running.

The host name and process id of the worker executing the task
will be available in the state meta-data (e.g., result.info[‘pid’])

The global default can be overridden by the
task_track_started setting.

See also

The API reference for Task.

States

Celery can keep track of the tasks current state. The state also contains the
result of a successful task, or the exception and traceback information of a
failed task.

There are several result backends to choose from, and they all have
different strengths and weaknesses (see Result Backends).

During its lifetime a task will transition through several possible states,
and each state may have arbitrary meta-data attached to it. When a task
moves into a new state the previous state is
forgotten about, but some transitions can be deduced, (e.g., a task now
in the FAILED state, is implied to have been in the
STARTED state at some point).

There are also sets of states, like the set of
FAILURE_STATES, and the set of READY_STATES.

The client uses the membership of these sets to decide whether
the exception should be re-raised (PROPAGATE_STATES), or whether
the state can be cached (it can if the task is ready).

You can also define Custom states.

Result Backends

If you want to keep track of tasks or need the return values, then Celery
must store or send the states somewhere so that they can be retrieved later.
There are several built-in result backends to choose from: SQLAlchemy/Django ORM,
Memcached, RabbitMQ/QPid (rpc), and Redis – or you can define your own.

No backend works well for every use case.
You should read about the strengths and weaknesses of each backend, and choose
the most appropriate for your needs.

Warning

Backends use resources to store and transmit results. To ensure
that resources are released, you must eventually call
get() or forget() on
EVERY AsyncResult instance returned after calling
a task.

See also

Task result backend settings

RPC Result Backend (RabbitMQ/QPid)

The RPC result backend (rpc://) is special as it doesn’t actually store
the states, but rather sends them as messages. This is an important difference as it
means that a result can only be retrieved once, and only by the client
that initiated the task. Two different processes can’t wait for the same result.

Even with that limitation, it is an excellent choice if you need to receive
state changes in real-time. Using messaging means the client doesn’t have to
poll for new states.

The messages are transient (non-persistent) by default, so the results will
disappear if the broker restarts. You can configure the result backend to send
persistent messages using the result_persistent setting.

Database Result Backend

Keeping state in the database can be convenient for many, especially for
web applications with a database already in place, but it also comes with
limitations.

	Polling the database for new states is expensive, and so you should
increase the polling intervals of operations, such as result.get().

	Some databases use a default transaction isolation level that
isn’t suitable for polling tables for changes.

In MySQL the default transaction isolation level is REPEATABLE-READ:
meaning the transaction won’t see changes made by other transactions until
the current transaction is committed.

Changing that to the READ-COMMITTED isolation level is recommended.

Built-in States

PENDING

Task is waiting for execution or unknown.
Any task id that’s not known is implied to be in the pending state.

STARTED

Task has been started.
Not reported by default, to enable please see app.Task.track_started.

	meta-data

	pid and hostname of the worker process executing
the task.

SUCCESS

Task has been successfully executed.

	meta-data

	result contains the return value of the task.

	propagates

	Yes

	ready

	Yes

FAILURE

Task execution resulted in failure.

	meta-data

	result contains the exception occurred, and traceback
contains the backtrace of the stack at the point when the
exception was raised.

	propagates

	Yes

RETRY

Task is being retried.

	meta-data

	result contains the exception that caused the retry,
and traceback contains the backtrace of the stack at the point
when the exceptions was raised.

	propagates

	No

REVOKED

Task has been revoked.

	propagates

	Yes

Custom states

You can easily define your own states, all you need is a unique name.
The name of the state is usually an uppercase string. As an example
you could have a look at the abortable tasks
which defines a custom ABORTED state.

Use update_state() to update a task’s state:.

@app.task(bind=True)
def upload_files(self, filenames):
 for i, file in enumerate(filenames):
 if not self.request.called_directly:
 self.update_state(state='PROGRESS',
 meta={'current': i, 'total': len(filenames)})

Here I created the state “PROGRESS”, telling any application
aware of this state that the task is currently in progress, and also where
it is in the process by having current and total counts as part of the
state meta-data. This can then be used to create progress bars for example.

Creating pickleable exceptions

A rarely known Python fact is that exceptions must conform to some
simple rules to support being serialized by the pickle module.

Tasks that raise exceptions that aren’t pickleable won’t work
properly when Pickle is used as the serializer.

To make sure that your exceptions are pickleable the exception
MUST provide the original arguments it was instantiated
with in its .args attribute. The simplest way
to ensure this is to have the exception call Exception.__init__.

Let’s look at some examples that work, and one that doesn’t:

OK:
class HttpError(Exception):
 pass

BAD:
class HttpError(Exception):

 def __init__(self, status_code):
 self.status_code = status_code

OK:
class HttpError(Exception):

 def __init__(self, status_code):
 self.status_code = status_code
 Exception.__init__(self, status_code) # <-- REQUIRED

So the rule is:
For any exception that supports custom arguments *args,
Exception.__init__(self, *args) must be used.

There’s no special support for keyword arguments, so if you
want to preserve keyword arguments when the exception is unpickled
you have to pass them as regular args:

class HttpError(Exception):

 def __init__(self, status_code, headers=None, body=None):
 self.status_code = status_code
 self.headers = headers
 self.body = body

 super(HttpError, self).__init__(status_code, headers, body)

Semipredicates

The worker wraps the task in a tracing function that records the final
state of the task. There are a number of exceptions that can be used to
signal this function to change how it treats the return of the task.

Ignore

The task may raise Ignore to force the worker to ignore the
task. This means that no state will be recorded for the task, but the
message is still acknowledged (removed from queue).

This can be used if you want to implement custom revoke-like
functionality, or manually store the result of a task.

Example keeping revoked tasks in a Redis set:

from celery.exceptions import Ignore

@app.task(bind=True)
def some_task(self):
 if redis.ismember('tasks.revoked', self.request.id):
 raise Ignore()

Example that stores results manually:

from celery import states
from celery.exceptions import Ignore

@app.task(bind=True)
def get_tweets(self, user):
 timeline = twitter.get_timeline(user)
 if not self.request.called_directly:
 self.update_state(state=states.SUCCESS, meta=timeline)
 raise Ignore()

Reject

The task may raise Reject to reject the task message using
AMQPs basic_reject method. This won’t have any effect unless
Task.acks_late is enabled.

Rejecting a message has the same effect as acking it, but some
brokers may implement additional functionality that can be used.
For example RabbitMQ supports the concept of Dead Letter Exchanges [http://www.rabbitmq.com/dlx.html]
where a queue can be configured to use a dead letter exchange that rejected
messages are redelivered to.

Reject can also be used to re-queue messages, but please be very careful
when using this as it can easily result in an infinite message loop.

Example using reject when a task causes an out of memory condition:

import errno
from celery.exceptions import Reject

@app.task(bind=True, acks_late=True)
def render_scene(self, path):
 file = get_file(path)
 try:
 renderer.render_scene(file)

 # if the file is too big to fit in memory
 # we reject it so that it's redelivered to the dead letter exchange
 # and we can manually inspect the situation.
 except MemoryError as exc:
 raise Reject(exc, requeue=False)
 except OSError as exc:
 if exc.errno == errno.ENOMEM:
 raise Reject(exc, requeue=False)

 # For any other error we retry after 10 seconds.
 except Exception as exc:
 raise self.retry(exc, countdown=10)

Example re-queuing the message:

from celery.exceptions import Reject

@app.task(bind=True, acks_late=True)
def requeues(self):
 if not self.request.delivery_info['redelivered']:
 raise Reject('no reason', requeue=True)
 print('received two times')

Consult your broker documentation for more details about the basic_reject
method.

Retry

The Retry exception is raised by the Task.retry method
to tell the worker that the task is being retried.

Custom task classes

All tasks inherit from the app.Task class.
The run() method becomes the task body.

As an example, the following code,

@app.task
def add(x, y):
 return x + y

will do roughly this behind the scenes:

class _AddTask(app.Task):

 def run(self, x, y):
 return x + y
add = app.tasks[_AddTask.name]

Instantiation

A task is not instantiated for every request, but is registered
in the task registry as a global instance.

This means that the __init__ constructor will only be called
once per process, and that the task class is semantically closer to an
Actor.

If you have a task,

from celery import Task

class NaiveAuthenticateServer(Task):

 def __init__(self):
 self.users = {'george': 'password'}

 def run(self, username, password):
 try:
 return self.users[username] == password
 except KeyError:
 return False

And you route every request to the same process, then it
will keep state between requests.

This can also be useful to cache resources,
For example, a base Task class that caches a database connection:

from celery import Task

class DatabaseTask(Task):
 _db = None

 @property
 def db(self):
 if self._db is None:
 self._db = Database.connect()
 return self._db

Per task usage

The above can be added to each task like this:

@app.task(base=DatabaseTask)
def process_rows():
 for row in process_rows.db.table.all():
 process_row(row)

The db attribute of the process_rows task will then
always stay the same in each process.

App-wide usage

You can also use your custom class in your whole Celery app by passing it as
the task_cls argument when instantiating the app. This argument should be
either a string giving the python path to your Task class or the class itself:

from celery import Celery

app = Celery('tasks', task_cls='your.module.path:DatabaseTask')

This will make all your tasks declared using the decorator syntax within your
app to use your DatabaseTask class and will all have a db attribute.

The default value is the class provided by Celery: 'celery.app.task:Task'.

Handlers

	
after_return(self, status, retval, task_id, args, kwargs, einfo)

	Handler called after the task returns.

	Parameters

	
	status – Current task state.

	retval – Task return value/exception.

	task_id – Unique id of the task.

	args – Original arguments for the task that returned.

	kwargs – Original keyword arguments for the task
that returned.

	Keyword Arguments

	einfo – ExceptionInfo
instance, containing the traceback (if any).

The return value of this handler is ignored.

	
on_failure(self, exc, task_id, args, kwargs, einfo)

	This is run by the worker when the task fails.

	Parameters

	
	exc – The exception raised by the task.

	task_id – Unique id of the failed task.

	args – Original arguments for the task that failed.

	kwargs – Original keyword arguments for the task
that failed.

	Keyword Arguments

	einfo – ExceptionInfo
instance, containing the traceback.

The return value of this handler is ignored.

	
on_retry(self, exc, task_id, args, kwargs, einfo)

	This is run by the worker when the task is to be retried.

	Parameters

	
	exc – The exception sent to retry().

	task_id – Unique id of the retried task.

	args – Original arguments for the retried task.

	kwargs – Original keyword arguments for the retried task.

	Keyword Arguments

	einfo – ExceptionInfo
instance, containing the traceback.

The return value of this handler is ignored.

	
on_success(self, retval, task_id, args, kwargs)

	Run by the worker if the task executes successfully.

	Parameters

	
	retval – The return value of the task.

	task_id – Unique id of the executed task.

	args – Original arguments for the executed task.

	kwargs – Original keyword arguments for the executed task.

The return value of this handler is ignored.

Requests and custom requests

Upon receiving a message to run a task, the worker
creates a request to represent such
demand.

Custom task classes may override which request class to use by changing the
attribute celery.app.task.Task.Request. You may either assign the
custom request class itself, or its fully qualified name.

The request has several responsibilities. Custom request classes should cover
them all – they are responsible to actually run and trace the task. We
strongly recommend to inherit from celery.worker.request.Request.

When using the pre-forking worker, the methods
on_timeout() and
on_failure() are executed in the main
worker process. An application may leverage such facility to detect failures
which are not detected using celery.app.task.Task.on_failure().

As an example, the following custom request detects and logs hard time
limits, and other failures.

import logging
from celery.worker.request import Request

logger = logging.getLogger('my.package')

class MyRequest(Request):
 'A minimal custom request to log failures and hard time limits.'

 def on_timeout(self, soft, timeout):
 super(MyRequest, self).on_timeout(soft, timeout)
 if not soft:
 logger.warning(
 'A hard timeout was enforced for task %s',
 self.task.name
)

 def on_failure(self, exc_info, send_failed_event=True, return_ok=False):
 super(Request, self).on_failure(
 exc_info,
 send_failed_event=send_failed_event,
 return_ok=return_ok
)
 logger.warning(
 'Failure detected for task %s',
 self.task.name
)

class MyTask(Task):
 Request = MyRequest # you can use a FQN 'my.package:MyRequest'

@app.task(base=MyTask)
def some_longrunning_task():
 # use your imagination

How it works

Here come the technical details. This part isn’t something you need to know,
but you may be interested.

All defined tasks are listed in a registry. The registry contains
a list of task names and their task classes. You can investigate this registry
yourself:

>>> from proj.celery import app
>>> app.tasks
{'celery.chord_unlock':
 <@task: celery.chord_unlock>,
 'celery.backend_cleanup':
 <@task: celery.backend_cleanup>,
 'celery.chord':
 <@task: celery.chord>}

This is the list of tasks built into Celery. Note that tasks
will only be registered when the module they’re defined in is imported.

The default loader imports any modules listed in the
imports setting.

The app.task() decorator is responsible for registering your task
in the applications task registry.

When tasks are sent, no actual function code is sent with it, just the name
of the task to execute. When the worker then receives the message it can look
up the name in its task registry to find the execution code.

This means that your workers should always be updated with the same software
as the client. This is a drawback, but the alternative is a technical
challenge that’s yet to be solved.

Tips and Best Practices

Ignore results you don’t want

If you don’t care about the results of a task, be sure to set the
ignore_result option, as storing results
wastes time and resources.

@app.task(ignore_result=True)
def mytask():
 something()

Results can even be disabled globally using the task_ignore_result
setting.

Results can be enabled/disabled on a per-execution basis, by passing the ignore_result boolean parameter,
when calling apply_async or delay.

@app.task
def mytask(x, y):
 return x + y

No result will be stored
result = mytask.apply_async(1, 2, ignore_result=True)
print result.get() # -> None

Result will be stored
result = mytask.apply_async(1, 2, ignore_result=False)
print result.get() # -> 3

By default tasks will not ignore results (ignore_result=False) when a result backend is configured.

The option precedence order is the following:

	Global task_ignore_result

	ignore_result option

	Task execution option ignore_result

More optimization tips

You find additional optimization tips in the
Optimizing Guide.

Avoid launching synchronous subtasks

Having a task wait for the result of another task is really inefficient,
and may even cause a deadlock if the worker pool is exhausted.

Make your design asynchronous instead, for example by using callbacks.

Bad:

@app.task
def update_page_info(url):
 page = fetch_page.delay(url).get()
 info = parse_page.delay(url, page).get()
 store_page_info.delay(url, info)

@app.task
def fetch_page(url):
 return myhttplib.get(url)

@app.task
def parse_page(page):
 return myparser.parse_document(page)

@app.task
def store_page_info(url, info):
 return PageInfo.objects.create(url, info)

Good:

def update_page_info(url):
 # fetch_page -> parse_page -> store_page
 chain = fetch_page.s(url) | parse_page.s() | store_page_info.s(url)
 chain()

@app.task()
def fetch_page(url):
 return myhttplib.get(url)

@app.task()
def parse_page(page):
 return myparser.parse_document(page)

@app.task(ignore_result=True)
def store_page_info(info, url):
 PageInfo.objects.create(url=url, info=info)

Here I instead created a chain of tasks by linking together
different signature()’s.
You can read about chains and other powerful constructs
at Canvas: Designing Work-flows.

By default Celery will not allow you to run subtasks synchronously within a task,
but in rare or extreme cases you might need to do so.
WARNING:
enabling subtasks to run synchronously is not recommended!

@app.task
def update_page_info(url):
 page = fetch_page.delay(url).get(disable_sync_subtasks=False)
 info = parse_page.delay(url, page).get(disable_sync_subtasks=False)
 store_page_info.delay(url, info)

@app.task
def fetch_page(url):
 return myhttplib.get(url)

@app.task
def parse_page(url, page):
 return myparser.parse_document(page)

@app.task
def store_page_info(url, info):
 return PageInfo.objects.create(url, info)

Performance and Strategies

Granularity

The task granularity is the amount of computation needed by each subtask.
In general it is better to split the problem up into many small tasks rather
than have a few long running tasks.

With smaller tasks you can process more tasks in parallel and the tasks
won’t run long enough to block the worker from processing other waiting tasks.

However, executing a task does have overhead. A message needs to be sent, data
may not be local, etc. So if the tasks are too fine-grained the
overhead added probably removes any benefit.

See also

The book Art of Concurrency [http://oreilly.com/catalog/9780596521547] has a section dedicated to the topic
of task granularity [AOC1].

	AOC1

	Breshears, Clay. Section 2.2.1, “The Art of Concurrency”.
O’Reilly Media, Inc. May 15, 2009. ISBN-13 978-0-596-52153-0.

Data locality

The worker processing the task should be as close to the data as
possible. The best would be to have a copy in memory, the worst would be a
full transfer from another continent.

If the data is far away, you could try to run another worker at location, or
if that’s not possible - cache often used data, or preload data you know
is going to be used.

The easiest way to share data between workers is to use a distributed cache
system, like memcached [http://memcached.org/].

See also

The paper Distributed Computing Economics [http://research.microsoft.com/pubs/70001/tr-2003-24.pdf] by Jim Gray is an excellent
introduction to the topic of data locality.

State

Since Celery is a distributed system, you can’t know which process, or
on what machine the task will be executed. You can’t even know if the task will
run in a timely manner.

The ancient async sayings tells us that “asserting the world is the
responsibility of the task”. What this means is that the world view may
have changed since the task was requested, so the task is responsible for
making sure the world is how it should be; If you have a task
that re-indexes a search engine, and the search engine should only be
re-indexed at maximum every 5 minutes, then it must be the tasks
responsibility to assert that, not the callers.

Another gotcha is Django model objects. They shouldn’t be passed on as
arguments to tasks. It’s almost always better to re-fetch the object from
the database when the task is running instead, as using old data may lead
to race conditions.

Imagine the following scenario where you have an article and a task
that automatically expands some abbreviations in it:

class Article(models.Model):
 title = models.CharField()
 body = models.TextField()

@app.task
def expand_abbreviations(article):
 article.body.replace('MyCorp', 'My Corporation')
 article.save()

First, an author creates an article and saves it, then the author
clicks on a button that initiates the abbreviation task:

>>> article = Article.objects.get(id=102)
>>> expand_abbreviations.delay(article)

Now, the queue is very busy, so the task won’t be run for another 2 minutes.
In the meantime another author makes changes to the article, so
when the task is finally run, the body of the article is reverted to the old
version because the task had the old body in its argument.

Fixing the race condition is easy, just use the article id instead, and
re-fetch the article in the task body:

@app.task
def expand_abbreviations(article_id):
 article = Article.objects.get(id=article_id)
 article.body.replace('MyCorp', 'My Corporation')
 article.save()

>>> expand_abbreviations.delay(article_id)

There might even be performance benefits to this approach, as sending large
messages may be expensive.

Database transactions

Let’s have a look at another example:

from django.db import transaction
from django.http import HttpResponseRedirect

@transaction.atomic
def create_article(request):
 article = Article.objects.create()
 expand_abbreviations.delay(article.pk)
 return HttpResponseRedirect('/articles/')

This is a Django view creating an article object in the database,
then passing the primary key to a task. It uses the transaction.atomic
decorator, that will commit the transaction when the view returns, or
roll back if the view raises an exception.

There’s a race condition if the task starts executing
before the transaction has been committed; The database object doesn’t exist
yet!

The solution is to use the on_commit callback to launch your Celery task
once all transactions have been committed successfully.

from django.db.transaction import on_commit

def create_article(request):
 article = Article.objects.create()
 on_commit(lambda: expand_abbreviations.delay(article.pk))

Note

on_commit is available in Django 1.9 and above, if you are using a
version prior to that then the django-transaction-hooks [https://github.com/carljm/django-transaction-hooks] library
adds support for this.

Example

Let’s take a real world example: a blog where comments posted need to be
filtered for spam. When the comment is created, the spam filter runs in the
background, so the user doesn’t have to wait for it to finish.

I have a Django blog application allowing comments
on blog posts. I’ll describe parts of the models/views and tasks for this
application.

blog/models.py

The comment model looks like this:

from django.db import models
from django.utils.translation import ugettext_lazy as _

class Comment(models.Model):
 name = models.CharField(_('name'), max_length=64)
 email_address = models.EmailField(_('email address'))
 homepage = models.URLField(_('home page'),
 blank=True, verify_exists=False)
 comment = models.TextField(_('comment'))
 pub_date = models.DateTimeField(_('Published date'),
 editable=False, auto_add_now=True)
 is_spam = models.BooleanField(_('spam?'),
 default=False, editable=False)

 class Meta:
 verbose_name = _('comment')
 verbose_name_plural = _('comments')

In the view where the comment is posted, I first write the comment
to the database, then I launch the spam filter task in the background.

blog/views.py

from django import forms
from django.http import HttpResponseRedirect
from django.template.context import RequestContext
from django.shortcuts import get_object_or_404, render_to_response

from blog import tasks
from blog.models import Comment

class CommentForm(forms.ModelForm):

 class Meta:
 model = Comment

def add_comment(request, slug, template_name='comments/create.html'):
 post = get_object_or_404(Entry, slug=slug)
 remote_addr = request.META.get('REMOTE_ADDR')

 if request.method == 'post':
 form = CommentForm(request.POST, request.FILES)
 if form.is_valid():
 comment = form.save()
 # Check spam asynchronously.
 tasks.spam_filter.delay(comment_id=comment.id,
 remote_addr=remote_addr)
 return HttpResponseRedirect(post.get_absolute_url())
 else:
 form = CommentForm()

 context = RequestContext(request, {'form': form})
 return render_to_response(template_name, context_instance=context)

To filter spam in comments I use Akismet [http://akismet.com/faq/], the service
used to filter spam in comments posted to the free blog platform
Wordpress. Akismet [http://akismet.com/faq/] is free for personal use, but for commercial use you
need to pay. You have to sign up to their service to get an API key.

To make API calls to Akismet [http://akismet.com/faq/] I use the akismet.py [http://www.voidspace.org.uk/downloads/akismet.py] library written by
Michael Foord [http://www.voidspace.org.uk/].

blog/tasks.py

from celery import Celery

from akismet import Akismet

from django.core.exceptions import ImproperlyConfigured
from django.contrib.sites.models import Site

from blog.models import Comment

app = Celery(broker='amqp://')

@app.task
def spam_filter(comment_id, remote_addr=None):
 logger = spam_filter.get_logger()
 logger.info('Running spam filter for comment %s', comment_id)

 comment = Comment.objects.get(pk=comment_id)
 current_domain = Site.objects.get_current().domain
 akismet = Akismet(settings.AKISMET_KEY, 'http://{0}'.format(domain))
 if not akismet.verify_key():
 raise ImproperlyConfigured('Invalid AKISMET_KEY')

 is_spam = akismet.comment_check(user_ip=remote_addr,
 comment_content=comment.comment,
 comment_author=comment.name,
 comment_author_email=comment.email_address)
 if is_spam:
 comment.is_spam = True
 comment.save()

 return is_spam

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Calling Tasks

	Basics

	Linking (callbacks/errbacks)

	On message

	ETA and Countdown

	Expiration

	Message Sending Retry

	Connection Error Handling

	Serializers

	Compression

	Connections

	Routing options

	Results options

Basics

This document describes Celery’s uniform “Calling API”
used by task instances and the canvas.

The API defines a standard set of execution options, as well as three methods:

	apply_async(args[, kwargs[, …]])

Sends a task message.

	delay(*args, **kwargs)

Shortcut to send a task message, but doesn’t support execution
options.

	calling (__call__)

Applying an object supporting the calling API (e.g., add(2, 2))
means that the task will not be executed by a worker, but in the current
process instead (a message won’t be sent).

Quick Cheat Sheet

	
	T.delay(arg, kwarg=value)
	Star arguments shortcut to .apply_async.
(.delay(*args, **kwargs) calls .apply_async(args, kwargs)).

	T.apply_async((arg,), {'kwarg': value})

	
	T.apply_async(countdown=10)
	executes in 10 seconds from now.

	
	T.apply_async(eta=now + timedelta(seconds=10))
	executes in 10 seconds from now, specified using eta

	
	T.apply_async(countdown=60, expires=120)
	executes in one minute from now, but expires after 2 minutes.

	
	T.apply_async(expires=now + timedelta(days=2))
	expires in 2 days, set using datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime].

Example

The delay() method is convenient as it looks like calling a regular
function:

task.delay(arg1, arg2, kwarg1='x', kwarg2='y')

Using apply_async() instead you have to write:

task.apply_async(args=[arg1, arg2], kwargs={'kwarg1': 'x', 'kwarg2': 'y'})

Tip

If the task isn’t registered in the current process
you can use send_task() to call the task by name instead.

So delay is clearly convenient, but if you want to set additional execution
options you have to use apply_async.

The rest of this document will go into the task execution
options in detail. All examples use a task
called add, returning the sum of two arguments:

@app.task
def add(x, y):
 return x + y

There’s another way…

You’ll learn more about this later while reading about the Canvas, but signature’s are objects used to pass around
the signature of a task invocation, (for example to send it over the
network), and they also support the Calling API:

task.s(arg1, arg2, kwarg1='x', kwargs2='y').apply_async()

Linking (callbacks/errbacks)

Celery supports linking tasks together so that one task follows another.
The callback task will be applied with the result of the parent task
as a partial argument:

add.apply_async((2, 2), link=add.s(16))

What’s s?

The add.s call used here is called a signature. If you
don’t know what they are you should read about them in the
canvas guide.
There you can also learn about chain: a simpler
way to chain tasks together.

In practice the link execution option is considered an internal
primitive, and you’ll probably not use it directly, but
use chains instead.

Here the result of the first task (4) will be sent to a new
task that adds 16 to the previous result, forming the expression
[image: (2 + 2) + 16 = 20]

You can also cause a callback to be applied if task raises an exception
(errback), but this behaves differently from a regular callback
in that it will be passed the id of the parent task, not the result.
This is because it may not always be possible to serialize
the exception raised, and so this way the error callback requires
a result backend to be enabled, and the task must retrieve the result
of the task instead.

This is an example error callback:

@app.task
def error_handler(uuid):
 result = AsyncResult(uuid)
 exc = result.get(propagate=False)
 print('Task {0} raised exception: {1!r}\n{2!r}'.format(
 uuid, exc, result.traceback))

it can be added to the task using the link_error execution
option:

add.apply_async((2, 2), link_error=error_handler.s())

In addition, both the link and link_error options can be expressed
as a list:

add.apply_async((2, 2), link=[add.s(16), other_task.s()])

The callbacks/errbacks will then be called in order, and all
callbacks will be called with the return value of the parent task
as a partial argument.

On message

Celery supports catching all states changes by setting on_message callback.

For example for long-running tasks to send task progress you can do something like this:

@app.task(bind=True)
def hello(self, a, b):
 time.sleep(1)
 self.update_state(state="PROGRESS", meta={'progress': 50})
 time.sleep(1)
 self.update_state(state="PROGRESS", meta={'progress': 90})
 time.sleep(1)
 return 'hello world: %i' % (a+b)

def on_raw_message(body):
 print(body)

a, b = 1, 1
r = hello.apply_async(args=(a, b))
print(r.get(on_message=on_raw_message, propagate=False))

Will generate output like this:

{'task_id': '5660d3a3-92b8-40df-8ccc-33a5d1d680d7',
 'result': {'progress': 50},
 'children': [],
 'status': 'PROGRESS',
 'traceback': None}
{'task_id': '5660d3a3-92b8-40df-8ccc-33a5d1d680d7',
 'result': {'progress': 90},
 'children': [],
 'status': 'PROGRESS',
 'traceback': None}
{'task_id': '5660d3a3-92b8-40df-8ccc-33a5d1d680d7',
 'result': 'hello world: 10',
 'children': [],
 'status': 'SUCCESS',
 'traceback': None}
hello world: 10

ETA and Countdown

The ETA (estimated time of arrival) lets you set a specific date and time that
is the earliest time at which your task will be executed. countdown is
a shortcut to set ETA by seconds into the future.

>>> result = add.apply_async((2, 2), countdown=3)
>>> result.get() # this takes at least 3 seconds to return
20

The task is guaranteed to be executed at some time after the
specified date and time, but not necessarily at that exact time.
Possible reasons for broken deadlines may include many items waiting
in the queue, or heavy network latency. To make sure your tasks
are executed in a timely manner you should monitor the queue for congestion. Use
Munin, or similar tools, to receive alerts, so appropriate action can be
taken to ease the workload. See Munin.

While countdown is an integer, eta must be a datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime]
object, specifying an exact date and time (including millisecond precision,
and timezone information):

>>> from datetime import datetime, timedelta

>>> tomorrow = datetime.utcnow() + timedelta(days=1)
>>> add.apply_async((2, 2), eta=tomorrow)

Expiration

The expires argument defines an optional expiry time,
either as seconds after task publish, or a specific date and time using
datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime]:

>>> # Task expires after one minute from now.
>>> add.apply_async((10, 10), expires=60)

>>> # Also supports datetime
>>> from datetime import datetime, timedelta
>>> add.apply_async((10, 10), kwargs,
... expires=datetime.now() + timedelta(days=1)

When a worker receives an expired task it will mark
the task as REVOKED (TaskRevokedError).

Message Sending Retry

Celery will automatically retry sending messages in the event of connection
failure, and retry behavior can be configured – like how often to retry, or a maximum
number of retries – or disabled all together.

To disable retry you can set the retry execution option to False:

add.apply_async((2, 2), retry=False)

Related Settings

	
	task_publish_retry

	
	task_publish_retry_policy

Retry Policy

A retry policy is a mapping that controls how retries behave,
and can contain the following keys:

	max_retries

Maximum number of retries before giving up, in this case the
exception that caused the retry to fail will be raised.

A value of None means it will retry forever.

The default is to retry 3 times.

	interval_start

Defines the number of seconds (float or integer) to wait between
retries. Default is 0 (the first retry will be instantaneous).

	interval_step

On each consecutive retry this number will be added to the retry
delay (float or integer). Default is 0.2.

	interval_max

Maximum number of seconds (float or integer) to wait between
retries. Default is 0.2.

For example, the default policy correlates to:

add.apply_async((2, 2), retry=True, retry_policy={
 'max_retries': 3,
 'interval_start': 0,
 'interval_step': 0.2,
 'interval_max': 0.2,
})

the maximum time spent retrying will be 0.4 seconds. It’s set relatively
short by default because a connection failure could lead to a retry pile effect
if the broker connection is down – For example, many web server processes waiting
to retry, blocking other incoming requests.

Connection Error Handling

When you send a task and the message transport connection is lost, or
the connection cannot be initiated, an OperationalError
error will be raised:

>>> from proj.tasks import add
>>> add.delay(2, 2)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "celery/app/task.py", line 388, in delay
 return self.apply_async(args, kwargs)
 File "celery/app/task.py", line 503, in apply_async
 **options
 File "celery/app/base.py", line 662, in send_task
 amqp.send_task_message(P, name, message, **options)
 File "celery/backends/rpc.py", line 275, in on_task_call
 maybe_declare(self.binding(producer.channel), retry=True)
 File "/opt/celery/kombu/kombu/messaging.py", line 204, in _get_channel
 channel = self._channel = channel()
 File "/opt/celery/py-amqp/amqp/connection.py", line 272, in connect
 self.transport.connect()
 File "/opt/celery/py-amqp/amqp/transport.py", line 100, in connect
 self._connect(self.host, self.port, self.connect_timeout)
 File "/opt/celery/py-amqp/amqp/transport.py", line 141, in _connect
 self.sock.connect(sa)
 kombu.exceptions.OperationalError: [Errno 61] Connection refused

If you have retries enabled this will only happen after
retries are exhausted, or when disabled immediately.

You can handle this error too:

>>> from celery.utils.log import get_logger
>>> logger = get_logger(__name__)

>>> try:
... add.delay(2, 2)
... except add.OperationalError as exc:
... logger.exception('Sending task raised: %r', exc)

Serializers

Security

The pickle module allows for execution of arbitrary functions,
please see the security guide.

Celery also comes with a special serializer that uses
cryptography to sign your messages.

Data transferred between clients and workers needs to be serialized,
so every message in Celery has a content_type header that
describes the serialization method used to encode it.

The default serializer is JSON, but you can
change this using the task_serializer setting,
or for each individual task, or even per message.

There’s built-in support for JSON, pickle [https://docs.python.org/dev/library/pickle.html#module-pickle], YAML
and msgpack, and you can also add your own custom serializers by registering
them into the Kombu serializer registry

See also

Message Serialization [https://kombu.readthedocs.io/en/master/userguide/serialization.html#guide-serialization] in the Kombu user
guide.

Each option has its advantages and disadvantages.

	json – JSON is supported in many programming languages, is now
	a standard part of Python (since 2.6), and is fairly fast to decode
using the modern Python libraries, such as simplejson [https://pypi.python.org/pypi/simplejson/].

The primary disadvantage to JSON is that it limits you to the following
data types: strings, Unicode, floats, Boolean, dictionaries, and lists.
Decimals and dates are notably missing.

Binary data will be transferred using Base64 encoding,
increasing the size of the transferred data by 34% compared to an encoding
format where native binary types are supported.

However, if your data fits inside the above constraints and you need
cross-language support, the default setting of JSON is probably your
best choice.

See http://json.org for more information.

Note

(From Python official docs https://docs.python.org/3.6/library/json.html)
Keys in key/value pairs of JSON are always of the type str [https://docs.python.org/dev/library/stdtypes.html#str]. When
a dictionary is converted into JSON, all the keys of the dictionary are
coerced to strings. As a result of this, if a dictionary is converted
into JSON and then back into a dictionary, the dictionary may not equal
the original one. That is, loads(dumps(x)) != x if x has non-string
keys.

	pickle – If you have no desire to support any language other than
	Python, then using the pickle encoding will gain you the support of
all built-in Python data types (except class instances), smaller
messages when sending binary files, and a slight speedup over JSON
processing.

See pickle [https://docs.python.org/dev/library/pickle.html#module-pickle] for more information.

	yaml – YAML has many of the same characteristics as json,
	except that it natively supports more data types (including dates,
recursive references, etc.).

However, the Python libraries for YAML are a good bit slower than the
libraries for JSON.

If you need a more expressive set of data types and need to maintain
cross-language compatibility, then YAML may be a better fit than the above.

See http://yaml.org/ for more information.

	msgpack – msgpack is a binary serialization format that’s closer to JSON
	in features. It’s very young however, and support should be considered
experimental at this point.

See http://msgpack.org/ for more information.

The encoding used is available as a message header, so the worker knows how to
deserialize any task. If you use a custom serializer, this serializer must
be available for the worker.

The following order is used to decide the serializer
used when sending a task:

	The serializer execution option.

	The Task.serializer attribute

	The task_serializer setting.

Example setting a custom serializer for a single task invocation:

>>> add.apply_async((10, 10), serializer='json')

Compression

Celery can compress messages using the following builtin schemes:

	brotli

brotli is optimized for the web, in particular small text
documents. It is most effective for serving static content
such as fonts and html pages.

To use it, install Celery with:

$ pip install celery[brotli]

	bzip2

bzip2 creates smaller files than gzip, but compression and
decompression speeds are noticeably slower than those of gzip.

To use it, please ensure your Python executable was compiled
with bzip2 support.

If you get the following ImportError [https://docs.python.org/dev/library/exceptions.html#ImportError]:

>>> import bz2
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: No module named 'bz2'

it means that you should recompile your Python version with bzip2 support.

	gzip

gzip is suitable for systems that require a small memory footprint,
making it ideal for systems with limited memory. It is often
used to generate files with the “.tar.gz” extension.

To use it, please ensure your Python executable was compiled
with gzip support.

If you get the following ImportError [https://docs.python.org/dev/library/exceptions.html#ImportError]:

>>> import gzip
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: No module named 'gzip'

it means that you should recompile your Python version with gzip support.

	lzma

lzma provides a good compression ratio and executes with
fast compression and decompression speeds at the expense
of higher memory usage.

To use it, please ensure your Python executable was compiled
with lzma support and that your Python version is 3.3 and above.

If you get the following ImportError [https://docs.python.org/dev/library/exceptions.html#ImportError]:

>>> import lzma
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: No module named 'lzma'

it means that you should recompile your Python version with lzma support.

Alternatively, you can also install a backport using:

$ pip install celery[lzma]

	zlib

zlib is an abstraction of the Deflate algorithm in library
form which includes support both for the gzip file format
and a lightweight stream format in its API. It is a crucial
component of many software systems - Linux kernel and Git VCS just
to name a few.

To use it, please ensure your Python executable was compiled
with zlib support.

If you get the following ImportError [https://docs.python.org/dev/library/exceptions.html#ImportError]:

>>> import zlib
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: No module named 'zlib'

it means that you should recompile your Python version with zlib support.

	zstd

zstd targets real-time compression scenarios at zlib-level
and better compression ratios. It’s backed by a very fast entropy
stage, provided by Huff0 and FSE library.

To use it, install Celery with:

$ pip install celery[zstd]

You can also create your own compression schemes and register
them in the kombu compression registry [https://kombu.readthedocs.io/en/master/reference/kombu.compression.html#kombu.compression.register].

The following order is used to decide the compression scheme
used when sending a task:

	The compression execution option.

	The Task.compression attribute.

	The task_compression attribute.

Example specifying the compression used when calling a task:

>>> add.apply_async((2, 2), compression='zlib')

Connections

Automatic Pool Support

Since version 2.3 there’s support for automatic connection pools,
so you don’t have to manually handle connections and publishers
to reuse connections.

The connection pool is enabled by default since version 2.5.

See the broker_pool_limit setting for more information.

You can handle the connection manually by creating a
publisher:

results = []
with add.app.pool.acquire(block=True) as connection:
 with add.get_publisher(connection) as publisher:
 try:
 for args in numbers:
 res = add.apply_async((2, 2), publisher=publisher)
 results.append(res)
print([res.get() for res in results])

Though this particular example is much better expressed as a group:

>>> from celery import group

>>> numbers = [(2, 2), (4, 4), (8, 8), (16, 16)]
>>> res = group(add.s(i, j) for i, j in numbers).apply_async()

>>> res.get()
[4, 8, 16, 32]

Routing options

Celery can route tasks to different queues.

Simple routing (name <-> name) is accomplished using the queue option:

add.apply_async(queue='priority.high')

You can then assign workers to the priority.high queue by using
the workers -Q argument:

$ celery -A proj worker -l INFO -Q celery,priority.high

See also

Hard-coding queue names in code isn’t recommended, the best practice
is to use configuration routers (task_routes).

To find out more about routing, please see Routing Tasks.

Results options

You can enable or disable result storage using the task_ignore_result
setting or by using the ignore_result option:

>>> result = add.apply_async(1, 2, ignore_result=True)
>>> result.get()
None

>>> # Do not ignore result (default)
...
>>> result = add.apply_async(1, 2, ignore_result=False)
>>> result.get()
3

If you’d like to store additional metadata about the task in the result backend
set the result_extended setting to True.

See also

For more information on tasks, please see Tasks.

Advanced Options

These options are for advanced users who want to take use of
AMQP’s full routing capabilities. Interested parties may read the
routing guide.

	exchange

Name of exchange (or a kombu.entity.Exchange) to
send the message to.

	routing_key

Routing key used to determine.

	priority

A number between 0 and 255, where 255 is the highest priority.

Supported by: RabbitMQ, Redis (priority reversed, 0 is highest).

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Canvas: Designing Work-flows

	Signatures

	Partials

	Immutability

	Callbacks

	The Primitives

	Chains

	Groups

	Chords

	Map & Starmap

	Chunks

Signatures

New in version 2.0.

You just learned how to call a task using the tasks delay method
in the calling guide, and this is often all you need,
but sometimes you may want to pass the signature of a task invocation to
another process or as an argument to another function.

A signature() wraps the arguments, keyword arguments, and execution options
of a single task invocation in a way such that it can be passed to functions
or even serialized and sent across the wire.

	You can create a signature for the add task using its name like this:

>>> from celery import signature
>>> signature('tasks.add', args=(2, 2), countdown=10)
tasks.add(2, 2)

This task has a signature of arity 2 (two arguments): (2, 2),
and sets the countdown execution option to 10.

	or you can create one using the task’s signature method:

>>> add.signature((2, 2), countdown=10)
tasks.add(2, 2)

	There’s also a shortcut using star arguments:

>>> add.s(2, 2)
tasks.add(2, 2)

	Keyword arguments are also supported:

>>> add.s(2, 2, debug=True)
tasks.add(2, 2, debug=True)

	From any signature instance you can inspect the different fields:

>>> s = add.signature((2, 2), {'debug': True}, countdown=10)
>>> s.args
(2, 2)
>>> s.kwargs
{'debug': True}
>>> s.options
{'countdown': 10}

	It supports the “Calling API” of delay,
apply_async, etc., including being called directly (__call__).

Calling the signature will execute the task inline in the current process:

>>> add(2, 2)
4
>>> add.s(2, 2)()
4

delay is our beloved shortcut to apply_async taking star-arguments:

>>> result = add.delay(2, 2)
>>> result.get()
4

apply_async takes the same arguments as the
app.Task.apply_async() method:

>>> add.apply_async(args, kwargs, **options)
>>> add.signature(args, kwargs, **options).apply_async()

>>> add.apply_async((2, 2), countdown=1)
>>> add.signature((2, 2), countdown=1).apply_async()

	You can’t define options with s(), but a chaining
set call takes care of that:

>>> add.s(2, 2).set(countdown=1)
proj.tasks.add(2, 2)

Partials

With a signature, you can execute the task in a worker:

>>> add.s(2, 2).delay()
>>> add.s(2, 2).apply_async(countdown=1)

Or you can call it directly in the current process:

>>> add.s(2, 2)()
4

Specifying additional args, kwargs, or options to apply_async/delay
creates partials:

	Any arguments added will be prepended to the args in the signature:

>>> partial = add.s(2) # incomplete signature
>>> partial.delay(4) # 4 + 2
>>> partial.apply_async((4,)) # same

	Any keyword arguments added will be merged with the kwargs in the signature,
with the new keyword arguments taking precedence:

>>> s = add.s(2, 2)
>>> s.delay(debug=True) # -> add(2, 2, debug=True)
>>> s.apply_async(kwargs={'debug': True}) # same

	Any options added will be merged with the options in the signature,
with the new options taking precedence:

>>> s = add.signature((2, 2), countdown=10)
>>> s.apply_async(countdown=1) # countdown is now 1

You can also clone signatures to create derivatives:

>>> s = add.s(2)
proj.tasks.add(2)

>>> s.clone(args=(4,), kwargs={'debug': True})
proj.tasks.add(4, 2, debug=True)

Immutability

New in version 3.0.

Partials are meant to be used with callbacks, any tasks linked, or chord
callbacks will be applied with the result of the parent task.
Sometimes you want to specify a callback that doesn’t take
additional arguments, and in that case you can set the signature
to be immutable:

>>> add.apply_async((2, 2), link=reset_buffers.signature(immutable=True))

The .si() shortcut can also be used to create immutable signatures:

>>> add.apply_async((2, 2), link=reset_buffers.si())

Only the execution options can be set when a signature is immutable,
so it’s not possible to call the signature with partial args/kwargs.

Note

In this tutorial I sometimes use the prefix operator ~ to signatures.
You probably shouldn’t use it in your production code, but it’s a handy shortcut
when experimenting in the Python shell:

>>> ~sig

>>> # is the same as
>>> sig.delay().get()

Callbacks

New in version 3.0.

Callbacks can be added to any task using the link argument
to apply_async:

add.apply_async((2, 2), link=other_task.s())

The callback will only be applied if the task exited successfully,
and it will be applied with the return value of the parent task as argument.

As I mentioned earlier, any arguments you add to a signature,
will be prepended to the arguments specified by the signature itself!

If you have the signature:

>>> sig = add.s(10)

then sig.delay(result) becomes:

>>> add.apply_async(args=(result, 10))

…

Now let’s call our add task with a callback using partial
arguments:

>>> add.apply_async((2, 2), link=add.s(8))

As expected this will first launch one task calculating [image: 2 + 2], then
another task calculating [image: 4 + 8].

The Primitives

New in version 3.0.

Overview

	group

The group primitive is a signature that takes a list of tasks that should
be applied in parallel.

	chain

The chain primitive lets us link together signatures so that one is called
after the other, essentially forming a chain of callbacks.

	chord

A chord is just like a group but with a callback. A chord consists
of a header group and a body, where the body is a task that should execute
after all of the tasks in the header are complete.

	map

The map primitive works like the built-in map function, but creates
a temporary task where a list of arguments is applied to the task.
For example, task.map([1, 2]) – results in a single task
being called, applying the arguments in order to the task function so
that the result is:

res = [task(1), task(2)]

	starmap

Works exactly like map except the arguments are applied as *args.
For example add.starmap([(2, 2), (4, 4)]) results in a single
task calling:

res = [add(2, 2), add(4, 4)]

	chunks

Chunking splits a long list of arguments into parts, for example
the operation:

>>> items = zip(range(1000), range(1000)) # 1000 items
>>> add.chunks(items, 10)

will split the list of items into chunks of 10, resulting in 100
tasks (each processing 10 items in sequence).

The primitives are also signature objects themselves, so that they can be combined
in any number of ways to compose complex work-flows.

Here’s some examples:

	Simple chain

Here’s a simple chain, the first task executes passing its return value
to the next task in the chain, and so on.

>>> from celery import chain

>>> # 2 + 2 + 4 + 8
>>> res = chain(add.s(2, 2), add.s(4), add.s(8))()
>>> res.get()
16

This can also be written using pipes:

>>> (add.s(2, 2) | add.s(4) | add.s(8))().get()
16

	Immutable signatures

Signatures can be partial so arguments can be
added to the existing arguments, but you may not always want that,
for example if you don’t want the result of the previous task in a chain.

In that case you can mark the signature as immutable, so that the arguments
cannot be changed:

>>> add.signature((2, 2), immutable=True)

There’s also a .si() shortcut for this, and this is the preferred way of
creating signatures:

>>> add.si(2, 2)

Now you can create a chain of independent tasks instead:

>>> res = (add.si(2, 2) | add.si(4, 4) | add.si(8, 8))()
>>> res.get()
16

>>> res.parent.get()
8

>>> res.parent.parent.get()
4

	Simple group

You can easily create a group of tasks to execute in parallel:

>>> from celery import group
>>> res = group(add.s(i, i) for i in range(10))()
>>> res.get(timeout=1)
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

	Simple chord

The chord primitive enables us to add a callback to be called when
all of the tasks in a group have finished executing. This is often
required for algorithms that aren’t embarrassingly parallel:

>>> from celery import chord
>>> res = chord((add.s(i, i) for i in range(10)), xsum.s())()
>>> res.get()
90

The above example creates 10 task that all start in parallel,
and when all of them are complete the return values are combined
into a list and sent to the xsum task.

The body of a chord can also be immutable, so that the return value
of the group isn’t passed on to the callback:

>>> chord((import_contact.s(c) for c in contacts),
... notify_complete.si(import_id)).apply_async()

Note the use of .si above; this creates an immutable signature,
meaning any new arguments passed (including to return value of the
previous task) will be ignored.

	Blow your mind by combining

Chains can be partial too:

>>> c1 = (add.s(4) | mul.s(8))

(16 + 4) * 8
>>> res = c1(16)
>>> res.get()
160

this means that you can combine chains:

((4 + 16) * 2 + 4) * 8
>>> c2 = (add.s(4, 16) | mul.s(2) | (add.s(4) | mul.s(8)))

>>> res = c2()
>>> res.get()
352

Chaining a group together with another task will automatically
upgrade it to be a chord:

>>> c3 = (group(add.s(i, i) for i in range(10)) | xsum.s())
>>> res = c3()
>>> res.get()
90

Groups and chords accepts partial arguments too, so in a chain
the return value of the previous task is forwarded to all tasks in the group:

>>> new_user_workflow = (create_user.s() | group(
... import_contacts.s(),
... send_welcome_email.s()))
... new_user_workflow.delay(username='artv',
... first='Art',
... last='Vandelay',
... email='art@vandelay.com')

If you don’t want to forward arguments to the group then
you can make the signatures in the group immutable:

>>> res = (add.s(4, 4) | group(add.si(i, i) for i in range(10)))()
>>> res.get()
<GroupResult: de44df8c-821d-4c84-9a6a-44769c738f98 [
 bc01831b-9486-4e51-b046-480d7c9b78de,
 2650a1b8-32bf-4771-a645-b0a35dcc791b,
 dcbee2a5-e92d-4b03-b6eb-7aec60fd30cf,
 59f92e0a-23ea-41ce-9fad-8645a0e7759c,
 26e1e707-eccf-4bf4-bbd8-1e1729c3cce3,
 2d10a5f4-37f0-41b2-96ac-a973b1df024d,
 e13d3bdb-7ae3-4101-81a4-6f17ee21df2d,
 104b2be0-7b75-44eb-ac8e-f9220bdfa140,
 c5c551a5-0386-4973-aa37-b65cbeb2624b,
 83f72d71-4b71-428e-b604-6f16599a9f37]>

>>> res.parent.get()
8

Chains

New in version 3.0.

Tasks can be linked together: the linked task is called when the task
returns successfully:

>>> res = add.apply_async((2, 2), link=mul.s(16))
>>> res.get()
4

The linked task will be applied with the result of its parent
task as the first argument. In the above case where the result was 4,
this will result in mul(4, 16).

The results will keep track of any subtasks called by the original task,
and this can be accessed from the result instance:

>>> res.children
[<AsyncResult: 8c350acf-519d-4553-8a53-4ad3a5c5aeb4>]

>>> res.children[0].get()
64

The result instance also has a collect() method
that treats the result as a graph, enabling you to iterate over
the results:

>>> list(res.collect())
[(<AsyncResult: 7b720856-dc5f-4415-9134-5c89def5664e>, 4),
 (<AsyncResult: 8c350acf-519d-4553-8a53-4ad3a5c5aeb4>, 64)]

By default collect() will raise an
IncompleteStream exception if the graph isn’t fully
formed (one of the tasks hasn’t completed yet),
but you can get an intermediate representation of the graph
too:

>>> for result, value in res.collect(intermediate=True):
....

You can link together as many tasks as you like,
and signatures can be linked too:

>>> s = add.s(2, 2)
>>> s.link(mul.s(4))
>>> s.link(log_result.s())

You can also add error callbacks using the on_error method:

>>> add.s(2, 2).on_error(log_error.s()).delay()

This will result in the following .apply_async call when the signature
is applied:

>>> add.apply_async((2, 2), link_error=log_error.s())

The worker won’t actually call the errback as a task, but will
instead call the errback function directly so that the raw request, exception
and traceback objects can be passed to it.

Here’s an example errback:

from __future__ import print_function

import os

from proj.celery import app

@app.task
def log_error(request, exc, traceback):
 with open(os.path.join('/var/errors', request.id), 'a') as fh:
 print('--\n\n{0} {1} {2}'.format(
 task_id, exc, traceback), file=fh)

To make it even easier to link tasks together there’s
a special signature called chain that lets
you chain tasks together:

>>> from celery import chain
>>> from proj.tasks import add, mul

>>> # (4 + 4) * 8 * 10
>>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))
proj.tasks.add(4, 4) | proj.tasks.mul(8) | proj.tasks.mul(10)

Calling the chain will call the tasks in the current process
and return the result of the last task in the chain:

>>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))()
>>> res.get()
640

It also sets parent attributes so that you can
work your way up the chain to get intermediate results:

>>> res.parent.get()
64

>>> res.parent.parent.get()
8

>>> res.parent.parent
<AsyncResult: eeaad925-6778-4ad1-88c8-b2a63d017933>

Chains can also be made using the | (pipe) operator:

>>> (add.s(2, 2) | mul.s(8) | mul.s(10)).apply_async()

Graphs

In addition you can work with the result graph as a
DependencyGraph:

>>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))()

>>> res.parent.parent.graph
285fa253-fcf8-42ef-8b95-0078897e83e6(1)
 463afec2-5ed4-4036-b22d-ba067ec64f52(0)
872c3995-6fa0-46ca-98c2-5a19155afcf0(2)
 285fa253-fcf8-42ef-8b95-0078897e83e6(1)
 463afec2-5ed4-4036-b22d-ba067ec64f52(0)

You can even convert these graphs to dot format:

>>> with open('graph.dot', 'w') as fh:
... res.parent.parent.graph.to_dot(fh)

and create images:

$ dot -Tpng graph.dot -o graph.png

[image: ../_images/result_graph.png]

Groups

New in version 3.0.

A group can be used to execute several tasks in parallel.

The group function takes a list of signatures:

>>> from celery import group
>>> from proj.tasks import add

>>> group(add.s(2, 2), add.s(4, 4))
(proj.tasks.add(2, 2), proj.tasks.add(4, 4))

If you call the group, the tasks will be applied
one after another in the current process, and a GroupResult
instance is returned that can be used to keep track of the results,
or tell how many tasks are ready and so on:

>>> g = group(add.s(2, 2), add.s(4, 4))
>>> res = g()
>>> res.get()
[4, 8]

Group also supports iterators:

>>> group(add.s(i, i) for i in range(100))()

A group is a signature object, so it can be used in combination
with other signatures.

Group Results

The group task returns a special result too,
this result works just like normal task results, except
that it works on the group as a whole:

>>> from celery import group
>>> from tasks import add

>>> job = group([
... add.s(2, 2),
... add.s(4, 4),
... add.s(8, 8),
... add.s(16, 16),
... add.s(32, 32),
...])

>>> result = job.apply_async()

>>> result.ready() # have all subtasks completed?
True
>>> result.successful() # were all subtasks successful?
True
>>> result.get()
[4, 8, 16, 32, 64]

The GroupResult takes a list of
AsyncResult instances and operates on them as
if it was a single task.

It supports the following operations:

	successful()

Return True if all of the subtasks finished
successfully (e.g., didn’t raise an exception).

	failed()

Return True if any of the subtasks failed.

	waiting()

Return True if any of the subtasks
isn’t ready yet.

	ready()

Return True if all of the subtasks
are ready.

	completed_count()

Return the number of completed subtasks.

	revoke()

Revoke all of the subtasks.

	join()

Gather the results of all subtasks
and return them in the same order as they were called (as a list).

Chords

New in version 2.3.

Note

Tasks used within a chord must not ignore their results. If the result
backend is disabled for any task (header or body) in your chord you
should read “Important Notes.” Chords are not currently
supported with the RPC result backend.

A chord is a task that only executes after all of the tasks in a group have
finished executing.

Let’s calculate the sum of the expression
[image: 1 + 1 + 2 + 2 + 3 + 3 ... n + n] up to a hundred digits.

First you need two tasks, add() and tsum() (sum() [https://docs.python.org/dev/library/functions.html#sum] is
already a standard function):

@app.task
def add(x, y):
 return x + y

@app.task
def tsum(numbers):
 return sum(numbers)

Now you can use a chord to calculate each addition step in parallel, and then
get the sum of the resulting numbers:

>>> from celery import chord
>>> from tasks import add, tsum

>>> chord(add.s(i, i)
... for i in range(100))(tsum.s()).get()
9900

This is obviously a very contrived example, the overhead of messaging and
synchronization makes this a lot slower than its Python counterpart:

>>> sum(i + i for i in range(100))

The synchronization step is costly, so you should avoid using chords as much
as possible. Still, the chord is a powerful primitive to have in your toolbox
as synchronization is a required step for many parallel algorithms.

Let’s break the chord expression down:

>>> callback = tsum.s()
>>> header = [add.s(i, i) for i in range(100)]
>>> result = chord(header)(callback)
>>> result.get()
9900

Remember, the callback can only be executed after all of the tasks in the
header have returned. Each step in the header is executed as a task, in
parallel, possibly on different nodes. The callback is then applied with
the return value of each task in the header. The task id returned by
chord() is the id of the callback, so you can wait for it to complete
and get the final return value (but remember to never have a task wait
for other tasks)

Error handling

So what happens if one of the tasks raises an exception?

The chord callback result will transition to the failure state, and the error is set
to the ChordError exception:

>>> c = chord([add.s(4, 4), raising_task.s(), add.s(8, 8)])
>>> result = c()
>>> result.get()

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "*/celery/result.py", line 120, in get
 interval=interval)
 File "*/celery/backends/amqp.py", line 150, in wait_for
 raise meta['result']
celery.exceptions.ChordError: Dependency 97de6f3f-ea67-4517-a21c-d867c61fcb47
 raised ValueError('something something',)

While the traceback may be different depending on the result backend used,
you can see that the error description includes the id of the task that failed
and a string representation of the original exception. You can also
find the original traceback in result.traceback.

Note that the rest of the tasks will still execute, so the third task
(add.s(8, 8)) is still executed even though the middle task failed.
Also the ChordError only shows the task that failed
first (in time): it doesn’t respect the ordering of the header group.

To perform an action when a chord fails you can therefore attach
an errback to the chord callback:

@app.task
def on_chord_error(request, exc, traceback):
 print('Task {0!r} raised error: {1!r}'.format(request.id, exc))

>>> c = (group(add.s(i, i) for i in range(10)) |
... xsum.s().on_error(on_chord_error.s())).delay()

Important Notes

Tasks used within a chord must not ignore their results. In practice this
means that you must enable a result_backend in order to use
chords. Additionally, if task_ignore_result is set to True
in your configuration, be sure that the individual tasks to be used within
the chord are defined with ignore_result=False. This applies to both
Task subclasses and decorated tasks.

Example Task subclass:

class MyTask(Task):
 ignore_result = False

Example decorated task:

@app.task(ignore_result=False)
def another_task(project):
 do_something()

By default the synchronization step is implemented by having a recurring task
poll the completion of the group every second, calling the signature when
ready.

Example implementation:

from celery import maybe_signature

@app.task(bind=True)
def unlock_chord(self, group, callback, interval=1, max_retries=None):
 if group.ready():
 return maybe_signature(callback).delay(group.join())
 raise self.retry(countdown=interval, max_retries=max_retries)

This is used by all result backends except Redis and Memcached: they
increment a counter after each task in the header, then applies the callback
when the counter exceeds the number of tasks in the set.

The Redis and Memcached approach is a much better solution, but not easily
implemented in other backends (suggestions welcome!).

Note

Chords don’t properly work with Redis before version 2.2; you’ll need to
upgrade to at least redis-server 2.2 to use them.

Note

If you’re using chords with the Redis result backend and also overriding
the Task.after_return() method, you need to make sure to call the
super method or else the chord callback won’t be applied.

def after_return(self, *args, **kwargs):
 do_something()
 super(MyTask, self).after_return(*args, **kwargs)

Map & Starmap

map and starmap are built-in tasks
that call the provided calling task for every element in a sequence.

They differ from group in that:

	only one task message is sent.

	the operation is sequential.

For example using map:

>>> from proj.tasks import add

>>> ~xsum.map([range(10), range(100)])
[45, 4950]

is the same as having a task doing:

@app.task
def temp():
 return [xsum(range(10)), xsum(range(100))]

and using starmap:

>>> ~add.starmap(zip(range(10), range(10)))
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

is the same as having a task doing:

@app.task
def temp():
 return [add(i, i) for i in range(10)]

Both map and starmap are signature objects, so they can be used as
other signatures and combined in groups etc., for example
to call the starmap after 10 seconds:

>>> add.starmap(zip(range(10), range(10))).apply_async(countdown=10)

Chunks

Chunking lets you divide an iterable of work into pieces, so that if
you have one million objects, you can create 10 tasks with a hundred
thousand objects each.

Some may worry that chunking your tasks results in a degradation
of parallelism, but this is rarely true for a busy cluster
and in practice since you’re avoiding the overhead of messaging
it may considerably increase performance.

To create a chunks signature you can use app.Task.chunks():

>>> add.chunks(zip(range(100), range(100)), 10)

As with group the act of sending the messages for
the chunks will happen in the current process when called:

>>> from proj.tasks import add

>>> res = add.chunks(zip(range(100), range(100)), 10)()
>>> res.get()
[[0, 2, 4, 6, 8, 10, 12, 14, 16, 18],
 [20, 22, 24, 26, 28, 30, 32, 34, 36, 38],
 [40, 42, 44, 46, 48, 50, 52, 54, 56, 58],
 [60, 62, 64, 66, 68, 70, 72, 74, 76, 78],
 [80, 82, 84, 86, 88, 90, 92, 94, 96, 98],
 [100, 102, 104, 106, 108, 110, 112, 114, 116, 118],
 [120, 122, 124, 126, 128, 130, 132, 134, 136, 138],
 [140, 142, 144, 146, 148, 150, 152, 154, 156, 158],
 [160, 162, 164, 166, 168, 170, 172, 174, 176, 178],
 [180, 182, 184, 186, 188, 190, 192, 194, 196, 198]]

while calling .apply_async will create a dedicated
task so that the individual tasks are applied in a worker
instead:

>>> add.chunks(zip(range(100), range(100)), 10).apply_async()

You can also convert chunks to a group:

>>> group = add.chunks(zip(range(100), range(100)), 10).group()

and with the group skew the countdown of each task by increments
of one:

>>> group.skew(start=1, stop=10)()

This means that the first task will have a countdown of one second, the second
task a countdown of two seconds, and so on.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Workers Guide

	Starting the worker

	Stopping the worker

	Restarting the worker

	Process Signals

	Variables in file paths

	Concurrency

	Remote control

	Commands

	Time Limits

	Rate Limits

	Max tasks per child setting

	Max memory per child setting

	Autoscaling

	Queues

	Inspecting workers

	Additional Commands

	Writing your own remote control commands

Starting the worker

Daemonizing

You probably want to use a daemonization tool to start
the worker in the background. See Daemonization for help
starting the worker as a daemon using popular service managers.

You can start the worker in the foreground by executing the command:

$ celery -A proj worker -l INFO

For a full list of available command-line options see
worker, or simply do:

$ celery worker --help

You can start multiple workers on the same machine, but
be sure to name each individual worker by specifying a
node name with the --hostname argument:

$ celery -A proj worker --loglevel=INFO --concurrency=10 -n worker1@%h
$ celery -A proj worker --loglevel=INFO --concurrency=10 -n worker2@%h
$ celery -A proj worker --loglevel=INFO --concurrency=10 -n worker3@%h

The hostname argument can expand the following variables:

	%h: Hostname, including domain name.

	%n: Hostname only.

	%d: Domain name only.

If the current hostname is george.example.com, these will expand to:

	Variable

	Template

	Result

	%h

	worker1@%h

	worker1@george.example.com

	%n

	worker1@%n

	worker1@george

	%d

	worker1@%d

	worker1@example.com

Note for supervisor [https://pypi.python.org/pypi/supervisor/] users

The % sign must be escaped by adding a second one: %%h.

Stopping the worker

Shutdown should be accomplished using the TERM signal.

When shutdown is initiated the worker will finish all currently executing
tasks before it actually terminates. If these tasks are important, you should
wait for it to finish before doing anything drastic, like sending the KILL
signal.

If the worker won’t shutdown after considerate time, for being
stuck in an infinite-loop or similar, you can use the KILL signal to
force terminate the worker: but be aware that currently executing tasks will
be lost (i.e., unless the tasks have the acks_late
option set).

Also as processes can’t override the KILL signal, the worker will
not be able to reap its children; make sure to do so manually. This
command usually does the trick:

$ pkill -9 -f 'celery worker'

If you don’t have the pkill command on your system, you can use the slightly
longer version:

$ ps auxww | awk '/celery worker/ {print $2}' | xargs kill -9

Restarting the worker

To restart the worker you should send the TERM signal and start a new
instance. The easiest way to manage workers for development
is by using celery multi:

$ celery multi start 1 -A proj -l INFO -c4 --pidfile=/var/run/celery/%n.pid
$ celery multi restart 1 --pidfile=/var/run/celery/%n.pid

For production deployments you should be using init-scripts or a process
supervision system (see Daemonization).

Other than stopping, then starting the worker to restart, you can also
restart the worker using the HUP signal. Note that the worker
will be responsible for restarting itself so this is prone to problems and
isn’t recommended in production:

$ kill -HUP $pid

Note

Restarting by HUP only works if the worker is running
in the background as a daemon (it doesn’t have a controlling
terminal).

HUP is disabled on macOS because of a limitation on
that platform.

Process Signals

The worker’s main process overrides the following signals:

	TERM

	Warm shutdown, wait for tasks to complete.

	QUIT

	Cold shutdown, terminate ASAP

	USR1

	Dump traceback for all active threads.

	USR2

	Remote debug, see celery.contrib.rdb.

Variables in file paths

The file path arguments for --logfile,
--pidfile, and
--statedb can contain variables that the
worker will expand:

Node name replacements

	%p: Full node name.

	%h: Hostname, including domain name.

	%n: Hostname only.

	%d: Domain name only.

	%i: Prefork pool process index or 0 if MainProcess.

	%I: Prefork pool process index with separator.

For example, if the current hostname is george@foo.example.com then
these will expand to:

	--logfile=%p.log -> george@foo.example.com.log

	--logfile=%h.log -> foo.example.com.log

	--logfile=%n.log -> george.log

	--logfile=%d.log -> example.com.log

Prefork pool process index

The prefork pool process index specifiers will expand into a different
filename depending on the process that’ll eventually need to open the file.

This can be used to specify one log file per child process.

Note that the numbers will stay within the process limit even if processes
exit or if autoscale/maxtasksperchild/time limits are used. That is, the number
is the process index not the process count or pid.

	%i - Pool process index or 0 if MainProcess.

Where -n worker1@example.com -c2 -f %n-%i.log will result in
three log files:

	worker1-0.log (main process)

	worker1-1.log (pool process 1)

	worker1-2.log (pool process 2)

	%I - Pool process index with separator.

Where -n worker1@example.com -c2 -f %n%I.log will result in
three log files:

	worker1.log (main process)

	worker1-1.log (pool process 1)

	worker1-2.log (pool process 2)

Concurrency

By default multiprocessing is used to perform concurrent execution of tasks,
but you can also use Eventlet. The number
of worker processes/threads can be changed using the
--concurrency argument and defaults
to the number of CPUs available on the machine.

Number of processes (multiprocessing/prefork pool)

More pool processes are usually better, but there’s a cut-off point where
adding more pool processes affects performance in negative ways.
There’s even some evidence to support that having multiple worker
instances running, may perform better than having a single worker.
For example 3 workers with 10 pool processes each. You need to experiment
to find the numbers that works best for you, as this varies based on
application, work load, task run times and other factors.

Remote control

New in version 2.0.

The celery command

The celery program is used to execute remote control
commands from the command-line. It supports all of the commands
listed below. See Management Command-line Utilities (inspect/control) for more information.

	pool support

	prefork, eventlet, gevent, thread, blocking:solo (see note)

	broker support

	amqp, redis

Workers have the ability to be remote controlled using a high-priority
broadcast message queue. The commands can be directed to all, or a specific
list of workers.

Commands can also have replies. The client can then wait for and collect
those replies. Since there’s no central authority to know how many
workers are available in the cluster, there’s also no way to estimate
how many workers may send a reply, so the client has a configurable
timeout — the deadline in seconds for replies to arrive in. This timeout
defaults to one second. If the worker doesn’t reply within the deadline
it doesn’t necessarily mean the worker didn’t reply, or worse is dead, but
may simply be caused by network latency or the worker being slow at processing
commands, so adjust the timeout accordingly.

In addition to timeouts, the client can specify the maximum number
of replies to wait for. If a destination is specified, this limit is set
to the number of destination hosts.

Note

The solo pool supports remote control commands,
but any task executing will block any waiting control command,
so it is of limited use if the worker is very busy. In that
case you must increase the timeout waiting for replies in the client.

The broadcast() function

This is the client function used to send commands to the workers.
Some remote control commands also have higher-level interfaces using
broadcast() in the background, like
rate_limit(), and ping().

Sending the rate_limit command and keyword arguments:

>>> app.control.broadcast('rate_limit',
... arguments={'task_name': 'myapp.mytask',
... 'rate_limit': '200/m'})

This will send the command asynchronously, without waiting for a reply.
To request a reply you have to use the reply argument:

>>> app.control.broadcast('rate_limit', {
... 'task_name': 'myapp.mytask', 'rate_limit': '200/m'}, reply=True)
[{'worker1.example.com': 'New rate limit set successfully'},
 {'worker2.example.com': 'New rate limit set successfully'},
 {'worker3.example.com': 'New rate limit set successfully'}]

Using the destination argument you can specify a list of workers
to receive the command:

>>> app.control.broadcast('rate_limit', {
... 'task_name': 'myapp.mytask',
... 'rate_limit': '200/m'}, reply=True,
... destination=['worker1@example.com'])
[{'worker1.example.com': 'New rate limit set successfully'}]

Of course, using the higher-level interface to set rate limits is much
more convenient, but there are commands that can only be requested
using broadcast().

Commands

revoke: Revoking tasks

	pool support

	all, terminate only supported by prefork

	broker support

	amqp, redis

	command

	celery -A proj control revoke <task_id>

All worker nodes keeps a memory of revoked task ids, either in-memory or
persistent on disk (see Persistent revokes).

When a worker receives a revoke request it will skip executing
the task, but it won’t terminate an already executing task unless
the terminate option is set.

Note

The terminate option is a last resort for administrators when
a task is stuck. It’s not for terminating the task,
it’s for terminating the process that’s executing the task, and that
process may have already started processing another task at the point
when the signal is sent, so for this reason you must never call this
programmatically.

If terminate is set the worker child process processing the task
will be terminated. The default signal sent is TERM, but you can
specify this using the signal argument. Signal can be the uppercase name
of any signal defined in the signal [https://docs.python.org/dev/library/signal.html#module-signal] module in the Python Standard
Library.

Terminating a task also revokes it.

Example

>>> result.revoke()

>>> AsyncResult(id).revoke()

>>> app.control.revoke('d9078da5-9915-40a0-bfa1-392c7bde42ed')

>>> app.control.revoke('d9078da5-9915-40a0-bfa1-392c7bde42ed',
... terminate=True)

>>> app.control.revoke('d9078da5-9915-40a0-bfa1-392c7bde42ed',
... terminate=True, signal='SIGKILL')

Revoking multiple tasks

New in version 3.1.

The revoke method also accepts a list argument, where it will revoke
several tasks at once.

Example

>>> app.control.revoke([
... '7993b0aa-1f0b-4780-9af0-c47c0858b3f2',
... 'f565793e-b041-4b2b-9ca4-dca22762a55d',
... 'd9d35e03-2997-42d0-a13e-64a66b88a618',
])

The GroupResult.revoke method takes advantage of this since
version 3.1.

Persistent revokes

Revoking tasks works by sending a broadcast message to all the workers,
the workers then keep a list of revoked tasks in memory. When a worker starts
up it will synchronize revoked tasks with other workers in the cluster.

The list of revoked tasks is in-memory so if all workers restart the list
of revoked ids will also vanish. If you want to preserve this list between
restarts you need to specify a file for these to be stored in by using the –statedb
argument to celery worker:

$ celery -A proj worker -l INFO --statedb=/var/run/celery/worker.state

or if you use celery multi you want to create one file per
worker instance so use the %n format to expand the current node
name:

celery multi start 2 -l INFO --statedb=/var/run/celery/%n.state

See also Variables in file paths

Note that remote control commands must be working for revokes to work.
Remote control commands are only supported by the RabbitMQ (amqp) and Redis
at this point.

Time Limits

New in version 2.0.

	pool support

	prefork/gevent

Soft, or hard?

The time limit is set in two values, soft and hard.
The soft time limit allows the task to catch an exception
to clean up before it is killed: the hard timeout isn’t catch-able
and force terminates the task.

A single task can potentially run forever, if you have lots of tasks
waiting for some event that’ll never happen you’ll block the worker
from processing new tasks indefinitely. The best way to defend against
this scenario happening is enabling time limits.

The time limit (–time-limit) is the maximum number of seconds a task
may run before the process executing it is terminated and replaced by a
new process. You can also enable a soft time limit (–soft-time-limit),
this raises an exception the task can catch to clean up before the hard
time limit kills it:

from myapp import app
from celery.exceptions import SoftTimeLimitExceeded

@app.task
def mytask():
 try:
 do_work()
 except SoftTimeLimitExceeded:
 clean_up_in_a_hurry()

Time limits can also be set using the task_time_limit /
task_soft_time_limit settings.

Note

Time limits don’t currently work on platforms that don’t support
the SIGUSR1 signal.

Changing time limits at run-time

New in version 2.3.

	broker support

	amqp, redis

There’s a remote control command that enables you to change both soft
and hard time limits for a task — named time_limit.

Example changing the time limit for the tasks.crawl_the_web task
to have a soft time limit of one minute, and a hard time limit of
two minutes:

>>> app.control.time_limit('tasks.crawl_the_web',
 soft=60, hard=120, reply=True)
[{'worker1.example.com': {'ok': 'time limits set successfully'}}]

Only tasks that starts executing after the time limit change will be affected.

Rate Limits

Changing rate-limits at run-time

Example changing the rate limit for the myapp.mytask task to execute
at most 200 tasks of that type every minute:

>>> app.control.rate_limit('myapp.mytask', '200/m')

The above doesn’t specify a destination, so the change request will affect
all worker instances in the cluster. If you only want to affect a specific
list of workers you can include the destination argument:

>>> app.control.rate_limit('myapp.mytask', '200/m',
... destination=['celery@worker1.example.com'])

Warning

This won’t affect workers with the
worker_disable_rate_limits setting enabled.

Max tasks per child setting

New in version 2.0.

	pool support

	prefork

With this option you can configure the maximum number of tasks
a worker can execute before it’s replaced by a new process.

This is useful if you have memory leaks you have no control over
for example from closed source C extensions.

The option can be set using the workers
--max-tasks-per-child argument
or using the worker_max_tasks_per_child setting.

Max memory per child setting

New in version 4.0.

	pool support

	prefork

With this option you can configure the maximum amount of resident
memory a worker can execute before it’s replaced by a new process.

This is useful if you have memory leaks you have no control over
for example from closed source C extensions.

The option can be set using the workers
--max-memory-per-child argument
or using the worker_max_memory_per_child setting.

Autoscaling

New in version 2.2.

	pool support

	prefork, gevent

The autoscaler component is used to dynamically resize the pool
based on load:

	
	The autoscaler adds more pool processes when there is work to do,
	
	and starts removing processes when the workload is low.

It’s enabled by the --autoscale option,
which needs two numbers: the maximum and minimum number of pool processes:

--autoscale=AUTOSCALE
 Enable autoscaling by providing
 max_concurrency,min_concurrency. Example:
 --autoscale=10,3 (always keep 3 processes, but grow to
 10 if necessary).

You can also define your own rules for the autoscaler by subclassing
Autoscaler.
Some ideas for metrics include load average or the amount of memory available.
You can specify a custom autoscaler with the worker_autoscaler setting.

Queues

A worker instance can consume from any number of queues.
By default it will consume from all queues defined in the
task_queues setting (that if not specified falls back to the
default queue named celery).

You can specify what queues to consume from at start-up, by giving a comma
separated list of queues to the -Q option:

$ celery -A proj worker -l INFO -Q foo,bar,baz

If the queue name is defined in task_queues it will use that
configuration, but if it’s not defined in the list of queues Celery will
automatically generate a new queue for you (depending on the
task_create_missing_queues option).

You can also tell the worker to start and stop consuming from a queue at
run-time using the remote control commands add_consumer and
cancel_consumer.

Queues: Adding consumers

The add_consumer control command will tell one or more workers
to start consuming from a queue. This operation is idempotent.

To tell all workers in the cluster to start consuming from a queue
named “foo” you can use the celery control program:

$ celery -A proj control add_consumer foo
-> worker1.local: OK
 started consuming from u'foo'

If you want to specify a specific worker you can use the
--destination argument:

$ celery -A proj control add_consumer foo -d celery@worker1.local

The same can be accomplished dynamically using the app.control.add_consumer() method:

>>> app.control.add_consumer('foo', reply=True)
[{u'worker1.local': {u'ok': u"already consuming from u'foo'"}}]

>>> app.control.add_consumer('foo', reply=True,
... destination=['worker1@example.com'])
[{u'worker1.local': {u'ok': u"already consuming from u'foo'"}}]

By now we’ve only shown examples using automatic queues,
If you need more control you can also specify the exchange, routing_key and
even other options:

>>> app.control.add_consumer(
... queue='baz',
... exchange='ex',
... exchange_type='topic',
... routing_key='media.*',
... options={
... 'queue_durable': False,
... 'exchange_durable': False,
... },
... reply=True,
... destination=['w1@example.com', 'w2@example.com'])

Queues: Canceling consumers

You can cancel a consumer by queue name using the cancel_consumer
control command.

To force all workers in the cluster to cancel consuming from a queue
you can use the celery control program:

$ celery -A proj control cancel_consumer foo

The --destination argument can be
used to specify a worker, or a list of workers, to act on the command:

$ celery -A proj control cancel_consumer foo -d celery@worker1.local

You can also cancel consumers programmatically using the
app.control.cancel_consumer() method:

>>> app.control.cancel_consumer('foo', reply=True)
[{u'worker1.local': {u'ok': u"no longer consuming from u'foo'"}}]

Queues: List of active queues

You can get a list of queues that a worker consumes from by using
the active_queues control command:

$ celery -A proj inspect active_queues
[...]

Like all other remote control commands this also supports the
--destination argument used
to specify the workers that should reply to the request:

$ celery -A proj inspect active_queues -d celery@worker1.local
[...]

This can also be done programmatically by using the
app.control.inspect.active_queues() method:

>>> app.control.inspect().active_queues()
[...]

>>> app.control.inspect(['worker1.local']).active_queues()
[...]

Inspecting workers

app.control.inspect lets you inspect running workers. It
uses remote control commands under the hood.

You can also use the celery command to inspect workers,
and it supports the same commands as the app.control interface.

>>> # Inspect all nodes.
>>> i = app.control.inspect()

>>> # Specify multiple nodes to inspect.
>>> i = app.control.inspect(['worker1.example.com',
 'worker2.example.com'])

>>> # Specify a single node to inspect.
>>> i = app.control.inspect('worker1.example.com')

Dump of registered tasks

You can get a list of tasks registered in the worker using the
registered():

>>> i.registered()
[{'worker1.example.com': ['tasks.add',
 'tasks.sleeptask']}]

Dump of currently executing tasks

You can get a list of active tasks using
active():

>>> i.active()
[{'worker1.example.com':
 [{'name': 'tasks.sleeptask',
 'id': '32666e9b-809c-41fa-8e93-5ae0c80afbbf',
 'args': '(8,)',
 'kwargs': '{}'}]}]

Dump of scheduled (ETA) tasks

You can get a list of tasks waiting to be scheduled by using
scheduled():

>>> i.scheduled()
[{'worker1.example.com':
 [{'eta': '2010-06-07 09:07:52', 'priority': 0,
 'request': {
 'name': 'tasks.sleeptask',
 'id': '1a7980ea-8b19-413e-91d2-0b74f3844c4d',
 'args': '[1]',
 'kwargs': '{}'}},
 {'eta': '2010-06-07 09:07:53', 'priority': 0,
 'request': {
 'name': 'tasks.sleeptask',
 'id': '49661b9a-aa22-4120-94b7-9ee8031d219d',
 'args': '[2]',
 'kwargs': '{}'}}]}]

Note

These are tasks with an ETA/countdown argument, not periodic tasks.

Dump of reserved tasks

Reserved tasks are tasks that have been received, but are still waiting to be
executed.

You can get a list of these using
reserved():

>>> i.reserved()
[{'worker1.example.com':
 [{'name': 'tasks.sleeptask',
 'id': '32666e9b-809c-41fa-8e93-5ae0c80afbbf',
 'args': '(8,)',
 'kwargs': '{}'}]}]

Statistics

The remote control command inspect stats (or
stats()) will give you a long list of useful (or not
so useful) statistics about the worker:

$ celery -A proj inspect stats

The output will include the following fields:

	broker

Section for broker information.

	connect_timeout

Timeout in seconds (int/float) for establishing a new connection.

	heartbeat

Current heartbeat value (set by client).

	hostname

Node name of the remote broker.

	insist

No longer used.

	login_method

Login method used to connect to the broker.

	port

Port of the remote broker.

	ssl

SSL enabled/disabled.

	transport

Name of transport used (e.g., amqp or redis)

	transport_options

Options passed to transport.

	uri_prefix

Some transports expects the host name to be a URL.

redis+socket:///tmp/redis.sock

In this example the URI-prefix will be redis.

	userid

User id used to connect to the broker with.

	virtual_host

Virtual host used.

	clock

Value of the workers logical clock. This is a positive integer and should
be increasing every time you receive statistics.

	uptime

Numbers of seconds since the worker controller was started

	pid

Process id of the worker instance (Main process).

	pool

Pool-specific section.

	max-concurrency

Max number of processes/threads/green threads.

	max-tasks-per-child

Max number of tasks a thread may execute before being recycled.

	processes

List of PIDs (or thread-id’s).

	put-guarded-by-semaphore

Internal

	timeouts

Default values for time limits.

	writes

Specific to the prefork pool, this shows the distribution of writes
to each process in the pool when using async I/O.

	prefetch_count

Current prefetch count value for the task consumer.

	rusage

System usage statistics. The fields available may be different
on your platform.

From getrusage(2):

	stime

Time spent in operating system code on behalf of this process.

	utime

Time spent executing user instructions.

	maxrss

The maximum resident size used by this process (in kilobytes).

	idrss

Amount of non-shared memory used for data (in kilobytes times ticks of
execution)

	isrss

Amount of non-shared memory used for stack space (in kilobytes times
ticks of execution)

	ixrss

Amount of memory shared with other processes (in kilobytes times
ticks of execution).

	inblock

Number of times the file system had to read from the disk on behalf of
this process.

	oublock

Number of times the file system has to write to disk on behalf of
this process.

	majflt

Number of page faults that were serviced by doing I/O.

	minflt

Number of page faults that were serviced without doing I/O.

	msgrcv

Number of IPC messages received.

	msgsnd

Number of IPC messages sent.

	nvcsw

Number of times this process voluntarily invoked a context switch.

	nivcsw

Number of times an involuntary context switch took place.

	nsignals

Number of signals received.

	nswap

The number of times this process was swapped entirely out of memory.

	total

Map of task names and the total number of tasks with that type
the worker has accepted since start-up.

Additional Commands

Remote shutdown

This command will gracefully shut down the worker remotely:

>>> app.control.broadcast('shutdown') # shutdown all workers
>>> app.control.broadcast('shutdown', destination='worker1@example.com')

Ping

This command requests a ping from alive workers.
The workers reply with the string ‘pong’, and that’s just about it.
It will use the default one second timeout for replies unless you specify
a custom timeout:

>>> app.control.ping(timeout=0.5)
[{'worker1.example.com': 'pong'},
 {'worker2.example.com': 'pong'},
 {'worker3.example.com': 'pong'}]

ping() also supports the destination argument,
so you can specify the workers to ping:

>>> ping(['worker2.example.com', 'worker3.example.com'])
[{'worker2.example.com': 'pong'},
 {'worker3.example.com': 'pong'}]

Enable/disable events

You can enable/disable events by using the enable_events,
disable_events commands. This is useful to temporarily monitor
a worker using celery events/celerymon.

>>> app.control.enable_events()
>>> app.control.disable_events()

Writing your own remote control commands

There are two types of remote control commands:

	Inspect command

Does not have side effects, will usually just return some value
found in the worker, like the list of currently registered tasks,
the list of active tasks, etc.

	Control command

Performs side effects, like adding a new queue to consume from.

Remote control commands are registered in the control panel and
they take a single argument: the current
ControlDispatch instance.
From there you have access to the active
Consumer if needed.

Here’s an example control command that increments the task prefetch count:

from celery.worker.control import control_command

@control_command(
 args=[('n', int)],
 signature='[N=1]', # <- used for help on the command-line.
)
def increase_prefetch_count(state, n=1):
 state.consumer.qos.increment_eventually(n)
 return {'ok': 'prefetch count incremented'}

Make sure you add this code to a module that is imported by the worker:
this could be the same module as where your Celery app is defined, or you
can add the module to the imports setting.

Restart the worker so that the control command is registered, and now you
can call your command using the celery control utility:

$ celery -A proj control increase_prefetch_count 3

You can also add actions to the celery inspect program,
for example one that reads the current prefetch count:

from celery.worker.control import inspect_command

@inspect_command()
def current_prefetch_count(state):
 return {'prefetch_count': state.consumer.qos.value}

After restarting the worker you can now query this value using the
celery inspect program:

$ celery -A proj inspect current_prefetch_count

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Daemonization

	Generic init-scripts

	Init-script: celeryd

	Example configuration

	Using a login shell

	Example Django configuration

	Available options

	Init-script: celerybeat

	Example configuration

	Example Django configuration

	Available options

	Troubleshooting

	Usage systemd

	Service file: celery.service

	Example configuration

	Service file: celerybeat.service

	Running the worker with superuser privileges (root)

	supervisor

	launchd (macOS)

Most Linux distributions these days use systemd for managing the lifecycle of system
and user services.

You can check if your Linux distribution uses systemd by typing:

$ systemd --version
systemd 237
+PAM +AUDIT +SELINUX +IMA +APPARMOR +SMACK +SYSVINIT +UTMP +LIBCRYPTSETUP +GCRYPT +GNUTLS +ACL +XZ +LZ4 +SECCOMP +BLKID +ELFUTILS +KMOD -IDN2 +IDN -PCRE2 default-hierarchy=hybrid

If you have output similar to the above, please refer to
our systemd documentation for guidance.

However, the init.d script should still work in those Linux distributions
as well since systemd provides the systemd-sysv compatibility layer
which generates services automatically from the init.d scripts we provide.

If you package Celery for multiple Linux distributions
and some do not support systemd or to other Unix systems as well,
you may want to refer to our init.d documentation.

Generic init-scripts

See the extra/generic-init.d/ [https://github.com/celery/celery/tree/master/extra/generic-init.d/] directory Celery distribution.

This directory contains generic bash init-scripts for the
celery worker program,
these should run on Linux, FreeBSD, OpenBSD, and other Unix-like platforms.

Init-script: celeryd

	Usage

	/etc/init.d/celeryd {start|stop|restart|status}

	Configuration file

	/etc/default/celeryd

To configure this script to run the worker properly you probably need to at least
tell it where to change
directory to when it starts (to find the module containing your app, or your
configuration module).

The daemonization script is configured by the file /etc/default/celeryd.
This is a shell (sh) script where you can add environment variables like
the configuration options below. To add real environment variables affecting
the worker you must also export them (e.g., export DISPLAY=":0")

Superuser privileges required

The init-scripts can only be used by root,
and the shell configuration file must also be owned by root.

Unprivileged users don’t need to use the init-script,
instead they can use the celery multi utility (or
celery worker --detach):

$ celery -A proj multi start worker1 \
 --pidfile="$HOME/run/celery/%n.pid" \
 --logfile="$HOME/log/celery/%n%I.log"

$ celery -A proj multi restart worker1 \
 --logfile="$HOME/log/celery/%n%I.log" \
 --pidfile="$HOME/run/celery/%n.pid

$ celery multi stopwait worker1 --pidfile="$HOME/run/celery/%n.pid"

Example configuration

This is an example configuration for a Python project.

/etc/default/celeryd:

Names of nodes to start
most people will only start one node:
CELERYD_NODES="worker1"
but you can also start multiple and configure settings
for each in CELERYD_OPTS
#CELERYD_NODES="worker1 worker2 worker3"
alternatively, you can specify the number of nodes to start:
#CELERYD_NODES=10

Absolute or relative path to the 'celery' command:
CELERY_BIN="/usr/local/bin/celery"
#CELERY_BIN="/virtualenvs/def/bin/celery"

App instance to use
comment out this line if you don't use an app
CELERY_APP="proj"
or fully qualified:
#CELERY_APP="proj.tasks:app"

Where to chdir at start.
CELERYD_CHDIR="/opt/Myproject/"

Extra command-line arguments to the worker
CELERYD_OPTS="--time-limit=300 --concurrency=8"
Configure node-specific settings by appending node name to arguments:
#CELERYD_OPTS="--time-limit=300 -c 8 -c:worker2 4 -c:worker3 2 -Ofair:worker1"

Set logging level to DEBUG
#CELERYD_LOG_LEVEL="DEBUG"

%n will be replaced with the first part of the nodename.
CELERYD_LOG_FILE="/var/log/celery/%n%I.log"
CELERYD_PID_FILE="/var/run/celery/%n.pid"

Workers should run as an unprivileged user.
You need to create this user manually (or you can choose
a user/group combination that already exists (e.g., nobody).
CELERYD_USER="celery"
CELERYD_GROUP="celery"

If enabled pid and log directories will be created if missing,
and owned by the userid/group configured.
CELERY_CREATE_DIRS=1

Using a login shell

You can inherit the environment of the CELERYD_USER by using a login
shell:

CELERYD_SU_ARGS="-l"

Note that this isn’t recommended, and that you should only use this option
when absolutely necessary.

Example Django configuration

Django users now uses the exact same template as above,
but make sure that the module that defines your Celery app instance
also sets a default value for DJANGO_SETTINGS_MODULE [https://django.readthedocs.io/en/latest/topics/settings.html#envvar-DJANGO_SETTINGS_MODULE]
as shown in the example Django project in First steps with Django.

Available options

	CELERY_APP

App instance to use (value for --app argument).

	CELERY_BIN

Absolute or relative path to the celery program.
Examples:

	celery

	/usr/local/bin/celery

	/virtualenvs/proj/bin/celery

	/virtualenvs/proj/bin/python -m celery

	CELERYD_NODES

List of node names to start (separated by space).

	CELERYD_OPTS

Additional command-line arguments for the worker, see
celery worker –help for a list. This also supports the extended
syntax used by multi to configure settings for individual nodes.
See celery multi –help for some multi-node configuration examples.

	CELERYD_CHDIR

Path to change directory to at start. Default is to stay in the current
directory.

	CELERYD_PID_FILE

Full path to the PID file. Default is /var/run/celery/%n.pid

	CELERYD_LOG_FILE

Full path to the worker log file. Default is /var/log/celery/%n%I.log
Note: Using %I is important when using the prefork pool as having
multiple processes share the same log file will lead to race conditions.

	CELERYD_LOG_LEVEL

Worker log level. Default is INFO.

	CELERYD_USER

User to run the worker as. Default is current user.

	CELERYD_GROUP

Group to run worker as. Default is current user.

	CELERY_CREATE_DIRS

Always create directories (log directory and pid file directory).
Default is to only create directories when no custom logfile/pidfile set.

	CELERY_CREATE_RUNDIR

Always create pidfile directory. By default only enabled when no custom
pidfile location set.

	CELERY_CREATE_LOGDIR

Always create logfile directory. By default only enable when no custom
logfile location set.

Init-script: celerybeat

	Usage

	/etc/init.d/celerybeat {start|stop|restart}

	Configuration file

	/etc/default/celerybeat or
/etc/default/celeryd.

Example configuration

This is an example configuration for a Python project:

/etc/default/celerybeat:

Absolute or relative path to the 'celery' command:
CELERY_BIN="/usr/local/bin/celery"
#CELERY_BIN="/virtualenvs/def/bin/celery"

App instance to use
comment out this line if you don't use an app
CELERY_APP="proj"
or fully qualified:
#CELERY_APP="proj.tasks:app"

Where to chdir at start.
CELERYBEAT_CHDIR="/opt/Myproject/"

Extra arguments to celerybeat
CELERYBEAT_OPTS="--schedule=/var/run/celery/celerybeat-schedule"

Example Django configuration

You should use the same template as above, but make sure the
DJANGO_SETTINGS_MODULE variable is set (and exported), and that
CELERYD_CHDIR is set to the projects directory:

export DJANGO_SETTINGS_MODULE="settings"

CELERYD_CHDIR="/opt/MyProject"

Available options

	CELERY_APP

App instance to use (value for --app argument).

	CELERYBEAT_OPTS

Additional arguments to celery beat, see
celery beat --help for a list of available options.

	CELERYBEAT_PID_FILE

Full path to the PID file. Default is /var/run/celeryd.pid.

	CELERYBEAT_LOG_FILE

Full path to the log file. Default is /var/log/celeryd.log.

	CELERYBEAT_LOG_LEVEL

Log level to use. Default is INFO.

	CELERYBEAT_USER

User to run beat as. Default is the current user.

	CELERYBEAT_GROUP

Group to run beat as. Default is the current user.

	CELERY_CREATE_DIRS

Always create directories (log directory and pid file directory).
Default is to only create directories when no custom logfile/pidfile set.

	CELERY_CREATE_RUNDIR

Always create pidfile directory. By default only enabled when no custom
pidfile location set.

	CELERY_CREATE_LOGDIR

Always create logfile directory. By default only enable when no custom
logfile location set.

Troubleshooting

If you can’t get the init-scripts to work, you should try running
them in verbose mode:

sh -x /etc/init.d/celeryd start

This can reveal hints as to why the service won’t start.

If the worker starts with “OK” but exits almost immediately afterwards
and there’s no evidence in the log file, then there’s probably an error
but as the daemons standard outputs are already closed you’ll
not be able to see them anywhere. For this situation you can use
the C_FAKEFORK environment variable to skip the
daemonization step:

C_FAKEFORK=1 sh -x /etc/init.d/celeryd start

and now you should be able to see the errors.

Commonly such errors are caused by insufficient permissions
to read from, or write to a file, and also by syntax errors
in configuration modules, user modules, third-party libraries,
or even from Celery itself (if you’ve found a bug you
should report it).

Usage systemd

	extra/systemd/ [https://github.com/celery/celery/tree/master/extra/systemd/]

	Usage

	systemctl {start|stop|restart|status} celery.service

	Configuration file

	/etc/conf.d/celery

Service file: celery.service

This is an example systemd file:

/etc/systemd/system/celery.service:

[Unit]
Description=Celery Service
After=network.target

[Service]
Type=forking
User=celery
Group=celery
EnvironmentFile=/etc/conf.d/celery
WorkingDirectory=/opt/celery
ExecStart=/bin/sh -c '${CELERY_BIN} -A $CELERY_APP multi start $CELERYD_NODES \
 --pidfile=${CELERYD_PID_FILE} --logfile=${CELERYD_LOG_FILE} \
 --loglevel="${CELERYD_LOG_LEVEL}" $CELERYD_OPTS'
ExecStop=/bin/sh -c '${CELERY_BIN} multi stopwait $CELERYD_NODES \
 --pidfile=${CELERYD_PID_FILE} --loglevel="${CELERYD_LOG_LEVEL}"'
ExecReload=/bin/sh -c '${CELERY_BIN} -A $CELERY_APP multi restart $CELERYD_NODES \
 --pidfile=${CELERYD_PID_FILE} --logfile=${CELERYD_LOG_FILE} \
 --loglevel="${CELERYD_LOG_LEVEL}" $CELERYD_OPTS'
Restart=always

[Install]
WantedBy=multi-user.target

Once you’ve put that file in /etc/systemd/system, you should run
systemctl daemon-reload in order that Systemd acknowledges that file.
You should also run that command each time you modify it.

To configure user, group, chdir change settings:
User, Group, and WorkingDirectory defined in
/etc/systemd/system/celery.service.

You can also use systemd-tmpfiles in order to create working directories (for logs and pid).

	file

	/etc/tmpfiles.d/celery.conf

d /var/run/celery 0755 celery celery -
d /var/log/celery 0755 celery celery -

Example configuration

This is an example configuration for a Python project:

/etc/conf.d/celery:

Name of nodes to start
here we have a single node
CELERYD_NODES="w1"
or we could have three nodes:
#CELERYD_NODES="w1 w2 w3"

Absolute or relative path to the 'celery' command:
CELERY_BIN="/usr/local/bin/celery"
#CELERY_BIN="/virtualenvs/def/bin/celery"

App instance to use
comment out this line if you don't use an app
CELERY_APP="proj"
or fully qualified:
#CELERY_APP="proj.tasks:app"

How to call manage.py
CELERYD_MULTI="multi"

Extra command-line arguments to the worker
CELERYD_OPTS="--time-limit=300 --concurrency=8"

- %n will be replaced with the first part of the nodename.
- %I will be replaced with the current child process index
and is important when using the prefork pool to avoid race conditions.
CELERYD_PID_FILE="/var/run/celery/%n.pid"
CELERYD_LOG_FILE="/var/log/celery/%n%I.log"
CELERYD_LOG_LEVEL="INFO"

you may wish to add these options for Celery Beat
CELERYBEAT_PID_FILE="/var/run/celery/beat.pid"
CELERYBEAT_LOG_FILE="/var/log/celery/beat.log"

Service file: celerybeat.service

This is an example systemd file for Celery Beat:

/etc/systemd/system/celerybeat.service:

[Unit]
Description=Celery Beat Service
After=network.target

[Service]
Type=simple
User=celery
Group=celery
EnvironmentFile=/etc/conf.d/celery
WorkingDirectory=/opt/celery
ExecStart=/bin/sh -c '${CELERY_BIN} -A ${CELERY_APP} beat \
 --pidfile=${CELERYBEAT_PID_FILE} \
 --logfile=${CELERYBEAT_LOG_FILE} --loglevel=${CELERYD_LOG_LEVEL}'

[Install]
WantedBy=multi-user.target

Running the worker with superuser privileges (root)

Running the worker with superuser privileges is a very dangerous practice.
There should always be a workaround to avoid running as root. Celery may
run arbitrary code in messages serialized with pickle - this is dangerous,
especially when run as root.

By default Celery won’t run workers as root. The associated error
message may not be visible in the logs but may be seen if C_FAKEFORK
is used.

To force Celery to run workers as root use C_FORCE_ROOT.

When running as root without C_FORCE_ROOT the worker will
appear to start with “OK” but exit immediately after with no apparent
errors. This problem may appear when running the project in a new development
or production environment (inadvertently) as root.

supervisor [https://pypi.python.org/pypi/supervisor/]

	extra/supervisord/ [https://github.com/celery/celery/tree/master/extra/supervisord/]

launchd (macOS)

	extra/macOS [https://github.com/celery/celery/tree/master/extra/macOS/]

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Periodic Tasks

	Introduction

	Time Zones

	Entries

	Available Fields

	Crontab schedules

	Solar schedules

	Starting the Scheduler

	Using custom scheduler classes

Introduction

celery beat is a scheduler; It kicks off tasks at regular intervals,
that are then executed by available worker nodes in the cluster.

By default the entries are taken from the beat_schedule setting,
but custom stores can also be used, like storing the entries in a SQL database.

You have to ensure only a single scheduler is running for a schedule
at a time, otherwise you’d end up with duplicate tasks. Using
a centralized approach means the schedule doesn’t have to be synchronized,
and the service can operate without using locks.

Time Zones

The periodic task schedules uses the UTC time zone by default,
but you can change the time zone used using the timezone
setting.

An example time zone could be Europe/London:

timezone = 'Europe/London'

This setting must be added to your app, either by configuring it directly
using (app.conf.timezone = 'Europe/London'), or by adding
it to your configuration module if you have set one up using
app.config_from_object. See Configuration for
more information about configuration options.

The default scheduler (storing the schedule in the celerybeat-schedule
file) will automatically detect that the time zone has changed, and so will
reset the schedule itself, but other schedulers may not be so smart (e.g., the
Django database scheduler, see below) and in that case you’ll have to reset the
schedule manually.

Django Users

Celery recommends and is compatible with the new USE_TZ setting introduced
in Django 1.4.

For Django users the time zone specified in the TIME_ZONE setting
will be used, or you can specify a custom time zone for Celery alone
by using the timezone setting.

The database scheduler won’t reset when timezone related settings
change, so you must do this manually:

$ python manage.py shell
>>> from djcelery.models import PeriodicTask
>>> PeriodicTask.objects.update(last_run_at=None)

Django-Celery only supports Celery 4.0 and below, for Celery 4.0 and above, do as follow:

$ python manage.py shell
>>> from django_celery_beat.models import PeriodicTask
>>> PeriodicTask.objects.update(last_run_at=None)

Entries

To call a task periodically you have to add an entry to the
beat schedule list.

from celery import Celery
from celery.schedules import crontab

app = Celery()

@app.on_after_configure.connect
def setup_periodic_tasks(sender, **kwargs):
 # Calls test('hello') every 10 seconds.
 sender.add_periodic_task(10.0, test.s('hello'), name='add every 10')

 # Calls test('world') every 30 seconds
 sender.add_periodic_task(30.0, test.s('world'), expires=10)

 # Executes every Monday morning at 7:30 a.m.
 sender.add_periodic_task(
 crontab(hour=7, minute=30, day_of_week=1),
 test.s('Happy Mondays!'),
)

@app.task
def test(arg):
 print(arg)

Setting these up from within the on_after_configure handler means
that we’ll not evaluate the app at module level when using test.s(). Note that
on_after_configure is sent after the app is set up, so tasks outside the
module where the app is declared (e.g. in a tasks.py file located by
celery.Celery.autodiscover_tasks()) must use a later signal, such as
on_after_finalize.

The add_periodic_task() function will add the entry to the
beat_schedule setting behind the scenes, and the same setting
can also be used to set up periodic tasks manually:

Example: Run the tasks.add task every 30 seconds.

app.conf.beat_schedule = {
 'add-every-30-seconds': {
 'task': 'tasks.add',
 'schedule': 30.0,
 'args': (16, 16)
 },
}
app.conf.timezone = 'UTC'

Note

If you’re wondering where these settings should go then
please see Configuration. You can either
set these options on your app directly or you can keep
a separate module for configuration.

If you want to use a single item tuple for args, don’t forget
that the constructor is a comma, and not a pair of parentheses.

Using a timedelta [https://docs.python.org/dev/library/datetime.html#datetime.timedelta] for the schedule means the task will
be sent in 30 second intervals (the first task will be sent 30 seconds
after celery beat starts, and then every 30 seconds
after the last run).

A Crontab like schedule also exists, see the section on Crontab schedules.

Like with cron, the tasks may overlap if the first task doesn’t complete
before the next. If that’s a concern you should use a locking
strategy to ensure only one instance can run at a time (see for example
Ensuring a task is only executed one at a time).

Available Fields

	task

The name of the task to execute.

	schedule

The frequency of execution.

This can be the number of seconds as an integer, a
timedelta [https://docs.python.org/dev/library/datetime.html#datetime.timedelta], or a crontab.
You can also define your own custom schedule types, by extending the
interface of schedule.

	args

Positional arguments (list [https://docs.python.org/dev/library/stdtypes.html#list] or tuple [https://docs.python.org/dev/library/stdtypes.html#tuple]).

	kwargs

Keyword arguments (dict [https://docs.python.org/dev/library/stdtypes.html#dict]).

	options

Execution options (dict [https://docs.python.org/dev/library/stdtypes.html#dict]).

This can be any argument supported by
apply_async() –
exchange, routing_key, expires, and so on.

	relative

If relative is true timedelta [https://docs.python.org/dev/library/datetime.html#datetime.timedelta] schedules are scheduled
“by the clock.” This means the frequency is rounded to the nearest
second, minute, hour or day depending on the period of the
timedelta [https://docs.python.org/dev/library/datetime.html#datetime.timedelta].

By default relative is false, the frequency isn’t rounded and will be
relative to the time when celery beat was started.

Crontab schedules

If you want more control over when the task is executed, for
example, a particular time of day or day of the week, you can use
the crontab schedule type:

from celery.schedules import crontab

app.conf.beat_schedule = {
 # Executes every Monday morning at 7:30 a.m.
 'add-every-monday-morning': {
 'task': 'tasks.add',
 'schedule': crontab(hour=7, minute=30, day_of_week=1),
 'args': (16, 16),
 },
}

The syntax of these Crontab expressions are very flexible.

Some examples:

	Example

	Meaning

	crontab()

	Execute every minute.

	crontab(minute=0, hour=0)

	Execute daily at midnight.

	crontab(minute=0, hour='*/3')

	Execute every three hours:
midnight, 3am, 6am, 9am,
noon, 3pm, 6pm, 9pm.

	
	crontab(minute=0,
	hour='0,3,6,9,12,15,18,21')

	Same as previous.

	crontab(minute='*/15')

	Execute every 15 minutes.

	crontab(day_of_week='sunday')

	Execute every minute (!) at Sundays.

	
	crontab(minute='*',
	hour='*',
day_of_week='sun')

	Same as previous.

	
	crontab(minute='*/10',
	hour='3,17,22',
day_of_week='thu,fri')

	Execute every ten minutes, but only
between 3-4 am, 5-6 pm, and 10-11 pm on
Thursdays or Fridays.

	crontab(minute=0, hour='*/2,*/3')

	Execute every even hour, and every hour
divisible by three. This means:
at every hour except: 1am,
5am, 7am, 11am, 1pm, 5pm, 7pm,
11pm

	crontab(minute=0, hour='*/5')

	Execute hour divisible by 5. This means
that it is triggered at 3pm, not 5pm
(since 3pm equals the 24-hour clock
value of “15”, which is divisible by 5).

	crontab(minute=0, hour='*/3,8-17')

	Execute every hour divisible by 3, and
every hour during office hours (8am-5pm).

	crontab(0, 0, day_of_month='2')

	Execute on the second day of every month.

	
	crontab(0, 0,
	day_of_month='2-30/2')

	Execute on every even numbered day.

	
	crontab(0, 0,
	day_of_month='1-7,15-21')

	Execute on the first and third weeks of
the month.

	
	crontab(0, 0, day_of_month='11',
	month_of_year='5')

	Execute on the eleventh of May every year.

	
	crontab(0, 0,
	month_of_year='*/3')

	Execute every day on the first month
of every quarter.

See celery.schedules.crontab for more documentation.

Solar schedules

If you have a task that should be executed according to sunrise,
sunset, dawn or dusk, you can use the
solar schedule type:

from celery.schedules import solar

app.conf.beat_schedule = {
 # Executes at sunset in Melbourne
 'add-at-melbourne-sunset': {
 'task': 'tasks.add',
 'schedule': solar('sunset', -37.81753, 144.96715),
 'args': (16, 16),
 },
}

The arguments are simply: solar(event, latitude, longitude)

Be sure to use the correct sign for latitude and longitude:

	Sign

	Argument

	Meaning

	+

	latitude

	North

	-

	latitude

	South

	+

	longitude

	East

	-

	longitude

	West

Possible event types are:

	Event

	Meaning

	dawn_astronomical

	Execute at the moment after which the sky
is no longer completely dark. This is when
the sun is 18 degrees below the horizon.

	dawn_nautical

	Execute when there’s enough sunlight for
the horizon and some objects to be
distinguishable; formally, when the sun is
12 degrees below the horizon.

	dawn_civil

	Execute when there’s enough light for
objects to be distinguishable so that
outdoor activities can commence;
formally, when the Sun is 6 degrees below
the horizon.

	sunrise

	Execute when the upper edge of the sun
appears over the eastern horizon in the
morning.

	solar_noon

	Execute when the sun is highest above the
horizon on that day.

	sunset

	Execute when the trailing edge of the sun
disappears over the western horizon in the
evening.

	dusk_civil

	Execute at the end of civil twilight, when
objects are still distinguishable and some
stars and planets are visible. Formally,
when the sun is 6 degrees below the
horizon.

	dusk_nautical

	Execute when the sun is 12 degrees below
the horizon. Objects are no longer
distinguishable, and the horizon is no
longer visible to the naked eye.

	dusk_astronomical

	Execute at the moment after which the sky
becomes completely dark; formally, when
the sun is 18 degrees below the horizon.

All solar events are calculated using UTC, and are therefore
unaffected by your timezone setting.

In polar regions, the sun may not rise or set every day. The scheduler
is able to handle these cases (i.e., a sunrise event won’t run on a day
when the sun doesn’t rise). The one exception is solar_noon, which is
formally defined as the moment the sun transits the celestial meridian,
and will occur every day even if the sun is below the horizon.

Twilight is defined as the period between dawn and sunrise; and between
sunset and dusk. You can schedule an event according to “twilight”
depending on your definition of twilight (civil, nautical, or astronomical),
and whether you want the event to take place at the beginning or end
of twilight, using the appropriate event from the list above.

See celery.schedules.solar for more documentation.

Starting the Scheduler

To start the celery beat service:

$ celery -A proj beat

You can also embed beat inside the worker by enabling the
workers -B option, this is convenient if you’ll
never run more than one worker node, but it’s not commonly used and for that
reason isn’t recommended for production use:

$ celery -A proj worker -B

Beat needs to store the last run times of the tasks in a local database
file (named celerybeat-schedule by default), so it needs access to
write in the current directory, or alternatively you can specify a custom
location for this file:

$ celery -A proj beat -s /home/celery/var/run/celerybeat-schedule

Note

To daemonize beat see Daemonization.

Using custom scheduler classes

Custom scheduler classes can be specified on the command-line (the
--scheduler argument).

The default scheduler is the celery.beat.PersistentScheduler,
that simply keeps track of the last run times in a local shelve [https://docs.python.org/dev/library/shelve.html#module-shelve]
database file.

There’s also the django-celery-beat [https://pypi.python.org/pypi/django-celery-beat/] extension that stores the schedule
in the Django database, and presents a convenient admin interface to manage
periodic tasks at runtime.

To install and use this extension:

	Use pip to install the package:

$ pip install django-celery-beat

	Add the django_celery_beat module to INSTALLED_APPS in your
Django project’ settings.py:

INSTALLED_APPS = (
 ...,
 'django_celery_beat',
)

Note that there is no dash in the module name, only underscores.

	Apply Django database migrations so that the necessary tables are created:

$ python manage.py migrate

	Start the celery beat service using the django_celery_beat.schedulers:DatabaseScheduler scheduler:

$ celery -A proj beat -l INFO --scheduler django_celery_beat.schedulers:DatabaseScheduler

Note: You may also add this as the beat_scheduler setting directly.

	Visit the Django-Admin interface to set up some periodic tasks.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Routing Tasks

Note

Alternate routing concepts like topic and fanout is not
available for all transports, please consult the
transport comparison table [https://kombu.readthedocs.io/en/master/introduction.html#transport-comparison].

	Basics

	Automatic routing

	Changing the name of the default queue

	How the queues are defined

	Manual routing

	Special Routing Options

	RabbitMQ Message Priorities

	Redis Message Priorities

	AMQP Primer

	Messages

	Producers, consumers, and brokers

	Exchanges, queues, and routing keys

	Exchange types

	Direct exchanges

	Topic exchanges

	Related API commands

	Hands-on with the API

	Routing Tasks

	Defining queues

	Specifying task destination

	Routers

	Broadcast

Basics

Automatic routing

The simplest way to do routing is to use the
task_create_missing_queues setting (on by default).

With this setting on, a named queue that’s not already defined in
task_queues will be created automatically. This makes it easy to
perform simple routing tasks.

Say you have two servers, x, and y that handle regular tasks,
and one server z, that only handles feed related tasks. You can use this
configuration:

task_routes = {'feed.tasks.import_feed': {'queue': 'feeds'}}

With this route enabled import feed tasks will be routed to the
“feeds” queue, while all other tasks will be routed to the default queue
(named “celery” for historical reasons).

Alternatively, you can use glob pattern matching, or even regular expressions,
to match all tasks in the feed.tasks name-space:

app.conf.task_routes = {'feed.tasks.*': {'queue': 'feeds'}}

If the order of matching patterns is important you should
specify the router in items format instead:

task_routes = ([
 ('feed.tasks.*', {'queue': 'feeds'}),
 ('web.tasks.*', {'queue': 'web'}),
 (re.compile(r'(video|image)\.tasks\..*'), {'queue': 'media'}),
],)

Note

The task_routes setting can either be a dictionary, or a
list of router objects, so in this case we need to specify the setting
as a tuple containing a list.

After installing the router, you can start server z to only process the feeds
queue like this:

user@z:/$ celery -A proj worker -Q feeds

You can specify as many queues as you want, so you can make this server
process the default queue as well:

user@z:/$ celery -A proj worker -Q feeds,celery

Changing the name of the default queue

You can change the name of the default queue by using the following
configuration:

app.conf.task_default_queue = 'default'

How the queues are defined

The point with this feature is to hide the complex AMQP protocol for users
with only basic needs. However – you may still be interested in how these queues
are declared.

A queue named “video” will be created with the following settings:

{'exchange': 'video',
 'exchange_type': 'direct',
 'routing_key': 'video'}

The non-AMQP backends like Redis or SQS don’t support exchanges,
so they require the exchange to have the same name as the queue. Using this
design ensures it will work for them as well.

Manual routing

Say you have two servers, x, and y that handle regular tasks,
and one server z, that only handles feed related tasks, you can use this
configuration:

from kombu import Queue

app.conf.task_default_queue = 'default'
app.conf.task_queues = (
 Queue('default', routing_key='task.#'),
 Queue('feed_tasks', routing_key='feed.#'),
)
app.conf.task_default_exchange = 'tasks'
app.conf.task_default_exchange_type = 'topic'
app.conf.task_default_routing_key = 'task.default'

task_queues is a list of Queue
instances.
If you don’t set the exchange or exchange type values for a key, these
will be taken from the task_default_exchange and
task_default_exchange_type settings.

To route a task to the feed_tasks queue, you can add an entry in the
task_routes setting:

task_routes = {
 'feeds.tasks.import_feed': {
 'queue': 'feed_tasks',
 'routing_key': 'feed.import',
 },
}

You can also override this using the routing_key argument to
Task.apply_async(), or send_task():

>>> from feeds.tasks import import_feed
>>> import_feed.apply_async(args=['http://cnn.com/rss'],
... queue='feed_tasks',
... routing_key='feed.import')

To make server z consume from the feed queue exclusively you can
start it with the celery worker -Q option:

user@z:/$ celery -A proj worker -Q feed_tasks --hostname=z@%h

Servers x and y must be configured to consume from the default queue:

user@x:/$ celery -A proj worker -Q default --hostname=x@%h
user@y:/$ celery -A proj worker -Q default --hostname=y@%h

If you want, you can even have your feed processing worker handle regular
tasks as well, maybe in times when there’s a lot of work to do:

user@z:/$ celery -A proj worker -Q feed_tasks,default --hostname=z@%h

If you have another queue but on another exchange you want to add,
just specify a custom exchange and exchange type:

from kombu import Exchange, Queue

app.conf.task_queues = (
 Queue('feed_tasks', routing_key='feed.#'),
 Queue('regular_tasks', routing_key='task.#'),
 Queue('image_tasks', exchange=Exchange('mediatasks', type='direct'),
 routing_key='image.compress'),
)

If you’re confused about these terms, you should read up on AMQP.

See also

In addition to the Redis Message Priorities below, there’s
Rabbits and Warrens [http://web.archive.org/web/20160323134044/http://blogs.digitar.com/jjww/2009/01/rabbits-and-warrens/], an excellent blog post describing queues and
exchanges. There’s also The CloudAMQP tutorial,
For users of RabbitMQ the RabbitMQ FAQ [https://www.rabbitmq.com/faq.html]
could be useful as a source of information.

Special Routing Options

RabbitMQ Message Priorities

	supported transports

	RabbitMQ

New in version 4.0.

Queues can be configured to support priorities by setting the
x-max-priority argument:

from kombu import Exchange, Queue

app.conf.task_queues = [
 Queue('tasks', Exchange('tasks'), routing_key='tasks',
 queue_arguments={'x-max-priority': 10}),
]

A default value for all queues can be set using the
task_queue_max_priority setting:

app.conf.task_queue_max_priority = 10

A default priority for all tasks can also be specified using the
task_default_priority setting:

app.conf.task_default_priority = 5

Redis Message Priorities

	supported transports

	Redis

While the Celery Redis transport does honor the priority field, Redis itself has
no notion of priorities. Please read this note before attempting to implement
priorities with Redis as you may experience some unexpected behavior.

To start scheduling tasks based on priorities you need to configure queue_order_strategy transport option.

app.conf.broker_transport_options = {
 'queue_order_strategy': 'priority',
}

The priority support is implemented by creating n lists for each queue.
This means that even though there are 10 (0-9) priority levels, these are
consolidated into 4 levels by default to save resources. This means that a
queue named celery will really be split into 4 queues:

['celery0', 'celery3', 'celery6', 'celery9']

If you want more priority levels you can set the priority_steps transport option:

app.conf.broker_transport_options = {
 'priority_steps': list(range(10)),
 'queue_order_strategy': 'priority',
}

That said, note that this will never be as good as priorities implemented at the
server level, and may be approximate at best. But it may still be good enough
for your application.

AMQP Primer

Messages

A message consists of headers and a body. Celery uses headers to store
the content type of the message and its content encoding. The
content type is usually the serialization format used to serialize the
message. The body contains the name of the task to execute, the
task id (UUID), the arguments to apply it with and some additional
meta-data – like the number of retries or an ETA.

This is an example task message represented as a Python dictionary:

{'task': 'myapp.tasks.add',
 'id': '54086c5e-6193-4575-8308-dbab76798756',
 'args': [4, 4],
 'kwargs': {}}

Producers, consumers, and brokers

The client sending messages is typically called a publisher, or
a producer, while the entity receiving messages is called
a consumer.

The broker is the message server, routing messages from producers
to consumers.

You’re likely to see these terms used a lot in AMQP related material.

Exchanges, queues, and routing keys

	Messages are sent to exchanges.

	An exchange routes messages to one or more queues. Several exchange types
exists, providing different ways to do routing, or implementing
different messaging scenarios.

	The message waits in the queue until someone consumes it.

	The message is deleted from the queue when it has been acknowledged.

The steps required to send and receive messages are:

	Create an exchange

	Create a queue

	Bind the queue to the exchange.

Celery automatically creates the entities necessary for the queues in
task_queues to work (except if the queue’s auto_declare
setting is set to False).

Here’s an example queue configuration with three queues;
One for video, one for images, and one default queue for everything else:

from kombu import Exchange, Queue

app.conf.task_queues = (
 Queue('default', Exchange('default'), routing_key='default'),
 Queue('videos', Exchange('media'), routing_key='media.video'),
 Queue('images', Exchange('media'), routing_key='media.image'),
)
app.conf.task_default_queue = 'default'
app.conf.task_default_exchange_type = 'direct'
app.conf.task_default_routing_key = 'default'

Exchange types

The exchange type defines how the messages are routed through the exchange.
The exchange types defined in the standard are direct, topic,
fanout and headers. Also non-standard exchange types are available
as plug-ins to RabbitMQ, like the last-value-cache plug-in [https://github.com/squaremo/rabbitmq-lvc-plugin] by Michael
Bridgen.

Direct exchanges

Direct exchanges match by exact routing keys, so a queue bound by
the routing key video only receives messages with that routing key.

Topic exchanges

Topic exchanges matches routing keys using dot-separated words, and the
wild-card characters: * (matches a single word), and # (matches
zero or more words).

With routing keys like usa.news, usa.weather, norway.news, and
norway.weather, bindings could be *.news (all news), usa.# (all
items in the USA), or usa.weather (all USA weather items).

Related API commands

	
exchange.declare(exchange_name, type, passive,

	
durable, auto_delete, internal)

	Declares an exchange by name.

See amqp:Channel.exchange_declare [https://amqp.readthedocs.io/en/latest/reference/amqp.channel.html#amqp.channel.Channel.exchange_declare].

	Keyword Arguments

	
	passive – Passive means the exchange won’t be created, but you
can use this to check if the exchange already exists.

	durable – Durable exchanges are persistent (i.e., they survive
a broker restart).

	auto_delete – This means the exchange will be deleted by the broker
when there are no more queues using it.

	
queue.declare(queue_name, passive, durable, exclusive, auto_delete)

	Declares a queue by name.

See amqp:Channel.queue_declare [https://amqp.readthedocs.io/en/latest/reference/amqp.channel.html#amqp.channel.Channel.queue_declare]

Exclusive queues can only be consumed from by the current connection.
Exclusive also implies auto_delete.

	
queue.bind(queue_name, exchange_name, routing_key)

	Binds a queue to an exchange with a routing key.

Unbound queues won’t receive messages, so this is necessary.

See amqp:Channel.queue_bind [https://amqp.readthedocs.io/en/latest/reference/amqp.channel.html#amqp.channel.Channel.queue_bind]

	
queue.delete(name, if_unused=False, if_empty=False)

	Deletes a queue and its binding.

See amqp:Channel.queue_delete [https://amqp.readthedocs.io/en/latest/reference/amqp.channel.html#amqp.channel.Channel.queue_delete]

	
exchange.delete(name, if_unused=False)

	Deletes an exchange.

See amqp:Channel.exchange_delete [https://amqp.readthedocs.io/en/latest/reference/amqp.channel.html#amqp.channel.Channel.exchange_delete]

Note

Declaring doesn’t necessarily mean “create”. When you declare you
assert that the entity exists and that it’s operable. There’s no
rule as to whom should initially create the exchange/queue/binding,
whether consumer or producer. Usually the first one to need it will
be the one to create it.

Hands-on with the API

Celery comes with a tool called celery amqp
that’s used for command line access to the AMQP API, enabling access to
administration tasks like creating/deleting queues and exchanges, purging
queues or sending messages. It can also be used for non-AMQP brokers,
but different implementation may not implement all commands.

You can write commands directly in the arguments to celery amqp,
or just start with no arguments to start it in shell-mode:

$ celery -A proj amqp
-> connecting to amqp://guest@localhost:5672/.
-> connected.
1>

Here 1> is the prompt. The number 1, is the number of commands you
have executed so far. Type help for a list of commands available.
It also supports auto-completion, so you can start typing a command and then
hit the tab key to show a list of possible matches.

Let’s create a queue you can send messages to:

$ celery -A proj amqp
1> exchange.declare testexchange direct
ok.
2> queue.declare testqueue
ok. queue:testqueue messages:0 consumers:0.
3> queue.bind testqueue testexchange testkey
ok.

This created the direct exchange testexchange, and a queue
named testqueue. The queue is bound to the exchange using
the routing key testkey.

From now on all messages sent to the exchange testexchange with routing
key testkey will be moved to this queue. You can send a message by
using the basic.publish command:

4> basic.publish 'This is a message!' testexchange testkey
ok.

Now that the message is sent you can retrieve it again. You can use the
basic.get command here, that polls for new messages on the queue
in a synchronous manner
(this is OK for maintenance tasks, but for services you want to use
basic.consume instead)

Pop a message off the queue:

5> basic.get testqueue
{'body': 'This is a message!',
 'delivery_info': {'delivery_tag': 1,
 'exchange': u'testexchange',
 'message_count': 0,
 'redelivered': False,
 'routing_key': u'testkey'},
 'properties': {}}

AMQP uses acknowledgment to signify that a message has been received
and processed successfully. If the message hasn’t been acknowledged
and consumer channel is closed, the message will be delivered to
another consumer.

Note the delivery tag listed in the structure above; Within a connection
channel, every received message has a unique delivery tag,
This tag is used to acknowledge the message. Also note that
delivery tags aren’t unique across connections, so in another client
the delivery tag 1 might point to a different message than in this channel.

You can acknowledge the message you received using basic.ack:

6> basic.ack 1
ok.

To clean up after our test session you should delete the entities you created:

7> queue.delete testqueue
ok. 0 messages deleted.
8> exchange.delete testexchange
ok.

Routing Tasks

Defining queues

In Celery available queues are defined by the task_queues setting.

Here’s an example queue configuration with three queues;
One for video, one for images, and one default queue for everything else:

default_exchange = Exchange('default', type='direct')
media_exchange = Exchange('media', type='direct')

app.conf.task_queues = (
 Queue('default', default_exchange, routing_key='default'),
 Queue('videos', media_exchange, routing_key='media.video'),
 Queue('images', media_exchange, routing_key='media.image')
)
app.conf.task_default_queue = 'default'
app.conf.task_default_exchange = 'default'
app.conf.task_default_routing_key = 'default'

Here, the task_default_queue will be used to route tasks that
doesn’t have an explicit route.

The default exchange, exchange type, and routing key will be used as the
default routing values for tasks, and as the default values for entries
in task_queues.

Multiple bindings to a single queue are also supported. Here’s an example
of two routing keys that are both bound to the same queue:

from kombu import Exchange, Queue, binding

media_exchange = Exchange('media', type='direct')

CELERY_QUEUES = (
 Queue('media', [
 binding(media_exchange, routing_key='media.video'),
 binding(media_exchange, routing_key='media.image'),
]),
)

Specifying task destination

The destination for a task is decided by the following (in order):

	The routing arguments to Task.apply_async().

	Routing related attributes defined on the Task
itself.

	The Routers defined in task_routes.

It’s considered best practice to not hard-code these settings, but rather
leave that as configuration options by using Routers;
This is the most flexible approach, but sensible defaults can still be set
as task attributes.

Routers

A router is a function that decides the routing options for a task.

All you need to define a new router is to define a function with
the signature (name, args, kwargs, options, task=None, **kw):

def route_task(name, args, kwargs, options, task=None, **kw):
 if name == 'myapp.tasks.compress_video':
 return {'exchange': 'video',
 'exchange_type': 'topic',
 'routing_key': 'video.compress'}

If you return the queue key, it’ll expand with the defined settings of
that queue in task_queues:

{'queue': 'video', 'routing_key': 'video.compress'}

becomes –>

{'queue': 'video',
 'exchange': 'video',
 'exchange_type': 'topic',
 'routing_key': 'video.compress'}

You install router classes by adding them to the task_routes
setting:

task_routes = (route_task,)

Router functions can also be added by name:

task_routes = ('myapp.routers.route_task',)

For simple task name -> route mappings like the router example above,
you can simply drop a dict into task_routes to get the
same behavior:

task_routes = {
 'myapp.tasks.compress_video': {
 'queue': 'video',
 'routing_key': 'video.compress',
 },
}

The routers will then be traversed in order, it will stop at the first router
returning a true value, and use that as the final route for the task.

You can also have multiple routers defined in a sequence:

task_routes = [
 route_task,
 {
 'myapp.tasks.compress_video': {
 'queue': 'video',
 'routing_key': 'video.compress',
 },
]

The routers will then be visited in turn, and the first to return
a value will be chosen.

If you're using Redis or RabbitMQ you can also specify the queue's default priority
in the route.

task_routes = {
 'myapp.tasks.compress_video': {
 'queue': 'video',
 'routing_key': 'video.compress',
 'priority': 10,
 },
}

Similarly, calling apply_async on a task will override that
default priority.

task.apply_async(priority=0)

Priority Order and Cluster Responsiveness

It is important to note that, due to worker prefetching, if a bunch of tasks
submitted at the same time they may be out of priority order at first.
Disabling worker prefetching will prevent this issue, but may cause less than
ideal performance for small, fast tasks. In most cases, simply reducing
worker_prefetch_multiplier to 1 is an easier and cleaner way to increase the
responsiveness of your system without the costs of disabling prefetching
entirely.

Note that priorities values are sorted in reverse when
using the redis broker: 0 being highest priority.

Broadcast

Celery can also support broadcast routing.
Here is an example exchange broadcast_tasks that delivers
copies of tasks to all workers connected to it:

from kombu.common import Broadcast

app.conf.task_queues = (Broadcast('broadcast_tasks'),)
app.conf.task_routes = {
 'tasks.reload_cache': {
 'queue': 'broadcast_tasks',
 'exchange': 'broadcast_tasks'
 }
}

Now the tasks.reload_cache task will be sent to every
worker consuming from this queue.

Here is another example of broadcast routing, this time with
a celery beat schedule:

from kombu.common import Broadcast
from celery.schedules import crontab

app.conf.task_queues = (Broadcast('broadcast_tasks'),)

app.conf.beat_schedule = {
 'test-task': {
 'task': 'tasks.reload_cache',
 'schedule': crontab(minute=0, hour='*/3'),
 'options': {'exchange': 'broadcast_tasks'}
 },
}

Broadcast & Results

Note that Celery result doesn’t define what happens if two
tasks have the same task_id. If the same task is distributed to more
than one worker, then the state history may not be preserved.

It’s a good idea to set the task.ignore_result attribute in
this case.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Monitoring and Management Guide

	Introduction

	Workers

	Management Command-line Utilities (inspect/control)

	Commands

	Specifying destination nodes

	Flower: Real-time Celery web-monitor

	Features

	Usage

	celery events: Curses Monitor

	RabbitMQ

	Inspecting queues

	Redis

	Inspecting queues

	Munin

	Events

	Snapshots

	Custom Camera

	Real-time processing

	Event Reference

	Task Events

	task-sent

	task-received

	task-started

	task-succeeded

	task-failed

	task-rejected

	task-revoked

	task-retried

	Worker Events

	worker-online

	worker-heartbeat

	worker-offline

Introduction

There are several tools available to monitor and inspect Celery clusters.

This document describes some of these, as well as
features related to monitoring, like events and broadcast commands.

Workers

Management Command-line Utilities (inspect/control)

celery can also be used to inspect
and manage worker nodes (and to some degree tasks).

To list all the commands available do:

$ celery help

or to get help for a specific command do:

$ celery <command> --help

Commands

	shell: Drop into a Python shell.

The locals will include the celery variable: this is the current app.
Also all known tasks will be automatically added to locals (unless the
--without-tasks flag is set).

Uses Ipython [https://pypi.python.org/pypi/Ipython/], bpython [https://pypi.python.org/pypi/bpython/], or regular python in that
order if installed. You can force an implementation using
--ipython,
--bpython, or
--python.

	status: List active nodes in this cluster

$ celery -A proj status

	result: Show the result of a task

$ celery -A proj result -t tasks.add 4e196aa4-0141-4601-8138-7aa33db0f577

Note that you can omit the name of the task as long as the
task doesn’t use a custom result backend.

	purge: Purge messages from all configured task queues.

This command will remove all messages from queues configured in
the CELERY_QUEUES setting:

Warning

There’s no undo for this operation, and messages will
be permanently deleted!

$ celery -A proj purge

You can also specify the queues to purge using the -Q option:

$ celery -A proj purge -Q celery,foo,bar

and exclude queues from being purged using the -X option:

$ celery -A proj purge -X celery

	inspect active: List active tasks

$ celery -A proj inspect active

These are all the tasks that are currently being executed.

	inspect scheduled: List scheduled ETA tasks

$ celery -A proj inspect scheduled

These are tasks reserved by the worker when they have an
eta or countdown argument set.

	inspect reserved: List reserved tasks

$ celery -A proj inspect reserved

This will list all tasks that have been prefetched by the worker,
and is currently waiting to be executed (doesn’t include tasks
with an ETA value set).

	inspect revoked: List history of revoked tasks

$ celery -A proj inspect revoked

	inspect registered: List registered tasks

$ celery -A proj inspect registered

	inspect stats: Show worker statistics (see Statistics)

$ celery -A proj inspect stats

	inspect query_task: Show information about task(s) by id.

Any worker having a task in this set of ids reserved/active will respond
with status and information.

$ celery -A proj inspect query_task e9f6c8f0-fec9-4ae8-a8c6-cf8c8451d4f8

You can also query for information about multiple tasks:

$ celery -A proj inspect query_task id1 id2 ... idN

	control enable_events: Enable events

$ celery -A proj control enable_events

	control disable_events: Disable events

$ celery -A proj control disable_events

	migrate: Migrate tasks from one broker to another (EXPERIMENTAL).

$ celery -A proj migrate redis://localhost amqp://localhost

This command will migrate all the tasks on one broker to another.
As this command is new and experimental you should be sure to have
a backup of the data before proceeding.

Note

All inspect and control commands supports a
--timeout argument,
This is the number of seconds to wait for responses.
You may have to increase this timeout if you’re not getting a response
due to latency.

Specifying destination nodes

By default the inspect and control commands operates on all workers.
You can specify a single, or a list of workers by using the
--destination argument:

$ celery -A proj inspect -d w1@e.com,w2@e.com reserved

$ celery -A proj control -d w1@e.com,w2@e.com enable_events

Flower: Real-time Celery web-monitor

Flower is a real-time web based monitor and administration tool for Celery.
It’s under active development, but is already an essential tool.
Being the recommended monitor for Celery, it obsoletes the Django-Admin
monitor, celerymon and the ncurses based monitor.

Flower is pronounced like “flow”, but you can also use the botanical version
if you prefer.

Features

	Real-time monitoring using Celery Events

	Task progress and history

	Ability to show task details (arguments, start time, run-time, and more)

	Graphs and statistics

	Remote Control

	View worker status and statistics

	Shutdown and restart worker instances

	Control worker pool size and autoscale settings

	View and modify the queues a worker instance consumes from

	View currently running tasks

	View scheduled tasks (ETA/countdown)

	View reserved and revoked tasks

	Apply time and rate limits

	Configuration viewer

	Revoke or terminate tasks

	HTTP API

	List workers

	Shut down a worker

	Restart worker’s pool

	Grow worker’s pool

	Shrink worker’s pool

	Autoscale worker pool

	Start consuming from a queue

	Stop consuming from a queue

	List tasks

	List (seen) task types

	Get a task info

	Execute a task

	Execute a task by name

	Get a task result

	Change soft and hard time limits for a task

	Change rate limit for a task

	Revoke a task

	OpenID authentication

Screenshots

[image: ../_images/dashboard.png]

[image: ../_images/monitor.png]

More screenshots [https://github.com/mher/flower/tree/master/docs/screenshots]:

Usage

You can use pip to install Flower:

$ pip install flower

Running the flower command will start a web-server that you can visit:

$ celery -A proj flower

The default port is http://localhost:5555, but you can change this using the
–port [https://flower.readthedocs.io/en/latest/config.html#port] argument:

$ celery -A proj flower --port=5555

Broker URL can also be passed through the
--broker argument :

$ celery flower --broker=amqp://guest:guest@localhost:5672//
or
$ celery flower --broker=redis://guest:guest@localhost:6379/0

Then, you can visit flower in your web browser :

$ open http://localhost:5555

Flower has many more features than are detailed here, including
authorization options. Check out the official documentation [https://flower.readthedocs.io/en/latest/] for more
information.

celery events: Curses Monitor

New in version 2.0.

celery events is a simple curses monitor displaying
task and worker history. You can inspect the result and traceback of tasks,
and it also supports some management commands like rate limiting and shutting
down workers. This monitor was started as a proof of concept, and you
probably want to use Flower instead.

Starting:

$ celery -A proj events

You should see a screen like:

[image: ../_images/celeryevshotsm1.jpg]

celery events is also used to start snapshot cameras (see
Snapshots:

$ celery -A proj events --camera=<camera-class> --frequency=1.0

and it includes a tool to dump events to stdout:

$ celery -A proj events --dump

For a complete list of options use --help:

$ celery events --help

RabbitMQ

To manage a Celery cluster it is important to know how
RabbitMQ can be monitored.

RabbitMQ ships with the rabbitmqctl(1) [http://www.rabbitmq.com/man/rabbitmqctl.1.man.html] command,
with this you can list queues, exchanges, bindings,
queue lengths, the memory usage of each queue, as well
as manage users, virtual hosts and their permissions.

Note

The default virtual host ("/") is used in these
examples, if you use a custom virtual host you have to add
the -p argument to the command, for example:
rabbitmqctl list_queues -p my_vhost …

Inspecting queues

Finding the number of tasks in a queue:

$ rabbitmqctl list_queues name messages messages_ready \
 messages_unacknowledged

Here messages_ready is the number of messages ready
for delivery (sent but not received), messages_unacknowledged
is the number of messages that’s been received by a worker but
not acknowledged yet (meaning it is in progress, or has been reserved).
messages is the sum of ready and unacknowledged messages.

Finding the number of workers currently consuming from a queue:

$ rabbitmqctl list_queues name consumers

Finding the amount of memory allocated to a queue:

$ rabbitmqctl list_queues name memory

	Tip

	Adding the -q option to rabbitmqctl(1) [http://www.rabbitmq.com/man/rabbitmqctl.1.man.html] makes the output
easier to parse.

Redis

If you’re using Redis as the broker, you can monitor the Celery cluster using
the redis-cli(1) command to list lengths of queues.

Inspecting queues

Finding the number of tasks in a queue:

$ redis-cli -h HOST -p PORT -n DATABASE_NUMBER llen QUEUE_NAME

The default queue is named celery. To get all available queues, invoke:

$ redis-cli -h HOST -p PORT -n DATABASE_NUMBER keys *

Note

Queue keys only exists when there are tasks in them, so if a key
doesn’t exist it simply means there are no messages in that queue.
This is because in Redis a list with no elements in it is automatically
removed, and hence it won’t show up in the keys command output,
and llen for that list returns 0.

Also, if you’re using Redis for other purposes, the
output of the keys command will include unrelated values stored in
the database. The recommended way around this is to use a
dedicated DATABASE_NUMBER for Celery, you can also use
database numbers to separate Celery applications from each other (virtual
hosts), but this won’t affect the monitoring events used by for example
Flower as Redis pub/sub commands are global rather than database based.

Munin

This is a list of known Munin plug-ins that can be useful when
maintaining a Celery cluster.

	rabbitmq-munin: Munin plug-ins for RabbitMQ.

https://github.com/ask/rabbitmq-munin

	celery_tasks: Monitors the number of times each task type has
been executed (requires celerymon).

https://github.com/munin-monitoring/contrib/blob/master/plugins/celery/celery_tasks

	celery_tasks_states: Monitors the number of tasks in each state
(requires celerymon).

https://github.com/munin-monitoring/contrib/blob/master/plugins/celery/celery_tasks_states

Events

The worker has the ability to send a message whenever some event
happens. These events are then captured by tools like Flower,
and celery events to monitor the cluster.

Snapshots

New in version 2.1.

Even a single worker can produce a huge amount of events, so storing
the history of all events on disk may be very expensive.

A sequence of events describes the cluster state in that time period,
by taking periodic snapshots of this state you can keep all history, but
still only periodically write it to disk.

To take snapshots you need a Camera class, with this you can define
what should happen every time the state is captured; You can
write it to a database, send it by email or something else entirely.

celery events is then used to take snapshots with the camera,
for example if you want to capture state every 2 seconds using the
camera myapp.Camera you run celery events with the following
arguments:

$ celery -A proj events -c myapp.Camera --frequency=2.0

Custom Camera

Cameras can be useful if you need to capture events and do something
with those events at an interval. For real-time event processing
you should use app.events.Receiver directly, like in
Real-time processing.

Here is an example camera, dumping the snapshot to screen:

from pprint import pformat

from celery.events.snapshot import Polaroid

class DumpCam(Polaroid):
 clear_after = True # clear after flush (incl, state.event_count).

 def on_shutter(self, state):
 if not state.event_count:
 # No new events since last snapshot.
 return
 print('Workers: {0}'.format(pformat(state.workers, indent=4)))
 print('Tasks: {0}'.format(pformat(state.tasks, indent=4)))
 print('Total: {0.event_count} events, {0.task_count} tasks'.format(
 state))

See the API reference for celery.events.state to read more
about state objects.

Now you can use this cam with celery events by specifying
it with the -c option:

$ celery -A proj events -c myapp.DumpCam --frequency=2.0

Or you can use it programmatically like this:

from celery import Celery
from myapp import DumpCam

def main(app, freq=1.0):
 state = app.events.State()
 with app.connection() as connection:
 recv = app.events.Receiver(connection, handlers={'*': state.event})
 with DumpCam(state, freq=freq):
 recv.capture(limit=None, timeout=None)

if __name__ == '__main__':
 app = Celery(broker='amqp://guest@localhost//')
 main(app)

Real-time processing

To process events in real-time you need the following

	An event consumer (this is the Receiver)

	A set of handlers called when events come in.

You can have different handlers for each event type,
or a catch-all handler can be used (‘*’)

	State (optional)

app.events.State is a convenient in-memory representation
of tasks and workers in the cluster that’s updated as events come in.

It encapsulates solutions for many common things, like checking if a
worker is still alive (by verifying heartbeats), merging event fields
together as events come in, making sure time-stamps are in sync, and so on.

Combining these you can easily process events in real-time:

from celery import Celery

def my_monitor(app):
 state = app.events.State()

 def announce_failed_tasks(event):
 state.event(event)
 # task name is sent only with -received event, and state
 # will keep track of this for us.
 task = state.tasks.get(event['uuid'])

 print('TASK FAILED: %s[%s] %s' % (
 task.name, task.uuid, task.info(),))

 with app.connection() as connection:
 recv = app.events.Receiver(connection, handlers={
 'task-failed': announce_failed_tasks,
 '*': state.event,
 })
 recv.capture(limit=None, timeout=None, wakeup=True)

if __name__ == '__main__':
 app = Celery(broker='amqp://guest@localhost//')
 my_monitor(app)

Note

The wakeup argument to capture sends a signal to all workers
to force them to send a heartbeat. This way you can immediately see
workers when the monitor starts.

You can listen to specific events by specifying the handlers:

from celery import Celery

def my_monitor(app):
 state = app.events.State()

 def announce_failed_tasks(event):
 state.event(event)
 # task name is sent only with -received event, and state
 # will keep track of this for us.
 task = state.tasks.get(event['uuid'])

 print('TASK FAILED: %s[%s] %s' % (
 task.name, task.uuid, task.info(),))

 with app.connection() as connection:
 recv = app.events.Receiver(connection, handlers={
 'task-failed': announce_failed_tasks,
 })
 recv.capture(limit=None, timeout=None, wakeup=True)

if __name__ == '__main__':
 app = Celery(broker='amqp://guest@localhost//')
 my_monitor(app)

Event Reference

This list contains the events sent by the worker, and their arguments.

Task Events

task-sent

	signature

	task-sent(uuid, name, args, kwargs, retries, eta, expires,
queue, exchange, routing_key, root_id, parent_id)

Sent when a task message is published and
the task_send_sent_event setting is enabled.

task-received

	signature

	task-received(uuid, name, args, kwargs, retries, eta, hostname,
timestamp, root_id, parent_id)

Sent when the worker receives a task.

task-started

	signature

	task-started(uuid, hostname, timestamp, pid)

Sent just before the worker executes the task.

task-succeeded

	signature

	task-succeeded(uuid, result, runtime, hostname, timestamp)

Sent if the task executed successfully.

Run-time is the time it took to execute the task using the pool.
(Starting from the task is sent to the worker pool, and ending when the
pool result handler callback is called).

task-failed

	signature

	task-failed(uuid, exception, traceback, hostname, timestamp)

Sent if the execution of the task failed.

task-rejected

	signature

	task-rejected(uuid, requeued)

The task was rejected by the worker, possibly to be re-queued or moved to a
dead letter queue.

task-revoked

	signature

	task-revoked(uuid, terminated, signum, expired)

Sent if the task has been revoked (Note that this is likely
to be sent by more than one worker).

	
	terminated is set to true if the task process was terminated,
	and the signum field set to the signal used.

	expired is set to true if the task expired.

task-retried

	signature

	task-retried(uuid, exception, traceback, hostname, timestamp)

Sent if the task failed, but will be retried in the future.

Worker Events

worker-online

	signature

	worker-online(hostname, timestamp, freq, sw_ident, sw_ver, sw_sys)

The worker has connected to the broker and is online.

	hostname: Nodename of the worker.

	timestamp: Event time-stamp.

	freq: Heartbeat frequency in seconds (float).

	sw_ident: Name of worker software (e.g., py-celery).

	sw_ver: Software version (e.g., 2.2.0).

	sw_sys: Operating System (e.g., Linux/Darwin).

worker-heartbeat

	signature

	worker-heartbeat(hostname, timestamp, freq, sw_ident, sw_ver, sw_sys,
active, processed)

Sent every minute, if the worker hasn’t sent a heartbeat in 2 minutes,
it is considered to be offline.

	hostname: Nodename of the worker.

	timestamp: Event time-stamp.

	freq: Heartbeat frequency in seconds (float).

	sw_ident: Name of worker software (e.g., py-celery).

	sw_ver: Software version (e.g., 2.2.0).

	sw_sys: Operating System (e.g., Linux/Darwin).

	active: Number of currently executing tasks.

	processed: Total number of tasks processed by this worker.

worker-offline

	signature

	worker-offline(hostname, timestamp, freq, sw_ident, sw_ver, sw_sys)

The worker has disconnected from the broker.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Security

	Introduction

	Areas of Concern

	Broker

	Client

	Worker

	Serializers

	Message Signing

	Intrusion Detection

	Logs

	Tripwire

Introduction

While Celery is written with security in mind, it should be treated as an
unsafe component.

Depending on your Security Policy [https://en.wikipedia.org/wiki/Security_policy], there are
various steps you can take to make your Celery installation more secure.

Areas of Concern

Broker

It’s imperative that the broker is guarded from unwanted access, especially
if accessible to the public.
By default, workers trust that the data they get from the broker hasn’t
been tampered with. See Message Signing for information on how to make
the broker connection more trustworthy.

The first line of defense should be to put a firewall in front of the broker,
allowing only white-listed machines to access it.

Keep in mind that both firewall misconfiguration, and temporarily disabling
the firewall, is common in the real world. Solid security policy includes
monitoring of firewall equipment to detect if they’ve been disabled, be it
accidentally or on purpose.

In other words, one shouldn’t blindly trust the firewall either.

If your broker supports fine-grained access control, like RabbitMQ,
this is something you should look at enabling. See for example
http://www.rabbitmq.com/access-control.html.

If supported by your broker backend, you can enable end-to-end SSL encryption
and authentication using broker_use_ssl.

Client

In Celery, “client” refers to anything that sends messages to the
broker, for example web-servers that apply tasks.

Having the broker properly secured doesn’t matter if arbitrary messages
can be sent through a client.

[Need more text here]

Worker

The default permissions of tasks running inside a worker are the same ones as
the privileges of the worker itself. This applies to resources, such as;
memory, file-systems, and devices.

An exception to this rule is when using the multiprocessing based task pool,
which is currently the default. In this case, the task will have access to
any memory copied as a result of the fork() call,
and access to memory contents written by parent tasks in the same worker
child process.

Limiting access to memory contents can be done by launching every task
in a subprocess (fork() + execve()).

Limiting file-system and device access can be accomplished by using
chroot [https://en.wikipedia.org/wiki/Chroot], jail [https://en.wikipedia.org/wiki/FreeBSD_jail], sandboxing [https://en.wikipedia.org/wiki/Sandbox_(computer_security)], virtual machines, or other
mechanisms as enabled by the platform or additional software.

Note also that any task executed in the worker will have the
same network access as the machine on which it’s running. If the worker
is located on an internal network it’s recommended to add firewall rules for
outbound traffic.

Serializers

The default serializer is JSON since version 4.0, but since it has
only support for a restricted set of types you may want to consider
using pickle for serialization instead.

The pickle serializer is convenient as it can serialize
almost any Python object, even functions with some work,
but for the same reasons pickle is inherently insecure *,
and should be avoided whenever clients are untrusted or
unauthenticated.

You can disable untrusted content by specifying
a white-list of accepted content-types in the accept_content
setting:

New in version 3.0.18.

Note

This setting was first supported in version 3.0.18. If you’re
running an earlier version it will simply be ignored, so make
sure you’re running a version that supports it.

accept_content = ['json']

This accepts a list of serializer names and content-types, so you could
also specify the content type for json:

accept_content = ['application/json']

Celery also comes with a special auth serializer that validates
communication between Celery clients and workers, making sure
that messages originates from trusted sources.
Using Public-key cryptography the auth serializer can verify the
authenticity of senders, to enable this read Message Signing
for more information.

Message Signing

Celery can use the cryptography [https://pypi.python.org/pypi/cryptography/] library to sign message using
Public-key cryptography, where
messages sent by clients are signed using a private key
and then later verified by the worker using a public certificate.

Optimally certificates should be signed by an official
Certificate Authority [https://en.wikipedia.org/wiki/Certificate_authority], but they can also be self-signed.

To enable this you should configure the task_serializer
setting to use the auth serializer. Enforcing the workers to only accept
signed messages, you should set accept_content to [‘auth’].
For additional signing of the event protocol, set event_serializer to auth.
Also required is configuring the
paths used to locate private keys and certificates on the file-system:
the security_key,
security_certificate, and security_cert_store
settings respectively.
You can tweak the signing algorithm with security_digest.

With these configured it’s also necessary to call the
celery.setup_security() function. Note that this will also
disable all insecure serializers so that the worker won’t accept
messages with untrusted content types.

This is an example configuration using the auth serializer,
with the private key and certificate files located in /etc/ssl.

app = Celery()
app.conf.update(
 security_key='/etc/ssl/private/worker.key'
 security_certificate='/etc/ssl/certs/worker.pem'
 security_cert_store='/etc/ssl/certs/*.pem',
 security_digest='sha256',
 task_serializer='auth',
 event_serializer='auth',
 accept_content=['auth']
)
app.setup_security()

Note

While relative paths aren’t disallowed, using absolute paths
is recommended for these files.

Also note that the auth serializer won’t encrypt the contents of
a message, so if needed this will have to be enabled separately.

Intrusion Detection

The most important part when defending your systems against
intruders is being able to detect if the system has been compromised.

Logs

Logs are usually the first place to look for evidence
of security breaches, but they’re useless if they can be tampered with.

A good solution is to set up centralized logging with a dedicated logging
server. Access to it should be restricted.
In addition to having all of the logs in a single place, if configured
correctly, it can make it harder for intruders to tamper with your logs.

This should be fairly easy to setup using syslog (see also syslog-ng [https://en.wikipedia.org/wiki/Syslog-ng] and
rsyslog [http://www.rsyslog.com/]). Celery uses the logging [https://docs.python.org/dev/library/logging.html#module-logging] library, and already has
support for using syslog.

A tip for the paranoid is to send logs using UDP and cut the
transmit part of the logging server’s network cable :-)

Tripwire

Tripwire [http://tripwire.com/] is a (now commercial) data integrity tool, with several
open source implementations, used to keep
cryptographic hashes of files in the file-system, so that administrators
can be alerted when they change. This way when the damage is done and your
system has been compromised you can tell exactly what files intruders
have changed (password files, logs, back-doors, root-kits, and so on).
Often this is the only way you’ll be able to detect an intrusion.

Some open source implementations include:

	OSSEC [http://www.ossec.net/]

	Samhain [http://la-samhna.de/samhain/index.html]

	Open Source Tripwire [http://sourceforge.net/projects/tripwire/]

	AIDE [http://aide.sourceforge.net/]

Also, the ZFS [https://en.wikipedia.org/wiki/ZFS] file-system comes with built-in integrity checks
that can be used.

Footnotes

	*

	https://blog.nelhage.com/2011/03/exploiting-pickle/

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Optimizing

Introduction

The default configuration makes a lot of compromises. It’s not optimal for
any single case, but works well enough for most situations.

There are optimizations that can be applied based on specific use cases.

Optimizations can apply to different properties of the running environment,
be it the time tasks take to execute, the amount of memory used, or
responsiveness at times of high load.

Ensuring Operations

In the book Programming Pearls [http://www.cs.bell-labs.com/cm/cs/pearls/], Jon Bentley presents the concept of
back-of-the-envelope calculations by asking the question;

❝ How much water flows out of the Mississippi River in a day? ❞

The point of this exercise * is to show that there’s a limit
to how much data a system can process in a timely manner.
Back of the envelope calculations can be used as a means to plan for this
ahead of time.

In Celery; If a task takes 10 minutes to complete,
and there are 10 new tasks coming in every minute, the queue will never
be empty. This is why it’s very important
that you monitor queue lengths!

A way to do this is by using Munin.
You should set up alerts, that’ll notify you as soon as any queue has
reached an unacceptable size. This way you can take appropriate action
like adding new worker nodes, or revoking unnecessary tasks.

General Settings

Broker Connection Pools

The broker connection pool is enabled by default since version 2.5.

You can tweak the broker_pool_limit setting to minimize
contention, and the value should be based on the number of
active threads/green-threads using broker connections.

Using Transient Queues

Queues created by Celery are persistent by default. This means that
the broker will write messages to disk to ensure that the tasks will
be executed even if the broker is restarted.

But in some cases it’s fine that the message is lost, so not all tasks
require durability. You can create a transient queue for these tasks
to improve performance:

from kombu import Exchange, Queue

task_queues = (
 Queue('celery', routing_key='celery'),
 Queue('transient', Exchange('transient', delivery_mode=1),
 routing_key='transient', durable=False),
)

or by using task_routes:

task_routes = {
 'proj.tasks.add': {'queue': 'celery', 'delivery_mode': 'transient'}
}

The delivery_mode changes how the messages to this queue are delivered.
A value of one means that the message won’t be written to disk, and a value
of two (default) means that the message can be written to disk.

To direct a task to your new transient queue you can specify the queue
argument (or use the task_routes setting):

task.apply_async(args, queue='transient')

For more information see the routing guide.

Worker Settings

Prefetch Limits

Prefetch is a term inherited from AMQP that’s often misunderstood
by users.

The prefetch limit is a limit for the number of tasks (messages) a worker
can reserve for itself. If it is zero, the worker will keep
consuming messages, not respecting that there may be other
available worker nodes that may be able to process them sooner †,
or that the messages may not even fit in memory.

The workers’ default prefetch count is the
worker_prefetch_multiplier setting multiplied by the number
of concurrency slots ‡ (processes/threads/green-threads).

If you have many tasks with a long duration you want
the multiplier value to be one: meaning it’ll only reserve one
task per worker process at a time.

However – If you have many short-running tasks, and throughput/round trip
latency is important to you, this number should be large. The worker is
able to process more tasks per second if the messages have already been
prefetched, and is available in memory. You may have to experiment to find
the best value that works for you. Values like 50 or 150 might make sense in
these circumstances. Say 64, or 128.

If you have a combination of long- and short-running tasks, the best option
is to use two worker nodes that are configured separately, and route
the tasks according to the run-time (see Routing Tasks).

Reserve one task at a time

The task message is only deleted from the queue after the task is
acknowledged, so if the worker crashes before acknowledging the task,
it can be redelivered to another worker (or the same after recovery).

When using the default of early acknowledgment, having a prefetch multiplier setting
of one, means the worker will reserve at most one extra task for every
worker process: or in other words, if the worker is started with
-c 10, the worker may reserve at most 20
tasks (10 acknowledged tasks executing, and 10 unacknowledged reserved
tasks) at any time.

Often users ask if disabling “prefetching of tasks” is possible, but what
they really mean by that, is to have a worker only reserve as many tasks as
there are worker processes (10 unacknowledged tasks for
-c 10)

That’s possible, but not without also enabling
late acknowledgment. Using this option over the
default behavior means a task that’s already started executing will be
retried in the event of a power failure or the worker instance being killed
abruptly, so this also means the task must be idempotent

See also

Notes at Should I use retry or acks_late?.

You can enable this behavior by using the following configuration options:

task_acks_late = True
worker_prefetch_multiplier = 1

Footnotes

	*

	The chapter is available to read for free here:
The back of the envelope [http://books.google.com/books?id=kse_7qbWbjsC&pg=PA67]. The book is a classic text. Highly
recommended.

	†

	RabbitMQ and other brokers deliver messages round-robin,
so this doesn’t apply to an active system. If there’s no prefetch
limit and you restart the cluster, there will be timing delays between
nodes starting. If there are 3 offline nodes and one active node,
all messages will be delivered to the active node.

	‡

	This is the concurrency setting; worker_concurrency or the
celery worker -c option.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Debugging

Debugging Tasks Remotely (using pdb)

Basics

celery.contrib.rdb is an extended version of pdb [https://docs.python.org/dev/library/pdb.html#module-pdb] that
enables remote debugging of processes that doesn’t have terminal
access.

Example usage:

from celery import task
from celery.contrib import rdb

@task()
def add(x, y):
 result = x + y
 rdb.set_trace() # <- set break-point
 return result

set_trace() sets a break-point at the current
location and creates a socket you can telnet into to remotely debug
your task.

The debugger may be started by multiple processes at the same time,
so rather than using a fixed port the debugger will search for an
available port, starting from the base port (6900 by default).
The base port can be changed using the environment variable
CELERY_RDB_PORT.

By default the debugger will only be available from the local host,
to enable access from the outside you have to set the environment
variable CELERY_RDB_HOST.

When the worker encounters your break-point it’ll log the following
information:

[INFO/MainProcess] Received task:
 tasks.add[d7261c71-4962-47e5-b342-2448bedd20e8]
[WARNING/PoolWorker-1] Remote Debugger:6900:
 Please telnet 127.0.0.1 6900. Type `exit` in session to continue.
[2011-01-18 14:25:44,119: WARNING/PoolWorker-1] Remote Debugger:6900:
 Waiting for client...

If you telnet the port specified you’ll be presented
with a pdb shell:

$ telnet localhost 6900
Connected to localhost.
Escape character is '^]'.
> /opt/devel/demoapp/tasks.py(128)add()
-> return result
(Pdb)

Enter help to get a list of available commands,
It may be a good idea to read the Python Debugger Manual [http://docs.python.org/library/pdb.html] if
you have never used pdb before.

To demonstrate, we’ll read the value of the result variable,
change it and continue execution of the task:

(Pdb) result
4
(Pdb) result = 'hello from rdb'
(Pdb) continue
Connection closed by foreign host.

The result of our vandalism can be seen in the worker logs:

[2011-01-18 14:35:36,599: INFO/MainProcess] Task
 tasks.add[d7261c71-4962-47e5-b342-2448bedd20e8] succeeded
 in 61.481s: 'hello from rdb'

Tips

Enabling the break-point signal

If the environment variable CELERY_RDBSIG is set, the worker
will open up an rdb instance whenever the SIGUSR2 signal is sent.
This is the case for both main and worker processes.

For example starting the worker with:

$ CELERY_RDBSIG=1 celery worker -l INFO

You can start an rdb session for any of the worker processes by executing:

$ kill -USR2 <pid>

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Concurrency

	Release

	5.0

	Date

	Oct 18, 2020

	Concurrency with Eventlet
	Introduction

	Enabling Eventlet

	Examples

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Concurrency with Eventlet

Introduction

The Eventlet [http://eventlet.net] homepage describes it as
a concurrent networking library for Python that allows you to
change how you run your code, not how you write it.

	It uses epoll(4) [http://linux.die.net/man/4/epoll] or libevent [http://monkey.org/~provos/libevent/] for
highly scalable non-blocking I/O [https://en.wikipedia.org/wiki/Asynchronous_I/O#Select.28.2Fpoll.29_loops].

	Coroutines [https://en.wikipedia.org/wiki/Coroutine] ensure that the developer uses a blocking style of
programming that’s similar to threading, but provide the benefits of
non-blocking I/O.

	The event dispatch is implicit: meaning you can easily use Eventlet
from the Python interpreter, or as a small part of a larger application.

Celery supports Eventlet as an alternative execution pool implementation and
in some cases superior to prefork. However, you need to ensure one task doesn’t
block the event loop too long. Generally, CPU-bound operations don’t go well
with Eventlet. Also note that some libraries, usually with C extensions,
cannot be monkeypatched and therefore cannot benefit from using Eventlet.
Please refer to their documentation if you are not sure. For example, pylibmc
does not allow cooperation with Eventlet but psycopg2 does when both of them
are libraries with C extensions.

The prefork pool can take use of multiple processes, but how many is
often limited to a few processes per CPU. With Eventlet you can efficiently
spawn hundreds, or thousands of green threads. In an informal test with a
feed hub system the Eventlet pool could fetch and process hundreds of feeds
every second, while the prefork pool spent 14 seconds processing 100
feeds. Note that this is one of the applications async I/O is especially good
at (asynchronous HTTP requests). You may want a mix of both Eventlet and
prefork workers, and route tasks according to compatibility or
what works best.

Enabling Eventlet

You can enable the Eventlet pool by using the celery worker -P
worker option.

$ celery -A proj worker -P eventlet -c 1000

Examples

See the Eventlet examples [https://github.com/celery/celery/tree/master/examples/eventlet] directory in the Celery distribution for
some examples taking use of Eventlet support.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Signals

	Basics

	Signals

	Task Signals

	before_task_publish

	after_task_publish

	task_prerun

	task_postrun

	task_retry

	task_success

	task_failure

	task_internal_error

	task_received

	task_revoked

	task_unknown

	task_rejected

	App Signals

	import_modules

	Worker Signals

	celeryd_after_setup

	celeryd_init

	worker_init

	worker_ready

	heartbeat_sent

	worker_shutting_down

	worker_process_init

	worker_process_shutdown

	worker_shutdown

	Beat Signals

	beat_init

	beat_embedded_init

	Eventlet Signals

	eventlet_pool_started

	eventlet_pool_preshutdown

	eventlet_pool_postshutdown

	eventlet_pool_apply

	Logging Signals

	setup_logging

	after_setup_logger

	after_setup_task_logger

	Command signals

	user_preload_options

	Deprecated Signals

	task_sent

Signals allow decoupled applications to receive notifications when
certain actions occur elsewhere in the application.

Celery ships with many signals that your application can hook into
to augment behavior of certain actions.

Basics

Several kinds of events trigger signals, you can connect to these signals
to perform actions as they trigger.

Example connecting to the after_task_publish signal:

from celery.signals import after_task_publish

@after_task_publish.connect
def task_sent_handler(sender=None, headers=None, body=None, **kwargs):
 # information about task are located in headers for task messages
 # using the task protocol version 2.
 info = headers if 'task' in headers else body
 print('after_task_publish for task id {info[id]}'.format(
 info=info,
))

Some signals also have a sender you can filter by. For example the
after_task_publish signal uses the task name as a sender, so by
providing the sender argument to
connect you can
connect your handler to be called every time a task with name “proj.tasks.add”
is published:

@after_task_publish.connect(sender='proj.tasks.add')
def task_sent_handler(sender=None, headers=None, body=None, **kwargs):
 # information about task are located in headers for task messages
 # using the task protocol version 2.
 info = headers if 'task' in headers else body
 print('after_task_publish for task id {info[id]}'.format(
 info=info,
))

Signals use the same implementation as django.core.dispatch. As a
result other keyword parameters (e.g., signal) are passed to all signal
handlers by default.

The best practice for signal handlers is to accept arbitrary keyword
arguments (i.e., **kwargs). That way new Celery versions can add additional
arguments without breaking user code.

Signals

Task Signals

before_task_publish

New in version 3.1.

Dispatched before a task is published.
Note that this is executed in the process sending the task.

Sender is the name of the task being sent.

Provides arguments:

	body

Task message body.

This is a mapping containing the task message fields,
see Version 2
and Version 1
for a reference of possible fields that can be defined.

	exchange

Name of the exchange to send to or a Exchange [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Exchange] object.

	routing_key

Routing key to use when sending the message.

	headers

Application headers mapping (can be modified).

	properties

Message properties (can be modified)

	declare

List of entities (Exchange [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Exchange],
Queue [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue], or binding to declare before
publishing the message. Can be modified.

	retry_policy

Mapping of retry options. Can be any argument to
kombu.Connection.ensure() [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection.ensure] and can be modified.

after_task_publish

Dispatched when a task has been sent to the broker.
Note that this is executed in the process that sent the task.

Sender is the name of the task being sent.

Provides arguments:

	headers

The task message headers, see Version 2
and Version 1
for a reference of possible fields that can be defined.

	body

The task message body, see Version 2
and Version 1
for a reference of possible fields that can be defined.

	exchange

Name of the exchange or Exchange [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Exchange] object used.

	routing_key

Routing key used.

task_prerun

Dispatched before a task is executed.

Sender is the task object being executed.

Provides arguments:

	task_id

Id of the task to be executed.

	task

The task being executed.

	args

The tasks positional arguments.

	kwargs

The tasks keyword arguments.

task_postrun

Dispatched after a task has been executed.

Sender is the task object executed.

Provides arguments:

	task_id

Id of the task to be executed.

	task

The task being executed.

	args

The tasks positional arguments.

	kwargs

The tasks keyword arguments.

	retval

The return value of the task.

	state

Name of the resulting state.

task_retry

Dispatched when a task will be retried.

Sender is the task object.

Provides arguments:

	request

The current task request.

	reason

Reason for retry (usually an exception instance, but can always be
coerced to str [https://docs.python.org/dev/library/stdtypes.html#str]).

	einfo

Detailed exception information, including traceback
(a billiard.einfo.ExceptionInfo object).

task_success

Dispatched when a task succeeds.

Sender is the task object executed.

Provides arguments

	
	result
	Return value of the task.

task_failure

Dispatched when a task fails.

Sender is the task object executed.

Provides arguments:

	task_id

Id of the task.

	exception

Exception instance raised.

	args

Positional arguments the task was called with.

	kwargs

Keyword arguments the task was called with.

	traceback

Stack trace object.

	einfo

The billiard.einfo.ExceptionInfo instance.

task_internal_error

Dispatched when an internal Celery error occurs while executing the task.

Sender is the task object executed.

Provides arguments:

	task_id

Id of the task.

	args

Positional arguments the task was called with.

	kwargs

Keyword arguments the task was called with.

	request

The original request dictionary.
This is provided as the task.request may not be ready by the time
the exception is raised.

	exception

Exception instance raised.

	traceback

Stack trace object.

	einfo

The billiard.einfo.ExceptionInfo instance.

task_received

Dispatched when a task is received from the broker and is ready for execution.

Sender is the consumer object.

Provides arguments:

	request

This is a Request instance, and not
task.request. When using the prefork pool this signal
is dispatched in the parent process, so task.request isn’t available
and shouldn’t be used. Use this object instead, as they share many
of the same fields.

task_revoked

Dispatched when a task is revoked/terminated by the worker.

Sender is the task object revoked/terminated.

Provides arguments:

	request

This is a Request instance, and not
task.request. When using the prefork pool this signal
is dispatched in the parent process, so task.request isn’t available
and shouldn’t be used. Use this object instead, as they share many
of the same fields.

	terminated

Set to True if the task was terminated.

	signum

Signal number used to terminate the task. If this is None and
terminated is True then TERM should be assumed.

	expired

Set to True if the task expired.

task_unknown

Dispatched when a worker receives a message for a task that’s not registered.

Sender is the worker Consumer.

Provides arguments:

	name

Name of task not found in registry.

	id

The task id found in the message.

	message

Raw message object.

	exc

The error that occurred.

task_rejected

Dispatched when a worker receives an unknown type of message to one of its
task queues.

Sender is the worker Consumer.

Provides arguments:

	message

Raw message object.

	exc

The error that occurred (if any).

App Signals

import_modules

This signal is sent when a program (worker, beat, shell) etc, asks
for modules in the include and imports
settings to be imported.

Sender is the app instance.

Worker Signals

celeryd_after_setup

This signal is sent after the worker instance is set up, but before it
calls run. This means that any queues from the celery worker -Q
option is enabled, logging has been set up and so on.

It can be used to add custom queues that should always be consumed
from, disregarding the celery worker -Q option. Here’s an example
that sets up a direct queue for each worker, these queues can then be
used to route a task to any specific worker:

from celery.signals import celeryd_after_setup

@celeryd_after_setup.connect
def setup_direct_queue(sender, instance, **kwargs):
 queue_name = '{0}.dq'.format(sender) # sender is the nodename of the worker
 instance.app.amqp.queues.select_add(queue_name)

Provides arguments:

	sender

Node name of the worker.

	instance

This is the celery.apps.worker.Worker instance to be initialized.
Note that only the app and hostname (nodename) attributes have been
set so far, and the rest of __init__ hasn’t been executed.

	conf

The configuration of the current app.

celeryd_init

This is the first signal sent when celery worker starts up.
The sender is the host name of the worker, so this signal can be used
to setup worker specific configuration:

from celery.signals import celeryd_init

@celeryd_init.connect(sender='worker12@example.com')
def configure_worker12(conf=None, **kwargs):
 conf.task_default_rate_limit = '10/m'

or to set up configuration for multiple workers you can omit specifying a
sender when you connect:

from celery.signals import celeryd_init

@celeryd_init.connect
def configure_workers(sender=None, conf=None, **kwargs):
 if sender in ('worker1@example.com', 'worker2@example.com'):
 conf.task_default_rate_limit = '10/m'
 if sender == 'worker3@example.com':
 conf.worker_prefetch_multiplier = 0

Provides arguments:

	sender

Nodename of the worker.

	instance

This is the celery.apps.worker.Worker instance to be initialized.
Note that only the app and hostname (nodename) attributes have been
set so far, and the rest of __init__ hasn’t been executed.

	conf

The configuration of the current app.

	options

Options passed to the worker from command-line arguments (including
defaults).

worker_init

Dispatched before the worker is started.

worker_ready

Dispatched when the worker is ready to accept work.

heartbeat_sent

Dispatched when Celery sends a worker heartbeat.

Sender is the celery.worker.heartbeat.Heart instance.

worker_shutting_down

Dispatched when the worker begins the shutdown process.

Provides arguments:

	sig

The POSIX signal that was received.

	how

The shutdown method, warm or cold.

	exitcode

The exitcode that will be used when the main process exits.

worker_process_init

Dispatched in all pool child processes when they start.

Note that handlers attached to this signal mustn’t be blocking
for more than 4 seconds, or the process will be killed assuming
it failed to start.

worker_process_shutdown

Dispatched in all pool child processes just before they exit.

Note: There’s no guarantee that this signal will be dispatched,
similarly to finally [https://docs.python.org/dev/reference/compound_stmts.html#finally] blocks it’s impossible to guarantee that
handlers will be called at shutdown, and if called it may be
interrupted during.

Provides arguments:

	pid

The pid of the child process that’s about to shutdown.

	exitcode

The exitcode that’ll be used when the child process exits.

worker_shutdown

Dispatched when the worker is about to shut down.

Beat Signals

beat_init

Dispatched when celery beat starts (either standalone or embedded).

Sender is the celery.beat.Service instance.

beat_embedded_init

Dispatched in addition to the beat_init signal when celery
beat is started as an embedded process.

Sender is the celery.beat.Service instance.

Eventlet Signals

eventlet_pool_started

Sent when the eventlet pool has been started.

Sender is the celery.concurrency.eventlet.TaskPool instance.

eventlet_pool_preshutdown

Sent when the worker shutdown, just before the eventlet pool
is requested to wait for remaining workers.

Sender is the celery.concurrency.eventlet.TaskPool instance.

eventlet_pool_postshutdown

Sent when the pool has been joined and the worker is ready to shutdown.

Sender is the celery.concurrency.eventlet.TaskPool instance.

eventlet_pool_apply

Sent whenever a task is applied to the pool.

Sender is the celery.concurrency.eventlet.TaskPool instance.

Provides arguments:

	target

The target function.

	args

Positional arguments.

	kwargs

Keyword arguments.

Logging Signals

setup_logging

Celery won’t configure the loggers if this signal is connected,
so you can use this to completely override the logging configuration
with your own.

If you’d like to augment the logging configuration setup by
Celery then you can use the after_setup_logger and
after_setup_task_logger signals.

Provides arguments:

	loglevel

The level of the logging object.

	logfile

The name of the logfile.

	format

The log format string.

	colorize

Specify if log messages are colored or not.

after_setup_logger

Sent after the setup of every global logger (not task loggers).
Used to augment logging configuration.

Provides arguments:

	logger

The logger object.

	loglevel

The level of the logging object.

	logfile

The name of the logfile.

	format

The log format string.

	colorize

Specify if log messages are colored or not.

after_setup_task_logger

Sent after the setup of every single task logger.
Used to augment logging configuration.

Provides arguments:

	logger

The logger object.

	loglevel

The level of the logging object.

	logfile

The name of the logfile.

	format

The log format string.

	colorize

Specify if log messages are colored or not.

Command signals

user_preload_options

This signal is sent after any of the Celery command line programs
are finished parsing the user preload options.

It can be used to add additional command-line arguments to the
celery umbrella command:

from celery import Celery
from celery import signals
from celery.bin.base import Option

app = Celery()
app.user_options['preload'].add(Option(
 '--monitoring', action='store_true',
 help='Enable our external monitoring utility, blahblah',
))

@signals.user_preload_options.connect
def handle_preload_options(options, **kwargs):
 if options['monitoring']:
 enable_monitoring()

Sender is the Command instance, and the value depends
on the program that was called (e.g., for the umbrella command it’ll be
a CeleryCommand) object).

Provides arguments:

	app

The app instance.

	options

Mapping of the parsed user preload options (with default values).

Deprecated Signals

task_sent

This signal is deprecated, please use after_task_publish instead.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Testing with Celery

Tasks and unit tests

To test task behavior in unit tests the preferred method is mocking.

Eager mode

The eager mode enabled by the task_always_eager setting
is by definition not suitable for unit tests.

When testing with eager mode you are only testing an emulation
of what happens in a worker, and there are many discrepancies
between the emulation and what happens in reality.

A Celery task is much like a web view, in that it should only
define how to perform the action in the context of being called as a task.

This means optimally tasks only handle things like serialization, message headers,
retries, and so on, with the actual logic implemented elsewhere.

Say we had a task like this:

from .models import Product

@app.task(bind=True)
def send_order(self, product_pk, quantity, price):
 price = Decimal(price) # json serializes this to string.

 # models are passed by id, not serialized.
 product = Product.objects.get(product_pk)

 try:
 product.order(quantity, price)
 except OperationalError as exc:
 raise self.retry(exc=exc)

Note: A task being bound [http://docs.celeryproject.org/en/latest/userguide/tasks.html#bound-tasks] means the first
argument to the task will always be the task instance (self). which means you do get a self argument as the
first argument and can use the Task class methods and attributes.

You could write unit tests for this task, using mocking like
in this example:

from pytest import raises

from celery.exceptions import Retry

for python 2: use mock.patch from `pip install mock`.
from unittest.mock import patch

from proj.models import Product
from proj.tasks import send_order

class test_send_order:

 @patch('proj.tasks.Product.order') # < patching Product in module above
 def test_success(self, product_order):
 product = Product.objects.create(
 name='Foo',
)
 send_order(product.pk, 3, Decimal(30.3))
 product_order.assert_called_with(3, Decimal(30.3))

 @patch('proj.tasks.Product.order')
 @patch('proj.tasks.send_order.retry')
 def test_failure(self, send_order_retry, product_order):
 product = Product.objects.create(
 name='Foo',
)

 # Set a side effect on the patched methods
 # so that they raise the errors we want.
 send_order_retry.side_effect = Retry()
 product_order.side_effect = OperationalError()

 with raises(Retry):
 send_order(product.pk, 3, Decimal(30.6))

pytest

New in version 4.0.

Celery also makes a pytest [https://pypi.python.org/pypi/pytest/] plugin available that adds fixtures that you can
use in your integration (or unit) test suites.

Enabling

Celery initially ships the plugin in a disabled state, to enable it you can either:

	pip install celery[pytest]

	pip install pytest-celery

	or add an environment variable PYTEST_PLUGINS=celery.contrib.pytest

	or add pytest_plugins = (“celery.contrib.pytest”,) to your root conftest.py

Marks

celery - Set test app configuration.

The celery mark enables you to override the configuration
used for a single test case:

@pytest.mark.celery(result_backend='redis://')
def test_something():
 ...

or for all the test cases in a class:

@pytest.mark.celery(result_backend='redis://')
class test_something:

 def test_one(self):
 ...

 def test_two(self):
 ...

Fixtures

Function scope

celery_app - Celery app used for testing.

This fixture returns a Celery app you can use for testing.

Example:

def test_create_task(celery_app, celery_worker):
 @celery_app.task
 def mul(x, y):
 return x * y

 assert mul.delay(4, 4).get(timeout=10) == 16

celery_worker - Embed live worker.

This fixture starts a Celery worker instance that you can use
for integration tests. The worker will be started in a separate thread
and will be shutdown as soon as the test returns.

Example:

Put this in your conftest.py
@pytest.fixture(scope='session')
def celery_config():
 return {
 'broker_url': 'amqp://',
 'result_backend': 'redis://'
 }

def test_add(celery_worker):
 mytask.delay()

If you wish to override some setting in one test cases
only - you can use the ``celery`` mark:
@pytest.mark.celery(result_backend='rpc')
def test_other(celery_worker):
 ...

Session scope

celery_config - Override to setup Celery test app configuration.

You can redefine this fixture to configure the test Celery app.

The config returned by your fixture will then be used
to configure the celery_app(), and celery_session_app() fixtures.

Example:

@pytest.fixture(scope='session')
def celery_config():
 return {
 'broker_url': 'amqp://',
 'result_backend': 'rpc',
 }

celery_parameters - Override to setup Celery test app parameters.

You can redefine this fixture to change the __init__ parameters of test
Celery app. In contrast to celery_config(), these are directly passed to
when instantiating Celery.

The config returned by your fixture will then be used
to configure the celery_app(), and celery_session_app() fixtures.

Example:

@pytest.fixture(scope='session')
def celery_parameters():
 return {
 'task_cls': my.package.MyCustomTaskClass,
 'strict_typing': False,
 }

celery_worker_parameters - Override to setup Celery worker parameters.

You can redefine this fixture to change the __init__ parameters of test
Celery workers. These are directly passed to
WorkController when it is instantiated.

The config returned by your fixture will then be used
to configure the celery_worker(), and celery_session_worker()
fixtures.

Example:

@pytest.fixture(scope='session')
def celery_worker_parameters():
 return {
 'queues': ('high-prio', 'low-prio'),
 'exclude_queues': ('celery'),
 }

celery_enable_logging - Override to enable logging in embedded workers.

This is a fixture you can override to enable logging in embedded workers.

Example:

@pytest.fixture(scope='session')
def celery_enable_logging():
 return True

celery_includes - Add additional imports for embedded workers.

You can override fixture to include modules when an embedded worker starts.

You can have this return a list of module names to import,
which can be task modules, modules registering signals, and so on.

Example:

@pytest.fixture(scope='session')
def celery_includes():
 return [
 'proj.tests.tasks',
 'proj.tests.celery_signal_handlers',
]

celery_worker_pool - Override the pool used for embedded workers.

You can override fixture to configure the execution pool used for embedded
workers.

Example:

@pytest.fixture(scope='session')
def celery_worker_pool():
 return 'prefork'

Warning

You cannot use the gevent/eventlet pools, that is unless your whole test
suite is running with the monkeypatches enabled.

celery_session_worker - Embedded worker that lives throughout the session.

This fixture starts a worker that lives throughout the testing session
(it won’t be started/stopped for every test).

Example:

Add this to your conftest.py
@pytest.fixture(scope='session')
def celery_config():
 return {
 'broker_url': 'amqp://',
 'result_backend': 'rpc',
 }

Do this in your tests.
def test_add_task(celery_session_worker):
 assert add.delay(2, 2) == 4

Warning

It’s probably a bad idea to mix session and ephemeral workers…

celery_session_app - Celery app used for testing (session scope).

This can be used by other session scoped fixtures when they need to refer
to a Celery app instance.

use_celery_app_trap - Raise exception on falling back to default app.

This is a fixture you can override in your conftest.py, to enable the “app trap”:
if something tries to access the default or current_app, an exception
is raised.

Example:

@pytest.fixture(scope='session')
def use_celery_app_trap():
 return True

If a test wants to access the default app, you would have to mark it using
the depends_on_current_app fixture:

@pytest.mark.usefixtures('depends_on_current_app')
def test_something():
 something()

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Extensions and Bootsteps

	Custom Message Consumers

	Blueprints

	Worker

	Attributes

	Example worker bootstep

	Consumer

	Attributes

	Methods

	Installing Bootsteps

	Command-line programs

	Adding new command-line options

	Adding new celery sub-commands

	Worker API

	Hub [https://kombu.readthedocs.io/en/master/reference/kombu.asynchronous.html#kombu.asynchronous.Hub] - The workers async event loop

	Timer - Scheduling events

Custom Message Consumers

You may want to embed custom Kombu consumers to manually process your messages.

For that purpose a special ConsumerStep bootstep class
exists, where you only need to define the get_consumers method, that must
return a list of kombu.Consumer [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Consumer] objects to start
whenever the connection is established:

from celery import Celery
from celery import bootsteps
from kombu import Consumer, Exchange, Queue

my_queue = Queue('custom', Exchange('custom'), 'routing_key')

app = Celery(broker='amqp://')

class MyConsumerStep(bootsteps.ConsumerStep):

 def get_consumers(self, channel):
 return [Consumer(channel,
 queues=[my_queue],
 callbacks=[self.handle_message],
 accept=['json'])]

 def handle_message(self, body, message):
 print('Received message: {0!r}'.format(body))
 message.ack()
app.steps['consumer'].add(MyConsumerStep)

def send_me_a_message(who, producer=None):
 with app.producer_or_acquire(producer) as producer:
 producer.publish(
 {'hello': who},
 serializer='json',
 exchange=my_queue.exchange,
 routing_key='routing_key',
 declare=[my_queue],
 retry=True,
)

if __name__ == '__main__':
 send_me_a_message('world!')

Note

Kombu Consumers can take use of two different message callback dispatching
mechanisms. The first one is the callbacks argument that accepts
a list of callbacks with a (body, message) signature,
the second one is the on_message argument that takes a single
callback with a (message,) signature. The latter won’t
automatically decode and deserialize the payload.

def get_consumers(self, channel):
 return [Consumer(channel, queues=[my_queue],
 on_message=self.on_message)]

def on_message(self, message):
 payload = message.decode()
 print(
 'Received message: {0!r} {props!r} rawlen={s}'.format(
 payload, props=message.properties, s=len(message.body),
))
 message.ack()

Blueprints

Bootsteps is a technique to add functionality to the workers.
A bootstep is a custom class that defines hooks to do custom actions
at different stages in the worker. Every bootstep belongs to a blueprint,
and the worker currently defines two blueprints: Worker, and Consumer

	Figure A: Bootsteps in the Worker and Consumer blueprints. Starting
	from the bottom up the first step in the worker blueprint
is the Timer, and the last step is to start the Consumer blueprint,
that then establishes the broker connection and starts
consuming messages.

[image: ../_images/worker_graph_full.png]

Worker

The Worker is the first blueprint to start, and with it starts major components like
the event loop, processing pool, and the timer used for ETA tasks and other
timed events.

When the worker is fully started it continues with the Consumer blueprint,
that sets up how tasks are executed, connects to the broker and starts
the message consumers.

The WorkController is the core worker implementation,
and contains several methods and attributes that you can use in your bootstep.

Attributes

	
app

	The current app instance.

	
hostname

	The workers node name (e.g., worker1@example.com)

	
blueprint

	This is the worker Blueprint.

	
hub

	Event loop object (Hub [https://kombu.readthedocs.io/en/master/reference/kombu.asynchronous.html#kombu.asynchronous.Hub]). You can use
this to register callbacks in the event loop.

This is only supported by async I/O enabled transports (amqp, redis),
in which case the worker.use_eventloop attribute should be set.

Your worker bootstep must require the Hub bootstep to use this:

class WorkerStep(bootsteps.StartStopStep):
 requires = {'celery.worker.components:Hub'}

	
pool

	The current process/eventlet/gevent/thread pool.
See celery.concurrency.base.BasePool.

Your worker bootstep must require the Pool bootstep to use this:

class WorkerStep(bootsteps.StartStopStep):
 requires = {'celery.worker.components:Pool'}

	
timer

	Timer [https://kombu.readthedocs.io/en/master/reference/kombu.asynchronous.timer.html#kombu.asynchronous.timer.Timer] used to schedule functions.

Your worker bootstep must require the Timer bootstep to use this:

class WorkerStep(bootsteps.StartStopStep):
 requires = {'celery.worker.components:Timer'}

	
statedb

	Database <celery.worker.state.Persistent>` to persist state between
worker restarts.

This is only defined if the statedb argument is enabled.

Your worker bootstep must require the Statedb bootstep to use this:

class WorkerStep(bootsteps.StartStopStep):
 requires = {'celery.worker.components:Statedb'}

	
autoscaler

	Autoscaler used to automatically grow
and shrink the number of processes in the pool.

This is only defined if the autoscale argument is enabled.

Your worker bootstep must require the Autoscaler bootstep to use this:

class WorkerStep(bootsteps.StartStopStep):
 requires = ('celery.worker.autoscaler:Autoscaler',)

	
autoreloader

	Autoreloader used to automatically
reload use code when the file-system changes.

This is only defined if the autoreload argument is enabled.
Your worker bootstep must require the Autoreloader bootstep to use this;

class WorkerStep(bootsteps.StartStopStep):
 requires = ('celery.worker.autoreloader:Autoreloader',)

Example worker bootstep

An example Worker bootstep could be:

from celery import bootsteps

class ExampleWorkerStep(bootsteps.StartStopStep):
 requires = {'celery.worker.components:Pool'}

 def __init__(self, worker, **kwargs):
 print('Called when the WorkController instance is constructed')
 print('Arguments to WorkController: {0!r}'.format(kwargs))

 def create(self, worker):
 # this method can be used to delegate the action methods
 # to another object that implements ``start`` and ``stop``.
 return self

 def start(self, worker):
 print('Called when the worker is started.')

 def stop(self, worker):
 print('Called when the worker shuts down.')

 def terminate(self, worker):
 print('Called when the worker terminates')

Every method is passed the current WorkController instance as the first
argument.

Another example could use the timer to wake up at regular intervals:

from celery import bootsteps

class DeadlockDetection(bootsteps.StartStopStep):
 requires = {'celery.worker.components:Timer'}

 def __init__(self, worker, deadlock_timeout=3600):
 self.timeout = deadlock_timeout
 self.requests = []
 self.tref = None

 def start(self, worker):
 # run every 30 seconds.
 self.tref = worker.timer.call_repeatedly(
 30.0, self.detect, (worker,), priority=10,
)

 def stop(self, worker):
 if self.tref:
 self.tref.cancel()
 self.tref = None

 def detect(self, worker):
 # update active requests
 for req in worker.active_requests:
 if req.time_start and time() - req.time_start > self.timeout:
 raise SystemExit()

Consumer

The Consumer blueprint establishes a connection to the broker, and
is restarted every time this connection is lost. Consumer bootsteps
include the worker heartbeat, the remote control command consumer, and
importantly, the task consumer.

When you create consumer bootsteps you must take into account that it must
be possible to restart your blueprint. An additional ‘shutdown’ method is
defined for consumer bootsteps, this method is called when the worker is
shutdown.

Attributes

	
app

	The current app instance.

	
controller

	The parent WorkController object that created this consumer.

	
hostname

	The workers node name (e.g., worker1@example.com)

	
blueprint

	This is the worker Blueprint.

	
hub

	Event loop object (Hub [https://kombu.readthedocs.io/en/master/reference/kombu.asynchronous.html#kombu.asynchronous.Hub]). You can use
this to register callbacks in the event loop.

This is only supported by async I/O enabled transports (amqp, redis),
in which case the worker.use_eventloop attribute should be set.

Your worker bootstep must require the Hub bootstep to use this:

class WorkerStep(bootsteps.StartStopStep):
 requires = {'celery.worker.components:Hub'}

	
connection

	The current broker connection (kombu.Connection [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection]).

A consumer bootstep must require the ‘Connection’ bootstep
to use this:

class Step(bootsteps.StartStopStep):
 requires = {'celery.worker.consumer.connection:Connection'}

	
event_dispatcher

	A app.events.Dispatcher object that can be used to send events.

A consumer bootstep must require the Events bootstep to use this.

class Step(bootsteps.StartStopStep):
 requires = {'celery.worker.consumer.events:Events'}

	
gossip

	Worker to worker broadcast communication
(Gossip).

A consumer bootstep must require the Gossip bootstep to use this.

class RatelimitStep(bootsteps.StartStopStep):
 """Rate limit tasks based on the number of workers in the
 cluster."""
 requires = {'celery.worker.consumer.gossip:Gossip'}

 def start(self, c):
 self.c = c
 self.c.gossip.on.node_join.add(self.on_cluster_size_change)
 self.c.gossip.on.node_leave.add(self.on_cluster_size_change)
 self.c.gossip.on.node_lost.add(self.on_node_lost)
 self.tasks = [
 self.app.tasks['proj.tasks.add']
 self.app.tasks['proj.tasks.mul']
]
 self.last_size = None

 def on_cluster_size_change(self, worker):
 cluster_size = len(list(self.c.gossip.state.alive_workers()))
 if cluster_size != self.last_size:
 for task in self.tasks:
 task.rate_limit = 1.0 / cluster_size
 self.c.reset_rate_limits()
 self.last_size = cluster_size

 def on_node_lost(self, worker):
 # may have processed heartbeat too late, so wake up soon
 # in order to see if the worker recovered.
 self.c.timer.call_after(10.0, self.on_cluster_size_change)

Callbacks

	<set> gossip.on.node_join

Called whenever a new node joins the cluster, providing a
Worker instance.

	<set> gossip.on.node_leave

Called whenever a new node leaves the cluster (shuts down),
providing a Worker instance.

	<set> gossip.on.node_lost

Called whenever heartbeat was missed for a worker instance in the
cluster (heartbeat not received or processed in time),
providing a Worker instance.

This doesn’t necessarily mean the worker is actually offline, so use a time
out mechanism if the default heartbeat timeout isn’t sufficient.

	
pool

	The current process/eventlet/gevent/thread pool.
See celery.concurrency.base.BasePool.

	
timer

	Timer <celery.utils.timer2.Schedule used to schedule functions.

	
heart

	Responsible for sending worker event heartbeats
(Heart).

Your consumer bootstep must require the Heart bootstep to use this:

class Step(bootsteps.StartStopStep):
 requires = {'celery.worker.consumer.heart:Heart'}

	
task_consumer

	The kombu.Consumer [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Consumer] object used to consume task messages.

Your consumer bootstep must require the Tasks bootstep to use this:

class Step(bootsteps.StartStopStep):
 requires = {'celery.worker.consumer.tasks:Tasks'}

	
strategies

	Every registered task type has an entry in this mapping,
where the value is used to execute an incoming message of this task type
(the task execution strategy). This mapping is generated by the Tasks
bootstep when the consumer starts:

for name, task in app.tasks.items():
 strategies[name] = task.start_strategy(app, consumer)
 task.__trace__ = celery.app.trace.build_tracer(
 name, task, loader, hostname
)

Your consumer bootstep must require the Tasks bootstep to use this:

class Step(bootsteps.StartStopStep):
 requires = {'celery.worker.consumer.tasks:Tasks'}

	
task_buckets

	A defaultdict [https://docs.python.org/dev/library/collections.html#collections.defaultdict] used to look-up the rate limit for
a task by type.
Entries in this dict may be None (for no limit) or a
TokenBucket [https://kombu.readthedocs.io/en/master/reference/kombu.utils.limits.html#kombu.utils.limits.TokenBucket] instance implementing
consume(tokens) and expected_time(tokens).

TokenBucket implements the token bucket algorithm [https://en.wikipedia.org/wiki/Token_bucket], but any algorithm
may be used as long as it conforms to the same interface and defines the
two methods above.

	
qos

	The QoS object can be used to change the
task channels current prefetch_count value:

increment at next cycle
consumer.qos.increment_eventually(1)
decrement at next cycle
consumer.qos.decrement_eventually(1)
consumer.qos.set(10)

Methods

	
consumer.reset_rate_limits()

	Updates the task_buckets mapping for all registered task types.

	
consumer.bucket_for_task(type, Bucket=TokenBucket)

	Creates rate limit bucket for a task using its task.rate_limit
attribute.

	
consumer.add_task_queue(name, exchange=None, exchange_type=None,

	
routing_key=None, **options):

	Adds new queue to consume from. This will persist on connection restart.

	
consumer.cancel_task_queue(name)

	Stop consuming from queue by name. This will persist on connection
restart.

	
apply_eta_task(request)

	Schedule ETA task to execute based on the request.eta attribute.
(Request)

Installing Bootsteps

app.steps['worker'] and app.steps['consumer'] can be modified
to add new bootsteps:

>>> app = Celery()
>>> app.steps['worker'].add(MyWorkerStep) # < add class, don't instantiate
>>> app.steps['consumer'].add(MyConsumerStep)

>>> app.steps['consumer'].update([StepA, StepB])

>>> app.steps['consumer']
{step:proj.StepB{()}, step:proj.MyConsumerStep{()}, step:proj.StepA{()}

The order of steps isn’t important here as the order is decided by the
resulting dependency graph (Step.requires).

To illustrate how you can install bootsteps and how they work, this is an example step that
prints some useless debugging information.
It can be added both as a worker and consumer bootstep:

from celery import Celery
from celery import bootsteps

class InfoStep(bootsteps.Step):

 def __init__(self, parent, **kwargs):
 # here we can prepare the Worker/Consumer object
 # in any way we want, set attribute defaults, and so on.
 print('{0!r} is in init'.format(parent))

 def start(self, parent):
 # our step is started together with all other Worker/Consumer
 # bootsteps.
 print('{0!r} is starting'.format(parent))

 def stop(self, parent):
 # the Consumer calls stop every time the consumer is
 # restarted (i.e., connection is lost) and also at shutdown.
 # The Worker will call stop at shutdown only.
 print('{0!r} is stopping'.format(parent))

 def shutdown(self, parent):
 # shutdown is called by the Consumer at shutdown, it's not
 # called by Worker.
 print('{0!r} is shutting down'.format(parent))

 app = Celery(broker='amqp://')
 app.steps['worker'].add(InfoStep)
 app.steps['consumer'].add(InfoStep)

Starting the worker with this step installed will give us the following
logs:

<Worker: w@example.com (initializing)> is in init
<Consumer: w@example.com (initializing)> is in init
[2013-05-29 16:18:20,544: WARNING/MainProcess]
 <Worker: w@example.com (running)> is starting
[2013-05-29 16:18:21,577: WARNING/MainProcess]
 <Consumer: w@example.com (running)> is starting
<Consumer: w@example.com (closing)> is stopping
<Worker: w@example.com (closing)> is stopping
<Consumer: w@example.com (terminating)> is shutting down

The print statements will be redirected to the logging subsystem after
the worker has been initialized, so the “is starting” lines are time-stamped.
You may notice that this does no longer happen at shutdown, this is because
the stop and shutdown methods are called inside a signal handler,
and it’s not safe to use logging inside such a handler.
Logging with the Python logging module isn’t reentrant:
meaning you cannot interrupt the function then
call it again later. It’s important that the stop and shutdown methods
you write is also reentrant.

Starting the worker with --loglevel=debug
will show us more information about the boot process:

[2013-05-29 16:18:20,509: DEBUG/MainProcess] | Worker: Preparing bootsteps.
[2013-05-29 16:18:20,511: DEBUG/MainProcess] | Worker: Building graph...
<celery.apps.worker.Worker object at 0x101ad8410> is in init
[2013-05-29 16:18:20,511: DEBUG/MainProcess] | Worker: New boot order:
 {Hub, Pool, Timer, StateDB, Autoscaler, InfoStep, Beat, Consumer}
[2013-05-29 16:18:20,514: DEBUG/MainProcess] | Consumer: Preparing bootsteps.
[2013-05-29 16:18:20,514: DEBUG/MainProcess] | Consumer: Building graph...
<celery.worker.consumer.Consumer object at 0x101c2d8d0> is in init
[2013-05-29 16:18:20,515: DEBUG/MainProcess] | Consumer: New boot order:
 {Connection, Mingle, Events, Gossip, InfoStep, Agent,
 Heart, Control, Tasks, event loop}
[2013-05-29 16:18:20,522: DEBUG/MainProcess] | Worker: Starting Hub
[2013-05-29 16:18:20,522: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:20,522: DEBUG/MainProcess] | Worker: Starting Pool
[2013-05-29 16:18:20,542: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:20,543: DEBUG/MainProcess] | Worker: Starting InfoStep
[2013-05-29 16:18:20,544: WARNING/MainProcess]
 <celery.apps.worker.Worker object at 0x101ad8410> is starting
[2013-05-29 16:18:20,544: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:20,544: DEBUG/MainProcess] | Worker: Starting Consumer
[2013-05-29 16:18:20,544: DEBUG/MainProcess] | Consumer: Starting Connection
[2013-05-29 16:18:20,559: INFO/MainProcess] Connected to amqp://guest@127.0.0.1:5672//
[2013-05-29 16:18:20,560: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:20,560: DEBUG/MainProcess] | Consumer: Starting Mingle
[2013-05-29 16:18:20,560: INFO/MainProcess] mingle: searching for neighbors
[2013-05-29 16:18:21,570: INFO/MainProcess] mingle: no one here
[2013-05-29 16:18:21,570: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:21,571: DEBUG/MainProcess] | Consumer: Starting Events
[2013-05-29 16:18:21,572: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:21,572: DEBUG/MainProcess] | Consumer: Starting Gossip
[2013-05-29 16:18:21,577: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:21,577: DEBUG/MainProcess] | Consumer: Starting InfoStep
[2013-05-29 16:18:21,577: WARNING/MainProcess]
 <celery.worker.consumer.Consumer object at 0x101c2d8d0> is starting
[2013-05-29 16:18:21,578: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:21,578: DEBUG/MainProcess] | Consumer: Starting Heart
[2013-05-29 16:18:21,579: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:21,579: DEBUG/MainProcess] | Consumer: Starting Control
[2013-05-29 16:18:21,583: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:21,583: DEBUG/MainProcess] | Consumer: Starting Tasks
[2013-05-29 16:18:21,606: DEBUG/MainProcess] basic.qos: prefetch_count->80
[2013-05-29 16:18:21,606: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:21,606: DEBUG/MainProcess] | Consumer: Starting event loop
[2013-05-29 16:18:21,608: WARNING/MainProcess] celery@example.com ready.

Command-line programs

Adding new command-line options

Command-specific options

You can add additional command-line options to the worker, beat, and
events commands by modifying the user_options attribute of the
application instance.

Celery commands uses the argparse [https://docs.python.org/dev/library/argparse.html#module-argparse] module to parse command-line
arguments, and so to add custom arguments you need to specify a callback
that takes a argparse.ArgumentParser [https://docs.python.org/dev/library/argparse.html#argparse.ArgumentParser] instance - and adds arguments.
Please see the argparse [https://docs.python.org/dev/library/argparse.html#module-argparse] documentation to read about the fields supported.

Example adding a custom option to the celery worker command:

from celery import Celery

app = Celery(broker='amqp://')

def add_worker_arguments(parser):
 parser.add_argument(
 '--enable-my-option', action='store_true', default=False,
 help='Enable custom option.',
),
app.user_options['worker'].add(add_worker_arguments)

All bootsteps will now receive this argument as a keyword argument to
Bootstep.__init__:

from celery import bootsteps

class MyBootstep(bootsteps.Step):

 def __init__(self, parent, enable_my_option=False, **options):
 super().__init__(parent, **options)
 if enable_my_option:
 party()

app.steps['worker'].add(MyBootstep)

Preload options

The celery umbrella command supports the concept of ‘preload
options’. These are special options passed to all sub-commands and parsed
outside of the main parsing step.

The list of default preload options can be found in the API reference:
celery.bin.base.

You can add new preload options too, for example to specify a configuration
template:

from celery import Celery
from celery import signals
from celery.bin import Option

app = Celery()

def add_preload_options(parser):
 parser.add_argument(
 '-Z', '--template', default='default',
 help='Configuration template to use.',
)
app.user_options['preload'].add(add_preload_options)

@signals.user_preload_options.connect
def on_preload_parsed(options, **kwargs):
 use_template(options['template'])

Adding new celery sub-commands

New commands can be added to the celery umbrella command by using
setuptools entry-points [http://reinout.vanrees.org/weblog/2010/01/06/zest-releaser-entry-points.html].

Entry-points is special meta-data that can be added to your packages setup.py program,
and then after installation, read from the system using the pkg_resources module.

Celery recognizes celery.commands entry-points to install additional
sub-commands, where the value of the entry-point must point to a valid subclass
of celery.bin.base.Command. There’s limited documentation,
unfortunately, but you can find inspiration from the various commands in the
celery.bin package.

This is how the Flower [https://pypi.python.org/pypi/Flower/] monitoring extension adds the celery flower command,
by adding an entry-point in setup.py:

setup(
 name='flower',
 entry_points={
 'celery.commands': [
 'flower = flower.command:FlowerCommand',
],
 }
)

The command definition is in two parts separated by the equal sign, where the
first part is the name of the sub-command (flower), then the second part is
the fully qualified symbol path to the class that implements the command:

flower.command:FlowerCommand

The module path and the name of the attribute should be separated by colon
as above.

In the module flower/command.py, the command class is defined
something like this:

from celery.bin.base import Command

class FlowerCommand(Command):

 def add_arguments(self, parser):
 parser.add_argument(
 '--port', default=8888, type='int',
 help='Webserver port',
),
 parser.add_argument(
 '--debug', action='store_true',
)

 def run(self, port=None, debug=False, **kwargs):
 print('Running our command')

Worker API

Hub [https://kombu.readthedocs.io/en/master/reference/kombu.asynchronous.html#kombu.asynchronous.Hub] - The workers async event loop

	supported transports

	amqp, redis

New in version 3.0.

The worker uses asynchronous I/O when the amqp or redis broker transports are
used. The eventual goal is for all transports to use the event-loop, but that
will take some time so other transports still use a threading-based solution.

	
hub.add(fd, callback, flags)

	

	
hub.add_reader(fd, callback, *args)

	Add callback to be called when fd is readable.

The callback will stay registered until explicitly removed using
hub.remove(fd), or the file descriptor is
automatically discarded because it’s no longer valid.

Note that only one callback can be registered for any given
file descriptor at a time, so calling add a second time will remove
any callback that was previously registered for that file descriptor.

A file descriptor is any file-like object that supports the fileno
method, or it can be the file descriptor number (int).

	
hub.add_writer(fd, callback, *args)

	Add callback to be called when fd is writable.
See also notes for hub.add_reader() above.

	
hub.remove(fd)

	Remove all callbacks for file descriptor fd from the loop.

Timer - Scheduling events

	
timer.call_after(secs, callback, args=(), kwargs=(),

	
priority=0)

	

	
timer.call_repeatedly(secs, callback, args=(), kwargs=(),

	
priority=0)

	

	
timer.call_at(eta, callback, args=(), kwargs=(),

	
priority=0)

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Configuration and defaults

This document describes the configuration options available.

If you’re using the default loader, you must create the celeryconfig.py
module and make sure it’s available on the Python path.

	Example configuration file

	New lowercase settings

	Configuration Directives

	General settings

	Time and date settings

	Task settings

	Task execution settings

	Task result backend settings

	Database backend settings

	RPC backend settings

	Cache backend settings

	MongoDB backend settings

	Redis backend settings

	Cassandra backend settings

	S3 backend settings

	Azure Block Blob backend settings

	Elasticsearch backend settings

	AWS DynamoDB backend settings

	IronCache backend settings

	Couchbase backend settings

	ArangoDB backend settings

	CosmosDB backend settings (experimental)

	CouchDB backend settings

	File-system backend settings

	Consul K/V store backend settings

	Message Routing

	Broker Settings

	Worker

	Events

	Remote Control Commands

	Logging

	Security

	Custom Component Classes (advanced)

	Beat Settings (celery beat)

Example configuration file

This is an example configuration file to get you started.
It should contain all you need to run a basic Celery set-up.

Broker settings.
broker_url = 'amqp://guest:guest@localhost:5672//'

List of modules to import when the Celery worker starts.
imports = ('myapp.tasks',)

Using the database to store task state and results.
result_backend = 'db+sqlite:///results.db'

task_annotations = {'tasks.add': {'rate_limit': '10/s'}}

New lowercase settings

Version 4.0 introduced new lower case settings and setting organization.

The major difference between previous versions, apart from the lower case
names, are the renaming of some prefixes, like celery_beat_ to beat_,
celeryd_ to worker_, and most of the top level celery_ settings
have been moved into a new task_ prefix.

Warning

Celery will still be able to read old configuration files until Celery 6.0.
Afterwards, support for the old configuration files will be removed.
We provide the celery upgrade command that should handle
plenty of cases (including Django).

Please migrate to the new configuration scheme as soon as possible.

	Setting name

	Replace with

	CELERY_ACCEPT_CONTENT

	accept_content

	CELERY_ENABLE_UTC

	enable_utc

	CELERY_IMPORTS

	imports

	CELERY_INCLUDE

	include

	CELERY_TIMEZONE

	timezone

	CELERYBEAT_MAX_LOOP_INTERVAL

	beat_max_loop_interval

	CELERYBEAT_SCHEDULE

	beat_schedule

	CELERYBEAT_SCHEDULER

	beat_scheduler

	CELERYBEAT_SCHEDULE_FILENAME

	beat_schedule_filename

	CELERYBEAT_SYNC_EVERY

	beat_sync_every

	BROKER_URL

	broker_url

	BROKER_TRANSPORT

	broker_transport

	BROKER_TRANSPORT_OPTIONS

	broker_transport_options

	BROKER_CONNECTION_TIMEOUT

	broker_connection_timeout

	BROKER_CONNECTION_RETRY

	broker_connection_retry

	BROKER_CONNECTION_MAX_RETRIES

	broker_connection_max_retries

	BROKER_FAILOVER_STRATEGY

	broker_failover_strategy

	BROKER_HEARTBEAT

	broker_heartbeat

	BROKER_LOGIN_METHOD

	broker_login_method

	BROKER_POOL_LIMIT

	broker_pool_limit

	BROKER_USE_SSL

	broker_use_ssl

	CELERY_CACHE_BACKEND

	cache_backend

	CELERY_CACHE_BACKEND_OPTIONS

	cache_backend_options

	CASSANDRA_COLUMN_FAMILY

	cassandra_table

	CASSANDRA_ENTRY_TTL

	cassandra_entry_ttl

	CASSANDRA_KEYSPACE

	cassandra_keyspace

	CASSANDRA_PORT

	cassandra_port

	CASSANDRA_READ_CONSISTENCY

	cassandra_read_consistency

	CASSANDRA_SERVERS

	cassandra_servers

	CASSANDRA_WRITE_CONSISTENCY

	cassandra_write_consistency

	CASSANDRA_OPTIONS

	cassandra_options

	S3_ACCESS_KEY_ID

	s3_access_key_id

	S3_SECRET_ACCESS_KEY

	s3_secret_access_key

	S3_BUCKET

	s3_bucket

	S3_BASE_PATH

	s3_base_path

	S3_ENDPOINT_URL

	s3_endpoint_url

	S3_REGION

	s3_region

	CELERY_COUCHBASE_BACKEND_SETTINGS

	couchbase_backend_settings

	CELERY_ARANGODB_BACKEND_SETTINGS

	arangodb_backend_settings

	CELERY_MONGODB_BACKEND_SETTINGS

	mongodb_backend_settings

	CELERY_EVENT_QUEUE_EXPIRES

	event_queue_expires

	CELERY_EVENT_QUEUE_TTL

	event_queue_ttl

	CELERY_EVENT_QUEUE_PREFIX

	event_queue_prefix

	CELERY_EVENT_SERIALIZER

	event_serializer

	CELERY_REDIS_DB

	redis_db

	CELERY_REDIS_HOST

	redis_host

	CELERY_REDIS_MAX_CONNECTIONS

	redis_max_connections

	CELERY_REDIS_PASSWORD

	redis_password

	CELERY_REDIS_PORT

	redis_port

	CELERY_REDIS_BACKEND_USE_SSL

	redis_backend_use_ssl

	CELERY_RESULT_BACKEND

	result_backend

	CELERY_MAX_CACHED_RESULTS

	result_cache_max

	CELERY_MESSAGE_COMPRESSION

	result_compression

	CELERY_RESULT_EXCHANGE

	result_exchange

	CELERY_RESULT_EXCHANGE_TYPE

	result_exchange_type

	CELERY_TASK_RESULT_EXPIRES

	result_expires

	CELERY_RESULT_PERSISTENT

	result_persistent

	CELERY_RESULT_SERIALIZER

	result_serializer

	CELERY_RESULT_DBURI

	Use result_backend instead.

	CELERY_RESULT_ENGINE_OPTIONS

	database_engine_options

	[...]_DB_SHORT_LIVED_SESSIONS

	database_short_lived_sessions

	CELERY_RESULT_DB_TABLE_NAMES

	database_db_names

	CELERY_SECURITY_CERTIFICATE

	security_certificate

	CELERY_SECURITY_CERT_STORE

	security_cert_store

	CELERY_SECURITY_KEY

	security_key

	CELERY_ACKS_LATE

	task_acks_late

	CELERY_ACKS_ON_FAILURE_OR_TIMEOUT

	task_acks_on_failure_or_timeout

	CELERY_ALWAYS_EAGER

	task_always_eager

	CELERY_ANNOTATIONS

	task_annotations

	CELERY_COMPRESSION

	task_compression

	CELERY_CREATE_MISSING_QUEUES

	task_create_missing_queues

	CELERY_DEFAULT_DELIVERY_MODE

	task_default_delivery_mode

	CELERY_DEFAULT_EXCHANGE

	task_default_exchange

	CELERY_DEFAULT_EXCHANGE_TYPE

	task_default_exchange_type

	CELERY_DEFAULT_QUEUE

	task_default_queue

	CELERY_DEFAULT_RATE_LIMIT

	task_default_rate_limit

	CELERY_DEFAULT_ROUTING_KEY

	task_default_routing_key

	CELERY_EAGER_PROPAGATES

	task_eager_propagates

	CELERY_IGNORE_RESULT

	task_ignore_result

	CELERY_PUBLISH_RETRY

	task_publish_retry

	CELERY_PUBLISH_RETRY_POLICY

	task_publish_retry_policy

	CELERY_QUEUES

	task_queues

	CELERY_ROUTES

	task_routes

	CELERY_SEND_SENT_EVENT

	task_send_sent_event

	CELERY_SERIALIZER

	task_serializer

	CELERYD_SOFT_TIME_LIMIT

	task_soft_time_limit

	CELERYD_TIME_LIMIT

	task_time_limit

	CELERY_TRACK_STARTED

	task_track_started

	CELERYD_AGENT

	worker_agent

	CELERYD_AUTOSCALER

	worker_autoscaler

	CELERYD_CONCURRENCY

	worker_concurrency

	CELERYD_CONSUMER

	worker_consumer

	CELERY_WORKER_DIRECT

	worker_direct

	CELERY_DISABLE_RATE_LIMITS

	worker_disable_rate_limits

	CELERY_ENABLE_REMOTE_CONTROL

	worker_enable_remote_control

	CELERYD_HIJACK_ROOT_LOGGER

	worker_hijack_root_logger

	CELERYD_LOG_COLOR

	worker_log_color

	CELERYD_LOG_FORMAT

	worker_log_format

	CELERYD_WORKER_LOST_WAIT

	worker_lost_wait

	CELERYD_MAX_TASKS_PER_CHILD

	worker_max_tasks_per_child

	CELERYD_POOL

	worker_pool

	CELERYD_POOL_PUTLOCKS

	worker_pool_putlocks

	CELERYD_POOL_RESTARTS

	worker_pool_restarts

	CELERYD_PREFETCH_MULTIPLIER

	worker_prefetch_multiplier

	CELERYD_REDIRECT_STDOUTS

	worker_redirect_stdouts

	CELERYD_REDIRECT_STDOUTS_LEVEL

	worker_redirect_stdouts_level

	CELERY_SEND_EVENTS

	worker_send_task_events

	CELERYD_STATE_DB

	worker_state_db

	CELERYD_TASK_LOG_FORMAT

	worker_task_log_format

	CELERYD_TIMER

	worker_timer

	CELERYD_TIMER_PRECISION

	worker_timer_precision

Configuration Directives

General settings

accept_content

Default: {'json'} (set, list, or tuple).

A white-list of content-types/serializers to allow.

If a message is received that’s not in this list then
the message will be discarded with an error.

By default only json is enabled but any content type can be added,
including pickle and yaml; when this is the case make sure
untrusted parties don’t have access to your broker.
See Security for more.

Example:

using serializer name
accept_content = ['json']

or the actual content-type (MIME)
accept_content = ['application/json']

result_accept_content

Default: None (can be set, list or tuple).

New in version 4.3.

A white-list of content-types/serializers to allow for the result backend.

If a message is received that’s not in this list then
the message will be discarded with an error.

By default it is the same serializer as accept_content.
However, a different serializer for accepted content of the result backend
can be specified.
Usually this is needed if signed messaging is used and the result is stored
unsigned in the result backend.
See Security for more.

Example:

using serializer name
result_accept_content = ['json']

or the actual content-type (MIME)
result_accept_content = ['application/json']

Time and date settings

enable_utc

New in version 2.5.

Default: Enabled by default since version 3.0.

If enabled dates and times in messages will be converted to use
the UTC timezone.

Note that workers running Celery versions below 2.5 will assume a local
timezone for all messages, so only enable if all workers have been
upgraded.

timezone

New in version 2.5.

Default: "UTC".

Configure Celery to use a custom time zone.
The timezone value can be any time zone supported by the pytz [https://pypi.python.org/pypi/pytz/]
library.

If not set the UTC timezone is used. For backwards compatibility
there’s also a enable_utc setting, and when this is set
to false the system local timezone is used instead.

Task settings

task_annotations

New in version 2.5.

Default: None.

This setting can be used to rewrite any task attribute from the
configuration. The setting can be a dict, or a list of annotation
objects that filter for tasks and return a map of attributes
to change.

This will change the rate_limit attribute for the tasks.add
task:

task_annotations = {'tasks.add': {'rate_limit': '10/s'}}

or change the same for all tasks:

task_annotations = {'*': {'rate_limit': '10/s'}}

You can change methods too, for example the on_failure handler:

def my_on_failure(self, exc, task_id, args, kwargs, einfo):
 print('Oh no! Task failed: {0!r}'.format(exc))

task_annotations = {'*': {'on_failure': my_on_failure}}

If you need more flexibility then you can use objects
instead of a dict to choose the tasks to annotate:

class MyAnnotate(object):

 def annotate(self, task):
 if task.name.startswith('tasks.'):
 return {'rate_limit': '10/s'}

task_annotations = (MyAnnotate(), {other,})

task_compression

Default: None

Default compression used for task messages.
Can be gzip, bzip2 (if available), or any custom
compression schemes registered in the Kombu compression registry.

The default is to send uncompressed messages.

task_protocol

Default: 2 (since 4.0).

Set the default task message protocol version used to send tasks.
Supports protocols: 1 and 2.

Protocol 2 is supported by 3.1.24 and 4.x+.

task_serializer

Default: "json" (since 4.0, earlier: pickle).

A string identifying the default serialization method to use. Can be
json (default), pickle, yaml, msgpack, or any custom serialization
methods that have been registered with kombu.serialization.registry.

See also

Serializers.

task_publish_retry

New in version 2.2.

Default: Enabled.

Decides if publishing task messages will be retried in the case
of connection loss or other connection errors.
See also task_publish_retry_policy.

task_publish_retry_policy

New in version 2.2.

Default: See Message Sending Retry.

Defines the default policy when retrying publishing a task message in
the case of connection loss or other connection errors.

Task execution settings

task_always_eager

Default: Disabled.

If this is True, all tasks will be executed locally by blocking until
the task returns. apply_async() and Task.delay() will return
an EagerResult instance, that emulates the API
and behavior of AsyncResult, except the result
is already evaluated.

That is, tasks will be executed locally instead of being sent to
the queue.

task_eager_propagates

Default: Disabled.

If this is True, eagerly executed tasks (applied by task.apply(),
or when the task_always_eager setting is enabled), will
propagate exceptions.

It’s the same as always running apply() with throw=True.

task_remote_tracebacks

Default: Disabled.

If enabled task results will include the workers stack when re-raising
task errors.

This requires the tblib [https://pypi.python.org/pypi/tblib/] library, that can be installed using
pip:

$ pip install celery[tblib]

See Bundles for information on combining multiple extension
requirements.

task_ignore_result

Default: Disabled.

Whether to store the task return values or not (tombstones).
If you still want to store errors, just not successful return values,
you can set task_store_errors_even_if_ignored.

task_store_errors_even_if_ignored

Default: Disabled.

If set, the worker stores all task errors in the result store even if
Task.ignore_result is on.

task_track_started

Default: Disabled.

If True the task will report its status as ‘started’ when the
task is executed by a worker. The default value is False as
the normal behavior is to not report that level of granularity. Tasks
are either pending, finished, or waiting to be retried. Having a ‘started’
state can be useful for when there are long running tasks and there’s a
need to report what task is currently running.

task_time_limit

Default: No time limit.

Task hard time limit in seconds. The worker processing the task will
be killed and replaced with a new one when this is exceeded.

task_soft_time_limit

Default: No soft time limit.

Task soft time limit in seconds.

The SoftTimeLimitExceeded exception will be
raised when this is exceeded. For example, the task can catch this to
clean up before the hard time limit comes:

from celery.exceptions import SoftTimeLimitExceeded

@app.task
def mytask():
 try:
 return do_work()
 except SoftTimeLimitExceeded:
 cleanup_in_a_hurry()

task_acks_late

Default: Disabled.

Late ack means the task messages will be acknowledged after the task
has been executed, not just before (the default behavior).

See also

FAQ: Should I use retry or acks_late?.

task_acks_on_failure_or_timeout

Default: Enabled

When enabled messages for all tasks will be acknowledged even if they
fail or time out.

Configuring this setting only applies to tasks that are
acknowledged after they have been executed and only if
task_acks_late is enabled.

task_reject_on_worker_lost

Default: Disabled.

Even if task_acks_late is enabled, the worker will
acknowledge tasks when the worker process executing them abruptly
exits or is signaled (e.g., KILL/INT, etc).

Setting this to true allows the message to be re-queued instead,
so that the task will execute again by the same worker, or another
worker.

Warning

Enabling this can cause message loops; make sure you know
what you’re doing.

task_default_rate_limit

Default: No rate limit.

The global default rate limit for tasks.

This value is used for tasks that doesn’t have a custom rate limit

See also

The setting:worker_disable_rate_limits setting can
disable all rate limits.

Task result backend settings

result_backend

Default: No result backend enabled by default.

The backend used to store task results (tombstones).
Can be one of the following:

	
	rpc
	Send results back as AMQP messages
See RPC backend settings.

	
	database
	Use a relational database supported by SQLAlchemy [http://sqlalchemy.org].
See Database backend settings.

	
	redis
	Use Redis [https://redis.io] to store the results.
See Redis backend settings.

	
	cache
	Use Memcached [http://memcached.org] to store the results.
See Cache backend settings.

	
	mongodb
	Use MongoDB [http://mongodb.org] to store the results.
See MongoDB backend settings.

	
	cassandra
	Use Cassandra [http://cassandra.apache.org/] to store the results.
See Cassandra backend settings.

	
	elasticsearch
	Use Elasticsearch [https://aws.amazon.com/elasticsearch-service/] to store the results.
See Elasticsearch backend settings.

	
	ironcache
	Use IronCache [http://www.iron.io/cache] to store the results.
See IronCache backend settings.

	
	couchbase
	Use Couchbase [https://www.couchbase.com/] to store the results.
See Couchbase backend settings.

	
	arangodb
	Use ArangoDB [https://www.arangodb.com/] to store the results.
See ArangoDB backend settings.

	
	couchdb
	Use CouchDB [http://www.couchdb.com/] to store the results.
See CouchDB backend settings.

	
	cosmosdbsql (experimental)
	Use the CosmosDB [https://azure.microsoft.com/en-us/services/cosmos-db/] PaaS to store the results.
See CosmosDB backend settings (experimental).

	
	filesystem
	Use a shared directory to store the results.
See File-system backend settings.

	
	consul
	Use the Consul [https://consul.io/] K/V store to store the results
See Consul K/V store backend settings.

	
	azureblockblob
	Use the AzureBlockBlob [https://azure.microsoft.com/en-us/services/storage/blobs/] PaaS store to store the results
See Azure Block Blob backend settings.

	
	s3
	Use the S3 [https://aws.amazon.com/s3/] to store the results
See S3 backend settings.

result_backend_always_retry

Default: False

If enable, backend will try to retry on the event of recoverable exceptions instead of propagating the exception.
It will use an exponential backoff sleep time between 2 retries.

result_backend_max_sleep_between_retries_ms

Default: 10000

This specifies the maximum sleep time between two backend operation retry.

result_backend_base_sleep_between_retries_ms

Default: 10

This specifies the base amount of sleep time between two backend operation retry.

result_backend_max_retries

Default: Inf

This is the maximum of retries in case of recoverable exceptions.

result_backend_transport_options

Default: {} (empty mapping).

A dict of additional options passed to the underlying transport.

See your transport user manual for supported options (if any).

Example setting the visibility timeout (supported by Redis and SQS
transports):

result_backend_transport_options = {'visibility_timeout': 18000} # 5 hours

result_serializer

Default: json since 4.0 (earlier: pickle).

Result serialization format.

See Serializers for information about supported
serialization formats.

result_compression

Default: No compression.

Optional compression method used for task results.
Supports the same options as the task_compression setting.

result_extended

Default: False

Enables extended task result attributes (name, args, kwargs, worker,
retries, queue, delivery_info) to be written to backend.

result_expires

Default: Expire after 1 day.

Time (in seconds, or a timedelta [https://docs.python.org/dev/library/datetime.html#datetime.timedelta] object) for when after
stored task tombstones will be deleted.

A built-in periodic task will delete the results after this time
(celery.backend_cleanup), assuming that celery beat is
enabled. The task runs daily at 4am.

A value of None or 0 means results will never expire (depending
on backend specifications).

Note

For the moment this only works with the AMQP, database, cache, Couchbase,
and Redis backends.

When using the database backend, celery beat must be
running for the results to be expired.

result_cache_max

Default: Disabled by default.

Enables client caching of results.

This can be useful for the old deprecated
‘amqp’ backend where the result is unavailable as soon as one result instance
consumes it.

This is the total number of results to cache before older results are evicted.
A value of 0 or None means no limit, and a value of -1
will disable the cache.

Disabled by default.

result_chord_join_timeout

Default: 3.0.

The timeout in seconds (int/float) when joining a group’s results within a chord.

result_chord_retry_interval

Default: 1.0.

Default interval for retrying chord tasks.

Database backend settings

Database URL Examples

To use the database backend you have to configure the
result_backend setting with a connection URL and the db+
prefix:

result_backend = 'db+scheme://user:password@host:port/dbname'

Examples:

sqlite (filename)
result_backend = 'db+sqlite:///results.sqlite'

mysql
result_backend = 'db+mysql://scott:tiger@localhost/foo'

postgresql
result_backend = 'db+postgresql://scott:tiger@localhost/mydatabase'

oracle
result_backend = 'db+oracle://scott:tiger@127.0.0.1:1521/sidname'

Please see Supported Databases [http://www.sqlalchemy.org/docs/core/engines.html#supported-databases] for a table of supported databases,
and Connection String [http://www.sqlalchemy.org/docs/core/engines.html#database-urls] for more information about connection
strings (this is the part of the URI that comes after the db+ prefix).

database_engine_options

Default: {} (empty mapping).

To specify additional SQLAlchemy database engine options you can use
the database_engine_options setting:

echo enables verbose logging from SQLAlchemy.
app.conf.database_engine_options = {'echo': True}

database_short_lived_sessions

Default: Disabled by default.

Short lived sessions are disabled by default. If enabled they can drastically reduce
performance, especially on systems processing lots of tasks. This option is useful
on low-traffic workers that experience errors as a result of cached database connections
going stale through inactivity. For example, intermittent errors like
(OperationalError) (2006, ‘MySQL server has gone away’) can be fixed by enabling
short lived sessions. This option only affects the database backend.

database_table_schemas

Default: {} (empty mapping).

When SQLAlchemy is configured as the result backend, Celery automatically
creates two tables to store result meta-data for tasks. This setting allows
you to customize the schema of the tables:

use custom schema for the database result backend.
database_table_schemas = {
 'task': 'celery',
 'group': 'celery',
}

database_table_names

Default: {} (empty mapping).

When SQLAlchemy is configured as the result backend, Celery automatically
creates two tables to store result meta-data for tasks. This setting allows
you to customize the table names:

use custom table names for the database result backend.
database_table_names = {
 'task': 'myapp_taskmeta',
 'group': 'myapp_groupmeta',
}

RPC backend settings

result_persistent

Default: Disabled by default (transient messages).

If set to True, result messages will be persistent. This means the
messages won’t be lost after a broker restart.

Example configuration

result_backend = 'rpc://'
result_persistent = False

Please note: using this backend could trigger the raise of celery.backends.rpc.BacklogLimitExceeded if the task tombstone is too old.

E.g.

for i in range(10000):
 r = debug_task.delay()

print(r.state) # this would raise celery.backends.rpc.BacklogLimitExceeded

Cache backend settings

Note

The cache backend supports the pylibmc [https://pypi.python.org/pypi/pylibmc/] and python-memcached [https://pypi.python.org/pypi/python-memcached/]
libraries. The latter is used only if pylibmc [https://pypi.python.org/pypi/pylibmc/] isn’t installed.

Using a single Memcached server:

result_backend = 'cache+memcached://127.0.0.1:11211/'

Using multiple Memcached servers:

result_backend = """
 cache+memcached://172.19.26.240:11211;172.19.26.242:11211/
""".strip()

The “memory” backend stores the cache in memory only:

result_backend = 'cache'
cache_backend = 'memory'

cache_backend_options

Default: {} (empty mapping).

You can set pylibmc [https://pypi.python.org/pypi/pylibmc/] options using the cache_backend_options
setting:

cache_backend_options = {
 'binary': True,
 'behaviors': {'tcp_nodelay': True},
}

cache_backend

This setting is no longer used as it’s now possible to specify
the cache backend directly in the result_backend setting.

MongoDB backend settings

Note

The MongoDB backend requires the pymongo library:
http://github.com/mongodb/mongo-python-driver/tree/master

mongodb_backend_settings

This is a dict supporting the following keys:

	
	database
	The database name to connect to. Defaults to celery.

	
	taskmeta_collection
	The collection name to store task meta data.
Defaults to celery_taskmeta.

	
	max_pool_size
	Passed as max_pool_size to PyMongo’s Connection or MongoClient
constructor. It is the maximum number of TCP connections to keep
open to MongoDB at a given time. If there are more open connections
than max_pool_size, sockets will be closed when they are released.
Defaults to 10.

	options

Additional keyword arguments to pass to the mongodb connection
constructor. See the pymongo docs to see a list of arguments
supported.

Example configuration

result_backend = 'mongodb://localhost:27017/'
mongodb_backend_settings = {
 'database': 'mydb',
 'taskmeta_collection': 'my_taskmeta_collection',
}

Redis backend settings

Configuring the backend URL

Note

The Redis backend requires the redis [https://pypi.python.org/pypi/redis/] library.

To install this package use pip:

$ pip install celery[redis]

See Bundles for information on combining multiple extension
requirements.

This backend requires the result_backend
setting to be set to a Redis or Redis over TLS [https://www.iana.org/assignments/uri-schemes/prov/rediss] URL:

result_backend = 'redis://:password@host:port/db'

For example:

result_backend = 'redis://localhost/0'

is the same as:

result_backend = 'redis://'

Use the rediss:// protocol to connect to redis over TLS:

result_backend = 'rediss://:password@host:port/db?ssl_cert_reqs=required'

Note that the ssl_cert_reqs string should be one of required,
optional, or none (though, for backwards compatibility, the string
may also be one of CERT_REQUIRED, CERT_OPTIONAL, CERT_NONE).

If a Unix socket connection should be used, the URL needs to be in the format::

result_backend = 'socket:///path/to/redis.sock'

The fields of the URL are defined as follows:

	password

Password used to connect to the database.

	host

Host name or IP address of the Redis server (e.g., localhost).

	port

Port to the Redis server. Default is 6379.

	db

Database number to use. Default is 0.
The db can include an optional leading slash.

When using a TLS connection (protocol is rediss://), you may pass in all values in broker_use_ssl as query parameters. Paths to certificates must be URL encoded, and ssl_cert_reqs is required. Example:

result_backend = 'rediss://:password@host:port/db?\
 ssl_cert_reqs=required\
 &ssl_ca_certs=%2Fvar%2Fssl%2Fmyca.pem\ # /var/ssl/myca.pem
 &ssl_certfile=%2Fvar%2Fssl%2Fredis-server-cert.pem\ # /var/ssl/redis-server-cert.pem
 &ssl_keyfile=%2Fvar%2Fssl%2Fprivate%2Fworker-key.pem' # /var/ssl/private/worker-key.pem

Note that the ssl_cert_reqs string should be one of required,
optional, or none (though, for backwards compatibility, the string
may also be one of CERT_REQUIRED, CERT_OPTIONAL, CERT_NONE).

redis_backend_use_ssl

Default: Disabled.

The Redis backend supports SSL. This value must be set in
the form of a dictionary. The valid key-value pairs are
the same as the ones mentioned in the redis sub-section
under broker_use_ssl.

redis_max_connections

Default: No limit.

Maximum number of connections available in the Redis connection
pool used for sending and retrieving results.

Warning

Redis will raise a ConnectionError if the number of concurrent
connections exceeds the maximum.

redis_socket_connect_timeout

New in version 4.0.1.

Default: None

Socket timeout for connections to Redis from the result backend
in seconds (int/float)

redis_socket_timeout

Default: 120.0 seconds.

Socket timeout for reading/writing operations to the Redis server
in seconds (int/float), used by the redis result backend.

redis_retry_on_timeout

New in version 4.4.1.

Default: False

To retry reading/writing operations on TimeoutError to the Redis server,
used by the redis result backend. Shouldn’t set this variable if using Redis
connection by unix socket.

redis_socket_keepalive

New in version 4.4.1.

Default: False

Socket TCP keepalive to keep connections healthy to the Redis server,
used by the redis result backend.

Cassandra backend settings

Note

This Cassandra backend driver requires cassandra-driver [https://pypi.python.org/pypi/cassandra-driver/].

To install, use pip:

$ pip install celery[cassandra]

See Bundles for information on combining multiple extension
requirements.

This backend requires the following configuration directives to be set.

cassandra_servers

Default: [] (empty list).

List of host Cassandra servers. For example:

cassandra_servers = ['localhost']

cassandra_port

Default: 9042.

Port to contact the Cassandra servers on.

cassandra_keyspace

Default: None.

The key-space in which to store the results. For example:

cassandra_keyspace = 'tasks_keyspace'

cassandra_table

Default: None.

The table (column family) in which to store the results. For example:

cassandra_table = 'tasks'

cassandra_read_consistency

Default: None.

The read consistency used. Values can be ONE, TWO, THREE, QUORUM, ALL,
LOCAL_QUORUM, EACH_QUORUM, LOCAL_ONE.

cassandra_write_consistency

Default: None.

The write consistency used. Values can be ONE, TWO, THREE, QUORUM, ALL,
LOCAL_QUORUM, EACH_QUORUM, LOCAL_ONE.

cassandra_entry_ttl

Default: None.

Time-to-live for status entries. They will expire and be removed after that many seconds
after adding. A value of None (default) means they will never expire.

cassandra_auth_provider

Default: None.

AuthProvider class within cassandra.auth module to use. Values can be
PlainTextAuthProvider or SaslAuthProvider.

cassandra_auth_kwargs

Default: {} (empty mapping).

Named arguments to pass into the authentication provider. For example:

cassandra_auth_kwargs = {
 username: 'cassandra',
 password: 'cassandra'
}

cassandra_options

Default: {} (empty mapping).

Named arguments to pass into the cassandra.cluster class.

cassandra_options = {
 'cql_version': '3.2.1'
 'protocol_version': 3
}

Example configuration

cassandra_servers = ['localhost']
cassandra_keyspace = 'celery'
cassandra_table = 'tasks'
cassandra_read_consistency = 'ONE'
cassandra_write_consistency = 'ONE'
cassandra_entry_ttl = 86400

S3 backend settings

Note

This s3 backend driver requires s3 [https://pypi.python.org/pypi/s3/].

To install, use s3:

$ pip install celery[s3]

See Bundles for information on combining multiple extension
requirements.

This backend requires the following configuration directives to be set.

s3_access_key_id

Default: None.

The s3 access key id. For example:

s3_access_key_id = 'acces_key_id'

s3_secret_access_key

Default: None.

The s3 secret access key. For example:

s3_secret_access_key = 'acces_secret_access_key'

s3_bucket

Default: None.

The s3 bucket name. For example:

s3_bucket = 'bucket_name'

s3_base_path

Default: None.

A base path in the s3 bucket to use to store result keys. For example:

s3_base_path = '/prefix'

s3_endpoint_url

Default: None.

A custom s3 endpoint url. Use it to connect to a custom self-hosted s3 compatible backend (Ceph, Scality…). For example:

s3_endpoint_url = 'https://.s3.custom.url'

s3_region

Default: None.

The s3 aws region. For example:

s3_region = 'us-east-1'

Example configuration

s3_access_key_id = 's3-access-key-id'
s3_secret_access_key = 's3-secret-access-key'
s3_bucket = 'mybucket'
s3_base_path = '/celery_result_backend'
s3_endpoint_url = 'https://endpoint_url'

Azure Block Blob backend settings

To use AzureBlockBlob [https://azure.microsoft.com/en-us/services/storage/blobs/] as the result backend you simply need to
configure the result_backend setting with the correct URL.

The required URL format is azureblockblob:// followed by the storage
connection string. You can find the storage connection string in the
Access Keys pane of your storage account resource in the Azure Portal.

Example configuration

result_backend = 'azureblockblob://DefaultEndpointsProtocol=https;AccountName=somename;AccountKey=Lou...bzg==;EndpointSuffix=core.windows.net'

azureblockblob_container_name

Default: celery.

The name for the storage container in which to store the results.

azureblockblob_retry_initial_backoff_sec

Default: 2.

The initial backoff interval, in seconds, for the first retry.
Subsequent retries are attempted with an exponential strategy.

azureblockblob_retry_increment_base

Default: 2.

azureblockblob_retry_max_attempts

Default: 3.

The maximum number of retry attempts.

Elasticsearch backend settings

To use Elasticsearch [https://aws.amazon.com/elasticsearch-service/] as the result backend you simply need to
configure the result_backend setting with the correct URL.

Example configuration

result_backend = 'elasticsearch://example.com:9200/index_name/doc_type'

elasticsearch_retry_on_timeout

Default: False

Should timeout trigger a retry on different node?

elasticsearch_max_retries

Default: 3.

Maximum number of retries before an exception is propagated.

elasticsearch_timeout

Default: 10.0 seconds.

Global timeout,used by the elasticsearch result backend.

elasticsearch_save_meta_as_text

Default: True

Should meta saved as text or as native json.
Result is always serialized as text.

AWS DynamoDB backend settings

Note

The Dynamodb backend requires the boto3 [https://pypi.python.org/pypi/boto3/] library.

To install this package use pip:

$ pip install celery[dynamodb]

See Bundles for information on combining multiple extension
requirements.

Warning

The Dynamodb backend is not compatible with tables that have a sort key defined.

If you want to query the results table based on something other than the partition key,
please define a global secondary index (GSI) instead.

This backend requires the result_backend
setting to be set to a DynamoDB URL:

result_backend = 'dynamodb://aws_access_key_id:aws_secret_access_key@region:port/table?read=n&write=m'

For example, specifying the AWS region and the table name:

result_backend = 'dynamodb://@us-east-1/celery_results'

or retrieving AWS configuration parameters from the environment, using the default table name (celery)
and specifying read and write provisioned throughput:

result_backend = 'dynamodb://@/?read=5&write=5'

or using the downloadable version [https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html]
of DynamoDB
locally [https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.Endpoint.html]:

result_backend = 'dynamodb://@localhost:8000'

or using downloadable version or other service with conforming API deployed on any host:

result_backend = 'dynamodb://@us-east-1'
dynamodb_endpoint_url = 'http://192.168.0.40:8000'

The fields of the DynamoDB URL in result_backend are defined as follows:

	aws_access_key_id & aws_secret_access_key

The credentials for accessing AWS API resources. These can also be resolved
by the boto3 [https://pypi.python.org/pypi/boto3/] library from various sources, as
described here [http://boto3.readthedocs.io/en/latest/guide/configuration.html#configuring-credentials].

	region

The AWS region, e.g. us-east-1 or localhost for the Downloadable Version [https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html].
See the boto3 [https://pypi.python.org/pypi/boto3/] library documentation [http://boto3.readthedocs.io/en/latest/guide/configuration.html#environment-variable-configuration]
for definition options.

	port

The listening port of the local DynamoDB instance, if you are using the downloadable version.
If you have not specified the region parameter as localhost,
setting this parameter has no effect.

	table

Table name to use. Default is celery.
See the DynamoDB Naming Rules [http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html#limits-naming-rules]
for information on the allowed characters and length.

	read & write

The Read & Write Capacity Units for the created DynamoDB table. Default is 1 for both read and write.
More details can be found in the Provisioned Throughput documentation [http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html].

	ttl_seconds

Time-to-live (in seconds) for results before they expire. The default is to
not expire results, while also leaving the DynamoDB table’s Time to Live
settings untouched. If ttl_seconds is set to a positive value, results
will expire after the specified number of seconds. Setting ttl_seconds
to a negative value means to not expire results, and also to actively
disable the DynamoDB table’s Time to Live setting. Note that trying to
change a table’s Time to Live setting multiple times in quick succession
will cause a throttling error. More details can be found in the
DynamoDB TTL documentation [https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/TTL.html]

IronCache backend settings

Note

The IronCache backend requires the iron_celery [https://pypi.python.org/pypi/iron_celery/] library:

To install this package use pip:

$ pip install iron_celery

IronCache is configured via the URL provided in result_backend, for example:

result_backend = 'ironcache://project_id:token@'

Or to change the cache name:

ironcache:://project_id:token@/awesomecache

For more information, see: https://github.com/iron-io/iron_celery

Couchbase backend settings

Note

The Couchbase backend requires the couchbase [https://pypi.python.org/pypi/couchbase/] library.

To install this package use pip:

$ pip install celery[couchbase]

See Bundles for instructions how to combine multiple extension
requirements.

This backend can be configured via the result_backend
set to a Couchbase URL:

result_backend = 'couchbase://username:password@host:port/bucket'

couchbase_backend_settings

Default: {} (empty mapping).

This is a dict supporting the following keys:

	host

Host name of the Couchbase server. Defaults to localhost.

	port

The port the Couchbase server is listening to. Defaults to 8091.

	bucket

The default bucket the Couchbase server is writing to.
Defaults to default.

	username

User name to authenticate to the Couchbase server as (optional).

	password

Password to authenticate to the Couchbase server (optional).

ArangoDB backend settings

Note

The ArangoDB backend requires the pyArango [https://pypi.python.org/pypi/pyArango/] library.

To install this package use pip:

$ pip install celery[arangodb]

See Bundles for instructions how to combine multiple extension
requirements.

This backend can be configured via the result_backend
set to a ArangoDB URL:

result_backend = 'arangodb://username:password@host:port/database/collection'

arangodb_backend_settings

Default: {} (empty mapping).

This is a dict supporting the following keys:

	host

Host name of the ArangoDB server. Defaults to localhost.

	port

The port the ArangoDB server is listening to. Defaults to 8529.

	database

The default database in the ArangoDB server is writing to.
Defaults to celery.

	collection

The default collection in the ArangoDB servers database is writing to.
Defaults to celery.

	username

User name to authenticate to the ArangoDB server as (optional).

	password

Password to authenticate to the ArangoDB server (optional).

CosmosDB backend settings (experimental)

To use CosmosDB [https://azure.microsoft.com/en-us/services/cosmos-db/] as the result backend, you simply need to configure the
result_backend setting with the correct URL.

Example configuration

result_backend = 'cosmosdbsql://:{InsertAccountPrimaryKeyHere}@{InsertAccountNameHere}.documents.azure.com'

cosmosdbsql_database_name

Default: celerydb.

The name for the database in which to store the results.

cosmosdbsql_collection_name

Default: celerycol.

The name of the collection in which to store the results.

cosmosdbsql_consistency_level

Default: Session.

Represents the consistency levels supported for Azure Cosmos DB client operations.

Consistency levels by order of strength are: Strong, BoundedStaleness, Session, ConsistentPrefix and Eventual.

cosmosdbsql_max_retry_attempts

Default: 9.

Maximum number of retries to be performed for a request.

cosmosdbsql_max_retry_wait_time

Default: 30.

Maximum wait time in seconds to wait for a request while the retries are happening.

CouchDB backend settings

Note

The CouchDB backend requires the pycouchdb [https://pypi.python.org/pypi/pycouchdb/] library:

To install this Couchbase package use pip:

$ pip install celery[couchdb]

See Bundles for information on combining multiple extension
requirements.

This backend can be configured via the result_backend
set to a CouchDB URL:

result_backend = 'couchdb://username:password@host:port/container'

The URL is formed out of the following parts:

	username

User name to authenticate to the CouchDB server as (optional).

	password

Password to authenticate to the CouchDB server (optional).

	host

Host name of the CouchDB server. Defaults to localhost.

	port

The port the CouchDB server is listening to. Defaults to 8091.

	container

The default container the CouchDB server is writing to.
Defaults to default.

File-system backend settings

This backend can be configured using a file URL, for example:

CELERY_RESULT_BACKEND = 'file:///var/celery/results'

The configured directory needs to be shared and writable by all servers using
the backend.

If you’re trying Celery on a single system you can simply use the backend
without any further configuration. For larger clusters you could use NFS,
GlusterFS [http://www.gluster.org/], CIFS, HDFS [http://hadoop.apache.org/] (using FUSE), or any other file-system.

Consul K/V store backend settings

The Consul backend can be configured using a URL, for example:

CELERY_RESULT_BACKEND = ‘consul://localhost:8500/’

The backend will storage results in the K/V store of Consul
as individual keys.

The backend supports auto expire of results using TTLs in Consul.

Message Routing

task_queues

Default: None (queue taken from default queue settings).

Most users will not want to specify this setting and should rather use
the automatic routing facilities.

If you really want to configure advanced routing, this setting should
be a list of kombu.Queue [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue] objects the worker will consume from.

Note that workers can be overridden this setting via the
-Q option, or individual queues from this
list (by name) can be excluded using the -X
option.

Also see Basics for more information.

The default is a queue/exchange/binding key of celery, with
exchange type direct.

See also task_routes

task_routes

Default: None.

A list of routers, or a single router used to route tasks to queues.
When deciding the final destination of a task the routers are consulted
in order.

A router can be specified as either:

	A function with the signature (name, args, kwargs,
options, task=None, **kwargs)

	A string providing the path to a router function.

	
	A dict containing router specification:
	Will be converted to a celery.routes.MapRoute instance.

	
	A list of (pattern, route) tuples:
	Will be converted to a celery.routes.MapRoute instance.

Examples:

task_routes = {
 'celery.ping': 'default',
 'mytasks.add': 'cpu-bound',
 'feed.tasks.*': 'feeds', # <-- glob pattern
 re.compile(r'(image|video)\.tasks\..*'): 'media', # <-- regex
 'video.encode': {
 'queue': 'video',
 'exchange': 'media',
 'routing_key': 'media.video.encode',
 },
}

task_routes = ('myapp.tasks.route_task', {'celery.ping': 'default})

Where myapp.tasks.route_task could be:

def route_task(self, name, args, kwargs, options, task=None, **kw):
 if task == 'celery.ping':
 return {'queue': 'default'}

route_task may return a string or a dict. A string then means
it’s a queue name in task_queues, a dict means it’s a custom route.

When sending tasks, the routers are consulted in order. The first
router that doesn’t return None is the route to use. The message options
is then merged with the found route settings, where the task’s settings
have priority.

Example if apply_async() has these arguments:

Task.apply_async(immediate=False, exchange='video',
 routing_key='video.compress')

and a router returns:

{'immediate': True, 'exchange': 'urgent'}

the final message options will be:

immediate=False, exchange='video', routing_key='video.compress'

(and any default message options defined in the
Task class)

Values defined in task_routes have precedence over values defined in
task_queues when merging the two.

With the follow settings:

task_queues = {
 'cpubound': {
 'exchange': 'cpubound',
 'routing_key': 'cpubound',
 },
}

task_routes = {
 'tasks.add': {
 'queue': 'cpubound',
 'routing_key': 'tasks.add',
 'serializer': 'json',
 },
}

The final routing options for tasks.add will become:

{'exchange': 'cpubound',
 'routing_key': 'tasks.add',
 'serializer': 'json'}

See Routers for more examples.

task_queue_ha_policy

	brokers

	RabbitMQ

Default: None.

This will set the default HA policy for a queue, and the value
can either be a string (usually all):

task_queue_ha_policy = 'all'

Using ‘all’ will replicate the queue to all current nodes,
Or you can give it a list of nodes to replicate to:

task_queue_ha_policy = ['rabbit@host1', 'rabbit@host2']

Using a list will implicitly set x-ha-policy to ‘nodes’ and
x-ha-policy-params to the given list of nodes.

See http://www.rabbitmq.com/ha.html for more information.

task_queue_max_priority

	brokers

	RabbitMQ

Default: None.

See RabbitMQ Message Priorities.

task_default_priority

	brokers

	RabbitMQ, Redis

Default: None.

See RabbitMQ Message Priorities.

task_inherit_parent_priority

	brokers

	RabbitMQ

Default: False.

If enabled, child tasks will inherit priority of the parent task.

The last task in chain will also have priority set to 5.
chain = celery.chain(add.s(2) | add.s(2).set(priority=5) | add.s(3))

Priority inheritance also works when calling child tasks from a parent task
with delay or apply_async.

See RabbitMQ Message Priorities.

worker_direct

Default: Disabled.

This option enables so that every worker has a dedicated queue,
so that tasks can be routed to specific workers.

The queue name for each worker is automatically generated based on
the worker hostname and a .dq suffix, using the C.dq exchange.

For example the queue name for the worker with node name w1@example.com
becomes:

w1@example.com.dq

Then you can route the task to the task by specifying the hostname
as the routing key and the C.dq exchange:

task_routes = {
 'tasks.add': {'exchange': 'C.dq', 'routing_key': 'w1@example.com'}
}

task_create_missing_queues

Default: Enabled.

If enabled (default), any queues specified that aren’t defined in
task_queues will be automatically created. See
Automatic routing.

task_default_queue

Default: "celery".

The name of the default queue used by .apply_async if the message has
no route or no custom queue has been specified.

This queue must be listed in task_queues.
If task_queues isn’t specified then it’s automatically
created containing one queue entry, where this name is used as the name of
that queue.

See also

Changing the name of the default queue

task_default_exchange

Default: Uses the value set for task_default_queue.

Name of the default exchange to use when no custom exchange is
specified for a key in the task_queues setting.

task_default_exchange_type

Default: "direct".

Default exchange type used when no custom exchange type is specified
for a key in the task_queues setting.

task_default_routing_key

Default: Uses the value set for task_default_queue.

The default routing key used when no custom routing key
is specified for a key in the task_queues setting.

task_default_delivery_mode

Default: "persistent".

Can be transient (messages not written to disk) or persistent (written to
disk).

Broker Settings

broker_url

Default: "amqp://"

Default broker URL. This must be a URL in the form of:

transport://userid:password@hostname:port/virtual_host

Only the scheme part (transport://) is required, the rest
is optional, and defaults to the specific transports default values.

The transport part is the broker implementation to use, and the
default is amqp, (uses librabbitmq if installed or falls back to
pyamqp). There are also other choices available, including;
redis://, sqs://, and qpid://.

The scheme can also be a fully qualified path to your own transport
implementation:

broker_url = 'proj.transports.MyTransport://localhost'

More than one broker URL, of the same transport, can also be specified.
The broker URLs can be passed in as a single string that’s semicolon delimited:

broker_url = 'transport://userid:password@hostname:port//;transport://userid:password@hostname:port//'

Or as a list:

broker_url = [
 'transport://userid:password@localhost:port//',
 'transport://userid:password@hostname:port//'
]

The brokers will then be used in the broker_failover_strategy.

See URLs [https://kombu.readthedocs.io/en/master/userguide/connections.html#connection-urls] in the Kombu documentation for more
information.

broker_read_url / broker_write_url

Default: Taken from broker_url.

These settings can be configured, instead of broker_url to specify
different connection parameters for broker connections used for consuming and
producing.

Example:

broker_read_url = 'amqp://user:pass@broker.example.com:56721'
broker_write_url = 'amqp://user:pass@broker.example.com:56722'

Both options can also be specified as a list for failover alternates, see
broker_url for more information.

broker_failover_strategy

Default: "round-robin".

Default failover strategy for the broker Connection object. If supplied,
may map to a key in ‘kombu.connection.failover_strategies’, or be a reference
to any method that yields a single item from a supplied list.

Example:

Random failover strategy
def random_failover_strategy(servers):
 it = list(servers) # don't modify callers list
 shuffle = random.shuffle
 for _ in repeat(None):
 shuffle(it)
 yield it[0]

broker_failover_strategy = random_failover_strategy

broker_heartbeat

	transports supported

	pyamqp

Default: 120.0 (negotiated by server).

Note: This value is only used by the worker, clients do not use
a heartbeat at the moment.

It’s not always possible to detect connection loss in a timely
manner using TCP/IP alone, so AMQP defines something called heartbeats
that’s is used both by the client and the broker to detect if
a connection was closed.

If the heartbeat value is 10 seconds, then
the heartbeat will be monitored at the interval specified
by the broker_heartbeat_checkrate setting (by default
this is set to double the rate of the heartbeat value,
so for the 10 seconds, the heartbeat is checked every 5 seconds).

broker_heartbeat_checkrate

	transports supported

	pyamqp

Default: 2.0.

At intervals the worker will monitor that the broker hasn’t missed
too many heartbeats. The rate at which this is checked is calculated
by dividing the broker_heartbeat value with this value,
so if the heartbeat is 10.0 and the rate is the default 2.0, the check
will be performed every 5 seconds (twice the heartbeat sending rate).

broker_use_ssl

	transports supported

	pyamqp, redis

Default: Disabled.

Toggles SSL usage on broker connection and SSL settings.

The valid values for this option vary by transport.

pyamqp

If True the connection will use SSL with default SSL settings.
If set to a dict, will configure SSL connection according to the specified
policy. The format used is Python’s ssl.wrap_socket() [https://docs.python.org/dev/library/ssl.html#ssl.wrap_socket] options.

Note that SSL socket is generally served on a separate port by the broker.

Example providing a client cert and validating the server cert against a custom
certificate authority:

import ssl

broker_use_ssl = {
 'keyfile': '/var/ssl/private/worker-key.pem',
 'certfile': '/var/ssl/amqp-server-cert.pem',
 'ca_certs': '/var/ssl/myca.pem',
 'cert_reqs': ssl.CERT_REQUIRED
}

Warning

Be careful using broker_use_ssl=True. It’s possible that your default
configuration won’t validate the server cert at all. Please read Python
ssl module security
considerations [https://docs.python.org/3/library/ssl.html#ssl-security].

redis

The setting must be a dict with the following keys:

	
	ssl_cert_reqs (required): one of the SSLContext.verify_mode values:
	
	ssl.CERT_NONE

	ssl.CERT_OPTIONAL

	ssl.CERT_REQUIRED

	ssl_ca_certs (optional): path to the CA certificate

	ssl_certfile (optional): path to the client certificate

	ssl_keyfile (optional): path to the client key

broker_pool_limit

New in version 2.3.

Default: 10.

The maximum number of connections that can be open in the connection pool.

The pool is enabled by default since version 2.5, with a default limit of ten
connections. This number can be tweaked depending on the number of
threads/green-threads (eventlet/gevent) using a connection. For example
running eventlet with 1000 greenlets that use a connection to the broker,
contention can arise and you should consider increasing the limit.

If set to None or 0 the connection pool will be disabled and
connections will be established and closed for every use.

broker_connection_timeout

Default: 4.0.

The default timeout in seconds before we give up establishing a connection
to the AMQP server. This setting is disabled when using
gevent.

Note

The broker connection timeout only applies to a worker attempting to
connect to the broker. It does not apply to producer sending a task, see
broker_transport_options for how to provide a timeout for that
situation.

broker_connection_retry

Default: Enabled.

Automatically try to re-establish the connection to the AMQP broker if lost.

The time between retries is increased for each retry, and is
not exhausted before broker_connection_max_retries is
exceeded.

broker_connection_max_retries

Default: 100.

Maximum number of retries before we give up re-establishing a connection
to the AMQP broker.

If this is set to 0 or None, we’ll retry forever.

broker_login_method

Default: "AMQPLAIN".

Set custom amqp login method.

broker_transport_options

New in version 2.2.

Default: {} (empty mapping).

A dict of additional options passed to the underlying transport.

See your transport user manual for supported options (if any).

Example setting the visibility timeout (supported by Redis and SQS
transports):

broker_transport_options = {'visibility_timeout': 18000} # 5 hours

Example setting the producer connection maximum number of retries (so producers
won’t retry forever if the broker isn’t available at the first task execution):

broker_transport_options = {'max_retries': 5}

Worker

imports

Default: [] (empty list).

A sequence of modules to import when the worker starts.

This is used to specify the task modules to import, but also
to import signal handlers and additional remote control commands, etc.

The modules will be imported in the original order.

include

Default: [] (empty list).

Exact same semantics as imports, but can be used as a means
to have different import categories.

The modules in this setting are imported after the modules in
imports.

worker_concurrency

Default: Number of CPU cores.

The number of concurrent worker processes/threads/green threads executing
tasks.

If you’re doing mostly I/O you can have more processes,
but if mostly CPU-bound, try to keep it close to the
number of CPUs on your machine. If not set, the number of CPUs/cores
on the host will be used.

worker_prefetch_multiplier

Default: 4.

How many messages to prefetch at a time multiplied by the number of
concurrent processes. The default is 4 (four messages for each
process). The default setting is usually a good choice, however – if you
have very long running tasks waiting in the queue and you have to start the
workers, note that the first worker to start will receive four times the
number of messages initially. Thus the tasks may not be fairly distributed
to the workers.

To disable prefetching, set worker_prefetch_multiplier to 1.
Changing that setting to 0 will allow the worker to keep consuming
as many messages as it wants.

For more on prefetching, read Prefetch Limits

Note

Tasks with ETA/countdown aren’t affected by prefetch limits.

worker_lost_wait

Default: 10.0 seconds.

In some cases a worker may be killed without proper cleanup,
and the worker may have published a result before terminating.
This value specifies how long we wait for any missing results before
raising a WorkerLostError exception.

worker_max_tasks_per_child

Maximum number of tasks a pool worker process can execute before
it’s replaced with a new one. Default is no limit.

worker_max_memory_per_child

Default: No limit.
Type: int (kilobytes)

Maximum amount of resident memory, in kilobytes, that may be consumed by a
worker before it will be replaced by a new worker. If a single
task causes a worker to exceed this limit, the task will be
completed, and the worker will be replaced afterwards.

Example:

worker_max_memory_per_child = 12000 # 12MB

worker_disable_rate_limits

Default: Disabled (rate limits enabled).

Disable all rate limits, even if tasks has explicit rate limits set.

worker_state_db

Default: None.

Name of the file used to stores persistent worker state (like revoked tasks).
Can be a relative or absolute path, but be aware that the suffix .db
may be appended to the file name (depending on Python version).

Can also be set via the celery worker --statedb argument.

worker_timer_precision

Default: 1.0 seconds.

Set the maximum time in seconds that the ETA scheduler can sleep between
rechecking the schedule.

Setting this value to 1 second means the schedulers precision will
be 1 second. If you need near millisecond precision you can set this to 0.1.

worker_enable_remote_control

Default: Enabled by default.

Specify if remote control of the workers is enabled.

worker_proc_alive_timeout

Default: 4.0.

The timeout in seconds (int/float) when waiting for a new worker process to start up.

Events

worker_send_task_events

Default: Disabled by default.

Send task-related events so that tasks can be monitored using tools like
flower. Sets the default value for the workers
-E argument.

task_send_sent_event

New in version 2.2.

Default: Disabled by default.

If enabled, a task-sent event will be sent for every task so tasks can be
tracked before they’re consumed by a worker.

event_queue_ttl

	transports supported

	amqp

Default: 5.0 seconds.

Message expiry time in seconds (int/float) for when messages sent to a monitor clients
event queue is deleted (x-message-ttl)

For example, if this value is set to 10 then a message delivered to this queue
will be deleted after 10 seconds.

event_queue_expires

	transports supported

	amqp

Default: 60.0 seconds.

Expiry time in seconds (int/float) for when after a monitor clients
event queue will be deleted (x-expires).

event_queue_prefix

Default: "celeryev".

The prefix to use for event receiver queue names.

event_exchange

Default: "celeryev".

Name of the event exchange.

Warning

This option is in experimental stage, please use it with caution.

event_serializer

Default: "json".

Message serialization format used when sending event messages.

See also

Serializers.

Remote Control Commands

Note

To disable remote control commands see
the worker_enable_remote_control setting.

control_queue_ttl

Default: 300.0

Time in seconds, before a message in a remote control command queue
will expire.

If using the default of 300 seconds, this means that if a remote control
command is sent and no worker picks it up within 300 seconds, the command
is discarded.

This setting also applies to remote control reply queues.

control_queue_expires

Default: 10.0

Time in seconds, before an unused remote control command queue is deleted
from the broker.

This setting also applies to remote control reply queues.

control_exchange

Default: "celery".

Name of the control command exchange.

Warning

This option is in experimental stage, please use it with caution.

Logging

worker_hijack_root_logger

New in version 2.2.

Default: Enabled by default (hijack root logger).

By default any previously configured handlers on the root logger will be
removed. If you want to customize your own logging handlers, then you
can disable this behavior by setting
worker_hijack_root_logger = False.

Note

Logging can also be customized by connecting to the
celery.signals.setup_logging signal.

worker_log_color

Default: Enabled if app is logging to a terminal.

Enables/disables colors in logging output by the Celery apps.

worker_log_format

Default:

"[%(asctime)s: %(levelname)s/%(processName)s] %(message)s"

The format to use for log messages.

See the Python logging [https://docs.python.org/dev/library/logging.html#module-logging] module for more information about log
formats.

worker_task_log_format

Default:

"[%(asctime)s: %(levelname)s/%(processName)s]
 [%(task_name)s(%(task_id)s)] %(message)s"

The format to use for log messages logged in tasks.

See the Python logging [https://docs.python.org/dev/library/logging.html#module-logging] module for more information about log
formats.

worker_redirect_stdouts

Default: Enabled by default.

If enabled stdout and stderr will be redirected
to the current logger.

Used by celery worker and celery beat.

worker_redirect_stdouts_level

Default: WARNING.

The log level output to stdout and stderr is logged as.
Can be one of DEBUG, INFO, WARNING,
ERROR, or CRITICAL.

Security

security_key

Default: None.

New in version 2.5.

The relative or absolute path to a file containing the private key
used to sign messages when Message Signing is used.

security_certificate

Default: None.

New in version 2.5.

The relative or absolute path to an X.509 certificate file
used to sign messages when Message Signing is used.

security_cert_store

Default: None.

New in version 2.5.

The directory containing X.509 certificates used for
Message Signing. Can be a glob with wild-cards,
(for example /etc/certs/*.pem).

security_digest

Default: sha256.

New in version 4.3.

A cryptography digest used to sign messages
when Message Signing is used.
https://cryptography.io/en/latest/hazmat/primitives/cryptographic-hashes/#module-cryptography.hazmat.primitives.hashes

Custom Component Classes (advanced)

worker_pool

Default: "prefork" (celery.concurrency.prefork:TaskPool).

Name of the pool class used by the worker.

Eventlet/Gevent

Never use this option to select the eventlet or gevent pool.
You must use the -P option to
celery worker instead, to ensure the monkey patches
aren’t applied too late, causing things to break in strange ways.

worker_pool_restarts

Default: Disabled by default.

If enabled the worker pool can be restarted using the
pool_restart remote control command.

worker_autoscaler

New in version 2.2.

Default: "celery.worker.autoscale:Autoscaler".

Name of the autoscaler class to use.

worker_consumer

Default: "celery.worker.consumer:Consumer".

Name of the consumer class used by the worker.

worker_timer

Default: "kombu.asynchronous.hub.timer:Timer".

Name of the ETA scheduler class used by the worker.
Default is or set by the pool implementation.

Beat Settings (celery beat)

beat_schedule

Default: {} (empty mapping).

The periodic task schedule used by beat.
See Entries.

beat_scheduler

Default: "celery.beat:PersistentScheduler".

The default scheduler class. May be set to
"django_celery_beat.schedulers:DatabaseScheduler" for instance,
if used alongside django-celery-beat [https://pypi.python.org/pypi/django-celery-beat/] extension.

Can also be set via the celery beat -S argument.

beat_schedule_filename

Default: "celerybeat-schedule".

Name of the file used by PersistentScheduler to store the last run times
of periodic tasks. Can be a relative or absolute path, but be aware that the
suffix .db may be appended to the file name (depending on Python version).

Can also be set via the celery beat --schedule argument.

beat_sync_every

Default: 0.

The number of periodic tasks that can be called before another database sync
is issued.
A value of 0 (default) means sync based on timing - default of 3 minutes as determined by
scheduler.sync_every. If set to 1, beat will call sync after every task
message sent.

beat_max_loop_interval

Default: 0.

The maximum number of seconds beat can sleep
between checking the schedule.

The default for this value is scheduler specific.
For the default Celery beat scheduler the value is 300 (5 minutes),
but for the django-celery-beat [https://pypi.python.org/pypi/django-celery-beat/] database scheduler it’s 5 seconds
because the schedule may be changed externally, and so it must take
changes to the schedule into account.

Also when running Celery beat embedded (-B)
on Jython as a thread the max interval is overridden and set to 1 so
that it’s possible to shut down in a timely manner.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Documenting Tasks with Sphinx

This document describes how auto-generate documentation for Tasks using Sphinx.

celery.contrib.sphinx

Sphinx documentation plugin used to document tasks.

Introduction

Usage

The Celery extension for Sphinx requires Sphinx 2.0 or later.

Add the extension to your docs/conf.py configuration module:

extensions = (...,
 'celery.contrib.sphinx')

If you’d like to change the prefix for tasks in reference documentation
then you can change the celery_task_prefix configuration value:

celery_task_prefix = '(task)' # < default

With the extension installed autodoc will automatically find
task decorated objects (e.g. when using the automodule directive)
and generate the correct (as well as add a (task) prefix),
and you can also refer to the tasks using :task:proj.tasks.add
syntax.

Use .. autotask:: to alternatively manually document a task.

	
class celery.contrib.sphinx.TaskDirective(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine)[source]

	Sphinx task directive.

	
get_signature_prefix(sig)[source]

	May return a prefix to put before the object name in the
signature.

	
class celery.contrib.sphinx.TaskDocumenter(directive: DocumenterBridge, name: str [https://docs.python.org/dev/library/stdtypes.html#str], indent: str [https://docs.python.org/dev/library/stdtypes.html#str] = '')[source]

	Document task definitions.

	
classmethod can_document_member(member, membername, isattr, parent)[source]

	Called to see if a member can be documented by this documenter.

	
check_module()[source]

	Check if self.object is really defined in the module given by
self.modname.

	
document_members(all_members=False)[source]

	Generate reST for member documentation.

If all_members is True, do all members, else those given by
self.options.members.

	
format_args()[source]

	Format the argument signature of self.object.

Should return None if the object does not have a signature.

	
celery.contrib.sphinx.autodoc_skip_member_handler(app, what, name, obj, skip, options)[source]

	Handler for autodoc-skip-member event.

	
celery.contrib.sphinx.setup(app)[source]

	Setup Sphinx extension.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Django

	Release

	5.0

	Date

	Oct 18, 2020

	First steps with Django
	Using Celery with Django

	Extensions

	Starting the worker process

	Where to go from here

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

First steps with Django

Using Celery with Django

Note

Previous versions of Celery required a separate library to work with Django,
but since 3.1 this is no longer the case. Django is supported out of the
box now so this document only contains a basic way to integrate Celery and
Django. You’ll use the same API as non-Django users so you’re recommended
to read the First Steps with Celery tutorial
first and come back to this tutorial. When you have a working example you can
continue to the Next Steps guide.

Note

Celery 4.0 supports Django 1.8 and newer versions. Please use Celery 3.1
for versions older than Django 1.8.

To use Celery with your Django project you must first define
an instance of the Celery library (called an “app”)

If you have a modern Django project layout like:

- proj/
 - manage.py
 - proj/
 - __init__.py
 - settings.py
 - urls.py

then the recommended way is to create a new proj/proj/celery.py module
that defines the Celery instance:

	file

	proj/proj/celery.py

import os

from celery import Celery

set the default Django settings module for the 'celery' program.
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'proj.settings')

app = Celery('proj')

Using a string here means the worker doesn't have to serialize
the configuration object to child processes.
- namespace='CELERY' means all celery-related configuration keys
should have a `CELERY_` prefix.
app.config_from_object('django.conf:settings', namespace='CELERY')

Load task modules from all registered Django app configs.
app.autodiscover_tasks()

@app.task(bind=True)
def debug_task(self):
 print(f'Request: {self.request!r}')

Then you need to import this app in your proj/proj/__init__.py
module. This ensures that the app is loaded when Django starts
so that the @shared_task decorator (mentioned later) will use it:

proj/proj/__init__.py:

This will make sure the app is always imported when
Django starts so that shared_task will use this app.
from .celery import app as celery_app

__all__ = ('celery_app',)

Note that this example project layout is suitable for larger projects,
for simple projects you may use a single contained module that defines
both the app and tasks, like in the First Steps with Celery tutorial.

Let’s break down what happens in the first module,
first, we set the default DJANGO_SETTINGS_MODULE [https://django.readthedocs.io/en/latest/topics/settings.html#envvar-DJANGO_SETTINGS_MODULE] environment
variable for the celery command-line program:

os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'proj.settings')

You don’t need this line, but it saves you from always passing in the
settings module to the celery program. It must always come before
creating the app instances, as is what we do next:

app = Celery('proj')

This is our instance of the library, you can have many instances
but there’s probably no reason for that when using Django.

We also add the Django settings module as a configuration source
for Celery. This means that you don’t have to use multiple
configuration files, and instead configure Celery directly
from the Django settings; but you can also separate them if wanted.

app.config_from_object('django.conf:settings', namespace='CELERY')

The uppercase name-space means that all
Celery configuration options
must be specified in uppercase instead of lowercase, and start with
CELERY_, so for example the task_always_eager setting
becomes CELERY_TASK_ALWAYS_EAGER, and the broker_url
setting becomes CELERY_BROKER_URL. This also applies to the
workers settings, for instance, the worker_concurrency
setting becomes CELERY_WORKER_CONCURRENCY.

For example, a Django project’s configuration file might include:

settings.py

...

Celery Configuration Options
CELERY_TIMEZONE = "Australia/Tasmania"
CELERY_TASK_TRACK_STARTED = True
CELERY_TASK_TIME_LIMIT = 30 * 60

You can pass the settings object directly instead, but using a string
is better since then the worker doesn’t have to serialize the object.
The CELERY_ namespace is also optional, but recommended (to
prevent overlap with other Django settings).

Next, a common practice for reusable apps is to define all tasks
in a separate tasks.py module, and Celery does have a way to
auto-discover these modules:

app.autodiscover_tasks()

With the line above Celery will automatically discover tasks from all
of your installed apps, following the tasks.py convention:

- app1/
 - tasks.py
 - models.py
- app2/
 - tasks.py
 - models.py

This way you don’t have to manually add the individual modules
to the CELERY_IMPORTS setting.

Finally, the debug_task example is a task that dumps
its own request information. This is using the new bind=True task option
introduced in Celery 3.1 to easily refer to the current task instance.

Using the @shared_task decorator

The tasks you write will probably live in reusable apps, and reusable
apps cannot depend on the project itself, so you also cannot import your app
instance directly.

The @shared_task decorator lets you create tasks without having any
concrete app instance:

demoapp/tasks.py:

Create your tasks here

from celery import shared_task
from demoapp.models import Widget

@shared_task
def add(x, y):
 return x + y

@shared_task
def mul(x, y):
 return x * y

@shared_task
def xsum(numbers):
 return sum(numbers)

@shared_task
def count_widgets():
 return Widget.objects.count()

@shared_task
def rename_widget(widget_id, name):
 w = Widget.objects.get(id=widget_id)
 w.name = name
 w.save()

See also

You can find the full source code for the Django example project at:
https://github.com/celery/celery/tree/master/examples/django/

Relative Imports

You have to be consistent in how you import the task module.
For example, if you have project.app in INSTALLED_APPS, then you
must also import the tasks from project.app or else the names
of the tasks will end up being different.

See Automatic naming and relative imports

Extensions

django-celery-results - Using the Django ORM/Cache as a result backend

The django-celery-results [https://pypi.python.org/pypi/django-celery-results/] extension provides result backends
using either the Django ORM, or the Django Cache framework.

To use this with your project you need to follow these steps:

	Install the django-celery-results [https://pypi.python.org/pypi/django-celery-results/] library:

$ pip install django-celery-results

	Add django_celery_results to INSTALLED_APPS in your
Django project’s settings.py:

INSTALLED_APPS = (
 ...,
 'django_celery_results',
)

Note that there is no dash in the module name, only underscores.

	Create the Celery database tables by performing a database migrations:

$ python manage.py migrate django_celery_results

	Configure Celery to use the django-celery-results [https://pypi.python.org/pypi/django-celery-results/] backend.

Assuming you are using Django’s settings.py to also configure
Celery, add the following settings:

CELERY_RESULT_BACKEND = 'django-db'

For the cache backend you can use:

CELERY_CACHE_BACKEND = 'django-cache'

We can also use the cache defined in the CACHES setting in django.

celery setting.
CELERY_CACHE_BACKEND = 'default'

django setting.
CACHES = {
 'default': {
 'BACKEND': 'django.core.cache.backends.db.DatabaseCache',
 'LOCATION': 'my_cache_table',
 }
}

For additional configuration options, view the
Task result backend settings reference.

django-celery-beat - Database-backed Periodic Tasks with Admin interface.

See Using custom scheduler classes for more information.

Starting the worker process

In a production environment you’ll want to run the worker in the background
as a daemon - see Daemonization - but for testing and
development it is useful to be able to start a worker instance by using the
celery worker manage command, much as you’d use Django’s
manage.py runserver:

$ celery -A proj worker -l INFO

For a complete listing of the command-line options available,
use the help command:

$ celery help

Where to go from here

If you want to learn more you should continue to the
Next Steps tutorial, and after that you
can study the User Guide.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Contributing

Welcome!

This document is fairly extensive and you aren’t really expected
to study this in detail for small contributions;

The most important rule is that contributing must be easy
and that the community is friendly and not nitpicking on details,
such as coding style.

If you’re reporting a bug you should read the Reporting bugs section
below to ensure that your bug report contains enough information
to successfully diagnose the issue, and if you’re contributing code
you should try to mimic the conventions you see surrounding the code
you’re working on, but in the end all patches will be cleaned up by
the person merging the changes so don’t worry too much.

	Community Code of Conduct

	Be considerate

	Be respectful

	Be collaborative

	When you disagree, consult others

	When you’re unsure, ask for help

	Step down considerately

	Reporting Bugs

	Security

	Other bugs

	Issue Trackers

	Contributors guide to the code base

	Versions

	Branches

	dev branch

	Maintenance branches

	Archived branches

	Feature branches

	Tags

	Working on Features & Patches

	Forking and setting up the repository

	Developing and Testing with Docker

	Running the unit test suite

	Calculating test coverage

	Code coverage in HTML format

	Code coverage in XML (Cobertura-style)

	Running the tests on all supported Python versions

	Building the documentation

	Verifying your contribution

	pyflakes & PEP-8

	API reference

	Isort

	Creating pull requests

	Status Labels

	Coding Style

	Contributing features requiring additional libraries

	Contacts

	Committers

	Ask Solem

	Asif Saif Uddin

	Dmitry Malinovsky

	Ionel Cristian Mărieș

	Mher Movsisyan

	Omer Katz

	Steeve Morin

	Josue Balandrano Coronel

	Website

	Mauro Rocco

	Jan Henrik Helmers

	Packages

	celery

	kombu

	amqp

	vine

	billiard

	django-celery-beat

	django-celery-results

	librabbitmq

	cell

	cyme

	Deprecated

	Release Procedure

	Updating the version number

	Releasing

Community Code of Conduct

The goal is to maintain a diverse community that’s pleasant for everyone.
That’s why we would greatly appreciate it if everyone contributing to and
interacting with the community also followed this Code of Conduct.

The Code of Conduct covers our behavior as members of the community,
in any forum, mailing list, wiki, website, Internet relay chat (IRC), public
meeting or private correspondence.

The Code of Conduct is heavily based on the Ubuntu Code of Conduct [https://www.ubuntu.com/community/conduct], and
the Pylons Code of Conduct [http://docs.pylonshq.com/community/conduct.html].

Be considerate

Your work will be used by other people, and you in turn will depend on the
work of others. Any decision you take will affect users and colleagues, and
we expect you to take those consequences into account when making decisions.
Even if it’s not obvious at the time, our contributions to Celery will impact
the work of others. For example, changes to code, infrastructure, policy,
documentation and translations during a release may negatively impact
others’ work.

Be respectful

The Celery community and its members treat one another with respect. Everyone
can make a valuable contribution to Celery. We may not always agree, but
disagreement is no excuse for poor behavior and poor manners. We might all
experience some frustration now and then, but we cannot allow that frustration
to turn into a personal attack. It’s important to remember that a community
where people feel uncomfortable or threatened isn’t a productive one. We
expect members of the Celery community to be respectful when dealing with
other contributors as well as with people outside the Celery project and with
users of Celery.

Be collaborative

Collaboration is central to Celery and to the larger free software community.
We should always be open to collaboration. Your work should be done
transparently and patches from Celery should be given back to the community
when they’re made, not just when the distribution releases. If you wish
to work on new code for existing upstream projects, at least keep those
projects informed of your ideas and progress. It many not be possible to
get consensus from upstream, or even from your colleagues about the correct
implementation for an idea, so don’t feel obliged to have that agreement
before you begin, but at least keep the outside world informed of your work,
and publish your work in a way that allows outsiders to test, discuss, and
contribute to your efforts.

When you disagree, consult others

Disagreements, both political and technical, happen all the time and
the Celery community is no exception. It’s important that we resolve
disagreements and differing views constructively and with the help of the
community and community process. If you really want to go a different
way, then we encourage you to make a derivative distribution or alternate
set of packages that still build on the work we’ve done to utilize as common
of a core as possible.

When you’re unsure, ask for help

Nobody knows everything, and nobody is expected to be perfect. Asking
questions avoids many problems down the road, and so questions are
encouraged. Those who are asked questions should be responsive and helpful.
However, when asking a question, care must be taken to do so in an appropriate
forum.

Step down considerately

Developers on every project come and go and Celery is no different. When you
leave or disengage from the project, in whole or in part, we ask that you do
so in a way that minimizes disruption to the project. This means you should
tell people you’re leaving and take the proper steps to ensure that others
can pick up where you left off.

Reporting Bugs

Security

You must never report security related issues, vulnerabilities or bugs
including sensitive information to the bug tracker, or elsewhere in public.
Instead sensitive bugs must be sent by email to security@celeryproject.org.

If you’d like to submit the information encrypted our PGP key is:

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.4.15 (Darwin)

mQENBFJpWDkBCADFIc9/Fpgse4owLNvsTC7GYfnJL19XO0hnL99sPx+DPbfr+cSE
9wiU+Wp2TfUX7pCLEGrODiEP6ZCZbgtiPgId+JYvMxpP6GXbjiIlHRw1EQNH8RlX
cVxy3rQfVv8PGGiJuyBBjxzvETHW25htVAZ5TI1+CkxmuyyEYqgZN2fNd0wEU19D
+c10G1gSECbCQTCbacLSzdpngAt1Gkrc96r7wGHBBSvDaGDD2pFSkVuTLMbIRrVp
lnKOPMsUijiip2EMr2DvfuXiUIUvaqInTPNWkDynLoh69ib5xC19CSVLONjkKBsr
Pe+qAY29liBatatpXsydY7GIUzyBT3MzgMJlABEBAAG0MUNlbGVyeSBTZWN1cml0
eSBUZWFtIDxzZWN1cml0eUBjZWxlcnlwcm9qZWN0Lm9yZz6JATgEEwECACIFAlJp
WDkCGwMGCwkIBwMCBhUIAgkKCwQWAgMBAh4BAheAAAoJEOArFOUDCicIw1IH/26f
CViDC7/P13jr+srRdjAsWvQztia9HmTlY8cUnbmkR9w6b6j3F2ayw8VhkyFWgYEJ
wtPBv8mHKADiVSFARS+0yGsfCkia5wDSQuIv6XqRlIrXUyqJbmF4NUFTyCZYoh+C
ZiQpN9xGhFPr5QDlMx2izWg1rvWlG1jY2Es1v/xED3AeCOB1eUGvRe/uJHKjGv7J
rj0pFcptZX+WDF22AN235WYwgJM6TrNfSu8sv8vNAQOVnsKcgsqhuwomSGsOfMQj
LFzIn95MKBBU1G5wOs7JtwiV9jefGqJGBO2FAvOVbvPdK/saSnB+7K36dQcIHqms
5hU4Xj0RIJiod5idlRC5AQ0EUmlYOQEIAJs8OwHMkrdcvy9kk2HBVbdqhgAREMKy
gmphDp7prRL9FqSY/dKpCbG0u82zyJypdb7QiaQ5pfPzPpQcd2dIcohkkh7G3E+e
hS2L9AXHpwR26/PzMBXyr2iNnNc4vTksHvGVDxzFnRpka6vbI/hrrZmYNYh9EAiv
uhE54b3/XhXwFgHjZXb9i8hgJ3nsO0pRwvUAM1bRGMbvf8e9F+kqgV0yWYNnh6QL
4Vpl1+epqp2RKPHyNQftbQyrAHXT9kQF9pPlx013MKYaFTADscuAp4T3dy7xmiwS
crqMbZLzfrxfFOsNxTUGE5vmJCcm+mybAtRo4aV6ACohAO9NevMx8pUAEQEAAYkB
HwQYAQIACQUCUmlYOQIbDAAKCRDgKxTlAwonCNFbB/9esir/f7TufE+isNqErzR/
aZKZo2WzZR9c75kbqo6J6DYuUHe6xI0OZ2qZ60iABDEZAiNXGulysFLCiPdatQ8x
8zt3DF9BMkEck54ZvAjpNSern6zfZb1jPYWZq3TKxlTs/GuCgBAuV4i5vDTZ7xK/
aF+OFY5zN7ciZHkqLgMiTZ+RhqRcK6FhVBP/Y7d9NlBOcDBTxxE1ZO1ute6n7guJ
ciw4hfoRk8qNN19szZuq3UU64zpkM2sBsIFM9tGF2FADRxiOaOWZHmIyVZriPFqW
RUwjSjs7jBVNq0Vy4fCu/5+e+XLOUBOoqtM5W7ELt0t1w9tXebtPEetV86in8fU2
=0chn
-----END PGP PUBLIC KEY BLOCK-----

Other bugs

Bugs can always be described to the Mailing list, but the best
way to report an issue and to ensure a timely response is to use the
issue tracker.

	Create a GitHub account.

You need to create a GitHub account [https://github.com/signup/free] to be able to create new issues
and participate in the discussion.

	Determine if your bug is really a bug.

You shouldn’t file a bug if you’re requesting support. For that you can use
the Mailing list, or IRC. If you still need support
you can open a github issue, please prepend the title with [QUESTION].

	Make sure your bug hasn’t already been reported.

Search through the appropriate Issue tracker. If a bug like yours was found,
check if you have new information that could be reported to help
the developers fix the bug.

	Check if you’re using the latest version.

A bug could be fixed by some other improvements and fixes - it might not have an
existing report in the bug tracker. Make sure you’re using the latest releases of
celery, billiard, kombu, amqp, and vine.

	Collect information about the bug.

To have the best chance of having a bug fixed, we need to be able to easily
reproduce the conditions that caused it. Most of the time this information
will be from a Python traceback message, though some bugs might be in design,
spelling or other errors on the website/docs/code.

	If the error is from a Python traceback, include it in the bug report.

	We also need to know what platform you’re running (Windows, macOS, Linux,
etc.), the version of your Python interpreter, and the version of Celery,
and related packages that you were running when the bug occurred.

	If you’re reporting a race condition or a deadlock, tracebacks can be
hard to get or might not be that useful. Try to inspect the process to
get more diagnostic data. Some ideas:

	Enable Celery’s breakpoint signal and use it
to inspect the process’s state. This will allow you to open a
pdb [https://docs.python.org/dev/library/pdb.html#module-pdb] session.

	Collect tracing data using strace`_(Linux),
:command:`dtruss (macOS), and ktrace (BSD),
ltrace [https://en.wikipedia.org/wiki/Ltrace], and lsof [https://en.wikipedia.org/wiki/Lsof].

	Include the output from the celery report command:

$ celery -A proj report

This will also include your configuration settings and it will try to
remove values for keys known to be sensitive, but make sure you also
verify the information before submitting so that it doesn’t contain
confidential information like API tokens and authentication
credentials.

	Your issue might be tagged as Needs Test Case. A test case represents
all the details needed to reproduce what your issue is reporting.
A test case can be some minimal code that reproduces the issue or
detailed instructions and configuration values that reproduces
said issue.

	Submit the bug.

By default GitHub [https://github.com] will email you to let you know when new comments have
been made on your bug. In the event you’ve turned this feature off, you
should check back on occasion to ensure you don’t miss any questions a
developer trying to fix the bug might ask.

Issue Trackers

Bugs for a package in the Celery ecosystem should be reported to the relevant
issue tracker.

	celery [https://pypi.python.org/pypi/celery/]: https://github.com/celery/celery/issues/

	kombu [https://pypi.python.org/pypi/kombu/]: https://github.com/celery/kombu/issues

	amqp [https://pypi.python.org/pypi/amqp/]: https://github.com/celery/py-amqp/issues

	vine [https://pypi.python.org/pypi/vine/]: https://github.com/celery/vine/issues

	librabbitmq [https://pypi.python.org/pypi/librabbitmq/]: https://github.com/celery/librabbitmq/issues

	django-celery-beat [https://pypi.python.org/pypi/django-celery-beat/]: https://github.com/celery/django-celery-beat/issues

	django-celery-results [https://pypi.python.org/pypi/django-celery-results/]: https://github.com/celery/django-celery-results/issues

If you’re unsure of the origin of the bug you can ask the
Mailing list, or just use the Celery issue tracker.

Contributors guide to the code base

There’s a separate section for internal details,
including details about the code base and a style guide.

Read Contributors Guide to the Code for more!

Versions

Version numbers consists of a major version, minor version and a release number.
Since version 2.1.0 we use the versioning semantics described by
SemVer: http://semver.org.

Stable releases are published at PyPI
while development releases are only available in the GitHub git repository as tags.
All version tags starts with “v”, so version 0.8.0 has the tag v0.8.0.

Branches

Current active version branches:

	dev (which git calls “master”) (https://github.com/celery/celery/tree/master)

	4.2 (https://github.com/celery/celery/tree/4.2)

	4.1 (https://github.com/celery/celery/tree/4.1)

	3.1 (https://github.com/celery/celery/tree/3.1)

You can see the state of any branch by looking at the Changelog:

https://github.com/celery/celery/blob/master/Changelog

If the branch is in active development the topmost version info should
contain meta-data like:

4.3.0
======
:release-date: TBA
:status: DEVELOPMENT
:branch: dev (git calls this master)

The status field can be one of:

	PLANNING

The branch is currently experimental and in the planning stage.

	DEVELOPMENT

The branch is in active development, but the test suite should
be passing and the product should be working and possible for users to test.

	FROZEN

The branch is frozen, and no more features will be accepted.
When a branch is frozen the focus is on testing the version as much
as possible before it is released.

dev branch

The dev branch (called “master” by git), is where development of the next
version happens.

Maintenance branches

Maintenance branches are named after the version – for example,
the maintenance branch for the 2.2.x series is named 2.2.

Previously these were named releaseXX-maint.

The versions we currently maintain is:

	4.2

This is the current series.

	4.1

Drop support for python 2.6. Add support for python 3.4, 3.5 and 3.6.

	3.1

Official support for python 2.6, 2.7 and 3.3, and also supported on PyPy.

Archived branches

Archived branches are kept for preserving history only,
and theoretically someone could provide patches for these if they depend
on a series that’s no longer officially supported.

An archived version is named X.Y-archived.

To maintain a cleaner history and drop compatibility to continue improving
the project, we do not have any archived version right now.

Feature branches

Major new features are worked on in dedicated branches.
There’s no strict naming requirement for these branches.

Feature branches are removed once they’ve been merged into a release branch.

Tags

	Tags are used exclusively for tagging releases. A release tag is
named with the format vX.Y.Z – for example v2.3.1.

	Experimental releases contain an additional identifier vX.Y.Z-id –
for example v3.0.0-rc1.

	Experimental tags may be removed after the official release.

Working on Features & Patches

Note

Contributing to Celery should be as simple as possible,
so none of these steps should be considered mandatory.

You can even send in patches by email if that’s your preferred
work method. We won’t like you any less, any contribution you make
is always appreciated!

However, following these steps may make maintainer’s life easier,
and may mean that your changes will be accepted sooner.

Forking and setting up the repository

First you need to fork the Celery repository; a good introduction to this
is in the GitHub Guide: Fork a Repo [https://help.github.com/fork-a-repo/].

After you have cloned the repository, you should checkout your copy
to a directory on your machine:

$ git clone git@github.com:username/celery.git

When the repository is cloned, enter the directory to set up easy access
to upstream changes:

$ cd celery
$ git remote add upstream git://github.com/celery/celery.git
$ git fetch upstream

If you need to pull in new changes from upstream you should
always use the --rebase option to git pull:

git pull --rebase upstream master

With this option, you don’t clutter the history with merging
commit notes. See Rebasing merge commits in git [https://notes.envato.com/developers/rebasing-merge-commits-in-git/].
If you want to learn more about rebasing, see the Rebase [https://help.github.com/rebase/]
section in the GitHub guides.

If you need to work on a different branch than the one git calls master, you can
fetch and checkout a remote branch like this:

git checkout --track -b 5.0-devel upstream/5.0-devel

Note: Any feature or fix branch should be created from upstream/master.

Developing and Testing with Docker

Because of the many components of Celery, such as a broker and backend,
Docker [https://www.docker.com/] and docker-compose [https://docs.docker.com/compose/] can be utilized to greatly simplify the
development and testing cycle. The Docker configuration here requires a
Docker version of at least 17.13.0 and docker-compose 1.13.0+.

The Docker components can be found within the docker/ folder and the
Docker image can be built via:

$ docker-compose build celery

and run via:

$ docker-compose run --rm celery <command>

where <command> is a command to execute in a Docker container. The –rm flag
indicates that the container should be removed after it is exited and is useful
to prevent accumulation of unwanted containers.

Some useful commands to run:

	bash

To enter the Docker container like a normal shell

	make test

To run the test suite.
Note: This will run tests using python 3.8 by default.

	tox

To run tox and test against a variety of configurations.
Note: This command will run tests for every environment defined in tox.ini.
It takes a while.

	pyenv exec python{2.7,3.5,3.6,3.7,3.8} -m pytest t/unit

To run unit tests using pytest.

Note: {2.7,3.5,3.6,3.7,3.8} means you can use any of those options.
e.g. pyenv exec python3.6 -m pytest t/unit

	pyenv exec python{2.7,3.5,3.6,3.7,3.8} -m pytest t/integration

To run integration tests using pytest

Note: {2.7,3.5,3.6,3.7,3.8} means you can use any of those options.
e.g. pyenv exec python3.6 -m pytest t/unit

By default, docker-compose will mount the Celery and test folders in the Docker
container, allowing code changes and testing to be immediately visible inside
the Docker container. Environment variables, such as the broker and backend to
use are also defined in the docker/docker-compose.yml file.

By running docker-compose build celery an image will be created with the
name celery/celery:dev. This docker image has every dependency needed
for development installed. pyenv is used to install multiple python
versions, the docker image offers python 2.7, 3.5, 3.6, 3.7 and 3.8.
The default python version is set to 3.8.

The docker-compose.yml file defines the necessary environment variables
to run integration tests. The celery service also mounts the codebase
and sets the PYTHONPATH environment variable to /home/developer/celery.
By setting PYTHONPATH the service allows to use the mounted codebase
as global module for development. If you prefer, you can also run
python -m pip install -e . to install the codebase in development mode.

If you would like to run a Django or stand alone project to manually test or
debug a feature, you can use the image built by docker-compose and mount
your custom code. Here’s an example:

Assuming a folder structure such as:

+ celery_project
 + celery # repository cloned here.
 + my_project
 - manage.py
 + my_project
 - views.py

version: "3"

services:
 celery:
 image: celery/celery:dev
 environment:
 TEST_BROKER: amqp://rabbit:5672
 TEST_BACKEND: redis://redis
 volumes:
 - ../../celery:/home/developer/celery
 - ../my_project:/home/developer/my_project
 depends_on:
 - rabbit
 - redis
 rabbit:
 image: rabbitmq:latest
 redis:
 image: redis:latest

In the previous example, we are using the image that we can build from
this repository and mounting the celery code base as well as our custom
project.

Running the unit test suite

If you like to develop using virtual environments or just outside docker,
you must make sure all necessary dependencies are installed.
There are multiple requirements files to make it easier to install all dependencies.
You do not have to use every requirements file but you must use default.txt.

pip install -U -r requirements/default.txt

To run the Celery test suite you need to install
requirements/test.txt.

$ pip install -U -r requirements/test.txt
$ pip install -U -r requirements/default.txt

After installing the dependencies required, you can now execute
the test suite by calling pytest [https://pypi.python.org/pypi/pytest/]:

$ pytest t/unit
$ pytest t/integration

Some useful options to pytest are:

	-x

Stop running the tests at the first test that fails.

	-s

Don’t capture output

	-v

Run with verbose output.

If you want to run the tests for a single test file only
you can do so like this:

$ pytest t/unit/worker/test_worker.py

Calculating test coverage

To calculate test coverage you must first install the pytest-cov [https://pypi.python.org/pypi/pytest-cov/] module.

Installing the pytest-cov [https://pypi.python.org/pypi/pytest-cov/] module:

$ pip install -U pytest-cov

Code coverage in HTML format

	Run pytest with the --cov-report=html argument enabled:

$ pytest --cov=celery --cov-report=html

	The coverage output will then be located in the htmlcov/ directory:

$ open htmlcov/index.html

Code coverage in XML (Cobertura-style)

	Run pytest with the --cov-report=xml argument enabled:

$ pytest --cov=celery --cov-report=xml

	The coverage XML output will then be located in the coverage.xml file.

Running the tests on all supported Python versions

There’s a tox [https://pypi.python.org/pypi/tox/] configuration file in the top directory of the
distribution.

To run the tests for all supported Python versions simply execute:

$ tox

Use the tox -e option if you only want to test specific Python versions:

$ tox -e 2.7

Building the documentation

To build the documentation, you need to install the dependencies
listed in requirements/docs.txt and requirements/default.txt:

$ pip install -U -r requirements/docs.txt
$ pip install -U -r requirements/default.txt

Additionally, to build with no warnings, you will need to install
the following packages:

$ apt-get install texlive texlive-latex-extra dvipng

After these dependencies are installed, you should be able to
build the docs by running:

$ cd docs
$ rm -rf _build
$ make html

Make sure there are no errors or warnings in the build output.
After building succeeds, the documentation is available at _build/html.

Verifying your contribution

To use these tools, you need to install a few dependencies. These dependencies
can be found in requirements/pkgutils.txt.

Installing the dependencies:

$ pip install -U -r requirements/pkgutils.txt

pyflakes & PEP-8

To ensure that your changes conform to PEP 8 [https://www.python.org/dev/peps/pep-0008] and to run pyflakes
execute:

$ make flakecheck

To not return a negative exit code when this command fails, use
the flakes target instead:

$ make flakes

API reference

To make sure that all modules have a corresponding section in the API
reference, please execute:

$ make apicheck

If files are missing, you can add them by copying an existing reference file.

If the module is internal, it should be part of the internal reference
located in docs/internals/reference/. If the module is public,
it should be located in docs/reference/.

For example, if reference is missing for the module celery.worker.awesome
and this module is considered part of the public API, use the following steps:

Use an existing file as a template:

$ cd docs/reference/
$ cp celery.schedules.rst celery.worker.awesome.rst

Edit the file using your favorite editor:

$ vim celery.worker.awesome.rst

 # change every occurrence of ``celery.schedules`` to
 # ``celery.worker.awesome``

Edit the index using your favorite editor:

$ vim index.rst

 # Add ``celery.worker.awesome`` to the index.

Commit your changes:

Add the file to git
$ git add celery.worker.awesome.rst
$ git add index.rst
$ git commit celery.worker.awesome.rst index.rst \
 -m "Adds reference for celery.worker.awesome"

Isort

Isort [https://isort.readthedocs.io/en/latest/] is a python utility to help sort imports alphabetically and separated into sections.
The Celery project uses isort to better maintain imports on every module.
Please run isort if there are any new modules or the imports on an existent module
had to be modified.

$ isort my_module.py # Run isort for one file
$ isort -rc . # Run it recursively
$ isort m_module.py --diff # Do a dry-run to see the proposed changes

Creating pull requests

When your feature/bugfix is complete, you may want to submit
a pull request, so that it can be reviewed by the maintainers.

Before submitting a pull request, please make sure you go through this checklist to
make it easier for the maintainers to accept your proposed changes:

	
	[] Make sure any change or new feature has a unit and/or integration test.
	If a test is not written, a label will be assigned to your PR with the name
Needs Test Coverage.

	
	[] Make sure unit test coverage does not decrease.
	pytest -xv --cov=celery --cov-report=xml --cov-report term.
You can check the current test coverage here: https://codecov.io/gh/celery/celery

	
	[] Run flake8 against the code. The following commands are valid
	and equivalent.:

$ flake8 -j 2 celery/ t/
$ make flakecheck
$ tox -e flake8

	
	[] Build api docs to make sure everything is OK. The following commands are valid
	and equivalent.:

$ make apicheck
$ cd docs && sphinx-build -b apicheck -d _build/doctrees . _build/apicheck
$ tox -e apicheck

	
	[] Build configcheck. The following commands are valid
	and equivalent.:

$ make configcheck
$ cd docs && sphinx-build -b configcheck -d _build/doctrees . _build/configcheck
$ tox -e configcheck

	
	[] Run bandit to make sure there’s no security issues. The following commands are valid
	and equivalent.:

$ pip install -U bandit
$ bandit -b bandit.json celery/
$ tox -e bandit

	
	[] Run unit and integration tests for every python version. The following commands are valid
	and equivalent.:

$ tox -v

	[] Confirm isort on any new or modified imports:

$ isort my_module.py --diff

Creating pull requests is easy, and they also let you track the progress
of your contribution. Read the Pull Requests [http://help.github.com/send-pull-requests/] section in the GitHub
Guide to learn how this is done.

You can also attach pull requests to existing issues by following
the steps outlined here: https://bit.ly/koJoso

You can also use hub [https://hub.github.com/] to create pull requests. Example: https://theiconic.tech/git-hub-fbe2e13ef4d1

Status Labels

There are different labels [https://github.com/celery/celery/labels] used to easily manage github issues and PRs.
Most of these labels make it easy to categorize each issue with important
details. For instance, you might see a Component:canvas label on an issue or PR.
The Component:canvas label means the issue or PR corresponds to the canvas functionality.
These labels are set by the maintainers and for the most part external contributors
should not worry about them. A subset of these labels are prepended with Status:.
Usually the Status: labels show important actions which the issue or PR needs.
Here is a summary of such statuses:

	Status: Cannot Reproduce

One or more Celery core team member has not been able to reproduce the issue.

	Status: Confirmed

The issue or PR has been confirmed by one or more Celery core team member.

	Status: Duplicate

A duplicate issue or PR.

	Status: Feedback Needed

One or more Celery core team member has asked for feedback on the issue or PR.

	Status: Has Testcase

It has been confirmed the issue or PR includes a test case.
This is particularly important to correctly write tests for any new
feature or bug fix.

	Status: In Progress

The PR is still in progress.

	Status: Invalid

The issue reported or the PR is not valid for the project.

	Status: Needs Documentation

The PR does not contain documentation for the feature or bug fix proposed.

	Status: Needs Rebase

The PR has not been rebased with master. It is very important to rebase
PRs before they can be merged to master to solve any merge conflicts.

	Status: Needs Test Coverage

Celery uses codecov [https://codecov.io/gh/celery/celery] to verify code coverage. Please make sure PRs do not
decrease code coverage. This label will identify PRs which need code coverage.

	Status: Needs Test Case

The issue or PR needs a test case. A test case can be a minimal code snippet
that reproduces an issue or a detailed set of instructions and configuration values
that reproduces the issue reported. If possible a test case can be submitted in
the form of a PR to Celery’s integration suite. The test case will be marked
as failed until the bug is fixed. When a test case cannot be run by Celery’s
integration suite, then it’s better to describe in the issue itself.

	Status: Needs Verification

This label is used to notify other users we need to verify the test case offered
by the reporter and/or we need to include the test in our integration suite.

	Status: Not a Bug

It has been decided the issue reported is not a bug.

	Status: Won’t Fix

It has been decided the issue will not be fixed. Sadly the Celery project does
not have unlimited resources and sometimes this decision has to be made.
Although, any external contributors are invited to help out even if an
issue or PR is labeled as Status: Won't Fix.

	Status: Works For Me

One or more Celery core team members have confirmed the issue reported works
for them.

Coding Style

You should probably be able to pick up the coding style
from surrounding code, but it is a good idea to be aware of the
following conventions.

	All Python code must follow the PEP 8 [https://www.python.org/dev/peps/pep-0008] guidelines.

pep8 [https://pypi.python.org/pypi/pep8/] is a utility you can use to verify that your code
is following the conventions.

	Docstrings must follow the PEP 257 [https://www.python.org/dev/peps/pep-0257] conventions, and use the following
style.

Do this:

def method(self, arg):
 """Short description.

 More details.

 """

or:

def method(self, arg):
 """Short description."""

but not this:

def method(self, arg):
 """
 Short description.
 """

	Lines shouldn’t exceed 78 columns.

You can enforce this in vim by setting the textwidth option:

set textwidth=78

If adhering to this limit makes the code less readable, you have one more
character to go on. This means 78 is a soft limit, and 79 is the hard
limit :)

	Import order

	Python standard library (import xxx)

	Python standard library (from xxx import)

	Third-party packages.

	Other modules from the current package.

or in case of code using Django:

	Python standard library (import xxx)

	Python standard library (from xxx import)

	Third-party packages.

	Django packages.

	Other modules from the current package.

Within these sections the imports should be sorted by module name.

Example:

import threading
import time

from collections import deque
from Queue import Queue, Empty

from .platforms import Pidfile
from .utils.time import maybe_timedelta

	Wild-card imports must not be used (from xxx import *).

	For distributions where Python 2.5 is the oldest support version,
additional rules apply:

	Absolute imports must be enabled at the top of every module:

from __future__ import absolute_import

	If the module uses the with [https://docs.python.org/dev/reference/compound_stmts.html#with] statement and must be compatible
with Python 2.5 (celery isn’t), then it must also enable that:

from __future__ import with_statement

	Every future import must be on its own line, as older Python 2.5
releases didn’t support importing multiple features on the
same future import line:

Good
from __future__ import absolute_import
from __future__ import with_statement

Bad
from __future__ import absolute_import, with_statement

(Note that this rule doesn’t apply if the package doesn’t include
support for Python 2.5)

	Note that we use “new-style” relative imports when the distribution
doesn’t support Python versions below 2.5

This requires Python 2.5 or later:

from . import submodule

Contributing features requiring additional libraries

Some features like a new result backend may require additional libraries
that the user must install.

We use setuptools extra_requires for this, and all new optional features
that require third-party libraries must be added.

	Add a new requirements file in requirements/extras

For the Cassandra backend this is
requirements/extras/cassandra.txt, and the file looks like this:

pycassa

These are pip requirement files, so you can have version specifiers and
multiple packages are separated by newline. A more complex example could
be:

pycassa 2.0 breaks Foo
pycassa>=1.0,<2.0
thrift

	Modify setup.py

After the requirements file is added, you need to add it as an option
to setup.py in the extras_require section:

extra['extras_require'] = {
 # ...
 'cassandra': extras('cassandra.txt'),
}

	Document the new feature in docs/includes/installation.txt

You must add your feature to the list in the Bundles section
of docs/includes/installation.txt.

After you’ve made changes to this file, you need to render
the distro README file:

$ pip install -U requirements/pkgutils.txt
$ make readme

That’s all that needs to be done, but remember that if your feature
adds additional configuration options, then these needs to be documented
in docs/configuration.rst. Also, all settings need to be added to the
celery/app/defaults.py module.

Result backends require a separate section in the docs/configuration.rst
file.

Contacts

This is a list of people that can be contacted for questions
regarding the official git repositories, PyPI packages
Read the Docs pages.

If the issue isn’t an emergency then it’s better
to report an issue.

Committers

Ask Solem

	github

	https://github.com/ask

	twitter

	https://twitter.com/#!/asksol

Asif Saif Uddin

	github

	https://github.com/auvipy

	twitter

	https://twitter.com/#!/auvipy

Dmitry Malinovsky

	github

	https://github.com/malinoff

	twitter

	https://twitter.com/__malinoff__

Ionel Cristian Mărieș

	github

	https://github.com/ionelmc

	twitter

	https://twitter.com/ionelmc

Mher Movsisyan

	github

	https://github.com/mher

	twitter

	https://twitter.com/#!/movsm

Omer Katz

	github

	https://github.com/thedrow

	twitter

	https://twitter.com/the_drow

Steeve Morin

	github

	https://github.com/steeve

	twitter

	https://twitter.com/#!/steeve

Josue Balandrano Coronel

	github

	https://github.com/xirdneh

	twitter

	https://twitter.com/eusoj_xirdneh

Website

The Celery Project website is run and maintained by

Mauro Rocco

	github

	https://github.com/fireantology

	twitter

	https://twitter.com/#!/fireantology

with design by:

Jan Henrik Helmers

	web

	http://www.helmersworks.com

	twitter

	https://twitter.com/#!/helmers

Packages

celery

	git

	https://github.com/celery/celery

	CI

	https://travis-ci.org/#!/celery/celery

	Windows-CI

	https://ci.appveyor.com/project/ask/celery

	PyPI

	celery [https://pypi.python.org/pypi/celery/]

	docs

	http://docs.celeryproject.org

kombu

Messaging library.

	git

	https://github.com/celery/kombu

	CI

	https://travis-ci.org/#!/celery/kombu

	Windows-CI

	https://ci.appveyor.com/project/ask/kombu

	PyPI

	kombu [https://pypi.python.org/pypi/kombu/]

	docs

	https://kombu.readthedocs.io

amqp

Python AMQP 0.9.1 client.

	git

	https://github.com/celery/py-amqp

	CI

	https://travis-ci.org/#!/celery/py-amqp

	Windows-CI

	https://ci.appveyor.com/project/ask/py-amqp

	PyPI

	amqp [https://pypi.python.org/pypi/amqp/]

	docs

	https://amqp.readthedocs.io

vine

Promise/deferred implementation.

	git

	https://github.com/celery/vine/

	CI

	https://travis-ci.org/#!/celery/vine/

	Windows-CI

	https://ci.appveyor.com/project/ask/vine

	PyPI

	vine [https://pypi.python.org/pypi/vine/]

	docs

	https://vine.readthedocs.io

billiard

Fork of multiprocessing containing improvements
that’ll eventually be merged into the Python stdlib.

	git

	https://github.com/celery/billiard

	CI

	https://travis-ci.org/#!/celery/billiard/

	Windows-CI

	https://ci.appveyor.com/project/ask/billiard

	PyPI

	billiard [https://pypi.python.org/pypi/billiard/]

django-celery-beat

Database-backed Periodic Tasks with admin interface using the Django ORM.

	git

	https://github.com/celery/django-celery-beat

	CI

	https://travis-ci.org/#!/celery/django-celery-beat

	Windows-CI

	https://ci.appveyor.com/project/ask/django-celery-beat

	PyPI

	django-celery-beat [https://pypi.python.org/pypi/django-celery-beat/]

django-celery-results

Store task results in the Django ORM, or using the Django Cache Framework.

	git

	https://github.com/celery/django-celery-results

	CI

	https://travis-ci.org/#!/celery/django-celery-results

	Windows-CI

	https://ci.appveyor.com/project/ask/django-celery-results

	PyPI

	django-celery-results [https://pypi.python.org/pypi/django-celery-results/]

librabbitmq

Very fast Python AMQP client written in C.

	git

	https://github.com/celery/librabbitmq

	PyPI

	librabbitmq [https://pypi.python.org/pypi/librabbitmq/]

cell

Actor library.

	git

	https://github.com/celery/cell

	PyPI

	cell [https://pypi.python.org/pypi/cell/]

cyme

Distributed Celery Instance manager.

	git

	https://github.com/celery/cyme

	PyPI

	cyme [https://pypi.python.org/pypi/cyme/]

	docs

	https://cyme.readthedocs.io/

Deprecated

	django-celery

	git

	https://github.com/celery/django-celery

	PyPI

	django-celery [https://pypi.python.org/pypi/django-celery/]

	docs

	http://docs.celeryproject.org/en/latest/django

	Flask-Celery

	git

	https://github.com/ask/Flask-Celery

	PyPI

	Flask-Celery [https://pypi.python.org/pypi/Flask-Celery/]

	celerymon

	git

	https://github.com/celery/celerymon

	PyPI

	celerymon [https://pypi.python.org/pypi/celerymon/]

	carrot

	git

	https://github.com/ask/carrot

	PyPI

	carrot [https://pypi.python.org/pypi/carrot/]

	ghettoq

	git

	https://github.com/ask/ghettoq

	PyPI

	ghettoq [https://pypi.python.org/pypi/ghettoq/]

	kombu-sqlalchemy

	git

	https://github.com/ask/kombu-sqlalchemy

	PyPI

	kombu-sqlalchemy [https://pypi.python.org/pypi/kombu-sqlalchemy/]

	django-kombu

	git

	https://github.com/ask/django-kombu

	PyPI

	django-kombu [https://pypi.python.org/pypi/django-kombu/]

	pylibrabbitmq

Old name for librabbitmq [https://pypi.python.org/pypi/librabbitmq/].

	git

	None

	PyPI

	pylibrabbitmq [https://pypi.python.org/pypi/pylibrabbitmq/]

Release Procedure

Updating the version number

The version number must be updated in three places:

	celery/__init__.py

	docs/include/introduction.txt

	README.rst

The changes to the previous files can be handled with the [bumpversion command line tool]
(https://pypi.org/project/bumpversion/). The corresponding configuration lives in
.bumpversion.cfg. To do the necessary changes, run:

$ bumpversion

After you have changed these files, you must render
the README files. There’s a script to convert sphinx syntax
to generic reStructured Text syntax, and the make target readme
does this for you:

$ make readme

Now commit the changes:

$ git commit -a -m "Bumps version to X.Y.Z"

and make a new version tag:

$ git tag vX.Y.Z
$ git push --tags

Releasing

Commands to make a new public stable release:

$ make distcheck # checks pep8, autodoc index, runs tests and more
$ make dist # NOTE: Runs git clean -xdf and removes files not in the repo.
$ python setup.py sdist upload --sign --identity='Celery Security Team'
$ python setup.py bdist_wheel upload --sign --identity='Celery Security Team'

If this is a new release series then you also need to do the
following:

	
	Go to the Read The Docs management interface at:
	https://readthedocs.org/projects/celery/?fromdocs=celery

	Enter “Edit project”

Change default branch to the branch of this series, for example, use
the 2.4 branch for the 2.4 series.

	Also add the previous version under the “versions” tab.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Community Resources

This is a list of external blog posts, tutorials, and slides related
to Celery. If you have a link that’s missing from this list, please
contact the mailing-list or submit a patch.

	Resources

	Who’s using Celery

	Wiki

	Celery questions on Stack Overflow

	Mailing-list Archive: celery-users

	News

Resources

Who’s using Celery

https://github.com/celery/celery/wiki#companieswebsites-using-celery

Wiki

https://github.com/celery/celery/wiki

Celery questions on Stack Overflow

https://stackoverflow.com/search?q=celery&tab=newest

Mailing-list Archive: celery-users

http://blog.gmane.org/gmane.comp.python.amqp.celery.user

News

This section has moved to the Celery homepage:
http://celeryproject.org/community/

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Tutorials

	Release

	5.0

	Date

	Oct 18, 2020

	Task Cookbook
	Ensuring a task is only executed one at a time

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Task Cookbook

	Ensuring a task is only executed one at a time

Ensuring a task is only executed one at a time

You can accomplish this by using a lock.

In this example we’ll be using the cache framework to set a lock that’s
accessible for all workers.

It’s part of an imaginary RSS feed importer called djangofeeds.
The task takes a feed URL as a single argument, and imports that feed into
a Django model called Feed. We ensure that it’s not possible for two or
more workers to import the same feed at the same time by setting a cache key
consisting of the MD5 check-sum of the feed URL.

The cache key expires after some time in case something unexpected happens,
and something always will…

For this reason your tasks run-time shouldn’t exceed the timeout.

Note

In order for this to work correctly you need to be using a cache
backend where the .add operation is atomic. memcached is known
to work well for this purpose.

import time
from celery import task
from celery.utils.log import get_task_logger
from contextlib import contextmanager
from django.core.cache import cache
from hashlib import md5
from djangofeeds.models import Feed

logger = get_task_logger(__name__)

LOCK_EXPIRE = 60 * 10 # Lock expires in 10 minutes

@contextmanager
def memcache_lock(lock_id, oid):
 timeout_at = time.monotonic() + LOCK_EXPIRE - 3
 # cache.add fails if the key already exists
 status = cache.add(lock_id, oid, LOCK_EXPIRE)
 try:
 yield status
 finally:
 # memcache delete is very slow, but we have to use it to take
 # advantage of using add() for atomic locking
 if time.monotonic() < timeout_at and status:
 # don't release the lock if we exceeded the timeout
 # to lessen the chance of releasing an expired lock
 # owned by someone else
 # also don't release the lock if we didn't acquire it
 cache.delete(lock_id)

@task(bind=True)
def import_feed(self, feed_url):
 # The cache key consists of the task name and the MD5 digest
 # of the feed URL.
 feed_url_hexdigest = md5(feed_url).hexdigest()
 lock_id = '{0}-lock-{1}'.format(self.name, feed_url_hexdigest)
 logger.debug('Importing feed: %s', feed_url)
 with memcache_lock(lock_id, self.app.oid) as acquired:
 if acquired:
 return Feed.objects.import_feed(feed_url).url
 logger.debug(
 'Feed %s is already being imported by another worker', feed_url)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Frequently Asked Questions

	General

	What kinds of things should I use Celery for?

	Misconceptions

	Does Celery really consist of 50.000 lines of code?

	Does Celery have many dependencies?

	celery

	kombu

	Is Celery heavy-weight?

	Is Celery dependent on pickle?

	Is Celery for Django only?

	Do I have to use AMQP/RabbitMQ?

	Is Celery multilingual?

	Troubleshooting

	MySQL is throwing deadlock errors, what can I do?

	The worker isn’t doing anything, just hanging

	Task results aren’t reliably returning

	Why is Task.delay/apply*/the worker just hanging?

	Does it work on FreeBSD?

	I’m having IntegrityError: Duplicate Key errors. Why?

	Why aren’t my tasks processed?

	Why won’t my Task run?

	Why won’t my periodic task run?

	How do I purge all waiting tasks?

	I’ve purged messages, but there are still messages left in the queue?

	Results

	How do I get the result of a task if I have the ID that points there?

	Security

	Isn’t using pickle a security concern?

	Can messages be encrypted?

	Is it safe to run celery worker as root?

	Brokers

	Why is RabbitMQ crashing?

	Can I use Celery with ActiveMQ/STOMP?

	What features aren’t supported when not using an AMQP broker?

	Tasks

	How can I reuse the same connection when calling tasks?

	sudo in a subprocess [https://docs.python.org/dev/library/subprocess.html#module-subprocess] returns None

	Why do workers delete tasks from the queue if they’re unable to process them?

	Can I call a task by name?

	Can I get the task id of the current task?

	Can I specify a custom task_id?

	Can I use decorators with tasks?

	Can I use natural task ids?

	Can I run a task once another task has finished?

	Can I cancel the execution of a task?

	Why aren’t my remote control commands received by all workers?

	Can I send some tasks to only some servers?

	Can I disable prefetching of tasks?

	Can I change the interval of a periodic task at runtime?

	Does Celery support task priorities?

	Should I use retry or acks_late?

	Can I schedule tasks to execute at a specific time?

	Can I safely shut down the worker?

	Can I run the worker in the background on [platform]?

	Django

	What purpose does the database tables created by django-celery-beat have?

	What purpose does the database tables created by django-celery-results have?

	Windows

	Does Celery support Windows?

General

What kinds of things should I use Celery for?

Answer: Queue everything and delight everyone [https://decafbad.com/blog/2008/07/04/queue-everything-and-delight-everyone] is a good article
describing why you’d use a queue in a web context.

These are some common use cases:

	Running something in the background. For example, to finish the web request
as soon as possible, then update the users page incrementally.
This gives the user the impression of good performance and “snappiness”, even
though the real work might actually take some time.

	Running something after the web request has finished.

	Making sure something is done, by executing it asynchronously and using
retries.

	Scheduling periodic work.

And to some degree:

	Distributed computing.

	Parallel execution.

Misconceptions

Does Celery really consist of 50.000 lines of code?

Answer: No, this and similarly large numbers have
been reported at various locations.

The numbers as of this writing are:

	core: 7,141 lines of code.

	tests: 14,209 lines.

	backends, contrib, compat utilities: 9,032 lines.

Lines of code isn’t a useful metric, so
even if Celery did consist of 50k lines of code you wouldn’t
be able to draw any conclusions from such a number.

Does Celery have many dependencies?

A common criticism is that Celery uses too many dependencies.
The rationale behind such a fear is hard to imagine, especially considering
code reuse as the established way to combat complexity in modern software
development, and that the cost of adding dependencies is very low now
that package managers like pip and PyPI makes the hassle of installing
and maintaining dependencies a thing of the past.

Celery has replaced several dependencies along the way, and
the current list of dependencies are:

celery

	kombu [https://pypi.python.org/pypi/kombu/]

Kombu is part of the Celery ecosystem and is the library used
to send and receive messages. It’s also the library that enables
us to support many different message brokers. It’s also used by the
OpenStack project, and many others, validating the choice to separate
it from the Celery code-base.

	billiard [https://pypi.python.org/pypi/billiard/]

Billiard is a fork of the Python multiprocessing module containing
many performance and stability improvements. It’s an eventual goal
that these improvements will be merged back into Python one day.

It’s also used for compatibility with older Python versions
that don’t come with the multiprocessing module.

	pytz [https://pypi.python.org/pypi/pytz/]

The pytz module provides timezone definitions and related tools.

kombu

Kombu depends on the following packages:

	amqp [https://pypi.python.org/pypi/amqp/]

The underlying pure-Python amqp client implementation. AMQP being the default
broker this is a natural dependency.

Note

To handle the dependencies for popular configuration
choices Celery defines a number of “bundle” packages,
see Bundles.

Is Celery heavy-weight?

Celery poses very little overhead both in memory footprint and
performance.

But please note that the default configuration isn’t optimized for time nor
space, see the Optimizing guide for more information.

Is Celery dependent on pickle?

Answer: No, Celery can support any serialization scheme.

We have built-in support for JSON, YAML, Pickle, and msgpack.
Every task is associated with a content type, so you can even send one task using pickle,
another using JSON.

The default serialization support used to be pickle, but since 4.0 the default
is now JSON. If you require sending complex Python objects as task arguments,
you can use pickle as the serialization format, but see notes in
Serializers.

If you need to communicate with other languages you should use
a serialization format suited to that task, which pretty much means any
serializer that’s not pickle.

You can set a global default serializer, the default serializer for a
particular Task, or even what serializer to use when sending a single task
instance.

Is Celery for Django only?

Answer: No, you can use Celery with any framework, web or otherwise.

Do I have to use AMQP/RabbitMQ?

Answer: No, although using RabbitMQ is recommended you can also
use Redis, SQS, or Qpid.

See Brokers for more information.

Redis as a broker won’t perform as well as
an AMQP broker, but the combination RabbitMQ as broker and Redis as a result
store is commonly used. If you have strict reliability requirements you’re
encouraged to use RabbitMQ or another AMQP broker. Some transports also use
polling, so they’re likely to consume more resources. However, if you for
some reason aren’t able to use AMQP, feel free to use these alternatives.
They will probably work fine for most use cases, and note that the above
points are not specific to Celery; If using Redis/database as a queue worked
fine for you before, it probably will now. You can always upgrade later
if you need to.

Is Celery multilingual?

Answer: Yes.

worker is an implementation of Celery in Python. If the
language has an AMQP client, there shouldn’t be much work to create a worker
in your language. A Celery worker is just a program connecting to the broker
to process messages.

Also, there’s another way to be language-independent, and that’s to use REST
tasks, instead of your tasks being functions, they’re URLs. With this
information you can even create simple web servers that enable preloading of
code. Simply expose an endpoint that performs an operation, and create a task
that just performs an HTTP request to that endpoint.

You can also use Flower’s [https://flower.readthedocs.io] REST API [https://flower.readthedocs.io/en/latest/api.html#post--api-task-async-apply-(.+)] to invoke tasks.

Troubleshooting

MySQL is throwing deadlock errors, what can I do?

Answer: MySQL has default isolation level set to REPEATABLE-READ,
if you don’t really need that, set it to READ-COMMITTED.
You can do that by adding the following to your my.cnf:

[mysqld]
transaction-isolation = READ-COMMITTED

For more information about InnoDB`s transaction model see MySQL - The InnoDB
Transaction Model and Locking [https://dev.mysql.com/doc/refman/5.1/en/innodb-transaction-model.html] in the MySQL user manual.

(Thanks to Honza Kral and Anton Tsigularov for this solution)

The worker isn’t doing anything, just hanging

Answer: See MySQL is throwing deadlock errors, what can I do?,
or Why is Task.delay/apply*/the worker just hanging?.

Task results aren’t reliably returning

Answer: If you’re using the database backend for results, and in particular
using MySQL, see MySQL is throwing deadlock errors, what can I do?.

Why is Task.delay/apply*/the worker just hanging?

Answer: There’s a bug in some AMQP clients that’ll make it hang if
it’s not able to authenticate the current user, the password doesn’t match or
the user doesn’t have access to the virtual host specified. Be sure to check
your broker logs (for RabbitMQ that’s /var/log/rabbitmq/rabbit.log on
most systems), it usually contains a message describing the reason.

Does it work on FreeBSD?

Answer: Depends;

When using the RabbitMQ (AMQP) and Redis transports it should work
out of the box.

For other transports the compatibility prefork pool is
used and requires a working POSIX semaphore implementation,
this is enabled in FreeBSD by default since FreeBSD 8.x.
For older version of FreeBSD, you have to enable
POSIX semaphores in the kernel and manually recompile billiard.

Luckily, Viktor Petersson has written a tutorial to get you started with
Celery on FreeBSD here:
http://www.playingwithwire.com/2009/10/how-to-get-celeryd-to-work-on-freebsd/

I’m having IntegrityError: Duplicate Key errors. Why?

Answer: See MySQL is throwing deadlock errors, what can I do?.
Thanks to @@howsthedotcom [https://github.com/@howsthedotcom/].

Why aren’t my tasks processed?

Answer: With RabbitMQ you can see how many consumers are currently
receiving tasks by running the following command:

$ rabbitmqctl list_queues -p <myvhost> name messages consumers
Listing queues ...
celery 2891 2

This shows that there’s 2891 messages waiting to be processed in the task
queue, and there are two consumers processing them.

One reason that the queue is never emptied could be that you have a stale
worker process taking the messages hostage. This could happen if the worker
wasn’t properly shut down.

When a message is received by a worker the broker waits for it to be
acknowledged before marking the message as processed. The broker won’t
re-send that message to another consumer until the consumer is shut down
properly.

If you hit this problem you have to kill all workers manually and restart
them:

$ pkill 'celery worker'

$ # - If you don't have pkill use:
$ # ps auxww | awk '/celery worker/ {print $2}' | xargs kill

You may have to wait a while until all workers have finished executing
tasks. If it’s still hanging after a long time you can kill them by force
with:

$ pkill -9 'celery worker'

$ # - If you don't have pkill use:
$ # ps auxww | awk '/celery worker/ {print $2}' | xargs kill -9

Why won’t my Task run?

Answer: There might be syntax errors preventing the tasks module being imported.

You can find out if Celery is able to run the task by executing the
task manually:

>>> from myapp.tasks import MyPeriodicTask
>>> MyPeriodicTask.delay()

Watch the workers log file to see if it’s able to find the task, or if some
other error is happening.

Why won’t my periodic task run?

Answer: See Why won’t my Task run?.

How do I purge all waiting tasks?

Answer: You can use the celery purge command to purge
all configured task queues:

$ celery -A proj purge

or programmatically:

>>> from proj.celery import app
>>> app.control.purge()
1753

If you only want to purge messages from a specific queue
you have to use the AMQP API or the celery amqp utility:

$ celery -A proj amqp queue.purge <queue name>

The number 1753 is the number of messages deleted.

You can also start the worker with the
--purge option enabled to purge messages
when the worker starts.

I’ve purged messages, but there are still messages left in the queue?

Answer: Tasks are acknowledged (removed from the queue) as soon
as they’re actually executed. After the worker has received a task, it will
take some time until it’s actually executed, especially if there are a lot
of tasks already waiting for execution. Messages that aren’t acknowledged are
held on to by the worker until it closes the connection to the broker (AMQP
server). When that connection is closed (e.g., because the worker was stopped)
the tasks will be re-sent by the broker to the next available worker (or the
same worker when it has been restarted), so to properly purge the queue of
waiting tasks you have to stop all the workers, and then purge the tasks
using celery.control.purge().

Results

How do I get the result of a task if I have the ID that points there?

Answer: Use task.AsyncResult:

>>> result = my_task.AsyncResult(task_id)
>>> result.get()

This will give you a AsyncResult instance
using the tasks current result backend.

If you need to specify a custom result backend, or you want to use
the current application’s default backend you can use
app.AsyncResult:

>>> result = app.AsyncResult(task_id)
>>> result.get()

Security

Isn’t using pickle a security concern?

Answer: Indeed, since Celery 4.0 the default serializer is now JSON
to make sure people are choosing serializers consciously and aware of this concern.

It’s essential that you protect against unauthorized
access to your broker, databases and other services transmitting pickled
data.

Note that this isn’t just something you should be aware of with Celery, for
example also Django uses pickle for its cache client.

For the task messages you can set the task_serializer
setting to “json” or “yaml” instead of pickle.

Similarly for task results you can set result_serializer.

For more details of the formats used and the lookup order when
checking what format to use for a task see Serializers

Can messages be encrypted?

Answer: Some AMQP brokers supports using SSL (including RabbitMQ).
You can enable this using the broker_use_ssl setting.

It’s also possible to add additional encryption and security to messages,
if you have a need for this then you should contact the Mailing list.

Is it safe to run celery worker as root?

Answer: No!

We’re not currently aware of any security issues, but it would
be incredibly naive to assume that they don’t exist, so running
the Celery services (celery worker, celery beat,
celeryev, etc) as an unprivileged user is recommended.

Brokers

Why is RabbitMQ crashing?

Answer: RabbitMQ will crash if it runs out of memory. This will be fixed in a
future release of RabbitMQ. please refer to the RabbitMQ FAQ:
https://www.rabbitmq.com/faq.html#node-runs-out-of-memory

Note

This is no longer the case, RabbitMQ versions 2.0 and above
includes a new persister, that’s tolerant to out of memory
errors. RabbitMQ 2.1 or higher is recommended for Celery.

If you’re still running an older version of RabbitMQ and experience
crashes, then please upgrade!

Misconfiguration of Celery can eventually lead to a crash
on older version of RabbitMQ. Even if it doesn’t crash, this
can still consume a lot of resources, so it’s
important that you’re aware of the common pitfalls.

	Events.

Running worker with the -E
option will send messages for events happening inside of the worker.

Events should only be enabled if you have an active monitor consuming them,
or if you purge the event queue periodically.

	AMQP backend results.

When running with the AMQP result backend, every task result will be sent
as a message. If you don’t collect these results, they will build up and
RabbitMQ will eventually run out of memory.

This result backend is now deprecated so you shouldn’t be using it.
Use either the RPC backend for rpc-style calls, or a persistent backend
if you need multi-consumer access to results.

Results expire after 1 day by default. It may be a good idea
to lower this value by configuring the result_expires
setting.

If you don’t use the results for a task, make sure you set the
ignore_result option:

@app.task(ignore_result=True)
def mytask():
 pass

class MyTask(Task):
 ignore_result = True

Can I use Celery with ActiveMQ/STOMP?

Answer: No. It used to be supported by Carrot [https://pypi.python.org/pypi/Carrot/] (our old messaging library)
but isn’t currently supported in Kombu [https://pypi.python.org/pypi/Kombu/] (our new messaging library).

What features aren’t supported when not using an AMQP broker?

This is an incomplete list of features not available when
using the virtual transports:

	Remote control commands (supported only by Redis).

	Monitoring with events may not work in all virtual transports.

	
	The header and fanout exchange types
	(fanout is supported by Redis).

Tasks

How can I reuse the same connection when calling tasks?

Answer: See the broker_pool_limit setting.
The connection pool is enabled by default since version 2.5.

sudo in a subprocess [https://docs.python.org/dev/library/subprocess.html#module-subprocess] returns None

There’s a sudo configuration option that makes it illegal
for process without a tty to run sudo:

Defaults requiretty

If you have this configuration in your /etc/sudoers file then
tasks won’t be able to call sudo when the worker is
running as a daemon. If you want to enable that, then you need to remove
the line from /etc/sudoers.

See: http://timelordz.com/wiki/Apache_Sudo_Commands

Why do workers delete tasks from the queue if they’re unable to process them?

Answer:

The worker rejects unknown tasks, messages with encoding errors and messages
that don’t contain the proper fields (as per the task message protocol).

If it didn’t reject them they could be redelivered again and again,
causing a loop.

Recent versions of RabbitMQ has the ability to configure a dead-letter
queue for exchange, so that rejected messages is moved there.

Can I call a task by name?

Answer: Yes, use app.send_task().

You can also call a task by name, from any language,
using an AMQP client:

>>> app.send_task('tasks.add', args=[2, 2], kwargs={})
<AsyncResult: 373550e8-b9a0-4666-bc61-ace01fa4f91d>

To use chain, chord or group with tasks called by name,
use the Celery.signature() method:

>>> chain(
... app.signature('tasks.add', args=[2, 2], kwargs={}),
... app.signature('tasks.add', args=[1, 1], kwargs={})
...).apply_async()
<AsyncResult: e9d52312-c161-46f0-9013-2713e6df812d>

Can I get the task id of the current task?

Answer: Yes, the current id and more is available in the task request:

@app.task(bind=True)
def mytask(self):
 cache.set(self.request.id, "Running")

For more information see Task Request.

If you don’t have a reference to the task instance you can use
app.current_task:

>>> app.current_task.request.id

But note that this will be any task, be it one executed by the worker, or a
task called directly by that task, or a task called eagerly.

To get the current task being worked on specifically, use
current_worker_task:

>>> app.current_worker_task.request.id

Note

Both current_task, and current_worker_task can be
None.

Can I specify a custom task_id?

Answer: Yes, use the task_id argument to Task.apply_async():

>>> task.apply_async(args, kwargs, task_id='…')

Can I use decorators with tasks?

Answer: Yes, but please see note in the sidebar at Basics.

Can I use natural task ids?

Answer: Yes, but make sure it’s unique, as the behavior
for two tasks existing with the same id is undefined.

The world will probably not explode, but they can
definitely overwrite each others results.

Can I run a task once another task has finished?

Answer: Yes, you can safely launch a task inside a task.

A common pattern is to add callbacks to tasks:

from celery.utils.log import get_task_logger

logger = get_task_logger(__name__)

@app.task
def add(x, y):
 return x + y

@app.task(ignore_result=True)
def log_result(result):
 logger.info("log_result got: %r", result)

Invocation:

>>> (add.s(2, 2) | log_result.s()).delay()

See Canvas: Designing Work-flows for more information.

Can I cancel the execution of a task?

Answer: Yes, Use result.revoke():

>>> result = add.apply_async(args=[2, 2], countdown=120)
>>> result.revoke()

or if you only have the task id:

>>> from proj.celery import app
>>> app.control.revoke(task_id)

The latter also support passing a list of task-ids as argument.

Why aren’t my remote control commands received by all workers?

Answer: To receive broadcast remote control commands, every worker node
creates a unique queue name, based on the nodename of the worker.

If you have more than one worker with the same host name, the
control commands will be received in round-robin between them.

To work around this you can explicitly set the nodename for every worker
using the -n argument to
worker:

$ celery -A proj worker -n worker1@%h
$ celery -A proj worker -n worker2@%h

where %h expands into the current hostname.

Can I send some tasks to only some servers?

Answer: Yes, you can route tasks to one or more workers,
using different message routing topologies, and a worker instance
can bind to multiple queues.

See Routing Tasks for more information.

Can I disable prefetching of tasks?

Answer: Maybe! The AMQP term “prefetch” is confusing, as it’s only used
to describe the task prefetching limit. There’s no actual prefetching involved.

Disabling the prefetch limits is possible, but that means the worker will
consume as many tasks as it can, as fast as possible.

A discussion on prefetch limits, and configuration settings for a worker
that only reserves one task at a time is found here:
Prefetch Limits.

Can I change the interval of a periodic task at runtime?

Answer: Yes, you can use the Django database scheduler, or you can
create a new schedule subclass and override
is_due():

from celery.schedules import schedule

class my_schedule(schedule):

 def is_due(self, last_run_at):
 return run_now, next_time_to_check

Does Celery support task priorities?

Answer: Yes, RabbitMQ supports priorities since version 3.5.0,
and the Redis transport emulates priority support.

You can also prioritize work by routing high priority tasks
to different workers. In the real world this usually works better
than per message priorities. You can use this in combination with rate
limiting, and per message priorities to achieve a responsive system.

Should I use retry or acks_late?

Answer: Depends. It’s not necessarily one or the other, you may want
to use both.

Task.retry is used to retry tasks, notably for expected errors that
is catch-able with the try [https://docs.python.org/dev/reference/compound_stmts.html#try] block. The AMQP transaction isn’t used
for these errors: if the task raises an exception it’s still acknowledged!

The acks_late setting would be used when you need the task to be
executed again if the worker (for some reason) crashes mid-execution.
It’s important to note that the worker isn’t known to crash, and if
it does it’s usually an unrecoverable error that requires human
intervention (bug in the worker, or task code).

In an ideal world you could safely retry any task that’s failed, but
this is rarely the case. Imagine the following task:

@app.task
def process_upload(filename, tmpfile):
 # Increment a file count stored in a database
 increment_file_counter()
 add_file_metadata_to_db(filename, tmpfile)
 copy_file_to_destination(filename, tmpfile)

If this crashed in the middle of copying the file to its destination
the world would contain incomplete state. This isn’t a critical
scenario of course, but you can probably imagine something far more
sinister. So for ease of programming we have less reliability;
It’s a good default, users who require it and know what they
are doing can still enable acks_late (and in the future hopefully
use manual acknowledgment).

In addition Task.retry has features not available in AMQP
transactions: delay between retries, max retries, etc.

So use retry for Python errors, and if your task is idempotent
combine that with acks_late if that level of reliability
is required.

Can I schedule tasks to execute at a specific time?

Answer: Yes. You can use the eta argument of Task.apply_async().

See also Periodic Tasks.

Can I safely shut down the worker?

Answer: Yes, use the TERM signal.

This will tell the worker to finish all currently
executing jobs and shut down as soon as possible. No tasks should be lost
even with experimental transports as long as the shutdown completes.

You should never stop worker with the KILL signal
(kill -9), unless you’ve tried TERM a few times and waited a few
minutes to let it get a chance to shut down.

Also make sure you kill the main worker process only, not any of its child
processes. You can direct a kill signal to a specific child process if
you know the process is currently executing a task the worker shutdown
is depending on, but this also means that a WorkerLostError state will
be set for the task so the task won’t run again.

Identifying the type of process is easier if you have installed the
setproctitle [https://pypi.python.org/pypi/setproctitle/] module:

$ pip install setproctitle

With this library installed you’ll be able to see the type of process in
ps listings, but the worker must be restarted for this to take effect.

See also

Stopping the worker

Can I run the worker in the background on [platform]?

Answer: Yes, please see Daemonization.

Django

What purpose does the database tables created by django-celery-beat have?

When the database-backed schedule is used the periodic task
schedule is taken from the PeriodicTask model, there are
also several other helper tables (IntervalSchedule,
CrontabSchedule, PeriodicTasks).

What purpose does the database tables created by django-celery-results have?

The Django database result backend extension requires
two extra models: TaskResult and GroupResult.

Windows

Does Celery support Windows?

Answer: No.

Since Celery 4.x, Windows is no longer supported due to lack of resources.

But it may still work and we are happy to accept patches.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Change history

This document contains change notes for bugfix & new features
in the 5.0.x series, please see What’s new in Celery 5.0 (singularity) for
an overview of what’s new in Celery 5.0.

5.0.1

	release-date

	2020-10-18 1.00 P.M UTC+3:00

	release-by

	Omer Katz

	Specify UTF-8 as the encoding for log files (#6357).

	Custom headers now propagate when using the protocol 1 hybrid messages (#6374).

	Retry creating the database schema for the database results backend
in case of a race condition (#6298).

	When using the Redis results backend, awaiting for a chord no longer hangs
when setting result_expires to 0 (#6373).

	When a user tries to specify the app as an option for the subcommand,
a custom error message is displayed (#6363).

	Fix the –without-gossip, –without-mingle, and –without-heartbeat
options which now work as expected. (#6365)

	Provide a clearer error message when the application cannot be loaded.

	Avoid printing deprecation warnings for settings when they are loaded from
Django settings (#6385).

	Allow lowercase log levels for the –loglevel option (#6388).

	Detaching now works as expected (#6401).

	Restore broadcasting messages from celery control (#6400).

	Pass back real result for single task chains (#6411).

	Ensure group tasks a deeply serialized (#6342).

	Fix chord element counting (#6354).

	Restore the celery shell command (#6421).

5.0.0

	release-date

	2020-09-24 6.00 P.M UTC+3:00

	release-by

	Omer Katz

	Breaking Change Remove AMQP result backend (#6360).

	Warn when deprecated settings are used (#6353).

	Expose retry_policy for Redis result backend (#6330).

	Prepare Celery to support the yet to be released Python 3.9 (#6328).

5.0.0rc3

	release-date

	2020-09-07 4.00 P.M UTC+3:00

	release-by

	Omer Katz

	More cleanups of leftover Python 2 support (#6338).

5.0.0rc2

	release-date

	2020-09-01 6.30 P.M UTC+3:00

	release-by

	Omer Katz

	Bump minimum required eventlet version to 0.26.1.

	Update Couchbase Result backend to use SDK V3.

	Restore monkeypatching when gevent or eventlet are used.

5.0.0rc1

	release-date

	2020-08-24 9.00 P.M UTC+3:00

	release-by

	Omer Katz

	Allow to opt out of ordered group results when using the Redis result backend (#6290).

	Breaking Change Remove the deprecated celery.utils.encoding module.

5.0.0b1

	release-date

	2020-08-19 8.30 P.M UTC+3:00

	release-by

	Omer Katz

	Breaking Change Drop support for the Riak result backend (#5686).

	Breaking Change pytest plugin is no longer enabled by default (#6288).
Install pytest-celery to enable it.

	Breaking Change Brand new CLI based on Click (#5718).

5.0.0a2

	release-date

	2020-08-05 7.15 P.M UTC+3:00

	release-by

	Omer Katz

	Bump Kombu version to 5.0 (#5686).

5.0.0a1

	release-date

	2020-08-02 9.30 P.M UTC+3:00

	release-by

	Omer Katz

	Removed most of the compatibility code that supports Python 2 (#5686).

	Modernized code to work on Python 3.6 and above (#5686).

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

What’s new in Celery 5.0 (singularity)

	Author

	Omer Katz (omer.drow at gmail.com)

Change history

What’s new documents describe the changes in major versions,
we also have a Change history that lists the changes in bugfix
releases (0.0.x), while older series are archived under the History
section.

Celery is a simple, flexible, and reliable distributed programming framework
to process vast amounts of messages, while providing operations with
the tools required to maintain a distributed system with python.

It’s a task queue with focus on real-time processing, while also
supporting task scheduling.

Celery has a large and diverse community of users and contributors,
you should come join us on IRC
or our mailing-list.

To read more about Celery you should go read the introduction.

While this version is mostly backward compatible with previous versions
it’s important that you read the following section as this release
is a new major version.

This version is officially supported on CPython 3.6, 3.7 & 3.8
and is also supported on PyPy3.

Table of Contents

Make sure you read the important notes before upgrading to this version.

	Preface

	Long Term Support Policy

	Wall of Contributors

	Upgrading from Celery 4.x

	Step 1: Adjust your command line invocation

	Step 2: Update your configuration with the new setting names

	Step 3: Read the important notes in this document

	Step 4: Migrate your code to Python 3

	Step 5: Upgrade to Celery 5.0

	Important Notes

	Supported Python Versions

	Dropped support for Python 2.7 & 3.5

	Kombu

	Billiard

	Eventlet Workers Pool

	Gevent Workers Pool

	Couchbase Result Backend

	Riak Result Backend

	AMQP Result Backend

	Removed Deprecated Modules

	New Command Line Interface

	Pytest Integration

	Ordered Group Results for the Redis Result Backend

	News

	Retry Policy for the Redis Result Backend

Preface

The 5.0.0 release is a new major release for Celery.

Starting from now users should expect more frequent releases of major versions
as we move fast and break things to bring you even better experience.

Releases in the 5.x series are codenamed after songs of Jon Hopkins [https://en.wikipedia.org/wiki/Jon_Hopkins].
This release has been codenamed Singularity [https://www.youtube.com/watch?v=lkvnpHFajt0].

This version drops support for Python 2.7.x which has reached EOL
in January 1st, 2020.
This allows us, the maintainers to focus on innovating without worrying
for backwards compatibility.

From now on we only support Python 3.6 and above.
We will maintain compatibility with Python 3.6 until it’s
EOL in December, 2021.

— Omer Katz

Long Term Support Policy

As we’d like to provide some time for you to transition,
we’re designating Celery 4.x an LTS release.
Celery 4.x will be supported until the 1st of August, 2021.

We will accept and apply patches for bug fixes and security issues.
However, no new features will be merged for that version.

Celery 5.x is not an LTS release. We will support it until the release
of Celery 6.x.

We’re in the process of defining our Long Term Support policy.
Watch the next “What’s New” document for updates.

Wall of Contributors

Artem Vasilyev <artem.v.vasilyev@gmail.com>
Ash Berlin-Taylor <ash_github@firemirror.com>
Asif Saif Uddin (Auvi) <auvipy@gmail.com>
Asif Saif Uddin <auvipy@gmail.com>
Christian Clauss <cclauss@me.com>
Germain Chazot <g.chazot@gmail.com>
Harry Moreno <morenoh149@gmail.com>
kevinbai <kevinbai.cn@gmail.com>
Martin Paulus <mpaulus@lequest.com>
Matus Valo <matusvalo@gmail.com>
Matus Valo <matusvalo@users.noreply.github.com>
maybe-sybr <58414429+maybe-sybr@users.noreply.github.com>
Omer Katz <omer.drow@gmail.com>
Patrick Cloke <clokep@users.noreply.github.com>
qiaocc <jasonqiao36@gmail.com>
Thomas Grainger <tagrain@gmail.com>
Weiliang Li <to.be.impressive@gmail.com>

Note

This wall was automatically generated from git history,
so sadly it doesn’t not include the people who help with more important
things like answering mailing-list questions.

Upgrading from Celery 4.x

Step 1: Adjust your command line invocation

Celery 5.0 introduces a new CLI implementation which isn’t completely backwards compatible.

The global options can no longer be positioned after the sub-command.
Instead, they must be positioned as an option for the celery command like so:

celery --app path.to.app worker

If you were using our Daemonization guide to deploy Celery in production,
you should revisit it for updates.

Step 2: Update your configuration with the new setting names

If you haven’t already updated your configuration when you migrated to Celery 4.0,
please do so now.

We elected to extend the deprecation period until 6.0 since
we did not loudly warn about using these deprecated settings.

Please refer to the migration guide for instructions.

Step 3: Read the important notes in this document

Make sure you are not affected by any of the important upgrade notes
mentioned in the following section.

You should mainly verify that any of the breaking changes in the CLI
do not affect you. Please refer to New Command Line Interface for details.

Step 4: Migrate your code to Python 3

Celery 5.0 supports only Python 3. Therefore, you must ensure your code is
compatible with Python 3.

If you haven’t ported your code to Python 3, you must do so before upgrading.

You can use tools like 2to3 [https://docs.python.org/3.8/library/2to3.html]
and pyupgrade [https://github.com/asottile/pyupgrade] to assist you with
this effort.

After the migration is done, run your test suite with Celery 4 to ensure
nothing has been broken.

Step 5: Upgrade to Celery 5.0

At this point you can upgrade your workers and clients with the new version.

Important Notes

Supported Python Versions

The supported Python Versions are:

	CPython 3.6

	CPython 3.7

	CPython 3.8

	PyPy3.6 7.2 (pypy3)

Dropped support for Python 2.7 & 3.5

Celery now requires Python 3.6 and above.

Python 2.7 has reached EOL in January 2020.
In order to focus our efforts we have dropped support for Python 2.7 in
this version.

In addition, Python 3.5 has reached EOL in September 2020.
Therefore, we are also dropping support for Python 3.5.

If you still require to run Celery using Python 2.7 or Python 3.5
you can still use Celery 4.x.
However we encourage you to upgrade to a supported Python version since
no further security patches will be applied for Python 2.7 and as mentioned
Python 3.5 is not supported for practical reasons.

Kombu

Starting from this release, the minimum required version is Kombu 5.0.0.

Billiard

Starting from this release, the minimum required version is Billiard 3.6.3.

Eventlet Workers Pool

Due to eventlet/eventlet#526 [https://github.com/eventlet/eventlet/issues/526]
the minimum required version is eventlet 0.26.1.

Gevent Workers Pool

Starting from this release, the minimum required version is gevent 1.0.0.

Couchbase Result Backend

The Couchbase result backend now uses the V3 Couchbase SDK.

As a result, we no longer support Couchbase Server 5.x.

Also, starting from this release, the minimum required version
for the database client is couchbase 3.0.0.

To verify that your Couchbase Server is compatible with the V3 SDK,
please refer to their documentation [https://docs.couchbase.com/python-sdk/3.0/project-docs/compatibility.html].

Riak Result Backend

The Riak result backend has been removed as the database is no longer maintained.

The Python client only supports Python 3.6 and below which prevents us from
supporting it and it is also unmaintained.

If you are still using Riak, refrain from upgrading to Celery 5.0 while you
migrate your application to a different database.

We apologize for the lack of notice in advance but we feel that the chance
you’ll be affected by this breaking change is minimal which is why we
did it.

AMQP Result Backend

The AMQP result backend has been removed as it was deprecated in version 4.0.

Removed Deprecated Modules

The celery.utils.encoding and the celery.task modules has been deprecated
in version 4.0 and therefore are removed in 5.0.

If you were using the celery.utils.encoding module before,
you should import kombu.utils.encoding instead.

If you were using the celery.task module before, you should import directly
from the celery module instead.

New Command Line Interface

The command line interface has been revamped using Click.
As a result a few breaking changes has been introduced:

	Postfix global options like celery worker –app path.to.app or celery worker –workdir /path/to/workdir are no longer supported.
You should specify them as part of the global options of the main celery command.

	celery amqp and celery shell require the repl
sub command to start a shell. You can now also invoke specific commands
without a shell. Type celery amqp –help or celery shell –help for details.

Click provides shell completion out of the box [https://click.palletsprojects.com/en/7.x/bashcomplete/].
This functionality replaces our previous bash completion script and adds
completion support for the zsh and fish shells.

The bash completion script was exported to extras/celery.bash [https://github.com/celery/celery/blob/master/extra/bash-completion/celery.bash]
for the packager’s convenience.

Pytest Integration

Starting from Celery 5.0, the pytest plugin is no longer enabled by default.

Please refer to the documentation for instructions.

Ordered Group Results for the Redis Result Backend

Previously group results were not ordered by their invocation order.
Celery 4.4.7 introduced an opt-in feature to make them ordered.

It is now an opt-out behavior.

If you were previously using the Redis result backend, you might need to
out-out of this behavior.

Please refer to the documentation
for instructions on how to disable this feature.

News

Retry Policy for the Redis Result Backend

The retry policy for the Redis result backend is now exposed through
the result backend transport options.

Please refer to the documentation for details.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

API Reference

	Release

	5.0

	Date

	Oct 18, 2020

	Command Line Interface

	celery — Distributed processing

	Proxies

	Functions

	celery.app.task

	AMQP

	Queues

	celery.app.defaults

	celery.app.control

	celery.app.registry

	celery.app.backends

	celery.app.builtins

	celery.app.events

	celery.app.log

	celery.app.utils

	celery.app.autoretry

	celery.bootsteps

	celery.result

	celery.schedules

	celery.signals

	celery.security

	celery.utils.debug

	celery.exceptions

	celery.loaders

	celery.loaders.app

	celery.loaders.default

	celery.loaders.base

	States

	Sets

	Misc

	celery.contrib.abortable

	celery.contrib.migrate

	celery.contrib.pytest

	celery.contrib.sphinx

	celery.contrib.testing.worker

	celery.contrib.testing.app

	celery.contrib.testing.manager

	celery.contrib.testing.mocks

	celery.contrib.rdb

	celery.events

	celery.events.receiver

	celery.events.state

	celery.events.event

	celery.events.state

	celery.beat

	celery.apps.worker

	celery.apps.beat

	celery.apps.multi

	celery.worker

	celery.worker.request

	celery.worker.state

	celery.worker.strategy

	celery.worker.consumer

	celery.worker.consumer.agent

	celery.worker.consumer.connection

	celery.worker.consumer.consumer

	celery.worker.consumer.control

	celery.worker.consumer.events

	celery.worker.consumer.gossip

	celery.worker.consumer.heart

	celery.worker.consumer.mingle

	celery.worker.consumer.tasks

	celery.worker.worker

	celery.bin.base

	celery.bin.celery

	celery.bin.worker

	celery.bin.beat

	celery.bin.events

	celery.bin.logtool

	celery.bin.amqp

	celery.bin.graph

	celery.bin.multi

	celery.bin.call

	celery.bin.control

	celery.bin.list

	celery.bin.migrate

	celery.bin.purge

	celery.bin.result

	celery.bin.shell

	celery.bin.upgrade

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Command Line Interface

celery

Celery command entrypoint.

celery [OPTIONS] COMMAND [ARGS]...

Options

	
-A, --app <app>

	

	
-b, --broker <broker>

	

	
--result-backend <result_backend>

	

	
--loader <loader>

	

	
--config <config>

	

	
--workdir <workdir>

	

	
-C, --no-color

	

	
-q, --quiet

	

	
--version

	

Environment variables

	
APP

	
Provide a default for -A

	
BROKER_URL

	
Provide a default for -b

	
RESULT_BACKEND

	
Provide a default for --result-backend

	
LOADER

	
Provide a default for --loader

	
CONFIG_MODULE

	
Provide a default for --config

	
NO_COLOR

	
Provide a default for -C

amqp

AMQP Administration Shell.

Also works for non-AMQP transports (but not ones that
store declarations in memory).

celery amqp [OPTIONS] COMMAND [ARGS]...

basic.ack

celery amqp basic.ack [OPTIONS] DELIVERY_TAG

Arguments

	
DELIVERY_TAG

	Required argument

basic.get

celery amqp basic.get [OPTIONS] QUEUE [NO_ACK]

Arguments

	
QUEUE

	Required argument

	
NO_ACK

	Optional argument

basic.publish

celery amqp basic.publish [OPTIONS] MSG EXCHANGE ROUTING_KEY [MANDATORY]
 [IMMEDIATE]

Arguments

	
MSG

	Required argument

	
EXCHANGE

	Required argument

	
ROUTING_KEY

	Required argument

	
MANDATORY

	Optional argument

	
IMMEDIATE

	Optional argument

exchange.declare

celery amqp exchange.declare [OPTIONS] EXCHANGE TYPE [PASSIVE] [DURABLE]
 [AUTO_DELETE]

Arguments

	
EXCHANGE

	Required argument

	
TYPE

	Required argument

	
PASSIVE

	Optional argument

	
DURABLE

	Optional argument

	
AUTO_DELETE

	Optional argument

exchange.delete

celery amqp exchange.delete [OPTIONS] EXCHANGE IF_UNUSED

Arguments

	
EXCHANGE

	Required argument

	
IF_UNUSED

	Required argument

queue.bind

celery amqp queue.bind [OPTIONS] QUEUE EXCHANGE ROUTING_KEY

Arguments

	
QUEUE

	Required argument

	
EXCHANGE

	Required argument

	
ROUTING_KEY

	Required argument

queue.declare

celery amqp queue.declare [OPTIONS] QUEUE [PASSIVE] [DURABLE] [AUTO_DELETE]

Arguments

	
QUEUE

	Required argument

	
PASSIVE

	Optional argument

	
DURABLE

	Optional argument

	
AUTO_DELETE

	Optional argument

queue.delete

celery amqp queue.delete [OPTIONS] QUEUE [IF_UNUSED] [IF_EMPTY]

Arguments

	
QUEUE

	Required argument

	
IF_UNUSED

	Optional argument

	
IF_EMPTY

	Optional argument

queue.purge

celery amqp queue.purge [OPTIONS] QUEUE

Arguments

	
QUEUE

	Required argument

repl

Start an interactive shell. All subcommands are available in it.

	param old_ctx

	The current Click context.

	param prompt_kwargs

	Parameters passed to
prompt_toolkit.shortcuts.prompt().

If stdin is not a TTY, no prompt will be printed, but only commands read
from stdin.

celery amqp repl [OPTIONS]

beat

Start the beat periodic task scheduler.

celery beat [OPTIONS]

Options

	
--detach

	Detach and run in the background as a daemon.

	
-s, --schedule <schedule>

	Path to the schedule database. Defaults to celerybeat-schedule.The extension ‘.db’ may be appended to the filename.

	
-S, --scheduler <scheduler>

	Scheduler class to use.

	
--max-interval <max_interval>

	Max seconds to sleep between schedule iterations.

	
-l, --loglevel <loglevel>

	Logging level.

	Options

	DEBUG|INFO|WARNING|ERROR|CRITICAL|FATAL

	
-f, --logfile <logfile>

	

	
--pidfile <pidfile>

	

	
--uid <uid>

	

	
--uid <uid>

	

	
--gid <gid>

	

	
--umask <umask>

	

	
--executable <executable>

	

call

Call a task by name.

celery call [OPTIONS] NAME

Options

	
--routing-key <routing_key>

	custom routing key.

	
--exchange <exchange>

	custom exchange name.

	
--queue <queue>

	custom queue name.

	
--serializer <serializer>

	task serializer.

	
--expires <expires>

	expiry time.

	
--countdown <countdown>

	eta in seconds from now.

	
--eta <eta>

	scheduled time.

	
-k, --kwargs <kwargs>

	Keyword arguments.

	
-a, --args <args>

	Positional arguments.

Arguments

	
NAME

	Required argument

control

Workers remote control.

Availability: RabbitMQ (AMQP), Redis, and MongoDB transports.

celery control [OPTIONS] [revoke|terminate|rate_limit|time_limit|election|enab
 le_events|disable_events|heartbeat|pool_grow|pool_shrink|pool_r
 estart|autoscale|shutdown|add_consumer|cancel_consumer]

Options

	
-t, --timeout <timeout>

	Timeout in seconds waiting for reply.

	
-d, --destination <destination>

	Comma separated list of destination node names.

	
-j, --json

	Use json as output format.

Arguments

	
ACTION

	Required argument

events

Event-stream utilities.

celery events [OPTIONS]

Options

	
-d, --dump

	

	
-c, --camera <camera>

	

	
-d, --detach

	

	
-F, --frequency, --freq <frequency>

	

	
-r, --maxrate <maxrate>

	

	
-l, --loglevel <loglevel>

	Logging level.

	Options

	DEBUG|INFO|WARNING|ERROR|CRITICAL|FATAL

	
-f, --logfile <logfile>

	

	
--pidfile <pidfile>

	

	
--uid <uid>

	

	
--uid <uid>

	

	
--gid <gid>

	

	
--umask <umask>

	

	
--executable <executable>

	

graph

The celery graph command.

celery graph [OPTIONS] COMMAND [ARGS]...

bootsteps

Display bootsteps graph.

celery graph bootsteps [OPTIONS]

workers

Display workers graph.

celery graph workers [OPTIONS]

inspect

Inspect the worker at runtime.

Availability: RabbitMQ (AMQP) and Redis transports.

celery inspect [OPTIONS] [report|conf|query_task|clock|ping|stats|scheduled|re
 served|active|revoked|registered|objgraph|memsample|memdump|act
 ive_queues]

Options

	
-t, --timeout <timeout>

	Timeout in seconds waiting for reply.

	
-d, --destination <destination>

	Comma separated list of destination node names.

	
-j, --json

	Use json as output format.

Arguments

	
ACTION

	Required argument

list

Get info from broker.

Note:

For RabbitMQ the management plugin is required.

celery list [OPTIONS] COMMAND [ARGS]...

bindings

Inspect queue bindings.

celery list bindings [OPTIONS]

logtool

The celery logtool command.

celery logtool [OPTIONS] COMMAND [ARGS]...

debug

celery logtool debug [OPTIONS] [FILES]...

Arguments

	
FILES

	Optional argument(s)

errors

celery logtool errors [OPTIONS] [FILES]...

Arguments

	
FILES

	Optional argument(s)

incomplete

celery logtool incomplete [OPTIONS] [FILES]...

Arguments

	
FILES

	Optional argument(s)

stats

celery logtool stats [OPTIONS] [FILES]...

Arguments

	
FILES

	Optional argument(s)

traces

celery logtool traces [OPTIONS] [FILES]...

Arguments

	
FILES

	Optional argument(s)

migrate

Migrate tasks from one broker to another.

Warning:

This command is experimental, make sure you have a backup of
the tasks before you continue.

celery migrate [OPTIONS] SOURCE DESTINATION

Options

	
-n, --limit <limit>

	Number of tasks to consume.

	
-t, --timeout <timeout>

	Timeout in seconds waiting for tasks.

	
-a, --ack-messages

	Ack messages from source broker.

	
-T, --tasks <tasks>

	List of task names to filter on.

	
-Q, --queues <queues>

	List of queues to migrate.

	
-F, --forever

	Continually migrate tasks until killed.

Arguments

	
SOURCE

	Required argument

	
DESTINATION

	Required argument

multi

Start multiple worker instances.

celery multi [OPTIONS]

purge

Erase all messages from all known task queues.

Warning:

There’s no undo operation for this command.

celery purge [OPTIONS]

Options

	
-f, --force

	Don’t prompt for verification.

	
-Q, --queues <queues>

	Comma separated list of queue names to purge.

	
-X, --exclude-queues <exclude_queues>

	Comma separated list of queues names not to purge.

report

Shows information useful to include in bug-reports.

celery report [OPTIONS]

result

Print the return value for a given task id.

celery result [OPTIONS] TASK_ID

Options

	
-t, --task <task>

	Name of task (if custom backend).

	
--traceback

	Show traceback instead.

Arguments

	
TASK_ID

	Required argument

shell

Start shell session with convenient access to celery symbols.

The following symbols will be added to the main globals:
- celery: the current application.
- chord, group, chain, chunks,

xmap, xstarmap subtask, Task

	all registered tasks.

celery shell [OPTIONS]

Options

	
-I, --ipython

	Force IPython.

	
-B, --bpython

	Force bpython.

	
--python

	Force default Python shell.

	
-T, --without-tasks

	Don’t add tasks to locals.

	
--eventlet

	Use eventlet.

	
--gevent

	Use gevent.

status

Show list of workers that are online.

celery status [OPTIONS]

Options

	
-t, --timeout <timeout>

	Timeout in seconds waiting for reply.

	
-d, --destination <destination>

	Comma separated list of destination node names.

	
-j, --json

	Use json as output format.

upgrade

Perform upgrade between versions.

celery upgrade [OPTIONS] COMMAND [ARGS]...

settings

Migrate settings from Celery 3.x to Celery 4.x.

celery upgrade settings [OPTIONS] FILENAME

Options

	
--django

	Upgrade Django project.

	
--compat

	Maintain backwards compatibility.

	
--no-backup

	Don’t backup original files.

Arguments

	
FILENAME

	Required argument

worker

Start worker instance.

Examples

$ celery –app=proj worker -l INFO
$ celery -A proj worker -l INFO -Q hipri,lopri
$ celery -A proj worker –concurrency=4
$ celery -A proj worker –concurrency=1000 -P eventlet
$ celery worker –autoscale=10,0

celery worker [OPTIONS]

Options

	
-n, --hostname <hostname>

	Set custom hostname (e.g., ‘w1@%%h’). Expands: %%h (hostname), %%n (name) and %%d, (domain).

	
-D, --detach

	Start worker as a background process.

	
-S, --statedb <statedb>

	Path to the state database. The extension ‘.db’ may beappended to the filename.

	
-l, --loglevel <loglevel>

	Logging level.

	Options

	DEBUG|INFO|WARNING|ERROR|CRITICAL|FATAL

	
-O <optimization>

	Apply optimization profile.

	Options

	default|fair

	
--prefetch-multiplier <prefetch multiplier>

	Set custom prefetch multiplier valuefor this worker instance.

	
-c, --concurrency <concurrency>

	Number of child processes processing the queue. The default is the number of CPUs availableon your system.

	
-P, --pool <pool>

	Pool implementation.

	Options

	prefork|eventlet|gevent|solo

	
-E, --task-events, --events

	Send task-related events that can be captured by monitors like celery events, celerymon, and others.

	
--time-limit <time_limit>

	Enables a hard time limit (in seconds int/float) for tasks.

	
--soft-time-limit <soft_time_limit>

	Enables a soft time limit (in seconds int/float) for tasks.

	
--max-tasks-per-child <max_tasks_per_child>

	Maximum number of tasks a pool worker can execute before it’s terminated and replaced by a new worker.

	
--max-memory-per-child <max_memory_per_child>

	Maximum amount of resident memory, in KiB, that may be consumed by a child process before it will be replaced by a new one. If a single task causes a child process to exceed this limit, the task will be completed and the child process will be replaced afterwards.
Default: no limit.

	
--purge, --discard

	

	
-Q, --queues <queues>

	

	
-X, --exclude-queues <exclude_queues>

	

	
-I, --include <include>

	

	
--without-gossip

	

	
--without-mingle

	

	
--without-heartbeat

	

	
--heartbeat-interval <heartbeat_interval>

	

	
--autoscale <autoscale>

	

	
-B, --beat

	

	
-s, --schedule-filename, --schedule <schedule_filename>

	

	
--scheduler <scheduler>

	

	
-f, --logfile <logfile>

	

	
--pidfile <pidfile>

	

	
--uid <uid>

	

	
--uid <uid>

	

	
--gid <gid>

	

	
--umask <umask>

	

	
--executable <executable>

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery — Distributed processing

This module is the main entry-point for the Celery API.
It includes commonly needed things for calling tasks,
and creating Celery applications.

	Celery

	Celery application instance

	group

	group tasks together

	chain

	chain tasks together

	chord

	chords enable callbacks for groups

	signature()

	create a new task signature

	Signature

	object describing a task invocation

	current_app

	proxy to the current application instance

	current_task

	proxy to the currently executing task

Celery application objects

New in version 2.5.

	
class celery.Celery(main=None, loader=None, backend=None, amqp=None, events=None, log=None, control=None, set_as_current=True, tasks=None, broker=None, include=None, changes=None, config_source=None, fixups=None, task_cls=None, autofinalize=True, namespace=None, strict_typing=True, **kwargs)[source]

	Celery application.

	Parameters

	main (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Name of the main module if running as __main__.
This is used as the prefix for auto-generated task names.

	Keyword Arguments

	
	broker (str [https://docs.python.org/dev/library/stdtypes.html#str]) – URL of the default broker used.

	backend (Union[str [https://docs.python.org/dev/library/stdtypes.html#str], Type[celery.backends.base.Backend]]) – The result store backend class, or the name of the backend
class to use.

Default is the value of the result_backend setting.

	autofinalize (bool [https://docs.python.org/dev/library/functions.html#bool]) – If set to False a RuntimeError [https://docs.python.org/dev/library/exceptions.html#RuntimeError]
will be raised if the task registry or tasks are used before
the app is finalized.

	set_as_current (bool [https://docs.python.org/dev/library/functions.html#bool]) – Make this the global current app.

	include (List[str [https://docs.python.org/dev/library/stdtypes.html#str]]) – List of modules every worker should import.

	amqp (Union[str [https://docs.python.org/dev/library/stdtypes.html#str], Type[AMQP]]) – AMQP object or class name.

	events (Union[str [https://docs.python.org/dev/library/stdtypes.html#str], Type[celery.app.events.Events]]) – Events object or
class name.

	log (Union[str [https://docs.python.org/dev/library/stdtypes.html#str], Type[Logging]]) – Log object or class name.

	control (Union[str [https://docs.python.org/dev/library/stdtypes.html#str], Type[celery.app.control.Control]]) – Control object
or class name.

	tasks (Union[str [https://docs.python.org/dev/library/stdtypes.html#str], Type[TaskRegistry]]) – A task registry, or the name of
a registry class.

	fixups (List[str [https://docs.python.org/dev/library/stdtypes.html#str]]) – List of fix-up plug-ins (e.g., see
celery.fixups.django).

	config_source (Union[str [https://docs.python.org/dev/library/stdtypes.html#str], class [https://www.sphinx-doc.org/en/master/usage/extensions/autosummary.html#class]]) – Take configuration from a class,
or object. Attributes may include any settings described in
the documentation.

	task_cls (Union[str [https://docs.python.org/dev/library/stdtypes.html#str], Type[celery.app.task.Task]]) – base task class to
use. See this section for usage.

	
user_options = None

	Custom options for command-line programs.
See Adding new command-line options

	
steps = None

	Custom bootsteps to extend and modify the worker.
See Installing Bootsteps.

	
current_task

	Instance of task being executed, or None.

	
current_worker_task

	The task currently being executed by a worker or None.

Differs from current_task in that it’s not affected
by tasks calling other tasks directly, or eagerly.

	
amqp[source]

	amqp.

	Type

	AMQP related functionality

	
backend[source]

	Current backend instance.

	
loader[source]

	Current loader instance.

	
control[source]

	control.

	Type

	Remote control

	
events[source]

	events.

	Type

	Consuming and sending events

	
log[source]

	log.

	Type

	Logging

	
tasks[source]

	Task registry.

Warning

Accessing this attribute will also auto-finalize the app.

	
pool

	pool.

Note

This attribute is not related to the workers concurrency pool.

	Type

	Broker connection pool

	
producer_pool

	

	
Task[source]

	Base task class for this app.

	
timezone[source]

	Current timezone for this app.

This is a cached property taking the time zone from the
timezone setting.

	
builtin_fixups = {'celery.fixups.django:fixup'}

	

	
oid[source]

	Universally unique identifier for this app.

	
close()[source]

	Clean up after the application.

Only necessary for dynamically created apps, and you should
probably use the with [https://docs.python.org/dev/reference/compound_stmts.html#with] statement instead.

Example

>>> with Celery(set_as_current=False) as app:
... with app.connection_for_write() as conn:
... pass

	
signature(*args, **kwargs)[source]

	Return a new Signature bound to this app.

	
bugreport()[source]

	Return information useful in bug reports.

	
config_from_object(obj, silent=False, force=False, namespace=None)[source]

	Read configuration from object.

Object is either an actual object or the name of a module to import.

Example

>>> celery.config_from_object('myapp.celeryconfig')

>>> from myapp import celeryconfig
>>> celery.config_from_object(celeryconfig)

	Parameters

	
	silent (bool [https://docs.python.org/dev/library/functions.html#bool]) – If true then import errors will be ignored.

	force (bool [https://docs.python.org/dev/library/functions.html#bool]) – Force reading configuration immediately.
By default the configuration will be read only when required.

	
config_from_envvar(variable_name, silent=False, force=False)[source]

	Read configuration from environment variable.

The value of the environment variable must be the name
of a module to import.

Example

>>> os.environ['CELERY_CONFIG_MODULE'] = 'myapp.celeryconfig'
>>> celery.config_from_envvar('CELERY_CONFIG_MODULE')

	
autodiscover_tasks(packages=None, related_name='tasks', force=False)[source]

	Auto-discover task modules.

Searches a list of packages for a “tasks.py” module (or use
related_name argument).

If the name is empty, this will be delegated to fix-ups (e.g., Django).

For example if you have a directory layout like this:

foo/__init__.py
 tasks.py
 models.py

bar/__init__.py
 tasks.py
 models.py

baz/__init__.py
 models.py

Then calling app.autodiscover_tasks(['foo', 'bar', 'baz']) will
result in the modules foo.tasks and bar.tasks being imported.

	Parameters

	
	packages (List[str [https://docs.python.org/dev/library/stdtypes.html#str]]) – List of packages to search.
This argument may also be a callable, in which case the
value returned is used (for lazy evaluation).

	related_name (Optional[str [https://docs.python.org/dev/library/stdtypes.html#str]]) – The name of the module to find. Defaults
to “tasks”: meaning “look for ‘module.tasks’ for every
module in packages.”. If None will only try to import
the package, i.e. “look for ‘module’”.

	force (bool [https://docs.python.org/dev/library/functions.html#bool]) – By default this call is lazy so that the actual
auto-discovery won’t happen until an application imports
the default modules. Forcing will cause the auto-discovery
to happen immediately.

	
add_defaults(fun)[source]

	Add default configuration from dict d.

If the argument is a callable function then it will be regarded
as a promise, and it won’t be loaded until the configuration is
actually needed.

This method can be compared to:

>>> celery.conf.update(d)

with a difference that 1) no copy will be made and 2) the dict will
not be transferred when the worker spawns child processes, so
it’s important that the same configuration happens at import time
when pickle restores the object on the other side.

	
add_periodic_task(schedule, sig, args=(), kwargs=(), name=None, **opts)[source]

	

	
setup_security(allowed_serializers=None, key=None, cert=None, store=None, digest='sha256', serializer='json')[source]

	Setup the message-signing serializer.

This will affect all application instances (a global operation).

Disables untrusted serializers and if configured to use the auth
serializer will register the auth serializer with the provided
settings into the Kombu serializer registry.

	Parameters

	
	allowed_serializers (Set[str [https://docs.python.org/dev/library/stdtypes.html#str]]) – List of serializer names, or
content_types that should be exempt from being disabled.

	key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Name of private key file to use.
Defaults to the security_key setting.

	cert (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Name of certificate file to use.
Defaults to the security_certificate setting.

	store (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Directory containing certificates.
Defaults to the security_cert_store setting.

	digest (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Digest algorithm used when signing messages.
Default is sha256.

	serializer (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Serializer used to encode messages after
they’ve been signed. See task_serializer for
the serializers supported. Default is json.

	
task(*args, **opts)[source]

	Decorator to create a task class out of any callable.

See Task options for a list of the
arguments that can be passed to this decorator.

Examples

@app.task
def refresh_feed(url):
 store_feed(feedparser.parse(url))

with setting extra options:

@app.task(exchange='feeds')
def refresh_feed(url):
 return store_feed(feedparser.parse(url))

Note

App Binding: For custom apps the task decorator will return
a proxy object, so that the act of creating the task is not
performed until the task is used or the task registry is accessed.

If you’re depending on binding to be deferred, then you must
not access any attributes on the returned object until the
application is fully set up (finalized).

	
send_task(name, args=None, kwargs=None, countdown=None, eta=None, task_id=None, producer=None, connection=None, router=None, result_cls=None, expires=None, publisher=None, link=None, link_error=None, add_to_parent=True, group_id=None, group_index=None, retries=0, chord=None, reply_to=None, time_limit=None, soft_time_limit=None, root_id=None, parent_id=None, route_name=None, shadow=None, chain=None, task_type=None, **options)[source]

	Send task by name.

Supports the same arguments as Task.apply_async().

	Parameters

	
	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Name of task to call (e.g., “tasks.add”).

	result_cls (AsyncResult) – Specify custom result class.

	
gen_task_name(name, module)[source]

	

	
AsyncResult[source]

	Create new result instance.

See also

celery.result.AsyncResult.

	
GroupResult[source]

	Create new group result instance.

See also

celery.result.GroupResult.

	
Worker[source]

	Worker application.

See also

Worker.

	
WorkController[source]

	Embeddable worker.

See also

WorkController.

	
Beat[source]

	celery beat scheduler application.

See also

Beat.

	
connection_for_read(url=None, **kwargs)[source]

	Establish connection used for consuming.

See also

connection() for supported arguments.

	
connection_for_write(url=None, **kwargs)[source]

	Establish connection used for producing.

See also

connection() for supported arguments.

	
connection(hostname=None, userid=None, password=None, virtual_host=None, port=None, ssl=None, connect_timeout=None, transport=None, transport_options=None, heartbeat=None, login_method=None, failover_strategy=None, **kwargs)[source]

	Establish a connection to the message broker.

Please use connection_for_read() and
connection_for_write() instead, to convey the intent
of use for this connection.

	Parameters

	
	url – Either the URL or the hostname of the broker to use.

	hostname (str [https://docs.python.org/dev/library/stdtypes.html#str]) – URL, Hostname/IP-address of the broker.
If a URL is used, then the other argument below will
be taken from the URL instead.

	userid (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Username to authenticate as.

	password (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Password to authenticate with

	virtual_host (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Virtual host to use (domain).

	port (int [https://docs.python.org/dev/library/functions.html#int]) – Port to connect to.

	ssl (bool [https://docs.python.org/dev/library/functions.html#bool], Dict) – Defaults to the broker_use_ssl
setting.

	transport (str [https://docs.python.org/dev/library/stdtypes.html#str]) – defaults to the broker_transport
setting.

	transport_options (Dict) – Dictionary of transport specific options.

	heartbeat (int [https://docs.python.org/dev/library/functions.html#int]) – AMQP Heartbeat in seconds (pyamqp only).

	login_method (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Custom login method to use (AMQP only).

	failover_strategy (str [https://docs.python.org/dev/library/stdtypes.html#str], Callable) – Custom failover strategy.

	**kwargs – Additional arguments to kombu.Connection [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection].

	Returns

	the lazy connection instance.

	Return type

	kombu.Connection [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection]

	
connection_or_acquire(connection=None, pool=True, *_, **__)[source]

	Context used to acquire a connection from the pool.

For use within a with [https://docs.python.org/dev/reference/compound_stmts.html#with] statement to get a connection
from the pool if one is not already provided.

	Parameters

	connection (kombu.Connection [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection]) – If not provided, a connection
will be acquired from the connection pool.

	
producer_or_acquire(producer=None)[source]

	Context used to acquire a producer from the pool.

For use within a with [https://docs.python.org/dev/reference/compound_stmts.html#with] statement to get a producer
from the pool if one is not already provided

	Parameters

	producer (kombu.Producer [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer]) – If not provided, a producer
will be acquired from the producer pool.

	
select_queues(queues=None)[source]

	Select subset of queues.

	Parameters

	queues (Sequence[str [https://docs.python.org/dev/library/stdtypes.html#str]]) – a list of queue names to keep.

	
now()[source]

	Return the current time and date as a datetime.

	
set_current()[source]

	Make this the current app for this thread.

	
set_default()[source]

	Make this the default app for all threads.

	
finalize(auto=False)[source]

	Finalize the app.

This loads built-in tasks, evaluates pending task decorators,
reads configuration, etc.

	
on_init()[source]

	Optional callback called at init.

	
prepare_config(c)[source]

	Prepare configuration before it is merged with the defaults.

	
on_configure

	Signal sent when app is loading configuration.

	
on_after_configure

	Signal sent after app has prepared the configuration.

	
on_after_finalize

	Signal sent after app has been finalized.

	
on_after_fork

	Signal sent in child process after fork.

Canvas primitives

See Canvas: Designing Work-flows for more about creating task work-flows.

	
class celery.group(*tasks, **options)[source]

	Creates a group of tasks to be executed in parallel.

A group is lazy so you must call it to take action and evaluate
the group.

Note

If only one argument is passed, and that argument is an iterable
then that’ll be used as the list of tasks instead: this
allows us to use group with generator expressions.

Example

>>> lazy_group = group([add.s(2, 2), add.s(4, 4)])
>>> promise = lazy_group() # <-- evaluate: returns lazy result.
>>> promise.get() # <-- will wait for the task to return
[4, 8]

	Parameters

	
	*tasks (List[Signature]) – A list of signatures that this group will
call. If there’s only one argument, and that argument is an
iterable, then that’ll define the list of signatures instead.

	**options (Any) – Execution options applied to all tasks
in the group.

	Returns

	
	signature that when called will then call all of the
	tasks in the group (and return a GroupResult instance
that can be used to inspect the state of the group).

	Return type

	group

	
class celery.chain(*tasks, **kwargs)[source]

	Chain tasks together.

Each tasks follows one another,
by being applied as a callback of the previous task.

Note

If called with only one argument, then that argument must
be an iterable of tasks to chain: this allows us
to use generator expressions.

Example

This is effectively [image: ((2 + 2) + 4)]:

>>> res = chain(add.s(2, 2), add.s(4))()
>>> res.get()
8

Calling a chain will return the result of the last task in the chain.
You can get to the other tasks by following the result.parent’s:

>>> res.parent.get()
4

Using a generator expression:

>>> lazy_chain = chain(add.s(i) for i in range(10))
>>> res = lazy_chain(3)

	Parameters

	*tasks (Signature) – List of task signatures to chain.
If only one argument is passed and that argument is
an iterable, then that’ll be used as the list of signatures
to chain instead. This means that you can use a generator
expression.

	Returns

	
	A lazy signature that can be called to apply the first
	task in the chain. When that task succeeds the next task in the
chain is applied, and so on.

	Return type

	chain

	
class celery.chord(header, body=None, task='celery.chord', args=None, kwargs=None, app=None, **options)[source]

	Barrier synchronization primitive.

A chord consists of a header and a body.

The header is a group of tasks that must complete before the callback is
called. A chord is essentially a callback for a group of tasks.

The body is applied with the return values of all the header
tasks as a list.

Example

The chord:

>>> res = chord([add.s(2, 2), add.s(4, 4)])(sum_task.s())

is effectively [image: \Sigma ((2 + 2) + (4 + 4))]:

>>> res.get()
12

	
celery.signature(varies, *args, **kwargs)[source]

	Create new signature.

	if the first argument is a signature already then it’s cloned.

	if the first argument is a dict, then a Signature version is returned.

	Returns

	The resulting signature.

	Return type

	Signature

	
class celery.Signature(task=None, args=None, kwargs=None, options=None, type=None, subtask_type=None, immutable=False, app=None, **ex)[source]

	Task Signature.

Class that wraps the arguments and execution options
for a single task invocation.

Used as the parts in a group and other constructs,
or to pass tasks around as callbacks while being compatible
with serializers with a strict type subset.

Signatures can also be created from tasks:

	Using the .signature() method that has the same signature
as Task.apply_async:

>>> add.signature(args=(1,), kwargs={'kw': 2}, options={})

	or the .s() shortcut that works for star arguments:

>>> add.s(1, kw=2)

	the .s() shortcut does not allow you to specify execution options
but there’s a chaning .set method that returns the signature:

>>> add.s(2, 2).set(countdown=10).set(expires=30).delay()

Note

You should use signature() to create new signatures.
The Signature class is the type returned by that function and
should be used for isinstance checks for signatures.

See also

Canvas: Designing Work-flows for the complete guide.

	Parameters

	
	task (Union[Type[celery.app.task.Task], str [https://docs.python.org/dev/library/stdtypes.html#str]]) – Either a task
class/instance, or the name of a task.

	args (Tuple) – Positional arguments to apply.

	kwargs (Dict) – Keyword arguments to apply.

	options (Dict) – Additional options to Task.apply_async().

Note

If the first argument is a dict [https://docs.python.org/dev/library/stdtypes.html#dict], the other
arguments will be ignored and the values in the dict will be used
instead:

>>> s = signature('tasks.add', args=(2, 2))
>>> signature(s)
{'task': 'tasks.add', args=(2, 2), kwargs={}, options={}}

Proxies

	
celery.current_app

	The currently set app for this thread.

	
celery.current_task

	The task currently being executed
(only set in the worker, or when eager/apply is used).

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Celery Application.

	Proxies

	Functions

Proxies

	
celery.app.default_app = <Celery default>

	Proxy always returning the app set as default.

Functions

	
celery.app.app_or_default(app=None)

	Function returning the app provided or the default app if none.

The environment variable CELERY_TRACE_APP is used to
trace app leaks. When enabled an exception is raised if there
is no active app.

	
celery.app.enable_trace()[source]

	Enable tracing of app instances.

	
celery.app.disable_trace()[source]

	Disable tracing of app instances.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.app.task

Task implementation: request context and the task base class.

	
class celery.app.task.Context(*args, **kwargs)[source]

	Task request variables (Task.request).

	
class celery.app.task.Task[source]

	Task base class.

Note

When called tasks apply the run() method. This method must
be defined by all tasks (that is unless the __call__() method
is overridden).

	
AsyncResult(task_id, **kwargs)[source]

	Get AsyncResult instance for the specified task.

	Parameters

	task_id (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Task id to get result for.

	
exception MaxRetriesExceededError(*args, **kwargs)

	The tasks max restart limit has been exceeded.

	
exception OperationalError

	Recoverable message transport connection error.

	
Request = 'celery.worker.request:Request'

	Request class used, or the qualified name of one.

	
Strategy = 'celery.worker.strategy:default'

	Execution strategy used, or the qualified name of one.

	
abstract = True

	Deprecated attribute abstract here for compatibility.

	
acks_late = False

	When enabled messages for this task will be acknowledged after
the task has been executed, and not just before (the
default behavior).

Please note that this means the task may be executed twice if the
worker crashes mid execution.

The application default can be overridden with the
task_acks_late setting.

	
acks_on_failure_or_timeout = True

	When enabled messages for this task will be acknowledged even if it
fails or times out.

Configuring this setting only applies to tasks that are
acknowledged after they have been executed and only if
task_acks_late is enabled.

The application default can be overridden with the
task_acks_on_failure_or_timeout setting.

	
add_to_chord(sig, lazy=False)[source]

	Add signature to the chord the current task is a member of.

New in version 4.0.

Currently only supported by the Redis result backend.

	Parameters

	
	sig (~@Signature) – Signature to extend chord with.

	lazy (bool [https://docs.python.org/dev/library/functions.html#bool]) – If enabled the new task won’t actually be called,
and sig.delay() must be called manually.

	
after_return(status, retval, task_id, args, kwargs, einfo)[source]

	Handler called after the task returns.

	Parameters

	
	status (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Current task state.

	retval (Any) – Task return value/exception.

	task_id (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Unique id of the task.

	args (Tuple) – Original arguments for the task.

	kwargs (Dict) – Original keyword arguments for the task.

	einfo (ExceptionInfo) – Exception information.

	Returns

	The return value of this handler is ignored.

	Return type

	None [https://docs.python.org/dev/library/constants.html#None]

	
apply(args=None, kwargs=None, link=None, link_error=None, task_id=None, retries=None, throw=None, logfile=None, loglevel=None, headers=None, **options)[source]

	Execute this task locally, by blocking until the task returns.

	Parameters

	
	args (Tuple) – positional arguments passed on to the task.

	kwargs (Dict) – keyword arguments passed on to the task.

	throw (bool [https://docs.python.org/dev/library/functions.html#bool]) – Re-raise task exceptions.
Defaults to the task_eager_propagates setting.

	Returns

	pre-evaluated result.

	Return type

	celery.result.EagerResult

	
apply_async(args=None, kwargs=None, task_id=None, producer=None, link=None, link_error=None, shadow=None, **options)[source]

	Apply tasks asynchronously by sending a message.

	Parameters

	
	args (Tuple) – The positional arguments to pass on to the task.

	kwargs (Dict) – The keyword arguments to pass on to the task.

	countdown (float [https://docs.python.org/dev/library/functions.html#float]) – Number of seconds into the future that the
task should execute. Defaults to immediate execution.

	eta (datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime]) – Absolute time and date of when the task
should be executed. May not be specified if countdown
is also supplied.

	expires (float [https://docs.python.org/dev/library/functions.html#float], datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime]) – Datetime or
seconds in the future for the task should expire.
The task won’t be executed after the expiration time.

	shadow (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Override task name used in logs/monitoring.
Default is retrieved from shadow_name().

	connection (kombu.Connection [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection]) – Re-use existing broker connection
instead of acquiring one from the connection pool.

	retry (bool [https://docs.python.org/dev/library/functions.html#bool]) – If enabled sending of the task message will be
retried in the event of connection loss or failure.
Default is taken from the task_publish_retry
setting. Note that you need to handle the
producer/connection manually for this to work.

	retry_policy (Mapping) – Override the retry policy used.
See the task_publish_retry_policy setting.

	queue (str [https://docs.python.org/dev/library/stdtypes.html#str], kombu.Queue [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue]) – The queue to route the task to.
This must be a key present in task_queues, or
task_create_missing_queues must be
enabled. See Routing Tasks for more
information.

	exchange (str [https://docs.python.org/dev/library/stdtypes.html#str], kombu.Exchange [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Exchange]) – Named custom exchange to send the
task to. Usually not used in combination with the queue
argument.

	routing_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Custom routing key used to route the task to a
worker server. If in combination with a queue argument
only used to specify custom routing keys to topic exchanges.

	priority (int [https://docs.python.org/dev/library/functions.html#int]) – The task priority, a number between 0 and 9.
Defaults to the priority attribute.

	serializer (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Serialization method to use.
Can be pickle, json, yaml, msgpack or any custom
serialization method that’s been registered
with kombu.serialization.registry.
Defaults to the serializer attribute.

	compression (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional compression method
to use. Can be one of zlib, bzip2,
or any custom compression methods registered with
kombu.compression.register() [https://kombu.readthedocs.io/en/master/reference/kombu.compression.html#kombu.compression.register].
Defaults to the task_compression setting.

	link (Signature) – A single, or a list of tasks signatures
to apply if the task returns successfully.

	link_error (Signature) – A single, or a list of task signatures
to apply if an error occurs while executing the task.

	producer (kombu.Producer [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer]) – custom producer to use when publishing
the task.

	add_to_parent (bool [https://docs.python.org/dev/library/functions.html#bool]) – If set to True (default) and the task
is applied while executing another task, then the result
will be appended to the parent tasks request.children
attribute. Trailing can also be disabled by default using the
trail attribute

	publisher (kombu.Producer [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer]) – Deprecated alias to producer.

	headers (Dict) – Message headers to be included in the message.

	Returns

	Promise of future evaluation.

	Return type

	celery.result.AsyncResult

	Raises

	
	TypeError [https://docs.python.org/dev/library/exceptions.html#TypeError] – If not enough arguments are passed, or too many
 arguments are passed. Note that signature checks may
 be disabled by specifying @task(typing=False).

	kombu.exceptions.OperationalError – If a connection to the
 transport cannot be made, or if the connection is lost.

Note

Also supports all keyword arguments supported by
kombu.Producer.publish() [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer.publish].

	
autoregister = True

	If disabled this task won’t be registered automatically.

	
property backend

	The result store backend used for this task.

	
chunks(it, n)[source]

	Create a chunks task for this task.

	
default_retry_delay = 180

	Default time in seconds before a retry of the task should be
executed. 3 minutes by default.

	
delay(*args, **kwargs)[source]

	Star argument version of apply_async().

Does not support the extra options enabled by apply_async().

	Parameters

	
	*args (Any) – Positional arguments passed on to the task.

	**kwargs (Any) – Keyword arguments passed on to the task.

	Returns

	Future promise.

	Return type

	celery.result.AsyncResult

	
expires = None

	Default task expiry time.

	
ignore_result = False

	If enabled the worker won’t store task state and return values
for this task. Defaults to the task_ignore_result
setting.

	
map(it)[source]

	Create a xmap task from it.

	
max_retries = 3

	Maximum number of retries before giving up. If set to None,
it will never stop retrying.

	
name = None

	Name of the task.

	
classmethod on_bound(app)[source]

	Called when the task is bound to an app.

Note

This class method can be defined to do additional actions when
the task class is bound to an app.

	
on_failure(exc, task_id, args, kwargs, einfo)[source]

	Error handler.

This is run by the worker when the task fails.

	Parameters

	
	exc (Exception [https://docs.python.org/dev/library/exceptions.html#Exception]) – The exception raised by the task.

	task_id (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Unique id of the failed task.

	args (Tuple) – Original arguments for the task that failed.

	kwargs (Dict) – Original keyword arguments for the task that failed.

	einfo (ExceptionInfo) – Exception information.

	Returns

	The return value of this handler is ignored.

	Return type

	None [https://docs.python.org/dev/library/constants.html#None]

	
on_retry(exc, task_id, args, kwargs, einfo)[source]

	Retry handler.

This is run by the worker when the task is to be retried.

	Parameters

	
	exc (Exception [https://docs.python.org/dev/library/exceptions.html#Exception]) – The exception sent to retry().

	task_id (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Unique id of the retried task.

	args (Tuple) – Original arguments for the retried task.

	kwargs (Dict) – Original keyword arguments for the retried task.

	einfo (ExceptionInfo) – Exception information.

	Returns

	The return value of this handler is ignored.

	Return type

	None [https://docs.python.org/dev/library/constants.html#None]

	
on_success(retval, task_id, args, kwargs)[source]

	Success handler.

Run by the worker if the task executes successfully.

	Parameters

	
	retval (Any) – The return value of the task.

	task_id (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Unique id of the executed task.

	args (Tuple) – Original arguments for the executed task.

	kwargs (Dict) – Original keyword arguments for the executed task.

	Returns

	The return value of this handler is ignored.

	Return type

	None [https://docs.python.org/dev/library/constants.html#None]

	
priority = None

	Default task priority.

	
rate_limit = None

	None (no rate
limit), ‘100/s’ (hundred tasks a second), ‘100/m’ (hundred tasks
a minute),`’100/h’` (hundred tasks an hour)

	Type

	Rate limit for this task type. Examples

	
reject_on_worker_lost = None

	Even if acks_late is enabled, the worker will
acknowledge tasks when the worker process executing them abruptly
exits or is signaled (e.g., KILL/INT, etc).

Setting this to true allows the message to be re-queued instead,
so that the task will execute again by the same worker, or another
worker.

Warning: Enabling this can cause message loops; make sure you know
what you’re doing.

	
replace(sig)[source]

	Replace this task, with a new task inheriting the task id.

Execution of the host task ends immediately and no subsequent statements
will be run.

New in version 4.0.

	Parameters

	sig (~@Signature) – signature to replace with.

	Raises

	
	Ignore – This is always raised when called in asynchronous context.

	It is best to always use return self.replace(..) to convey –

	to the reader that the task won't continue after being replaced. –

	
property request

	Get current request object.

	
request_stack = <celery.utils.threads._LocalStack object>

	Task request stack, the current request will be the topmost.

	
resultrepr_maxsize = 1024

	Max length of result representation used in logs and events.

	
retry(args=None, kwargs=None, exc=None, throw=True, eta=None, countdown=None, max_retries=None, **options)[source]

	Retry the task, adding it to the back of the queue.

Example

>>> from imaginary_twitter_lib import Twitter
>>> from proj.celery import app

>>> @app.task(bind=True)
... def tweet(self, auth, message):
... twitter = Twitter(oauth=auth)
... try:
... twitter.post_status_update(message)
... except twitter.FailWhale as exc:
... # Retry in 5 minutes.
... self.retry(countdown=60 * 5, exc=exc)

Note

Although the task will never return above as retry raises an
exception to notify the worker, we use raise in front of the
retry to convey that the rest of the block won’t be executed.

	Parameters

	
	args (Tuple) – Positional arguments to retry with.

	kwargs (Dict) – Keyword arguments to retry with.

	exc (Exception [https://docs.python.org/dev/library/exceptions.html#Exception]) – Custom exception to report when the max retry
limit has been exceeded (default:
MaxRetriesExceededError).

If this argument is set and retry is called while
an exception was raised (sys.exc_info() is set)
it will attempt to re-raise the current exception.

If no exception was raised it will raise the exc
argument provided.

	countdown (float [https://docs.python.org/dev/library/functions.html#float]) – Time in seconds to delay the retry for.

	eta (datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime]) – Explicit time and date to run the
retry at.

	max_retries (int [https://docs.python.org/dev/library/functions.html#int]) – If set, overrides the default retry limit for
this execution. Changes to this parameter don’t propagate to
subsequent task retry attempts. A value of None,
means “use the default”, so if you want infinite retries you’d
have to set the max_retries attribute of the task to
None first.

	time_limit (int [https://docs.python.org/dev/library/functions.html#int]) – If set, overrides the default time limit.

	soft_time_limit (int [https://docs.python.org/dev/library/functions.html#int]) – If set, overrides the default soft
time limit.

	throw (bool [https://docs.python.org/dev/library/functions.html#bool]) – If this is False, don’t raise the
Retry exception, that tells the worker to mark
the task as being retried. Note that this means the task
will be marked as failed if the task raises an exception,
or successful if it returns after the retry call.

	**options (Any) – Extra options to pass on to apply_async().

	Raises

	celery.exceptions.Retry – To tell the worker that the task has been re-sent for retry.
 This always happens, unless the throw keyword argument
 has been explicitly set to False, and is considered
 normal operation.

	
run(*args, **kwargs)[source]

	The body of the task executed by workers.

	
s(*args, **kwargs)[source]

	Create signature.

Shortcut for .s(*a, **k) -> .signature(a, k).

	
send_event(type_, retry=True, retry_policy=None, **fields)[source]

	Send monitoring event message.

This can be used to add custom event types in Flower [https://pypi.python.org/pypi/Flower/]
and other monitors.

	Parameters

	type (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Type of event, e.g. "task-failed".

	Keyword Arguments

	
	retry (bool [https://docs.python.org/dev/library/functions.html#bool]) – Retry sending the message
if the connection is lost. Default is taken from the
task_publish_retry setting.

	retry_policy (Mapping) – Retry settings. Default is taken
from the task_publish_retry_policy setting.

	**fields (Any) – Map containing information about the event.
Must be JSON serializable.

	
send_events = True

	If enabled the worker will send monitoring events related to
this task (but only if the worker is configured to send
task related events).
Note that this has no effect on the task-failure event case
where a task is not registered (as it will have no task class
to check this flag).

	
serializer = 'json'

	The name of a serializer that are registered with
kombu.serialization.registry. Default is ‘json’.

	
shadow_name(args, kwargs, options)[source]

	Override for custom task name in worker logs/monitoring.

Example

from celery.utils.imports import qualname

def shadow_name(task, args, kwargs, options):
 return qualname(args[0])

@app.task(shadow_name=shadow_name, serializer='pickle')
def apply_function_async(fun, *args, **kwargs):
 return fun(*args, **kwargs)

	Parameters

	
	args (Tuple) – Task positional arguments.

	kwargs (Dict) – Task keyword arguments.

	options (Dict) – Task execution options.

	
si(*args, **kwargs)[source]

	Create immutable signature.

Shortcut for .si(*a, **k) -> .signature(a, k, immutable=True).

	
signature(args=None, *starargs, **starkwargs)[source]

	Create signature.

	Returns

	
	object for
	this task, wrapping arguments and execution options
for a single task invocation.

	Return type

	signature

	
soft_time_limit = None

	Soft time limit.
Defaults to the task_soft_time_limit setting.

	
starmap(it)[source]

	Create a xstarmap task from it.

	
store_errors_even_if_ignored = False

	When enabled errors will be stored even if the task is otherwise
configured to ignore results.

	
subtask(args=None, *starargs, **starkwargs)

	Create signature.

	Returns

	
	object for
	this task, wrapping arguments and execution options
for a single task invocation.

	Return type

	signature

	
throws = ()

	Tuple of expected exceptions.

These are errors that are expected in normal operation
and that shouldn’t be regarded as a real error by the worker.
Currently this means that the state will be updated to an error
state, but the worker won’t log the event as an error.

	
time_limit = None

	Hard time limit.
Defaults to the task_time_limit setting.

	
track_started = False

	If enabled the task will report its status as ‘started’ when the task
is executed by a worker. Disabled by default as the normal behavior
is to not report that level of granularity. Tasks are either pending,
finished, or waiting to be retried.

Having a ‘started’ status can be useful for when there are long
running tasks and there’s a need to report what task is currently
running.

The application default can be overridden using the
task_track_started setting.

	
trail = True

	If enabled the request will keep track of subtasks started by
this task, and this information will be sent with the result
(result.children).

	
typing = True

	Enable argument checking.
You can set this to false if you don’t want the signature to be
checked when calling the task.
Defaults to Celery.strict_typing.

	
update_state(task_id=None, state=None, meta=None, **kwargs)[source]

	Update task state.

	Parameters

	
	task_id (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Id of the task to update.
Defaults to the id of the current task.

	state (str [https://docs.python.org/dev/library/stdtypes.html#str]) – New state.

	meta (Dict) – State meta-data.

	
celery.app.task.TaskType

	alias of builtins.type

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Sending/Receiving Messages (Kombu integration).

	AMQP

	Queues

AMQP

	
class celery.app.amqp.AMQP(app)[source]

	App AMQP API: app.amqp.

	
Connection

	Broker connection class used. Default is kombu.Connection [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection].

	
Consumer

	Base Consumer class used. Default is kombu.Consumer [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Consumer].

	
Producer

	Base Producer class used. Default is kombu.Producer [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer].

	
queues[source]

	All currently defined task queues (a Queues instance).

	
argsrepr_maxsize

	Max size of positional argument representation used for logging
purposes. Default is 1024.

	
kwargsrepr_maxsize

	Max size of keyword argument representation used for logging
purposes. Default is 1024.

	
Queues(queues, create_missing=None, ha_policy=None, autoexchange=None, max_priority=None)[source]

	

	
Router(queues=None, create_missing=None)[source]

	Return the current task router.

	
flush_routes()[source]

	

	
create_task_message[source]

	

	
send_task_message[source]

	

	
default_queue[source]

	

	
default_exchange[source]

	

	
producer_pool

	

	
router[source]

	

	
routes

	

Queues

	
class celery.app.amqp.Queues(queues=None, default_exchange=None, create_missing=True, ha_policy=None, autoexchange=None, max_priority=None, default_routing_key=None)[source]

	Queue name⇒ declaration mapping.

	Parameters

	
	queues (Iterable) – Initial list/tuple or dict of queues.

	create_missing (bool [https://docs.python.org/dev/library/functions.html#bool]) – By default any unknown queues will be
added automatically, but if this flag is disabled the occurrence
of unknown queues in wanted will raise KeyError [https://docs.python.org/dev/library/exceptions.html#KeyError].

	ha_policy (Sequence, str [https://docs.python.org/dev/library/stdtypes.html#str]) – Default HA policy for queues with none set.

	max_priority (int [https://docs.python.org/dev/library/functions.html#int]) – Default x-max-priority for queues with none set.

	
add(queue, **kwargs)[source]

	Add new queue.

The first argument can either be a kombu.Queue [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue] instance,
or the name of a queue. If the former the rest of the keyword
arguments are ignored, and options are simply taken from the queue
instance.

	Parameters

	
	queue (kombu.Queue [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue], str [https://docs.python.org/dev/library/stdtypes.html#str]) – Queue to add.

	exchange (kombu.Exchange [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Exchange], str [https://docs.python.org/dev/library/stdtypes.html#str]) – if queue is str, specifies exchange name.

	routing_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – if queue is str, specifies binding key.

	exchange_type (str [https://docs.python.org/dev/library/stdtypes.html#str]) – if queue is str, specifies type of exchange.

	**options (Any) – Additional declaration options used when
queue is a str.

	
add_compat(name, **options)[source]

	

	
property consume_from

	

	
deselect(exclude)[source]

	Deselect queues so that they won’t be consumed from.

	Parameters

	exclude (Sequence[str [https://docs.python.org/dev/library/stdtypes.html#str]], str [https://docs.python.org/dev/library/stdtypes.html#str]) – Names of queues to avoid
consuming from.

	
format(indent=0, indent_first=True)[source]

	Format routing table into string for log dumps.

	
new_missing(name)[source]

	

	
select(include)[source]

	Select a subset of currently defined queues to consume from.

	Parameters

	include (Sequence[str [https://docs.python.org/dev/library/stdtypes.html#str]], str [https://docs.python.org/dev/library/stdtypes.html#str]) – Names of queues to consume from.

	
select_add(queue, **kwargs)[source]

	Add new task queue that’ll be consumed from.

The queue will be active even when a subset has been selected
using the celery worker -Q option.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.app.defaults

Configuration introspection and defaults.

	
class celery.app.defaults.Option(default=None, *args, **kwargs)[source]

	Describes a Celery configuration option.

	
alt = None

	

	
deprecate_by = None

	

	
old = {}

	

	
remove_by = None

	

	
to_python(value)[source]

	

	
typemap = {'any': <function Option.<lambda>>, 'bool': <function strtobool>, 'dict': <class 'dict'>, 'float': <class 'float'>, 'int': <class 'int'>, 'string': <class 'str'>, 'tuple': <class 'tuple'>}

	

	
celery.app.defaults.find(name, namespace='celery')[source]

	Find setting by name.

	
celery.app.defaults.flatten(d, root='', keyfilter=<function _flatten_keys>)[source]

	Flatten settings.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.app.control

Worker Remote Control Client.

Client for worker remote control commands.
Server implementation is in celery.worker.control.

	
class celery.app.control.Control(app=None)[source]

	Worker remote control client.

	
class Mailbox(namespace, type='direct', connection=None, clock=None, accept=None, serializer=None, producer_pool=None, queue_ttl=None, queue_expires=None, reply_queue_ttl=None, reply_queue_expires=10.0)

	Process Mailbox.

	
Node(hostname=None, state=None, channel=None, handlers=None)

	

	
abcast(command, kwargs=None)

	

	
accept = ['json']

	

	
call(destination, command, kwargs=None, timeout=None, callback=None, channel=None)

	

	
cast(destination, command, kwargs=None)

	

	
connection = None

	

	
exchange = None

	

	
exchange_fmt = '%s.pidbox'

	

	
get_queue(hostname)

	

	
get_reply_queue()

	

	
multi_call(command, kwargs=None, timeout=1, limit=None, callback=None, channel=None)

	

	
namespace = None

	

	
node_cls

	alias of Node

	
oid

	

	
producer_or_acquire(producer=None, channel=None)

	

	
producer_pool

	

	
reply_exchange = None

	

	
reply_exchange_fmt = 'reply.%s.pidbox'

	

	
reply_queue

	

	
serializer = None

	

	
type = 'direct'

	

	
add_consumer(queue, exchange=None, exchange_type='direct', routing_key=None, options=None, destination=None, **kwargs)[source]

	Tell all (or specific) workers to start consuming from a new queue.

Only the queue name is required as if only the queue is specified
then the exchange/routing key will be set to the same name (
like automatic queues do).

Note

This command does not respect the default queue/exchange
options in the configuration.

	Parameters

	
	queue (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Name of queue to start consuming from.

	exchange (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional name of exchange.

	exchange_type (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Type of exchange (defaults to ‘direct’)
command to, when empty broadcast to all workers.

	routing_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional routing key.

	options (Dict) – Additional options as supported
by kombu.entity.Queue.from_dict().

See also

broadcast() for supported keyword arguments.

	
autoscale(max, min, destination=None, **kwargs)[source]

	Change worker(s) autoscale setting.

See also

Supports the same arguments as broadcast().

	
broadcast(command, arguments=None, destination=None, connection=None, reply=False, timeout=1.0, limit=None, callback=None, channel=None, pattern=None, matcher=None, **extra_kwargs)[source]

	Broadcast a control command to the celery workers.

	Parameters

	
	command (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Name of command to send.

	arguments (Dict) – Keyword arguments for the command.

	destination (List) – If set, a list of the hosts to send the
command to, when empty broadcast to all workers.

	connection (kombu.Connection [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection]) – Custom broker connection to use,
if not set, a connection will be acquired from the pool.

	reply (bool [https://docs.python.org/dev/library/functions.html#bool]) – Wait for and return the reply.

	timeout (float [https://docs.python.org/dev/library/functions.html#float]) – Timeout in seconds to wait for the reply.

	limit (int [https://docs.python.org/dev/library/functions.html#int]) – Limit number of replies.

	callback (Callable) – Callback called immediately for
each reply received.

	pattern (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Custom pattern string to match

	matcher (Callable) – Custom matcher to run the pattern to match

	
cancel_consumer(queue, destination=None, **kwargs)[source]

	Tell all (or specific) workers to stop consuming from queue.

See also

Supports the same arguments as broadcast().

	
disable_events(destination=None, **kwargs)[source]

	Tell all (or specific) workers to disable events.

See also

Supports the same arguments as broadcast().

	
discard_all(connection=None)

	Discard all waiting tasks.

This will ignore all tasks waiting for execution, and they will
be deleted from the messaging server.

	Parameters

	connection (kombu.Connection [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection]) – Optional specific connection
instance to use. If not provided a connection will
be acquired from the connection pool.

	Returns

	the number of tasks discarded.

	Return type

	int [https://docs.python.org/dev/library/functions.html#int]

	
election(id, topic, action=None, connection=None)[source]

	

	
enable_events(destination=None, **kwargs)[source]

	Tell all (or specific) workers to enable events.

See also

Supports the same arguments as broadcast().

	
heartbeat(destination=None, **kwargs)[source]

	Tell worker(s) to send a heartbeat immediately.

See also

Supports the same arguments as broadcast()

	
inspect[source]

	

	
ping(destination=None, timeout=1.0, **kwargs)[source]

	Ping all (or specific) workers.

	Returns

	List of {'hostname': reply} dictionaries.

	Return type

	List[Dict]

See also

broadcast() for supported keyword arguments.

	
pool_grow(n=1, destination=None, **kwargs)[source]

	Tell all (or specific) workers to grow the pool by n.

See also

Supports the same arguments as broadcast().

	
pool_restart(modules=None, reload=False, reloader=None, destination=None, **kwargs)[source]

	Restart the execution pools of all or specific workers.

	Keyword Arguments

	
	modules (Sequence[str [https://docs.python.org/dev/library/stdtypes.html#str]]) – List of modules to reload.

	reload (bool [https://docs.python.org/dev/library/functions.html#bool]) – Flag to enable module reloading. Default is False.

	reloader (Any) – Function to reload a module.

	destination (Sequence[str [https://docs.python.org/dev/library/stdtypes.html#str]]) – List of worker names to send this
command to.

See also

Supports the same arguments as broadcast()

	
pool_shrink(n=1, destination=None, **kwargs)[source]

	Tell all (or specific) workers to shrink the pool by n.

See also

Supports the same arguments as broadcast().

	
purge(connection=None)[source]

	Discard all waiting tasks.

This will ignore all tasks waiting for execution, and they will
be deleted from the messaging server.

	Parameters

	connection (kombu.Connection [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection]) – Optional specific connection
instance to use. If not provided a connection will
be acquired from the connection pool.

	Returns

	the number of tasks discarded.

	Return type

	int [https://docs.python.org/dev/library/functions.html#int]

	
rate_limit(task_name, rate_limit, destination=None, **kwargs)[source]

	Tell workers to set a new rate limit for task by type.

	Parameters

	
	task_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Name of task to change rate limit for.

	rate_limit (int [https://docs.python.org/dev/library/functions.html#int], str [https://docs.python.org/dev/library/stdtypes.html#str]) – The rate limit as tasks per second,
or a rate limit string (‘100/m’, etc.
see celery.task.base.Task.rate_limit for
more information).

See also

broadcast() for supported keyword arguments.

	
revoke(task_id, destination=None, terminate=False, signal='SIGTERM', **kwargs)[source]

	Tell all (or specific) workers to revoke a task by id (or list of ids).

If a task is revoked, the workers will ignore the task and
not execute it after all.

	Parameters

	
	task_id (Union(str [https://docs.python.org/dev/library/stdtypes.html#str], list [https://docs.python.org/dev/library/stdtypes.html#list])) – Id of the task to revoke
(or list of ids).

	terminate (bool [https://docs.python.org/dev/library/functions.html#bool]) – Also terminate the process currently working
on the task (if any).

	signal (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Name of signal to send to process if terminate.
Default is TERM.

See also

broadcast() for supported keyword arguments.

	
shutdown(destination=None, **kwargs)[source]

	Shutdown worker(s).

See also

Supports the same arguments as broadcast()

	
terminate(task_id, destination=None, signal='SIGTERM', **kwargs)[source]

	Tell all (or specific) workers to terminate a task by id (or list of ids).

See also

This is just a shortcut to revoke() with the terminate
argument enabled.

	
time_limit(task_name, soft=None, hard=None, destination=None, **kwargs)[source]

	Tell workers to set time limits for a task by type.

	Parameters

	
	task_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Name of task to change time limits for.

	soft (float [https://docs.python.org/dev/library/functions.html#float]) – New soft time limit (in seconds).

	hard (float [https://docs.python.org/dev/library/functions.html#float]) – New hard time limit (in seconds).

	**kwargs (Any) – arguments passed on to broadcast().

	
class celery.app.control.Inspect(destination=None, timeout=1.0, callback=None, connection=None, app=None, limit=None, pattern=None, matcher=None)[source]

	API for app.control.inspect.

	
active(safe=None)[source]

	

	
active_queues()[source]

	

	
app = None

	

	
clock()[source]

	

	
conf(with_defaults=False)[source]

	

	
hello(from_node, revoked=None)[source]

	

	
memdump(samples=10)[source]

	

	
memsample()[source]

	

	
objgraph(type='Request', n=200, max_depth=10)[source]

	

	
ping(destination=None)[source]

	

	
query_task(*ids)[source]

	

	
registered(*taskinfoitems)[source]

	

	
registered_tasks(*taskinfoitems)

	

	
report()[source]

	

	
reserved(safe=None)[source]

	

	
revoked()[source]

	

	
scheduled(safe=None)[source]

	

	
stats()[source]

	

	
celery.app.control.flatten_reply(reply)[source]

	Flatten node replies.

Convert from a list of replies in this format:

[{'a@example.com': reply},
 {'b@example.com': reply}]

into this format:

{'a@example.com': reply,
 'b@example.com': reply}

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.app.registry

Registry of available tasks.

	
class celery.app.registry.TaskRegistry[source]

	Map of registered tasks.

	
exception NotRegistered

	The task is not registered.

	
filter_types(type)[source]

	

	
periodic()[source]

	

	
register(task)[source]

	Register a task in the task registry.

The task will be automatically instantiated if not already an
instance. Name must be configured prior to registration.

	
regular()[source]

	

	
unregister(name)[source]

	Unregister task by name.

	Parameters

	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – name of the task to unregister, or a
celery.task.base.Task with a valid name attribute.

	Raises

	celery.exceptions.NotRegistered – if the task is not registered.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.app.backends

Backend selection.

	
celery.app.backends.by_name(backend=None, loader=None, extension_namespace='celery.result_backends')[source]

	Get backend class by name/alias.

	
celery.app.backends.by_url(backend=None, loader=None)[source]

	Get backend class by URL.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.app.builtins

Built-in Tasks.

The built-in tasks are always available in all app instances.

	
celery.app.builtins.add_accumulate_task(app)[source]

	Task used by Task.replace when replacing task with group.

	
celery.app.builtins.add_backend_cleanup_task(app)[source]

	Task used to clean up expired results.

If the configured backend requires periodic cleanup this task is also
automatically configured to run every day at 4am (requires
celery beat to be running).

	
celery.app.builtins.add_chain_task(app)[source]

	No longer used, but here for backwards compatibility.

	
celery.app.builtins.add_chord_task(app)[source]

	No longer used, but here for backwards compatibility.

	
celery.app.builtins.add_chunk_task(app)[source]

	

	
celery.app.builtins.add_group_task(app)[source]

	No longer used, but here for backwards compatibility.

	
celery.app.builtins.add_map_task(app)[source]

	

	
celery.app.builtins.add_starmap_task(app)[source]

	

	
celery.app.builtins.add_unlock_chord_task(app)[source]

	Task used by result backends without native chord support.

Will joins chord by creating a task chain polling the header
for completion.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.app.events

Implementation for the app.events shortcuts.

	
class celery.app.events.Events(app=None)[source]

	Implements app.events.

	
Dispatcher[source]

	

	
Receiver[source]

	

	
State[source]

	

	
default_dispatcher(hostname=None, enabled=True, buffer_while_offline=False)[source]

	

	
dispatcher_cls = 'celery.events.dispatcher:EventDispatcher'

	

	
receiver_cls = 'celery.events.receiver:EventReceiver'

	

	
state_cls = 'celery.events.state:State'

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.app.log

Logging configuration.

The Celery instances logging section: Celery.log.

Sets up logging for the worker and other programs,
redirects standard outs, colors log output, patches logging
related compatibility fixes, and so on.

	
class celery.app.log.Logging(app)[source]

	Application logging setup (app.log).

	
already_setup = False

	

	
colored(logfile=None, enabled=None)[source]

	

	
get_default_logger(name='celery', **kwargs)[source]

	

	
redirect_stdouts(loglevel=None, name='celery.redirected')[source]

	

	
redirect_stdouts_to_logger(logger, loglevel=None, stdout=True, stderr=True)[source]

	Redirect sys.stdout and sys.stderr to logger.

	Parameters

	
	logger (logging.Logger [https://docs.python.org/dev/library/logging.html#logging.Logger]) – Logger instance to redirect to.

	loglevel (int [https://docs.python.org/dev/library/functions.html#int], str [https://docs.python.org/dev/library/stdtypes.html#str]) – The loglevel redirected message
will be logged as.

	
setup(loglevel=None, logfile=None, redirect_stdouts=False, redirect_level='WARNING', colorize=None, hostname=None)[source]

	

	
setup_handlers(logger, logfile, format, colorize, formatter=<class 'celery.utils.log.ColorFormatter'>, **kwargs)[source]

	

	
setup_logging_subsystem(loglevel=None, logfile=None, format=None, colorize=None, hostname=None, **kwargs)[source]

	

	
setup_task_loggers(loglevel=None, logfile=None, format=None, colorize=None, propagate=False, **kwargs)[source]

	Setup the task logger.

If logfile is not specified, then sys.stderr is used.

Will return the base task logger object.

	
supports_color(colorize=None, logfile=None)[source]

	

	
class celery.app.log.TaskFormatter(fmt=None, use_color=True)[source]

	Formatter for tasks, adding the task name and id.

	
format(record)[source]

	Format the specified record as text.

The record’s attribute dictionary is used as the operand to a
string formatting operation which yields the returned string.
Before formatting the dictionary, a couple of preparatory steps
are carried out. The message attribute of the record is computed
using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is
called to format the event time. If there is exception information,
it is formatted using formatException() and appended to the message.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.app.utils

App utilities: Compat settings, bug-report tool, pickling apps.

	
class celery.app.utils.Settings(*args, deprecated_settings=None, **kwargs)[source]

	Celery settings object.

	
property broker_read_url

	

	
property broker_url

	

	
property broker_write_url

	

	
finalize()[source]

	

	
find_option(name, namespace='')[source]

	Search for option by name.

Example

>>> from proj.celery import app
>>> app.conf.find_option('disable_rate_limits')
('worker', 'prefetch_multiplier',
 <Option: type->bool default->False>))

	Parameters

	
	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Name of option, cannot be partial.

	namespace (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Preferred name-space (None by default).

	Returns

	of (namespace, key, type).

	Return type

	Tuple

	
find_value_for_key(name, namespace='celery')[source]

	Shortcut to get_by_parts(*find_option(name)[:-1]).

	
get_by_parts(*parts)[source]

	Return the current value for setting specified as a path.

Example

>>> from proj.celery import app
>>> app.conf.get_by_parts('worker', 'disable_rate_limits')
False

	
humanize(with_defaults=False, censored=True)[source]

	Return a human readable text showing configuration changes.

	
maybe_warn_deprecated_settings()[source]

	

	
property result_backend

	

	
table(with_defaults=False, censored=True)[source]

	

	
property task_default_exchange

	

	
property task_default_routing_key

	

	
property timezone

	

	
value_set_for(key)[source]

	

	
without_defaults()[source]

	Return the current configuration, but without defaults.

	
celery.app.utils.appstr(app)[source]

	String used in __repr__ etc, to id app instances.

	
celery.app.utils.bugreport(app)[source]

	Return a string containing information useful in bug-reports.

	
celery.app.utils.filter_hidden_settings(conf)[source]

	Filter sensitive settings.

	
celery.app.utils.find_app(app, symbol_by_name=<function symbol_by_name>, imp=<function import_from_cwd>)[source]

	Find app by name.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.app.autoretry

Tasks auto-retry functionality.

	
celery.app.autoretry.add_autoretry_behaviour(task, **options)[source]

	Wrap task’s run method with auto-retry functionality.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.bootsteps

A directed acyclic graph of reusable components.

	
class celery.bootsteps.Blueprint(steps=None, name=None, on_start=None, on_close=None, on_stopped=None)[source]

	Blueprint containing bootsteps that can be applied to objects.

	Parameters

	
	Sequence[Union[str (steps) – List of steps.

	Step]] – List of steps.

	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Set explicit name for this blueprint.

	on_start (Callable) – Optional callback applied after blueprint start.

	on_close (Callable) – Optional callback applied before blueprint close.

	on_stopped (Callable) – Optional callback applied after
blueprint stopped.

	
GraphFormatter

	alias of StepFormatter

	
property alias

	

	
apply(parent, **kwargs)[source]

	Apply the steps in this blueprint to an object.

This will apply the __init__ and include methods
of each step, with the object as argument:

step = Step(obj)
...
step.include(obj)

For StartStopStep the services created
will also be added to the objects steps attribute.

	
claim_steps()[source]

	

	
close(parent)[source]

	

	
connect_with(other)[source]

	

	
default_steps = {}

	

	
human_state()[source]

	

	
info(parent)[source]

	

	
join(timeout=None)[source]

	

	
load_step(step)[source]

	

	
name = None

	

	
restart(parent, method='stop', description='restarting', propagate=False)[source]

	

	
send_all(parent, method, description=None, reverse=True, propagate=True, args=())[source]

	

	
start(parent)[source]

	

	
started = 0

	

	
state = None

	

	
state_to_name = {0: 'initializing', 1: 'running', 2: 'closing', 3: 'terminating'}

	

	
stop(parent, close=True, terminate=False)[source]

	

	
class celery.bootsteps.ConsumerStep(parent, **kwargs)[source]

	Bootstep that starts a message consumer.

	
consumers = None

	

	
get_consumers(channel)[source]

	

	
name = 'celery.bootsteps.ConsumerStep'

	

	
requires = ('celery.worker.consumer:Connection',)

	

	
shutdown(c)[source]

	

	
start(c)[source]

	

	
stop(c)[source]

	

	
class celery.bootsteps.StartStopStep(parent, **kwargs)[source]

	Bootstep that must be started and stopped in order.

	
close(parent)[source]

	

	
include(parent)[source]

	

	
name = 'celery.bootsteps.StartStopStep'

	

	
obj = None

	Optional obj created by the create() method.
This is used by StartStopStep to keep the
original service object.

	
start(parent)[source]

	

	
stop(parent)[source]

	

	
terminate(parent)[source]

	

	
class celery.bootsteps.Step(parent, **kwargs)[source]

	A Bootstep.

The __init__() method is called when the step
is bound to a parent object, and can as such be used
to initialize attributes in the parent object at
parent instantiation-time.

	
property alias

	

	
conditional = False

	Set this to true if the step is enabled based on some condition.

	
create(parent)[source]

	Create the step.

	
enabled = True

	This provides the default for include_if().

	
include(parent)[source]

	

	
include_if(parent)[source]

	Return true if bootstep should be included.

You can define this as an optional predicate that decides whether
this step should be created.

	
info(obj)[source]

	

	
instantiate(name, *args, **kwargs)[source]

	

	
label = None

	Optional short name used for graph outputs and in logs.

	
last = False

	This flag is reserved for the workers Consumer,
since it is required to always be started last.
There can only be one object marked last
in every blueprint.

	
name = 'celery.bootsteps.Step'

	Optional step name, will use qualname if not specified.

	
requires = ()

	List of other steps that that must be started before this step.
Note that all dependencies must be in the same blueprint.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.result

Task results/state and results for groups of tasks.

	
class celery.result.AsyncResult(id, backend=None, task_name=None, app=None, parent=None)[source]

	Query task state.

	Parameters

	
	id (str [https://docs.python.org/dev/library/stdtypes.html#str]) – See id.

	backend (Backend) – See backend.

	
exception TimeoutError

	The operation timed out.

	
app = None

	

	
property args

	

	
as_list()[source]

	Return as a list of task IDs.

	
as_tuple()[source]

	

	
backend = None

	The task result backend to use.

	
build_graph(intermediate=False, formatter=None)[source]

	

	
property children

	

	
collect(intermediate=False, **kwargs)[source]

	Collect results as they return.

Iterator, like get() will wait for the task to complete,
but will also follow AsyncResult and ResultSet
returned by the task, yielding (result, value) tuples for each
result in the tree.

An example would be having the following tasks:

from celery import group
from proj.celery import app

@app.task(trail=True)
def A(how_many):
 return group(B.s(i) for i in range(how_many))()

@app.task(trail=True)
def B(i):
 return pow2.delay(i)

@app.task(trail=True)
def pow2(i):
 return i ** 2

>>> from celery.result import ResultBase
>>> from proj.tasks import A

>>> result = A.delay(10)
>>> [v for v in result.collect()
... if not isinstance(v, (ResultBase, tuple))]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Note

The Task.trail option must be enabled
so that the list of children is stored in result.children.
This is the default but enabled explicitly for illustration.

	Yields

	Tuple[AsyncResult, Any] – tuples containing the result instance
of the child task, and the return value of that task.

	
property date_done

	UTC date and time.

	
failed()[source]

	Return True if the task failed.

	
forget()[source]

	Forget the result of this task and its parents.

	
get(timeout=None, propagate=True, interval=0.5, no_ack=True, follow_parents=True, callback=None, on_message=None, on_interval=None, disable_sync_subtasks=True, EXCEPTION_STATES=frozenset({'FAILURE', 'RETRY', 'REVOKED'}), PROPAGATE_STATES=frozenset({'FAILURE', 'REVOKED'}))[source]

	Wait until task is ready, and return its result.

Warning

Waiting for tasks within a task may lead to deadlocks.
Please read Avoid launching synchronous subtasks.

Warning

Backends use resources to store and transmit results. To ensure
that resources are released, you must eventually call
get() or forget() on
EVERY AsyncResult instance returned after calling
a task.

	Parameters

	
	timeout (float [https://docs.python.org/dev/library/functions.html#float]) – How long to wait, in seconds, before the
operation times out.

	propagate (bool [https://docs.python.org/dev/library/functions.html#bool]) – Re-raise exception if the task failed.

	interval (float [https://docs.python.org/dev/library/functions.html#float]) – Time to wait (in seconds) before retrying to
retrieve the result. Note that this does not have any effect
when using the RPC/redis result store backends, as they don’t
use polling.

	no_ack (bool [https://docs.python.org/dev/library/functions.html#bool]) – Enable amqp no ack (automatically acknowledge
message). If this is False then the message will
not be acked.

	follow_parents (bool [https://docs.python.org/dev/library/functions.html#bool]) – Re-raise any exception raised by
parent tasks.

	disable_sync_subtasks (bool [https://docs.python.org/dev/library/functions.html#bool]) – Disable tasks to wait for sub tasks
this is the default configuration. CAUTION do not enable this
unless you must.

	Raises

	
	celery.exceptions.TimeoutError – if timeout isn’t
 None and the result does not arrive within
 timeout seconds.

	Exception [https://docs.python.org/dev/library/exceptions.html#Exception] – If the remote call raised an exception then that
 exception will be re-raised in the caller process.

	
get_leaf()[source]

	

	
graph[source]

	

	
id = None

	The task’s UUID.

	
property ignored

	If True, task result retrieval is disabled.

	
property info

	Task return value.

Note

When the task has been executed, this contains the return value.
If the task raised an exception, this will be the exception
instance.

	
iterdeps(intermediate=False)[source]

	

	
property kwargs

	

	
maybe_reraise(propagate=True, callback=None)

	

	
maybe_throw(propagate=True, callback=None)[source]

	

	
property name

	

	
property queue

	

	
ready()[source]

	Return True if the task has executed.

If the task is still running, pending, or is waiting
for retry then False is returned.

	
property result

	Task return value.

Note

When the task has been executed, this contains the return value.
If the task raised an exception, this will be the exception
instance.

	
property retries

	

	
revoke(connection=None, terminate=False, signal=None, wait=False, timeout=None)[source]

	Send revoke signal to all workers.

Any worker receiving the task, or having reserved the
task, must ignore it.

	Parameters

	
	terminate (bool [https://docs.python.org/dev/library/functions.html#bool]) – Also terminate the process currently working
on the task (if any).

	signal (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Name of signal to send to process if terminate.
Default is TERM.

	wait (bool [https://docs.python.org/dev/library/functions.html#bool]) – Wait for replies from workers.
The timeout argument specifies the seconds to wait.
Disabled by default.

	timeout (float [https://docs.python.org/dev/library/functions.html#float]) – Time in seconds to wait for replies when
wait is enabled.

	
property state

	The tasks current state.

Possible values includes:

PENDING

The task is waiting for execution.

STARTED

The task has been started.

RETRY

The task is to be retried, possibly because of failure.

FAILURE

The task raised an exception, or has exceeded the retry limit.
The result attribute then contains the
exception raised by the task.

SUCCESS

The task executed successfully. The result attribute
then contains the tasks return value.

	
property status

	The tasks current state.

Possible values includes:

PENDING

The task is waiting for execution.

STARTED

The task has been started.

RETRY

The task is to be retried, possibly because of failure.

FAILURE

The task raised an exception, or has exceeded the retry limit.
The result attribute then contains the
exception raised by the task.

SUCCESS

The task executed successfully. The result attribute
then contains the tasks return value.

	
successful()[source]

	Return True if the task executed successfully.

	
property supports_native_join

	

	
property task_id

	Compat. alias to id.

	
then(callback, on_error=None, weak=False)[source]

	

	
throw(*args, **kwargs)[source]

	

	
property traceback

	Get the traceback of a failed task.

	
wait(timeout=None, propagate=True, interval=0.5, no_ack=True, follow_parents=True, callback=None, on_message=None, on_interval=None, disable_sync_subtasks=True, EXCEPTION_STATES=frozenset({'FAILURE', 'RETRY', 'REVOKED'}), PROPAGATE_STATES=frozenset({'FAILURE', 'REVOKED'}))

	Wait until task is ready, and return its result.

Warning

Waiting for tasks within a task may lead to deadlocks.
Please read Avoid launching synchronous subtasks.

Warning

Backends use resources to store and transmit results. To ensure
that resources are released, you must eventually call
get() or forget() on
EVERY AsyncResult instance returned after calling
a task.

	Parameters

	
	timeout (float [https://docs.python.org/dev/library/functions.html#float]) – How long to wait, in seconds, before the
operation times out.

	propagate (bool [https://docs.python.org/dev/library/functions.html#bool]) – Re-raise exception if the task failed.

	interval (float [https://docs.python.org/dev/library/functions.html#float]) – Time to wait (in seconds) before retrying to
retrieve the result. Note that this does not have any effect
when using the RPC/redis result store backends, as they don’t
use polling.

	no_ack (bool [https://docs.python.org/dev/library/functions.html#bool]) – Enable amqp no ack (automatically acknowledge
message). If this is False then the message will
not be acked.

	follow_parents (bool [https://docs.python.org/dev/library/functions.html#bool]) – Re-raise any exception raised by
parent tasks.

	disable_sync_subtasks (bool [https://docs.python.org/dev/library/functions.html#bool]) – Disable tasks to wait for sub tasks
this is the default configuration. CAUTION do not enable this
unless you must.

	Raises

	
	celery.exceptions.TimeoutError – if timeout isn’t
 None and the result does not arrive within
 timeout seconds.

	Exception [https://docs.python.org/dev/library/exceptions.html#Exception] – If the remote call raised an exception then that
 exception will be re-raised in the caller process.

	
property worker

	

	
class celery.result.EagerResult(id, ret_value, state, traceback=None)[source]

	Result that we know has already been executed.

	
forget()[source]

	Forget the result of this task and its parents.

	
get(timeout=None, propagate=True, disable_sync_subtasks=True, **kwargs)[source]

	Wait until task is ready, and return its result.

Warning

Waiting for tasks within a task may lead to deadlocks.
Please read Avoid launching synchronous subtasks.

Warning

Backends use resources to store and transmit results. To ensure
that resources are released, you must eventually call
get() or forget() on
EVERY AsyncResult instance returned after calling
a task.

	Parameters

	
	timeout (float [https://docs.python.org/dev/library/functions.html#float]) – How long to wait, in seconds, before the
operation times out.

	propagate (bool [https://docs.python.org/dev/library/functions.html#bool]) – Re-raise exception if the task failed.

	interval (float [https://docs.python.org/dev/library/functions.html#float]) – Time to wait (in seconds) before retrying to
retrieve the result. Note that this does not have any effect
when using the RPC/redis result store backends, as they don’t
use polling.

	no_ack (bool [https://docs.python.org/dev/library/functions.html#bool]) – Enable amqp no ack (automatically acknowledge
message). If this is False then the message will
not be acked.

	follow_parents (bool [https://docs.python.org/dev/library/functions.html#bool]) – Re-raise any exception raised by
parent tasks.

	disable_sync_subtasks (bool [https://docs.python.org/dev/library/functions.html#bool]) – Disable tasks to wait for sub tasks
this is the default configuration. CAUTION do not enable this
unless you must.

	Raises

	
	celery.exceptions.TimeoutError – if timeout isn’t
 None and the result does not arrive within
 timeout seconds.

	Exception [https://docs.python.org/dev/library/exceptions.html#Exception] – If the remote call raised an exception then that
 exception will be re-raised in the caller process.

	
ready()[source]

	Return True if the task has executed.

If the task is still running, pending, or is waiting
for retry then False is returned.

	
property result

	The tasks return value.

	
revoke(*args, **kwargs)[source]

	Send revoke signal to all workers.

Any worker receiving the task, or having reserved the
task, must ignore it.

	Parameters

	
	terminate (bool [https://docs.python.org/dev/library/functions.html#bool]) – Also terminate the process currently working
on the task (if any).

	signal (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Name of signal to send to process if terminate.
Default is TERM.

	wait (bool [https://docs.python.org/dev/library/functions.html#bool]) – Wait for replies from workers.
The timeout argument specifies the seconds to wait.
Disabled by default.

	timeout (float [https://docs.python.org/dev/library/functions.html#float]) – Time in seconds to wait for replies when
wait is enabled.

	
property state

	The tasks state.

	
property status

	The tasks state.

	
property supports_native_join

	

	
then(callback, on_error=None, weak=False)[source]

	

	
property traceback

	The traceback if the task failed.

	
wait(timeout=None, propagate=True, disable_sync_subtasks=True, **kwargs)

	Wait until task is ready, and return its result.

Warning

Waiting for tasks within a task may lead to deadlocks.
Please read Avoid launching synchronous subtasks.

Warning

Backends use resources to store and transmit results. To ensure
that resources are released, you must eventually call
get() or forget() on
EVERY AsyncResult instance returned after calling
a task.

	Parameters

	
	timeout (float [https://docs.python.org/dev/library/functions.html#float]) – How long to wait, in seconds, before the
operation times out.

	propagate (bool [https://docs.python.org/dev/library/functions.html#bool]) – Re-raise exception if the task failed.

	interval (float [https://docs.python.org/dev/library/functions.html#float]) – Time to wait (in seconds) before retrying to
retrieve the result. Note that this does not have any effect
when using the RPC/redis result store backends, as they don’t
use polling.

	no_ack (bool [https://docs.python.org/dev/library/functions.html#bool]) – Enable amqp no ack (automatically acknowledge
message). If this is False then the message will
not be acked.

	follow_parents (bool [https://docs.python.org/dev/library/functions.html#bool]) – Re-raise any exception raised by
parent tasks.

	disable_sync_subtasks (bool [https://docs.python.org/dev/library/functions.html#bool]) – Disable tasks to wait for sub tasks
this is the default configuration. CAUTION do not enable this
unless you must.

	Raises

	
	celery.exceptions.TimeoutError – if timeout isn’t
 None and the result does not arrive within
 timeout seconds.

	Exception [https://docs.python.org/dev/library/exceptions.html#Exception] – If the remote call raised an exception then that
 exception will be re-raised in the caller process.

	
class celery.result.GroupResult(id=None, results=None, parent=None, **kwargs)[source]

	Like ResultSet, but with an associated id.

This type is returned by group.

It enables inspection of the tasks state and return values as
a single entity.

	Parameters

	
	id (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The id of the group.

	results (Sequence[AsyncResult]) – List of result instances.

	parent (ResultBase) – Parent result of this group.

	
as_tuple()[source]

	

	
property children

	

	
delete(backend=None)[source]

	Remove this result if it was previously saved.

	
id = None

	The UUID of the group.

	
classmethod restore(id, backend=None, app=None)[source]

	Restore previously saved group result.

	
results = None

	List/iterator of results in the group

	
save(backend=None)[source]

	Save group-result for later retrieval using restore().

Example

>>> def save_and_restore(result):
... result.save()
... result = GroupResult.restore(result.id)

	
class celery.result.ResultBase[source]

	Base class for results.

	
parent = None

	Parent result (if part of a chain)

	
class celery.result.ResultSet(results, app=None, ready_barrier=None, **kwargs)[source]

	A collection of results.

	Parameters

	results (Sequence[AsyncResult]) – List of result instances.

	
add(result)[source]

	Add AsyncResult as a new member of the set.

Does nothing if the result is already a member.

	
property app

	

	
property backend

	

	
clear()[source]

	Remove all results from this set.

	
completed_count()[source]

	Task completion count.

	Returns

	the number of tasks completed.

	Return type

	int [https://docs.python.org/dev/library/functions.html#int]

	
discard(result)[source]

	Remove result from the set if it is a member.

Does nothing if it’s not a member.

	
failed()[source]

	Return true if any of the tasks failed.

	Returns

	
	true if one of the tasks failed.
	(i.e., raised an exception)

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
forget()[source]

	Forget about (and possible remove the result of) all the tasks.

	
get(timeout=None, propagate=True, interval=0.5, callback=None, no_ack=True, on_message=None, disable_sync_subtasks=True, on_interval=None)[source]

	See join().

This is here for API compatibility with AsyncResult,
in addition it uses join_native() if available for the
current result backend.

	
iter_native(timeout=None, interval=0.5, no_ack=True, on_message=None, on_interval=None)[source]

	Backend optimized version of iterate().

New in version 2.2.

Note that this does not support collecting the results
for different task types using different backends.

This is currently only supported by the amqp, Redis and cache
result backends.

	
join(timeout=None, propagate=True, interval=0.5, callback=None, no_ack=True, on_message=None, disable_sync_subtasks=True, on_interval=None)[source]

	Gather the results of all tasks as a list in order.

Note

This can be an expensive operation for result store
backends that must resort to polling (e.g., database).

You should consider using join_native() if your backend
supports it.

Warning

Waiting for tasks within a task may lead to deadlocks.
Please see Avoid launching synchronous subtasks.

	Parameters

	
	timeout (float [https://docs.python.org/dev/library/functions.html#float]) – The number of seconds to wait for results
before the operation times out.

	propagate (bool [https://docs.python.org/dev/library/functions.html#bool]) – If any of the tasks raises an exception,
the exception will be re-raised when this flag is set.

	interval (float [https://docs.python.org/dev/library/functions.html#float]) – Time to wait (in seconds) before retrying to
retrieve a result from the set. Note that this does not have
any effect when using the amqp result store backend,
as it does not use polling.

	callback (Callable) – Optional callback to be called for every
result received. Must have signature (task_id, value)
No results will be returned by this function if a callback
is specified. The order of results is also arbitrary when a
callback is used. To get access to the result object for
a particular id you’ll have to generate an index first:
index = {r.id: r for r in gres.results.values()}
Or you can create new result objects on the fly:
result = app.AsyncResult(task_id) (both will
take advantage of the backend cache anyway).

	no_ack (bool [https://docs.python.org/dev/library/functions.html#bool]) – Automatic message acknowledgment (Note that if this
is set to False then the messages
will not be acknowledged).

	disable_sync_subtasks (bool [https://docs.python.org/dev/library/functions.html#bool]) – Disable tasks to wait for sub tasks
this is the default configuration. CAUTION do not enable this
unless you must.

	Raises

	celery.exceptions.TimeoutError – if timeout isn’t
 None and the operation takes longer than timeout
 seconds.

	
join_native(timeout=None, propagate=True, interval=0.5, callback=None, no_ack=True, on_message=None, on_interval=None, disable_sync_subtasks=True)[source]

	Backend optimized version of join().

New in version 2.2.

Note that this does not support collecting the results
for different task types using different backends.

This is currently only supported by the amqp, Redis and cache
result backends.

	
maybe_reraise(callback=None, propagate=True)

	

	
maybe_throw(callback=None, propagate=True)[source]

	

	
ready()[source]

	Did all of the tasks complete? (either by success of failure).

	Returns

	true if all of the tasks have been executed.

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
remove(result)[source]

	Remove result from the set; it must be a member.

	Raises

	KeyError [https://docs.python.org/dev/library/exceptions.html#KeyError] – if the result isn’t a member.

	
results = None

	List of results in in the set.

	
revoke(connection=None, terminate=False, signal=None, wait=False, timeout=None)[source]

	Send revoke signal to all workers for all tasks in the set.

	Parameters

	
	terminate (bool [https://docs.python.org/dev/library/functions.html#bool]) – Also terminate the process currently working
on the task (if any).

	signal (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Name of signal to send to process if terminate.
Default is TERM.

	wait (bool [https://docs.python.org/dev/library/functions.html#bool]) – Wait for replies from worker.
The timeout argument specifies the number of seconds
to wait. Disabled by default.

	timeout (float [https://docs.python.org/dev/library/functions.html#float]) – Time in seconds to wait for replies when
the wait argument is enabled.

	
successful()[source]

	Return true if all tasks successful.

	Returns

	
	true if all of the tasks finished
	successfully (i.e. didn’t raise an exception).

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
property supports_native_join

	

	
then(callback, on_error=None, weak=False)[source]

	

	
update(results)[source]

	Extend from iterable of results.

	
waiting()[source]

	Return true if any of the tasks are incomplete.

	Returns

	
	true if one of the tasks are still
	waiting for execution.

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
celery.result.result_from_tuple(r, app=None)[source]

	Deserialize result from tuple.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.schedules

Schedules define the intervals at which periodic tasks run.

	
exception celery.schedules.ParseException[source]

	Raised by crontab_parser when the input can’t be parsed.

	
class celery.schedules.crontab(minute='*', hour='*', day_of_week='*', day_of_month='*', month_of_year='*', **kwargs)[source]

	Crontab schedule.

A Crontab can be used as the run_every value of a
periodic task entry to add crontab(5)-like scheduling.

Like a cron(5)-job, you can specify units of time of when
you’d like the task to execute. It’s a reasonably complete
implementation of cron’s features, so it should provide a fair
degree of scheduling needs.

You can specify a minute, an hour, a day of the week, a day of the
month, and/or a month in the year in any of the following formats:

	
minute

	
	A (list of) integers from 0-59 that represent the minutes of
an hour of when execution should occur; or

	A string representing a Crontab pattern. This may get pretty
advanced, like minute='*/15' (for every quarter) or
minute='1,13,30-45,50-59/2'.

	
hour

	
	A (list of) integers from 0-23 that represent the hours of
a day of when execution should occur; or

	A string representing a Crontab pattern. This may get pretty
advanced, like hour='*/3' (for every three hours) or
hour='0,8-17/2' (at midnight, and every two hours during
office hours).

	
day_of_week

	
	A (list of) integers from 0-6, where Sunday = 0 and Saturday =
6, that represent the days of a week that execution should
occur.

	A string representing a Crontab pattern. This may get pretty
advanced, like day_of_week='mon-fri' (for weekdays only).
(Beware that day_of_week='*/2' does not literally mean
‘every two days’, but ‘every day that is divisible by two’!)

	
day_of_month

	
	A (list of) integers from 1-31 that represents the days of the
month that execution should occur.

	A string representing a Crontab pattern. This may get pretty
advanced, such as day_of_month='2-30/2' (for every even
numbered day) or day_of_month='1-7,15-21' (for the first and
third weeks of the month).

	
month_of_year

	
	A (list of) integers from 1-12 that represents the months of
the year during which execution can occur.

	A string representing a Crontab pattern. This may get pretty
advanced, such as month_of_year='*/3' (for the first month
of every quarter) or month_of_year='2-12/2' (for every even
numbered month).

	
nowfun

	Function returning the current date and time
(datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime]).

	
app

	The Celery app instance.

It’s important to realize that any day on which execution should
occur must be represented by entries in all three of the day and
month attributes. For example, if day_of_week is 0 and
day_of_month is every seventh day, only months that begin
on Sunday and are also in the month_of_year attribute will have
execution events. Or, day_of_week is 1 and day_of_month
is ‘1-7,15-21’ means every first and third Monday of every month
present in month_of_year.

	
is_due(last_run_at)[source]

	Return tuple of (is_due, next_time_to_run).

Note

Next time to run is in seconds.

	SeeAlso:
	celery.schedules.schedule.is_due() for more information.

	
remaining_delta(last_run_at, tz=None, ffwd=<class 'celery.utils.time.ffwd'>)[source]

	

	
remaining_estimate(last_run_at, ffwd=<class 'celery.utils.time.ffwd'>)[source]

	Estimate of next run time.

Returns when the periodic task should run next as a
timedelta [https://docs.python.org/dev/library/datetime.html#datetime.timedelta].

	
class celery.schedules.crontab_parser(max_=60, min_=0)[source]

	Parser for Crontab expressions.

Any expression of the form ‘groups’
(see BNF grammar below) is accepted and expanded to a set of numbers.
These numbers represent the units of time that the Crontab needs to
run on:

digit :: '0'..'9'
dow :: 'a'..'z'
number :: digit+ | dow+
steps :: number
range :: number ('-' number) ?
numspec :: '*' | range
expr :: numspec ('/' steps) ?
groups :: expr (',' expr) *

The parser is a general purpose one, useful for parsing hours, minutes and
day of week expressions. Example usage:

>>> minutes = crontab_parser(60).parse('*/15')
[0, 15, 30, 45]
>>> hours = crontab_parser(24).parse('*/4')
[0, 4, 8, 12, 16, 20]
>>> day_of_week = crontab_parser(7).parse('*')
[0, 1, 2, 3, 4, 5, 6]

It can also parse day of month and month of year expressions if initialized
with a minimum of 1. Example usage:

>>> days_of_month = crontab_parser(31, 1).parse('*/3')
[1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31]
>>> months_of_year = crontab_parser(12, 1).parse('*/2')
[1, 3, 5, 7, 9, 11]
>>> months_of_year = crontab_parser(12, 1).parse('2-12/2')
[2, 4, 6, 8, 10, 12]

The maximum possible expanded value returned is found by the formula:

[image: max_ + min_ - 1]

	
exception ParseException

	Raised by crontab_parser when the input can’t be parsed.

	
parse(spec)[source]

	

	
celery.schedules.maybe_schedule(s, relative=False, app=None)[source]

	Return schedule from number, timedelta, or actual schedule.

	
class celery.schedules.schedule(run_every=None, relative=False, nowfun=None, app=None)[source]

	Schedule for periodic task.

	Parameters

	
	run_every (float [https://docs.python.org/dev/library/functions.html#float], timedelta [https://docs.python.org/dev/library/datetime.html#datetime.timedelta]) – Time interval.

	relative (bool [https://docs.python.org/dev/library/functions.html#bool]) – If set to True the run time will be rounded to the
resolution of the interval.

	nowfun (Callable) – Function returning the current date and time
(datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime]).

	app (Celery) – Celery app instance.

	
property human_seconds

	

	
is_due(last_run_at)[source]

	Return tuple of (is_due, next_time_to_check).

Notes

	next time to check is in seconds.

	
	(True, 20), means the task should be run now, and the next
	time to check is in 20 seconds.

	(False, 12.3), means the task is not due, but that the
scheduler should check again in 12.3 seconds.

The next time to check is used to save energy/CPU cycles,
it does not need to be accurate but will influence the precision
of your schedule. You must also keep in mind
the value of beat_max_loop_interval,
that decides the maximum number of seconds the scheduler can
sleep between re-checking the periodic task intervals. So if you
have a task that changes schedule at run-time then your next_run_at
check will decide how long it will take before a change to the
schedule takes effect. The max loop interval takes precedence
over the next check at value returned.

Scheduler max interval variance

The default max loop interval may vary for different schedulers.
For the default scheduler the value is 5 minutes, but for example
the django-celery-beat [https://pypi.python.org/pypi/django-celery-beat/] database scheduler the value
is 5 seconds.

	
relative = False

	

	
remaining_estimate(last_run_at)[source]

	

	
property seconds

	

	
class celery.schedules.solar(event, lat, lon, **kwargs)[source]

	Solar event.

A solar event can be used as the run_every value of a
periodic task entry to schedule based on certain solar events.

Notes

Available event valus are:

	dawn_astronomical

	dawn_nautical

	dawn_civil

	sunrise

	solar_noon

	sunset

	dusk_civil

	dusk_nautical

	dusk_astronomical

	Parameters

	
	event (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Solar event that triggers this task.
See note for available values.

	lat (int [https://docs.python.org/dev/library/functions.html#int]) – The latitude of the observer.

	lon (int [https://docs.python.org/dev/library/functions.html#int]) – The longitude of the observer.

	nowfun (Callable) – Function returning the current date and time
as a class:~datetime.datetime.

	app (Celery) – Celery app instance.

	
is_due(last_run_at)[source]

	Return tuple of (is_due, next_time_to_run).

Note

next time to run is in seconds.

See also

celery.schedules.schedule.is_due() for more information.

	
remaining_estimate(last_run_at)[source]

	Return estimate of next time to run.

	Returns

	
	when the periodic task should
	run next, or if it shouldn’t run today (e.g., the sun does
not rise today), returns the time when the next check
should take place.

	Return type

	timedelta [https://docs.python.org/dev/library/datetime.html#datetime.timedelta]

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.signals

Celery Signals.

This module defines the signals (Observer pattern) sent by
both workers and clients.

Functions can be connected to these signals, and connected
functions are called whenever a signal is called.

See also

Signals for more information.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.security

Message Signing Serializer.

	
celery.security.setup_security(allowed_serializers=None, key=None, cert=None, store=None, digest=None, serializer='json', app=None)[source]

	See Celery.setup_security().

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.utils.debug

	Sampling Memory Usage

	API Reference

Sampling Memory Usage

This module can be used to diagnose and sample the memory usage
used by parts of your application.

For example, to sample the memory usage of calling tasks you can do this:

from celery.utils.debug import sample_mem, memdump

from tasks import add

try:
 for i in range(100):
 for j in range(100):
 add.delay(i, j)
 sample_mem()
finally:
 memdump()

API Reference

Utilities for debugging memory usage, blocking calls, etc.

	
celery.utils.debug.sample_mem()[source]

	Sample RSS memory usage.

Statistics can then be output by calling memdump().

	
celery.utils.debug.memdump(samples=10, file=None)[source]

	Dump memory statistics.

Will print a sample of all RSS memory samples added by
calling sample_mem(), and in addition print
used RSS memory after gc.collect() [https://docs.python.org/dev/library/gc.html#gc.collect].

	
celery.utils.debug.sample(x, n, k=0)[source]

	Given a list x a sample of length n of that list is returned.

For example, if n is 10, and x has 100 items, a list of every tenth.
item is returned.

k can be used as offset.

	
celery.utils.debug.mem_rss()[source]

	Return RSS memory usage as a humanized string.

	
celery.utils.debug.ps()[source]

	Return the global psutil.Process instance.

Note

Returns None if psutil [https://pypi.python.org/pypi/psutil/] is not installed.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.exceptions

	Error Hierarchy

Celery error types.

Error Hierarchy

	
	Exception [https://docs.python.org/dev/library/exceptions.html#Exception]
	
	
	celery.exceptions.CeleryError
	
	ImproperlyConfigured

	SecurityError

	
	TaskPredicate
	
	Ignore

	Reject

	Retry

	
	TaskError
	
	QueueNotFound

	IncompleteStream

	NotRegistered

	AlreadyRegistered

	TimeoutError

	MaxRetriesExceededError

	TaskRevokedError

	InvalidTaskError

	ChordError

	
	BackendError
	
	BackendGetMetaError

	BackendStoreError

	
	kombu.exceptions.KombuError
	
	OperationalError

Raised when a transport connection error occurs while
sending a message (be it a task, remote control command error).

Note

This exception does not inherit from
CeleryError.

	
	billiard errors (prefork pool)
	
	SoftTimeLimitExceeded

	TimeLimitExceeded

	WorkerLostError

	Terminated

	
	UserWarning [https://docs.python.org/dev/library/exceptions.html#UserWarning]
	
	
	CeleryWarning
	
	AlwaysEagerIgnored

	DuplicateNodenameWarning

	FixupWarning

	NotConfigured

	
	BaseException [https://docs.python.org/dev/library/exceptions.html#BaseException]
	
	
	SystemExit [https://docs.python.org/dev/library/exceptions.html#SystemExit]
	
	WorkerTerminate

	WorkerShutdown

	
exception celery.exceptions.AlreadyRegistered[source]

	The task is already registered.

	
exception celery.exceptions.AlwaysEagerIgnored[source]

	send_task ignores task_always_eager option.

	
exception celery.exceptions.BackendError[source]

	An issue writing or reading to/from the backend.

	
exception celery.exceptions.BackendGetMetaError(*args, **kwargs)[source]

	An issue reading from the backend.

	
exception celery.exceptions.BackendStoreError(*args, **kwargs)[source]

	An issue writing from the backend.

	
exception celery.exceptions.CDeprecationWarning[source]

	Warning of deprecation.

	
exception celery.exceptions.CPendingDeprecationWarning[source]

	Warning of pending deprecation.

	
exception celery.exceptions.CeleryError[source]

	Base class for all Celery errors.

	
exception celery.exceptions.CeleryWarning[source]

	Base class for all Celery warnings.

	
exception celery.exceptions.ChordError[source]

	A task part of the chord raised an exception.

	
exception celery.exceptions.DuplicateNodenameWarning[source]

	Multiple workers are using the same nodename.

	
exception celery.exceptions.FixupWarning[source]

	Fixup related warning.

	
exception celery.exceptions.Ignore[source]

	A task can raise this to ignore doing state updates.

	
exception celery.exceptions.ImproperlyConfigured[source]

	Celery is somehow improperly configured.

	
exception celery.exceptions.IncompleteStream[source]

	Found the end of a stream of data, but the data isn’t complete.

	
exception celery.exceptions.InvalidTaskError[source]

	The task has invalid data or ain’t properly constructed.

	
exception celery.exceptions.MaxRetriesExceededError(*args, **kwargs)[source]

	The tasks max restart limit has been exceeded.

	
exception celery.exceptions.NotConfigured[source]

	Celery hasn’t been configured, as no config module has been found.

	
exception celery.exceptions.NotRegistered[source]

	The task is not registered.

	
exception celery.exceptions.OperationalError[source]

	Recoverable message transport connection error.

	
exception celery.exceptions.QueueNotFound[source]

	Task routed to a queue not in conf.queues.

	
exception celery.exceptions.Reject(reason=None, requeue=False)[source]

	A task can raise this if it wants to reject/re-queue the message.

	
exception celery.exceptions.Retry(message=None, exc=None, when=None, is_eager=False, sig=None, **kwargs)[source]

	The task is to be retried later.

	
exc = None

	Exception (if any) that caused the retry to happen.

	
humanize()[source]

	

	
message = None

	Optional message describing context of retry.

	
when = None

	Time of retry (ETA), either numbers.Real [https://docs.python.org/dev/library/numbers.html#numbers.Real] or
datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime].

	
exception celery.exceptions.SecurityError[source]

	Security related exception.

	
exception celery.exceptions.SoftTimeLimitExceeded[source]

	The soft time limit has been exceeded. This exception is raised
to give the task a chance to clean up.

	
exception celery.exceptions.TaskError[source]

	Task related errors.

	
exception celery.exceptions.TaskPredicate[source]

	Base class for task-related semi-predicates.

	
exception celery.exceptions.TaskRevokedError[source]

	The task has been revoked, so no result available.

	
exception celery.exceptions.Terminated[source]

	The worker processing a job has been terminated by user request.

	
exception celery.exceptions.TimeLimitExceeded[source]

	The time limit has been exceeded and the job has been terminated.

	
exception celery.exceptions.TimeoutError[source]

	The operation timed out.

	
exception celery.exceptions.WorkerLostError[source]

	The worker processing a job has exited prematurely.

	
exception celery.exceptions.WorkerShutdown[source]

	Signals that the worker should perform a warm shutdown.

	
exception celery.exceptions.WorkerTerminate[source]

	Signals that the worker should terminate immediately.

	
celery.exceptions.reraise(tp, value, tb=None)[source]

	Reraise exception.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.loaders

Get loader by name.

Loaders define how configuration is read, what happens
when workers start, when tasks are executed and so on.

	
celery.loaders.get_loader_cls(loader)[source]

	Get loader class by name/alias.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.loaders.app

The default loader used with custom app instances.

	
class celery.loaders.app.AppLoader(app, **kwargs)[source]

	Default loader used when an app is specified.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.loaders.default

The default loader used when no custom app has been initialized.

	
class celery.loaders.default.Loader(app, **kwargs)[source]

	The loader used by the default app.

	
read_configuration(fail_silently=True)[source]

	Read configuration from celeryconfig.py.

	
setup_settings(settingsdict)[source]

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.loaders.base

Loader base class.

	
class celery.loaders.base.BaseLoader(app, **kwargs)[source]

	Base class for loaders.

Loaders handles,

	Reading celery client/worker configurations.

	
	What happens when a task starts?
	See on_task_init().

	
	What happens when the worker starts?
	See on_worker_init().

	
	What happens when the worker shuts down?
	See on_worker_shutdown().

	What modules are imported to find tasks?

	
autodiscover_tasks(packages, related_name='tasks')[source]

	

	
builtin_modules = frozenset({})

	

	
cmdline_config_parser(args, namespace='celery', re_type=re.compile('\\((\\w+)\\)'), extra_types=None, override_types=None)[source]

	

	
property conf

	Loader configuration.

	
config_from_object(obj, silent=False)[source]

	

	
configured = False

	

	
default_modules[source]

	

	
find_module(module)[source]

	

	
import_default_modules()[source]

	

	
import_from_cwd(module, imp=None, package=None)[source]

	

	
import_module(module, package=None)[source]

	

	
import_task_module(module)[source]

	

	
init_worker()[source]

	

	
init_worker_process()[source]

	

	
now(utc=True)[source]

	

	
on_process_cleanup()[source]

	Called after a task is executed.

	
on_task_init(task_id, task)[source]

	Called before a task is executed.

	
on_worker_init()[source]

	Called when the worker (celery worker) starts.

	
on_worker_process_init()[source]

	Called when a child process starts.

	
on_worker_shutdown()[source]

	Called when the worker (celery worker) shuts down.

	
override_backends = {}

	

	
read_configuration(env='CELERY_CONFIG_MODULE')[source]

	

	
shutdown_worker()[source]

	

	
worker_initialized = False

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

	States

	Sets

	READY_STATES

	UNREADY_STATES

	EXCEPTION_STATES

	PROPAGATE_STATES

	ALL_STATES

	Misc

Built-in task states.

States

See States.

Sets

READY_STATES

Set of states meaning the task result is ready (has been executed).

UNREADY_STATES

Set of states meaning the task result is not ready (hasn’t been executed).

EXCEPTION_STATES

Set of states meaning the task returned an exception.

PROPAGATE_STATES

Set of exception states that should propagate exceptions to the user.

ALL_STATES

Set of all possible states.

Misc

	
celery.states.FAILURE = 'FAILURE'

	Task failed

	
celery.states.PENDING = 'PENDING'

	Task state is unknown (assumed pending since you know the id).

	
celery.states.RECEIVED = 'RECEIVED'

	Task was received by a worker (only used in events).

	
celery.states.RETRY = 'RETRY'

	Task is waiting for retry.

	
celery.states.REVOKED = 'REVOKED'

	Task was revoked.

	
celery.states.STARTED = 'STARTED'

	Task was started by a worker (task_track_started).

	
celery.states.SUCCESS = 'SUCCESS'

	Task succeeded

	
celery.states.precedence(state)[source]

	Get the precedence index for state.

Lower index means higher precedence.

	
class celery.states.state[source]

	Task state.

State is a subclass of str [https://docs.python.org/dev/library/stdtypes.html#str], implementing comparison
methods adhering to state precedence rules:

>>> from celery.states import state, PENDING, SUCCESS

>>> state(PENDING) < state(SUCCESS)
True

Any custom state is considered to be lower than FAILURE and
SUCCESS, but higher than any of the other built-in states:

>>> state('PROGRESS') > state(STARTED)
True

>>> state('PROGRESS') > state('SUCCESS')
False

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.contrib.abortable

	Abortable tasks overview

	Usage example

Abortable Tasks.

Abortable tasks overview

For long-running Task’s, it can be desirable to support
aborting during execution. Of course, these tasks should be built to
support abortion specifically.

The AbortableTask serves as a base class for all Task
objects that should support abortion by producers.

	Producers may invoke the abort() method on
AbortableAsyncResult instances, to request abortion.

	Consumers (workers) should periodically check (and honor!) the
is_aborted() method at controlled points in their task’s
run() method. The more often, the better.

The necessary intermediate communication is dealt with by the
AbortableTask implementation.

Usage example

In the consumer:

from __future__ import absolute_import

from celery.contrib.abortable import AbortableTask
from celery.utils.log import get_task_logger

from proj.celery import app

logger = get_logger(__name__)

@app.task(bind=True, base=AbortableTask)
def long_running_task(self):
 results = []
 for i in range(100):
 # check after every 5 iterations...
 # (or alternatively, check when some timer is due)
 if not i % 5:
 if self.is_aborted():
 # respect aborted state, and terminate gracefully.
 logger.warning('Task aborted')
 return
 value = do_something_expensive(i)
 results.append(y)
 logger.info('Task complete')
 return results

In the producer:

from __future__ import absolute_import

import time

from proj.tasks import MyLongRunningTask

def myview(request):
 # result is of type AbortableAsyncResult
 result = long_running_task.delay()

 # abort the task after 10 seconds
 time.sleep(10)
 result.abort()

After the result.abort() call, the task execution isn’t
aborted immediately. In fact, it’s not guaranteed to abort at all.
Keep checking result.state status, or call result.get(timeout=) to
have it block until the task is finished.

Note

In order to abort tasks, there needs to be communication between the
producer and the consumer. This is currently implemented through the
database backend. Therefore, this class will only work with the
database backends.

	
class celery.contrib.abortable.AbortableAsyncResult(id, backend=None, task_name=None, app=None, parent=None)[source]

	Represents an abortable result.

Specifically, this gives the AsyncResult a abort() method,
that sets the state of the underlying Task to ‘ABORTED’.

	
abort()[source]

	Set the state of the task to ABORTED.

Abortable tasks monitor their state at regular intervals and
terminate execution if so.

Warning

Be aware that invoking this method does not guarantee when the
task will be aborted (or even if the task will be aborted at all).

	
is_aborted()[source]

	Return True if the task is (being) aborted.

	
class celery.contrib.abortable.AbortableTask[source]

	Task that can be aborted.

This serves as a base class for all Task’s
that support aborting during execution.

All subclasses of AbortableTask must call the
is_aborted() method periodically and act accordingly when
the call evaluates to True.

	
AsyncResult(task_id)[source]

	Return the accompanying AbortableAsyncResult instance.

	
abstract = True

	

	
is_aborted(**kwargs)[source]

	Return true if task is aborted.

Checks against the backend whether this
AbortableAsyncResult is ABORTED.

Always return False in case the task_id parameter
refers to a regular (non-abortable) Task.

Be aware that invoking this method will cause a hit in the
backend (for example a database query), so find a good balance
between calling it regularly (for responsiveness), but not too
often (for performance).

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.contrib.migrate

Message migration tools (Broker <-> Broker).

	
class celery.contrib.migrate.State[source]

	Migration progress state.

	
count = 0

	

	
filtered = 0

	

	
property strtotal

	

	
total_apx = 0

	

	
exception celery.contrib.migrate.StopFiltering[source]

	Semi-predicate used to signal filter stop.

	
celery.contrib.migrate.migrate_task(producer, body_, message, queues=None)[source]

	Migrate single task message.

	
celery.contrib.migrate.migrate_tasks(source, dest, migrate=<function migrate_task>, app=None, queues=None, **kwargs)[source]

	Migrate tasks from one broker to another.

	
celery.contrib.migrate.move(predicate, connection=None, exchange=None, routing_key=None, source=None, app=None, callback=None, limit=None, transform=None, **kwargs)[source]

	Find tasks by filtering them and move the tasks to a new queue.

	Parameters

	
	predicate (Callable) – Filter function used to decide the messages
to move. Must accept the standard signature of (body, message)
used by Kombu consumer callbacks. If the predicate wants the
message to be moved it must return either:

	a tuple of (exchange, routing_key), or

	a Queue instance, or

	
	any other true value means the specified
	exchange and routing_key arguments will be used.

	connection (kombu.Connection [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection]) – Custom connection to use.

	source – List[Union[str, kombu.Queue]]: Optional list of source
queues to use instead of the default (queues
in task_queues). This list can also contain
Queue instances.

	exchange (str [https://docs.python.org/dev/library/stdtypes.html#str], kombu.Exchange [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Exchange]) – Default destination exchange.

	routing_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Default destination routing key.

	limit (int [https://docs.python.org/dev/library/functions.html#int]) – Limit number of messages to filter.

	callback (Callable) – Callback called after message moved,
with signature (state, body, message).

	transform (Callable) – Optional function to transform the return
value (destination) of the filter function.

Also supports the same keyword arguments as start_filter().

To demonstrate, the move_task_by_id() operation can be implemented
like this:

def is_wanted_task(body, message):
 if body['id'] == wanted_id:
 return Queue('foo', exchange=Exchange('foo'),
 routing_key='foo')

move(is_wanted_task)

or with a transform:

def transform(value):
 if isinstance(value, str):
 return Queue(value, Exchange(value), value)
 return value

move(is_wanted_task, transform=transform)

Note

The predicate may also return a tuple of (exchange, routing_key)
to specify the destination to where the task should be moved,
or a Queue instance.
Any other true value means that the task will be moved to the
default exchange/routing_key.

	
celery.contrib.migrate.move_by_idmap(map, **kwargs)[source]

	Move tasks by matching from a task_id: queue mapping.

Where queue is a queue to move the task to.

Example

>>> move_by_idmap({
... '5bee6e82-f4ac-468e-bd3d-13e8600250bc': Queue('name'),
... 'ada8652d-aef3-466b-abd2-becdaf1b82b3': Queue('name'),
... '3a2b140d-7db1-41ba-ac90-c36a0ef4ab1f': Queue('name')},
... queues=['hipri'])

	
celery.contrib.migrate.move_by_taskmap(map, **kwargs)[source]

	Move tasks by matching from a task_name: queue mapping.

queue is the queue to move the task to.

Example

>>> move_by_taskmap({
... 'tasks.add': Queue('name'),
... 'tasks.mul': Queue('name'),
... })

	
celery.contrib.migrate.move_direct(predicate, connection=None, exchange=None, routing_key=None, source=None, app=None, callback=None, limit=None, *, transform=<function worker_direct>, **kwargs)

	Find tasks by filtering them and move the tasks to a new queue.

	Parameters

	
	predicate (Callable) – Filter function used to decide the messages
to move. Must accept the standard signature of (body, message)
used by Kombu consumer callbacks. If the predicate wants the
message to be moved it must return either:

	a tuple of (exchange, routing_key), or

	a Queue instance, or

	
	any other true value means the specified
	exchange and routing_key arguments will be used.

	connection (kombu.Connection [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection]) – Custom connection to use.

	source – List[Union[str, kombu.Queue]]: Optional list of source
queues to use instead of the default (queues
in task_queues). This list can also contain
Queue instances.

	exchange (str [https://docs.python.org/dev/library/stdtypes.html#str], kombu.Exchange [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Exchange]) – Default destination exchange.

	routing_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Default destination routing key.

	limit (int [https://docs.python.org/dev/library/functions.html#int]) – Limit number of messages to filter.

	callback (Callable) – Callback called after message moved,
with signature (state, body, message).

	transform (Callable) – Optional function to transform the return
value (destination) of the filter function.

Also supports the same keyword arguments as start_filter().

To demonstrate, the move_task_by_id() operation can be implemented
like this:

def is_wanted_task(body, message):
 if body['id'] == wanted_id:
 return Queue('foo', exchange=Exchange('foo'),
 routing_key='foo')

move(is_wanted_task)

or with a transform:

def transform(value):
 if isinstance(value, str):
 return Queue(value, Exchange(value), value)
 return value

move(is_wanted_task, transform=transform)

Note

The predicate may also return a tuple of (exchange, routing_key)
to specify the destination to where the task should be moved,
or a Queue instance.
Any other true value means that the task will be moved to the
default exchange/routing_key.

	
celery.contrib.migrate.move_direct_by_id(task_id, dest, **kwargs)

	Find a task by id and move it to another queue.

	Parameters

	
	task_id (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Id of task to find and move.

	dest – (str, kombu.Queue): Destination queue.

	transform (Callable) – Optional function to transform the return
value (destination) of the filter function.

	**kwargs (Any) – Also supports the same keyword
arguments as move().

	
celery.contrib.migrate.move_task_by_id(task_id, dest, **kwargs)[source]

	Find a task by id and move it to another queue.

	Parameters

	
	task_id (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Id of task to find and move.

	dest – (str, kombu.Queue): Destination queue.

	transform (Callable) – Optional function to transform the return
value (destination) of the filter function.

	**kwargs (Any) – Also supports the same keyword
arguments as move().

	
celery.contrib.migrate.republish(producer, message, exchange=None, routing_key=None, remove_props=None)[source]

	Republish message.

	
celery.contrib.migrate.start_filter(app, conn, filter, limit=None, timeout=1.0, ack_messages=False, tasks=None, queues=None, callback=None, forever=False, on_declare_queue=None, consume_from=None, state=None, accept=None, **kwargs)[source]

	Filter tasks.

	
celery.contrib.migrate.task_id_eq(task_id, body, message)[source]

	Return true if task id equals task_id’.

	
celery.contrib.migrate.task_id_in(ids, body, message)[source]

	Return true if task id is member of set ids’.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.contrib.pytest

	API Reference

API Reference

Fixtures and testing utilities for pytest [https://pypi.python.org/pypi/pytest/].

	
celery.contrib.pytest.celery_app(request, celery_config, celery_parameters, celery_enable_logging, use_celery_app_trap)[source]

	Fixture creating a Celery application instance.

	
celery.contrib.pytest.celery_class_tasks()[source]

	Redefine this fixture to register tasks with the test Celery app.

	
celery.contrib.pytest.celery_config()[source]

	Redefine this fixture to configure the test Celery app.

The config returned by your fixture will then be used
to configure the celery_app() fixture.

	
celery.contrib.pytest.celery_enable_logging()[source]

	You can override this fixture to enable logging.

	
celery.contrib.pytest.celery_includes()[source]

	You can override this include modules when a worker start.

You can have this return a list of module names to import,
these can be task modules, modules registering signals, and so on.

	
celery.contrib.pytest.celery_parameters()[source]

	Redefine this fixture to change the init parameters of test Celery app.

The dict returned by your fixture will then be used
as parameters when instantiating Celery.

	
celery.contrib.pytest.celery_session_app(request, celery_config, celery_parameters, celery_enable_logging, use_celery_app_trap)[source]

	Session Fixture: Return app for session fixtures.

	
celery.contrib.pytest.celery_session_worker(request, celery_session_app, celery_includes, celery_class_tasks, celery_worker_pool, celery_worker_parameters)[source]

	Session Fixture: Start worker that lives throughout test suite.

	
celery.contrib.pytest.celery_worker(request, celery_app, celery_includes, celery_worker_pool, celery_worker_parameters)[source]

	Fixture: Start worker in a thread, stop it when the test returns.

	
celery.contrib.pytest.celery_worker_parameters()[source]

	Redefine this fixture to change the init parameters of Celery workers.

This can be used e. g. to define queues the worker will consume tasks from.

The dict returned by your fixture will then be used
as parameters when instantiating WorkController.

	
celery.contrib.pytest.celery_worker_pool()[source]

	You can override this fixture to set the worker pool.

The “solo” pool is used by default, but you can set this to
return e.g. “prefork”.

	
celery.contrib.pytest.depends_on_current_app(celery_app)[source]

	Fixture that sets app as current.

	
celery.contrib.pytest.pytest_configure(config)[source]

	Register additional pytest configuration.

	
celery.contrib.pytest.use_celery_app_trap()[source]

	You can override this fixture to enable the app trap.

The app trap raises an exception whenever something attempts
to use the current or default apps.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.contrib.sphinx

Sphinx documentation plugin used to document tasks.

Introduction

Usage

The Celery extension for Sphinx requires Sphinx 2.0 or later.

Add the extension to your docs/conf.py configuration module:

extensions = (...,
 'celery.contrib.sphinx')

If you’d like to change the prefix for tasks in reference documentation
then you can change the celery_task_prefix configuration value:

celery_task_prefix = '(task)' # < default

With the extension installed autodoc will automatically find
task decorated objects (e.g. when using the automodule directive)
and generate the correct (as well as add a (task) prefix),
and you can also refer to the tasks using :task:proj.tasks.add
syntax.

Use .. autotask:: to alternatively manually document a task.

	
class celery.contrib.sphinx.TaskDirective(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine)[source]

	Sphinx task directive.

	
get_signature_prefix(sig)[source]

	May return a prefix to put before the object name in the
signature.

	
class celery.contrib.sphinx.TaskDocumenter(directive: DocumenterBridge, name: str [https://docs.python.org/dev/library/stdtypes.html#str], indent: str [https://docs.python.org/dev/library/stdtypes.html#str] = '')[source]

	Document task definitions.

	
classmethod can_document_member(member, membername, isattr, parent)[source]

	Called to see if a member can be documented by this documenter.

	
check_module()[source]

	Check if self.object is really defined in the module given by
self.modname.

	
document_members(all_members=False)[source]

	Generate reST for member documentation.

If all_members is True, do all members, else those given by
self.options.members.

	
format_args()[source]

	Format the argument signature of self.object.

Should return None if the object does not have a signature.

	
celery.contrib.sphinx.autodoc_skip_member_handler(app, what, name, obj, skip, options)[source]

	Handler for autodoc-skip-member event.

	
celery.contrib.sphinx.setup(app)[source]

	Setup Sphinx extension.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.contrib.testing.worker

	API Reference

API Reference

Embedded workers for integration tests.

	
class celery.contrib.testing.worker.TestWorkController(*args, **kwargs)[source]

	Worker that can synchronize on being fully started.

	
ensure_started()[source]

	Wait for worker to be fully up and running.

Warning

Worker must be started within a thread for this to work,
or it will block forever.

	
on_consumer_ready(consumer)[source]

	Callback called when the Consumer blueprint is fully started.

	
celery.contrib.testing.worker.setup_app_for_worker(app, loglevel, logfile)[source]

	Setup the app to be used for starting an embedded worker.

	
celery.contrib.testing.worker.start_worker(app, concurrency=1, pool='solo', loglevel='error', logfile=None, perform_ping_check=True, ping_task_timeout=10.0, **kwargs)[source]

	Start embedded worker.

	Yields

	celery.app.worker.Worker – worker instance.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.contrib.testing.app

	API Reference

API Reference

Create Celery app instances used for testing.

	
celery.contrib.testing.app.DEFAULT_TEST_CONFIG = {'accept_content': {'json'}, 'broker_heartbeat': 0, 'broker_url': 'memory://', 'enable_utc': True, 'result_backend': 'cache+memory://', 'timezone': 'UTC', 'worker_hijack_root_logger': False, 'worker_log_color': False}

	Contains the default configuration values for the test app.

	
celery.contrib.testing.app.TestApp(name=None, config=None, enable_logging=False, set_as_current=False, log=<class 'celery.contrib.testing.app.UnitLogging'>, backend=None, broker=None, **kwargs)[source]

	App used for testing.

	
class celery.contrib.testing.app.Trap[source]

	Trap that pretends to be an app but raises an exception instead.

This to protect from code that does not properly pass app instances,
then falls back to the current_app.

	
class celery.contrib.testing.app.UnitLogging(*args, **kwargs)[source]

	Sets up logging for the test application.

	
celery.contrib.testing.app.set_trap(app)[source]

	Contextmanager that installs the trap app.

The trap means that anything trying to use the current or default app
will raise an exception.

	
celery.contrib.testing.app.setup_default_app(app, use_trap=False)[source]

	Setup default app for testing.

Ensures state is clean after the test returns.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.contrib.testing.manager

	API Reference

API Reference

Integration testing utilities.

	
class celery.contrib.testing.manager.Manager(app, **kwargs)[source]

	Test helpers for task integration tests.

	
class celery.contrib.testing.manager.ManagerMixin[source]

	Mixin that adds Manager capabilities.

	
assert_accepted(ids, interval=0.5, desc='waiting for tasks to be accepted', **policy)[source]

	

	
assert_received(ids, interval=0.5, desc='waiting for tasks to be received', **policy)[source]

	

	
assert_result_tasks_in_progress_or_completed(async_results, interval=0.5, desc='waiting for tasks to be started or completed', **policy)[source]

	

	
assert_task_state_from_result(fun, results, interval=0.5, **policy)[source]

	

	
assert_task_worker_state(fun, ids, interval=0.5, **policy)[source]

	

	
ensure_not_for_a_while(fun, catch, desc='thing', max_retries=20, interval_start=0.1, interval_step=0.02, interval_max=1.0, emit_warning=False, **options)[source]

	Make sure something does not happen (at least for a while).

	
inspect(timeout=3.0)[source]

	

	
is_accepted(ids, **kwargs)[source]

	

	
is_received(ids, **kwargs)[source]

	

	
static is_result_task_in_progress(results, **kwargs)[source]

	

	
join(r, propagate=False, max_retries=10, **kwargs)[source]

	

	
missing_results(r)[source]

	

	
query_task_states(ids, timeout=0.5)[source]

	

	
query_tasks(ids, timeout=0.5)[source]

	

	
remark(s, sep='-')[source]

	

	
retry_over_time(*args, **kwargs)[source]

	

	
true_or_raise(fun, *args, **kwargs)[source]

	

	
wait_for(fun, catch, desc='thing', args=(), kwargs=None, errback=None, max_retries=10, interval_start=0.1, interval_step=0.5, interval_max=5.0, emit_warning=False, **options)[source]

	Wait for event to happen.

The catch argument specifies the exception that means the event
has not happened yet.

	
exception celery.contrib.testing.manager.Sentinel[source]

	Signifies the end of something.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.contrib.testing.mocks

	API Reference

API Reference

Useful mocks for unit testing.

	
celery.contrib.testing.mocks.TaskMessage(name, id=None, args=(), kwargs=None, callbacks=None, errbacks=None, chain=None, shadow=None, utc=None, **options)[source]

	Create task message in protocol 2 format.

	
celery.contrib.testing.mocks.TaskMessage1(name, id=None, args=(), kwargs=None, callbacks=None, errbacks=None, chain=None, **options)[source]

	Create task message in protocol 1 format.

	
celery.contrib.testing.mocks.task_message_from_sig(app, sig, utc=True, TaskMessage=<function TaskMessage>)[source]

	Create task message from celery.Signature.

Example

>>> m = task_message_from_sig(app, add.s(2, 2))
>>> amqp_client.basic_publish(m, exchange='ex', routing_key='rkey')

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.contrib.rdb

Remote Debugger.

Introduction

This is a remote debugger for Celery tasks running in multiprocessing
pool workers. Inspired by a lost post on dzone.com.

Usage

from celery.contrib import rdb
from celery import task

@task()
def add(x, y):
 result = x + y
 rdb.set_trace()
 return result

Environment Variables

	
CELERY_RDB_HOST

	

CELERY_RDB_HOST

Hostname to bind to. Default is ‘127.0.0.1’ (only accessible from
localhost).

	
CELERY_RDB_PORT

	

CELERY_RDB_PORT

Base port to bind to. Default is 6899.
The debugger will try to find an available port starting from the
base port. The selected port will be logged by the worker.

	
celery.contrib.rdb.set_trace(frame=None)[source]

	Set break-point at current location, or a specified frame.

	
celery.contrib.rdb.debugger()[source]

	Return the current debugger instance, or create if none.

	
class celery.contrib.rdb.Rdb(host='127.0.0.1', port=6899, port_search_limit=100, port_skew=0, out=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>)[source]

	Remote debugger.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.events

Monitoring Event Receiver+Dispatcher.

Events is a stream of messages sent for certain actions occurring
in the worker (and clients if task_send_sent_event
is enabled), used for monitoring purposes.

	
celery.events.Event(type, _fields=None, __dict__=<class 'dict'>, __now__=<built-in function time>, **fields)[source]

	Create an event.

Notes

An event is simply a dictionary: the only required field is type.
A timestamp field will be set to the current time if not provided.

	
class celery.events.EventDispatcher(connection=None, hostname=None, enabled=True, channel=None, buffer_while_offline=True, app=None, serializer=None, groups=None, delivery_mode=1, buffer_group=None, buffer_limit=24, on_send_buffered=None)[source]

	Dispatches event messages.

	Parameters

	
	connection (kombu.Connection [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection]) – Connection to the broker.

	hostname (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Hostname to identify ourselves as,
by default uses the hostname returned by
anon_nodename().

	groups (Sequence[str [https://docs.python.org/dev/library/stdtypes.html#str]]) – List of groups to send events for.
send() will ignore send requests to groups not in this list.
If this is None, all events will be sent.
Example groups include "task" and "worker".

	enabled (bool [https://docs.python.org/dev/library/functions.html#bool]) – Set to False to not actually publish any
events, making send() a no-op.

	channel (kombu.Channel) – Can be used instead of connection to specify
an exact channel to use when sending events.

	buffer_while_offline (bool [https://docs.python.org/dev/library/functions.html#bool]) – If enabled events will be buffered
while the connection is down. flush() must be called
as soon as the connection is re-established.

Note

You need to close() this after use.

	
DISABLED_TRANSPORTS = {'sql'}

	

	
app = None

	

	
close()[source]

	Close the event dispatcher.

	
disable()[source]

	

	
enable()[source]

	

	
extend_buffer(other)[source]

	Copy the outbound buffer of another instance.

	
flush(errors=True, groups=True)[source]

	Flush the outbound buffer.

	
on_disabled = None

	

	
on_enabled = None

	

	
publish(type, fields, producer, blind=False, Event=<function Event>, **kwargs)[source]

	Publish event using custom Producer [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer].

	Parameters

	
	type (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Event type name, with group separated by dash (-).
fields: Dictionary of event fields, must be json serializable.

	producer (kombu.Producer [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer]) – Producer instance to use:
only the publish method will be called.

	retry (bool [https://docs.python.org/dev/library/functions.html#bool]) – Retry in the event of connection failure.

	retry_policy (Mapping) – Map of custom retry policy options.
See ensure() [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection.ensure].

	blind (bool [https://docs.python.org/dev/library/functions.html#bool]) – Don’t set logical clock value (also don’t forward
the internal logical clock).

	Event (Callable) – Event type used to create event.
Defaults to Event().

	utcoffset (Callable) – Function returning the current
utc offset in hours.

	
property publisher

	

	
send(type, blind=False, utcoffset=<function utcoffset>, retry=False, retry_policy=None, Event=<function Event>, **fields)[source]

	Send event.

	Parameters

	
	type (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Event type name, with group separated by dash (-).

	retry (bool [https://docs.python.org/dev/library/functions.html#bool]) – Retry in the event of connection failure.

	retry_policy (Mapping) – Map of custom retry policy options.
See ensure() [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection.ensure].

	blind (bool [https://docs.python.org/dev/library/functions.html#bool]) – Don’t set logical clock value (also don’t forward
the internal logical clock).

	Event (Callable) – Event type used to create event,
defaults to Event().

	utcoffset (Callable) – unction returning the current utc offset
in hours.

	**fields (Any) – Event fields – must be json serializable.

	
class celery.events.EventReceiver(channel, handlers=None, routing_key='#', node_id=None, app=None, queue_prefix=None, accept=None, queue_ttl=None, queue_expires=None)[source]

	Capture events.

	Parameters

	
	connection (kombu.Connection [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection]) – Connection to the broker.

	handlers (Mapping[Callable]) – Event handlers.
This is a map of event type names and their handlers.
The special handler “*” captures all events that don’t have a
handler.

	
app = None

	

	
capture(limit=None, timeout=None, wakeup=True)[source]

	Open up a consumer capturing events.

This has to run in the main process, and it will never stop
unless EventDispatcher.should_stop is set to True, or
forced via KeyboardInterrupt [https://docs.python.org/dev/library/exceptions.html#KeyboardInterrupt] or SystemExit [https://docs.python.org/dev/library/exceptions.html#SystemExit].

	
property connection

	

	
event_from_message(body, localize=True, now=<built-in function time>, tzfields=operator.itemgetter('utcoffset', 'timestamp'), adjust_timestamp=<function adjust_timestamp>, CLIENT_CLOCK_SKEW=-1)[source]

	

	
get_consumers(Consumer, channel)[source]

	

	
itercapture(limit=None, timeout=None, wakeup=True)[source]

	

	
on_consume_ready(connection, channel, consumers, wakeup=True, **kwargs)[source]

	

	
process(type, event)[source]

	Process event by dispatching to configured handler.

	
wakeup_workers(channel=None)[source]

	

	
celery.events.get_exchange(conn, name='celeryev')[source]

	Get exchange used for sending events.

	Parameters

	
	conn (kombu.Connection [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection]) – Connection used for sending/receiving events.

	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Name of the exchange. Default is celeryev.

Note

The event type changes if Redis is used as the transport
(from topic -> fanout).

	
celery.events.group_from(type)[source]

	Get the group part of an event type name.

Example

>>> group_from('task-sent')
'task'

>>> group_from('custom-my-event')
'custom'

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.events.receiver

Event receiver implementation.

	
class celery.events.receiver.EventReceiver(channel, handlers=None, routing_key='#', node_id=None, app=None, queue_prefix=None, accept=None, queue_ttl=None, queue_expires=None)[source]

	Capture events.

	Parameters

	
	connection (kombu.Connection [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection]) – Connection to the broker.

	handlers (Mapping[Callable]) – Event handlers.
This is a map of event type names and their handlers.
The special handler “*” captures all events that don’t have a
handler.

	
app = None

	

	
capture(limit=None, timeout=None, wakeup=True)[source]

	Open up a consumer capturing events.

This has to run in the main process, and it will never stop
unless EventDispatcher.should_stop is set to True, or
forced via KeyboardInterrupt [https://docs.python.org/dev/library/exceptions.html#KeyboardInterrupt] or SystemExit [https://docs.python.org/dev/library/exceptions.html#SystemExit].

	
property connection

	

	
event_from_message(body, localize=True, now=<built-in function time>, tzfields=operator.itemgetter('utcoffset', 'timestamp'), adjust_timestamp=<function adjust_timestamp>, CLIENT_CLOCK_SKEW=-1)[source]

	

	
get_consumers(Consumer, channel)[source]

	

	
itercapture(limit=None, timeout=None, wakeup=True)[source]

	

	
on_consume_ready(connection, channel, consumers, wakeup=True, **kwargs)[source]

	

	
process(type, event)[source]

	Process event by dispatching to configured handler.

	
wakeup_workers(channel=None)[source]

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.events.state

Event dispatcher sends events.

	
class celery.events.dispatcher.EventDispatcher(connection=None, hostname=None, enabled=True, channel=None, buffer_while_offline=True, app=None, serializer=None, groups=None, delivery_mode=1, buffer_group=None, buffer_limit=24, on_send_buffered=None)[source]

	Dispatches event messages.

	Parameters

	
	connection (kombu.Connection [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection]) – Connection to the broker.

	hostname (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Hostname to identify ourselves as,
by default uses the hostname returned by
anon_nodename().

	groups (Sequence[str [https://docs.python.org/dev/library/stdtypes.html#str]]) – List of groups to send events for.
send() will ignore send requests to groups not in this list.
If this is None, all events will be sent.
Example groups include "task" and "worker".

	enabled (bool [https://docs.python.org/dev/library/functions.html#bool]) – Set to False to not actually publish any
events, making send() a no-op.

	channel (kombu.Channel) – Can be used instead of connection to specify
an exact channel to use when sending events.

	buffer_while_offline (bool [https://docs.python.org/dev/library/functions.html#bool]) – If enabled events will be buffered
while the connection is down. flush() must be called
as soon as the connection is re-established.

Note

You need to close() this after use.

	
DISABLED_TRANSPORTS = {'sql'}

	

	
app = None

	

	
close()[source]

	Close the event dispatcher.

	
disable()[source]

	

	
enable()[source]

	

	
extend_buffer(other)[source]

	Copy the outbound buffer of another instance.

	
flush(errors=True, groups=True)[source]

	Flush the outbound buffer.

	
on_disabled = None

	

	
on_enabled = None

	

	
publish(type, fields, producer, blind=False, Event=<function Event>, **kwargs)[source]

	Publish event using custom Producer [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer].

	Parameters

	
	type (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Event type name, with group separated by dash (-).
fields: Dictionary of event fields, must be json serializable.

	producer (kombu.Producer [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer]) – Producer instance to use:
only the publish method will be called.

	retry (bool [https://docs.python.org/dev/library/functions.html#bool]) – Retry in the event of connection failure.

	retry_policy (Mapping) – Map of custom retry policy options.
See ensure() [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection.ensure].

	blind (bool [https://docs.python.org/dev/library/functions.html#bool]) – Don’t set logical clock value (also don’t forward
the internal logical clock).

	Event (Callable) – Event type used to create event.
Defaults to Event().

	utcoffset (Callable) – Function returning the current
utc offset in hours.

	
property publisher

	

	
send(type, blind=False, utcoffset=<function utcoffset>, retry=False, retry_policy=None, Event=<function Event>, **fields)[source]

	Send event.

	Parameters

	
	type (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Event type name, with group separated by dash (-).

	retry (bool [https://docs.python.org/dev/library/functions.html#bool]) – Retry in the event of connection failure.

	retry_policy (Mapping) – Map of custom retry policy options.
See ensure() [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection.ensure].

	blind (bool [https://docs.python.org/dev/library/functions.html#bool]) – Don’t set logical clock value (also don’t forward
the internal logical clock).

	Event (Callable) – Event type used to create event,
defaults to Event().

	utcoffset (Callable) – unction returning the current utc offset
in hours.

	**fields (Any) – Event fields – must be json serializable.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.events.event

Creating events, and event exchange definition.

	
celery.events.event.Event(type, _fields=None, __dict__=<class 'dict'>, __now__=<built-in function time>, **fields)[source]

	Create an event.

Notes

An event is simply a dictionary: the only required field is type.
A timestamp field will be set to the current time if not provided.

	
celery.events.event.event_exchange = <unbound Exchange celeryev(topic)>

	Exchange used to send events on.
Note: Use get_exchange() instead, as the type of
exchange will vary depending on the broker connection.

	
celery.events.event.get_exchange(conn, name='celeryev')[source]

	Get exchange used for sending events.

	Parameters

	
	conn (kombu.Connection [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection]) – Connection used for sending/receiving events.

	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Name of the exchange. Default is celeryev.

Note

The event type changes if Redis is used as the transport
(from topic -> fanout).

	
celery.events.event.group_from(type)[source]

	Get the group part of an event type name.

Example

>>> group_from('task-sent')
'task'

>>> group_from('custom-my-event')
'custom'

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.events.state

In-memory representation of cluster state.

This module implements a data-structure used to keep
track of the state of a cluster of workers and the tasks
it is working on (by consuming events).

For every event consumed the state is updated,
so the state represents the state of the cluster
at the time of the last event.

Snapshots (celery.events.snapshot) can be used to
take “pictures” of this state at regular intervals
to for example, store that in a database.

	
class celery.events.state.State(callback=None, workers=None, tasks=None, taskheap=None, max_workers_in_memory=5000, max_tasks_in_memory=10000, on_node_join=None, on_node_leave=None, tasks_by_type=None, tasks_by_worker=None)[source]

	Records clusters state.

	
class Task(uuid=None, cluster_state=None, children=None, **kwargs)

	Task State.

	
args = None

	

	
as_dict()

	

	
client = None

	

	
clock = 0

	

	
eta = None

	

	
event(type_, timestamp=None, local_received=None, fields=None, precedence=<function precedence>, setattr=<built-in function setattr>, task_event_to_state=<built-in method get of dict object>, RETRY='RETRY')

	

	
exception = None

	

	
exchange = None

	

	
expires = None

	

	
failed = None

	

	
property id

	

	
info(fields=None, extra=None)

	Information about this task suitable for on-screen display.

	
kwargs = None

	

	
merge_rules = {'RECEIVED': ('name', 'args', 'kwargs', 'parent_id', 'root_id', 'retries', 'eta', 'expires')}

	

	
name = None

	

	
property origin

	

	
parent

	

	
parent_id = None

	

	
property ready

	

	
received = None

	

	
rejected = None

	

	
result = None

	

	
retried = None

	

	
retries = None

	

	
revoked = None

	

	
root

	

	
root_id = None

	

	
routing_key = None

	

	
runtime = None

	

	
sent = None

	

	
started = None

	

	
state = 'PENDING'

	

	
succeeded = None

	

	
timestamp = None

	

	
traceback = None

	

	
worker = None

	

	
class Worker(hostname=None, pid=None, freq=60, heartbeats=None, clock=0, active=None, processed=None, loadavg=None, sw_ident=None, sw_ver=None, sw_sys=None)

	Worker State.

	
active

	

	
property alive

	

	
clock

	

	
event

	

	
expire_window = 200

	

	
freq

	

	
property heartbeat_expires

	

	
heartbeat_max = 4

	

	
heartbeats

	

	
hostname

	

	
property id

	

	
loadavg

	

	
pid

	

	
processed

	

	
property status_string

	

	
sw_ident

	

	
sw_sys

	

	
sw_ver

	

	
update(f, **kw)

	

	
alive_workers()[source]

	Return a list of (seemingly) alive workers.

	
clear(ready=True)[source]

	

	
clear_tasks(ready=True)[source]

	

	
event(event)[source]

	

	
event_count = 0

	

	
freeze_while(fun, *args, **kwargs)[source]

	

	
get_or_create_task(uuid)[source]

	Get or create task by uuid.

	
get_or_create_worker(hostname, **kwargs)[source]

	Get or create worker by hostname.

	Returns

	of (worker, was_created) pairs.

	Return type

	Tuple

	
heap_multiplier = 4

	

	
itertasks(limit=None)[source]

	

	
rebuild_taskheap(timetuple=<class 'kombu.clocks.timetuple'>)[source]

	

	
task_count = 0

	

	
task_event(type_, fields)[source]

	Deprecated, use event().

	
task_types()[source]

	Return a list of all seen task types.

	
tasks_by_time(limit=None, reverse=True)[source]

	Generator yielding tasks ordered by time.

	Yields

	Tuples of (uuid, Task).

	
tasks_by_timestamp(limit=None, reverse=True)

	Generator yielding tasks ordered by time.

	Yields

	Tuples of (uuid, Task).

	
worker_event(type_, fields)[source]

	Deprecated, use event().

	
class celery.events.state.Task(uuid=None, cluster_state=None, children=None, **kwargs)[source]

	Task State.

	
args = None

	

	
as_dict()[source]

	

	
client = None

	

	
clock = 0

	

	
eta = None

	

	
event(type_, timestamp=None, local_received=None, fields=None, precedence=<function precedence>, setattr=<built-in function setattr>, task_event_to_state=<built-in method get of dict object>, RETRY='RETRY')[source]

	

	
exception = None

	

	
exchange = None

	

	
expires = None

	

	
failed = None

	

	
property id

	

	
info(fields=None, extra=None)[source]

	Information about this task suitable for on-screen display.

	
kwargs = None

	

	
merge_rules = {'RECEIVED': ('name', 'args', 'kwargs', 'parent_id', 'root_id', 'retries', 'eta', 'expires')}

	How to merge out of order events.
Disorder is detected by logical ordering (e.g., task-received
must’ve happened before a task-failed event).

A merge rule consists of a state and a list of fields to keep from
that state. (RECEIVED, ('name', 'args'), means the name and args
fields are always taken from the RECEIVED state, and any values for
these fields received before or after is simply ignored.

	
name = None

	

	
property origin

	

	
parent[source]

	

	
parent_id = None

	

	
property ready

	

	
received = None

	

	
rejected = None

	

	
result = None

	

	
retried = None

	

	
retries = None

	

	
revoked = None

	

	
root[source]

	

	
root_id = None

	

	
routing_key = None

	

	
runtime = None

	

	
sent = None

	

	
started = None

	

	
state = 'PENDING'

	

	
succeeded = None

	

	
timestamp = None

	

	
traceback = None

	

	
worker = None

	

	
class celery.events.state.Worker(hostname=None, pid=None, freq=60, heartbeats=None, clock=0, active=None, processed=None, loadavg=None, sw_ident=None, sw_ver=None, sw_sys=None)[source]

	Worker State.

	
active

	

	
property alive

	

	
clock

	

	
event

	

	
expire_window = 200

	

	
freq

	

	
property heartbeat_expires

	

	
heartbeat_max = 4

	

	
heartbeats

	

	
hostname

	

	
property id

	

	
loadavg

	

	
pid

	

	
processed

	

	
property status_string

	

	
sw_ident

	

	
sw_sys

	

	
sw_ver

	

	
update(f, **kw)[source]

	

	
celery.events.state.heartbeat_expires(timestamp, freq=60, expire_window=200, Decimal=<class 'decimal.Decimal'>, float=<class 'float'>, isinstance=<built-in function isinstance>)[source]

	Return time when heartbeat expires.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.beat

The periodic task scheduler.

	
celery.beat.EmbeddedService(app, max_interval=None, **kwargs)[source]

	Return embedded clock service.

	Parameters

	thread (bool [https://docs.python.org/dev/library/functions.html#bool]) – Run threaded instead of as a separate process.
Uses multiprocessing [https://docs.python.org/dev/library/multiprocessing.html#module-multiprocessing] by default, if available.

	
class celery.beat.PersistentScheduler(*args, **kwargs)[source]

	Scheduler backed by shelve [https://docs.python.org/dev/library/shelve.html#module-shelve] database.

	
close()[source]

	

	
get_schedule()[source]

	

	
property info

	

	
known_suffixes = ('', '.db', '.dat', '.bak', '.dir')

	

	
persistence = <module 'shelve' from '/home/docs/.pyenv/versions/3.7.3/lib/python3.7/shelve.py'>

	

	
property schedule

	

	
set_schedule(schedule)[source]

	

	
setup_schedule()[source]

	

	
sync()[source]

	

	
class celery.beat.ScheduleEntry(name=None, task=None, last_run_at=None, total_run_count=None, schedule=None, args=(), kwargs=None, options=None, relative=False, app=None)[source]

	An entry in the scheduler.

	Parameters

	
	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – see name.

	schedule (schedule) – see schedule.

	args (Tuple) – see args.

	kwargs (Dict) – see kwargs.

	options (Dict) – see options.

	last_run_at (datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime]) – see last_run_at.

	total_run_count (int [https://docs.python.org/dev/library/functions.html#int]) – see total_run_count.

	relative (bool [https://docs.python.org/dev/library/functions.html#bool]) – Is the time relative to when the server starts?

	
args = None

	Positional arguments to apply.

	
default_now()[source]

	

	
editable_fields_equal(other)[source]

	

	
is_due()[source]

	See is_due().

	
kwargs = None

	Keyword arguments to apply.

	
last_run_at = None

	The time and date of when this task was last scheduled.

	
name = None

	The task name

	
next(last_run_at=None)

	Return new instance, with date and count fields updated.

	
options = None

	Task execution options.

	
schedule = None

	The schedule (schedule)

	
total_run_count = 0

	Total number of times this task has been scheduled.

	
update(other)[source]

	Update values from another entry.

	Will only update “editable” fields:
	task, schedule, args, kwargs, options.

	
class celery.beat.Scheduler(app, schedule=None, max_interval=None, Producer=None, lazy=False, sync_every_tasks=None, **kwargs)[source]

	Scheduler for periodic tasks.

The celery beat program may instantiate this class
multiple times for introspection purposes, but then with the
lazy argument set. It’s important for subclasses to
be idempotent when this argument is set.

	Parameters

	
	schedule (schedule) – see schedule.

	max_interval (int [https://docs.python.org/dev/library/functions.html#int]) – see max_interval.

	lazy (bool [https://docs.python.org/dev/library/functions.html#bool]) – Don’t set up the schedule.

	
Entry

	alias of ScheduleEntry

	
add(**kwargs)[source]

	

	
adjust(n, drift=- 0.01)[source]

	

	
apply_async(entry, producer=None, advance=True, **kwargs)[source]

	

	
apply_entry(entry, producer=None)[source]

	

	
close()[source]

	

	
connection[source]

	

	
get_schedule()[source]

	

	
property info

	

	
install_default_entries(data)[source]

	

	
is_due(entry)[source]

	

	
logger = <Logger celery.beat (WARNING)>

	

	
max_interval = 300

	Maximum time to sleep between re-checking the schedule.

	
merge_inplace(b)[source]

	

	
populate_heap(event_t=<class 'celery.beat.event_t'>, heapify=<built-in function heapify>)[source]

	Populate the heap with the data contained in the schedule.

	
producer[source]

	

	
reserve(entry)[source]

	

	
property schedule

	The schedule dict/shelve.

	
schedules_equal(old_schedules, new_schedules)[source]

	

	
send_task(*args, **kwargs)[source]

	

	
set_schedule(schedule)[source]

	

	
setup_schedule()[source]

	

	
should_sync()[source]

	

	
sync()[source]

	

	
sync_every = 180

	How often to sync the schedule (3 minutes by default)

	
sync_every_tasks = None

	How many tasks can be called before a sync is forced.

	
tick(event_t=<class 'celery.beat.event_t'>, min=<built-in function min>, heappop=<built-in function heappop>, heappush=<built-in function heappush>)[source]

	Run a tick - one iteration of the scheduler.

Executes one due task per call.

	Returns

	preferred delay in seconds for next call.

	Return type

	float [https://docs.python.org/dev/library/functions.html#float]

	
update_from_dict(dict_)[source]

	

	
exception celery.beat.SchedulingError[source]

	An error occurred while scheduling a task.

	
class celery.beat.Service(app, max_interval=None, schedule_filename=None, scheduler_cls=None)[source]

	Celery periodic task service.

	
get_scheduler(lazy=False, extension_namespace='celery.beat_schedulers')[source]

	

	
scheduler[source]

	

	
scheduler_cls

	alias of PersistentScheduler

	
start(embedded_process=False)[source]

	

	
stop(wait=False)[source]

	

	
sync()[source]

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.apps.worker

Worker command-line program.

This module is the ‘program-version’ of celery.worker.

It does everything necessary to run that module
as an actual application, like installing signal handlers,
platform tweaks, and so on.

	
class celery.apps.worker.Worker(app=None, hostname=None, **kwargs)[source]

	Worker as a program.

	
emit_banner()[source]

	

	
extra_info()[source]

	

	
install_platform_tweaks(worker)[source]

	Install platform specific tweaks and workarounds.

	
macOS_proxy_detection_workaround()[source]

	See https://github.com/celery/celery/issues#issue/161.

	
on_after_init(purge=False, no_color=None, redirect_stdouts=None, redirect_stdouts_level=None, **kwargs)[source]

	

	
on_before_init(quiet=False, **kwargs)[source]

	

	
on_consumer_ready(consumer)[source]

	

	
on_init_blueprint()[source]

	

	
on_start()[source]

	

	
purge_messages()[source]

	

	
set_process_status(info)[source]

	

	
setup_logging(colorize=None)[source]

	

	
startup_info(artlines=True)[source]

	

	
tasklist(include_builtins=True, sep='\n', int_='celery.')[source]

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.apps.beat

Beat command-line program.

This module is the ‘program-version’ of celery.beat.

It does everything necessary to run that module
as an actual application, like installing signal handlers
and so on.

	
class celery.apps.beat.Beat(max_interval=None, app=None, socket_timeout=30, pidfile=None, no_color=None, loglevel='WARN', logfile=None, schedule=None, scheduler=None, scheduler_cls=None, redirect_stdouts=None, redirect_stdouts_level=None, **kwargs)[source]

	Beat as a service.

	
class Service(app, max_interval=None, schedule_filename=None, scheduler_cls=None)

	Celery periodic task service.

	
get_scheduler(lazy=False, extension_namespace='celery.beat_schedulers')

	

	
scheduler

	

	
scheduler_cls

	alias of PersistentScheduler

	
start(embedded_process=False)

	

	
stop(wait=False)

	

	
sync()

	

	
app = None

	

	
banner(service)[source]

	

	
init_loader()[source]

	

	
install_sync_handler(service)[source]

	Install a SIGTERM + SIGINT handler saving the schedule.

	
run()[source]

	

	
set_process_title()[source]

	

	
setup_logging(colorize=None)[source]

	

	
start_scheduler()[source]

	

	
startup_info(service)[source]

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.apps.multi

Start/stop/manage workers.

	
class celery.apps.multi.Cluster(nodes, cmd=None, env=None, on_stopping_preamble=None, on_send_signal=None, on_still_waiting_for=None, on_still_waiting_progress=None, on_still_waiting_end=None, on_node_start=None, on_node_restart=None, on_node_shutdown_ok=None, on_node_status=None, on_node_signal=None, on_node_signal_dead=None, on_node_down=None, on_child_spawn=None, on_child_signalled=None, on_child_failure=None)[source]

	Represent a cluster of workers.

	
property data

	

	
find(name)[source]

	

	
getpids(on_down=None)[source]

	

	
kill()[source]

	

	
restart(sig=<Signals.SIGTERM: 15>)[source]

	

	
send_all(sig)[source]

	

	
shutdown_nodes(nodes, sig=<Signals.SIGTERM: 15>, retry=None)[source]

	

	
start()[source]

	

	
start_node(node)[source]

	

	
stop(retry=None, callback=None, sig=<Signals.SIGTERM: 15>)[source]

	

	
stopwait(retry=2, callback=None, sig=<Signals.SIGTERM: 15>)[source]

	

	
class celery.apps.multi.Node(name, cmd=None, append=None, options=None, extra_args=None)[source]

	Represents a node in a cluster.

	
alive()[source]

	

	
argv_with_executable[source]

	

	
executable[source]

	

	
classmethod from_kwargs(name, **kwargs)[source]

	

	
getopt(*alt)[source]

	

	
handle_process_exit(retcode, on_signalled=None, on_failure=None)[source]

	

	
logfile[source]

	

	
property pid

	

	
pidfile[source]

	

	
prepare_argv(argv, path)[source]

	

	
send(sig, on_error=None)[source]

	

	
start(env=None, **kwargs)[source]

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.worker

Worker implementation.

	
class celery.worker.WorkController(app=None, hostname=None, **kwargs)[source]

	Unmanaged worker instance.

	
class Blueprint(steps=None, name=None, on_start=None, on_close=None, on_stopped=None)[source]

	Worker bootstep blueprint.

	
default_steps = {'celery.worker.autoscale:WorkerComponent', 'celery.worker.components:Beat', 'celery.worker.components:Consumer', 'celery.worker.components:Hub', 'celery.worker.components:Pool', 'celery.worker.components:StateDB', 'celery.worker.components:Timer'}

	

	
name = 'Worker'

	

	
app = None

	

	
blueprint = None

	

	
exitcode = None

	contains the exit code if a SystemExit [https://docs.python.org/dev/library/exceptions.html#SystemExit] event is handled.

	
info()[source]

	

	
on_after_init(**kwargs)[source]

	

	
on_before_init(**kwargs)[source]

	

	
on_close()[source]

	

	
on_consumer_ready(consumer)[source]

	

	
on_init_blueprint()[source]

	

	
on_start()[source]

	

	
on_stopped()[source]

	

	
pidlock = None

	

	
pool = None

	

	
prepare_args(**kwargs)[source]

	

	
register_with_event_loop(hub)[source]

	

	
reload(modules=None, reload=False, reloader=None)[source]

	

	
rusage()[source]

	

	
semaphore = None

	

	
setup_defaults(concurrency=None, loglevel='WARN', logfile=None, task_events=None, pool=None, consumer_cls=None, timer_cls=None, timer_precision=None, autoscaler_cls=None, pool_putlocks=None, pool_restarts=None, optimization=None, O=None, statedb=None, time_limit=None, soft_time_limit=None, scheduler=None, pool_cls=None, state_db=None, task_time_limit=None, task_soft_time_limit=None, scheduler_cls=None, schedule_filename=None, max_tasks_per_child=None, prefetch_multiplier=None, disable_rate_limits=None, worker_lost_wait=None, max_memory_per_child=None, **_kw)[source]

	

	
setup_includes(includes)[source]

	

	
setup_instance(queues=None, ready_callback=None, pidfile=None, include=None, use_eventloop=None, exclude_queues=None, **kwargs)[source]

	

	
setup_queues(include, exclude=None)[source]

	

	
should_use_eventloop()[source]

	

	
signal_consumer_close()[source]

	

	
start()[source]

	

	
property state

	

	
stats()[source]

	

	
stop(in_sighandler=False, exitcode=None)[source]

	Graceful shutdown of the worker server.

	
terminate(in_sighandler=False)[source]

	Not so graceful shutdown of the worker server.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.worker.request

Task request.

This module defines the Request class, that specifies
how tasks are executed.

	
class celery.worker.request.Request(message, on_ack=<function noop>, hostname=None, eventer=None, app=None, connection_errors=None, request_dict=None, task=None, on_reject=<function noop>, body=None, headers=None, decoded=False, utc=True, maybe_make_aware=<function maybe_make_aware>, maybe_iso8601=<function maybe_iso8601>, **opts)[source]

	A request for task execution.

	
acknowledge()[source]

	Acknowledge task.

	
acknowledged = False

	

	
property app

	

	
property args

	

	
property argsrepr

	

	
property body

	

	
chord[source]

	

	
property connection_errors

	

	
property content_encoding

	

	
property content_type

	

	
property correlation_id

	

	
property delivery_info

	

	
errbacks[source]

	

	
property eta

	

	
property eventer

	

	
execute(loglevel=None, logfile=None)[source]

	Execute the task in a trace_task().

	Parameters

	
	loglevel (int [https://docs.python.org/dev/library/functions.html#int]) – The loglevel used by the task.

	logfile (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The logfile used by the task.

	
execute_using_pool(pool, **kwargs)[source]

	Used by the worker to send this task to the pool.

	Parameters

	pool (TaskPool) – The execution pool
used to execute this request.

	Raises

	celery.exceptions.TaskRevokedError – if the task was revoked.

	
property expires

	

	
group[source]

	

	
group_index[source]

	

	
property hostname

	

	
humaninfo()[source]

	

	
id

	

	
info(safe=False)[source]

	

	
property kwargs

	

	
property kwargsrepr

	

	
maybe_expire()[source]

	If expired, mark the task as revoked.

	
property message

	

	
name

	

	
on_accepted(pid, time_accepted)[source]

	Handler called when task is accepted by worker pool.

	
property on_ack

	

	
on_failure(exc_info, send_failed_event=True, return_ok=False)[source]

	Handler called if the task raised an exception.

	
property on_reject

	

	
on_retry(exc_info)[source]

	Handler called if the task should be retried.

	
on_success(failed__retval__runtime, **kwargs)[source]

	Handler called if the task was successfully processed.

	
on_timeout(soft, timeout)[source]

	Handler called if the task times out.

	
property parent_id

	

	
reject(requeue=False)[source]

	

	
property reply_to

	

	
property request_dict

	

	
revoked()[source]

	If revoked, skip task and mark state.

	
property root_id

	

	
send_event(type, **fields)[source]

	

	
property store_errors

	

	
property task

	

	
property task_id

	

	
property task_name

	

	
terminate(pool, signal=None)[source]

	

	
time_limits = (None, None)

	

	
time_start = None

	

	
property type

	

	
property tzlocal

	

	
property utc

	

	
worker_pid = None

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.worker.state

Internal worker state (global).

This includes the currently active and reserved tasks,
statistics, and revoked tasks.

	
class celery.worker.state.Persistent(state, filename, clock=None)[source]

	Stores worker state between restarts.

This is the persistent data stored by the worker when
celery worker --statedb is enabled.

Currently only stores revoked task id’s.

	
close()[source]

	

	
compress(level=- 1)

	Returns a bytes object containing compressed data.

	data
	Binary data to be compressed.

	level
	Compression level, in 0-9 or -1.

	
db[source]

	

	
decompress(wbits=15, bufsize=16384)

	Returns a bytes object containing the uncompressed data.

	data
	Compressed data.

	wbits
	The window buffer size and container format.

	bufsize
	The initial output buffer size.

	
merge()[source]

	

	
open()[source]

	

	
protocol = 2

	

	
save()[source]

	

	
storage = <module 'shelve' from '/home/docs/.pyenv/versions/3.7.3/lib/python3.7/shelve.py'>

	

	
sync()[source]

	

	
celery.worker.state.SOFTWARE_INFO = {'sw_ident': 'py-celery', 'sw_sys': 'Linux', 'sw_ver': '5.0.1'}

	Worker software/platform information.

	
celery.worker.state.active_requests = <_weakrefset.WeakSet object>

	set of currently active Request’s.

	
celery.worker.state.maybe_shutdown()[source]

	Shutdown if flags have been set.

	
celery.worker.state.reserved_requests = <_weakrefset.WeakSet object>

	set of all reserved Request’s.

	
celery.worker.state.revoked = <LimitedSet(0): maxlen=50000, expires=10800, minlen=0>

	the list of currently revoked tasks. Persistent if statedb set.

	
celery.worker.state.task_accepted(request, _all_total_count=None, add_active_request=<bound method WeakSet.add of <_weakrefset.WeakSet object>>, add_to_total_count=<bound method Counter.update of Counter()>)[source]

	Update global state when a task has been accepted.

	
celery.worker.state.task_ready(request, remove_request=<built-in method pop of dict object>, discard_active_request=<bound method WeakSet.discard of <_weakrefset.WeakSet object>>, discard_reserved_request=<bound method WeakSet.discard of <_weakrefset.WeakSet object>>)[source]

	Update global state when a task is ready.

	
celery.worker.state.task_reserved(request, add_request=<method-wrapper '__setitem__' of dict object>, add_reserved_request=<bound method WeakSet.add of <_weakrefset.WeakSet object>>)[source]

	Update global state when a task has been reserved.

	
celery.worker.state.total_count = {}

	count of tasks accepted by the worker, sorted by type.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.worker.strategy

Task execution strategy (optimization).

	
celery.worker.strategy.default(task, app, consumer, info=<bound method Logger.info of <Logger celery.worker.strategy (WARNING)>>, error=<bound method Logger.error of <Logger celery.worker.strategy (WARNING)>>, task_reserved=<function task_reserved>, to_system_tz=<bound method _Zone.to_system of <celery.utils.time._Zone object>>, bytes=<class 'bytes'>, proto1_to_proto2=<function proto1_to_proto2>)[source]

	Default task execution strategy.

Note

Strategies are here as an optimization, so sadly
it’s not very easy to override.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.worker.consumer

Worker consumer.

	
class celery.worker.consumer.Agent(c, **kwargs)[source]

	Agent starts cell [https://pypi.python.org/pypi/cell/] actors.

	
conditional = True

	

	
create(c)[source]

	Create the step.

	
name = 'celery.worker.consumer.agent.Agent'

	

	
requires = (step:celery.worker.consumer.connection.Connection{()},)

	

	
class celery.worker.consumer.Connection(c, **kwargs)[source]

	Service managing the consumer broker connection.

	
info(c)[source]

	

	
name = 'celery.worker.consumer.connection.Connection'

	

	
shutdown(c)[source]

	

	
start(c)[source]

	

	
class celery.worker.consumer.Consumer(on_task_request, init_callback=<function noop>, hostname=None, pool=None, app=None, timer=None, controller=None, hub=None, amqheartbeat=None, worker_options=None, disable_rate_limits=False, initial_prefetch_count=2, prefetch_multiplier=1, **kwargs)[source]

	Consumer blueprint.

	
class Blueprint(steps=None, name=None, on_start=None, on_close=None, on_stopped=None)[source]

	Consumer blueprint.

	
default_steps = ['celery.worker.consumer.connection:Connection', 'celery.worker.consumer.mingle:Mingle', 'celery.worker.consumer.events:Events', 'celery.worker.consumer.gossip:Gossip', 'celery.worker.consumer.heart:Heart', 'celery.worker.consumer.control:Control', 'celery.worker.consumer.tasks:Tasks', 'celery.worker.consumer.consumer:Evloop', 'celery.worker.consumer.agent:Agent']

	

	
name = 'Consumer'

	

	
shutdown(parent)[source]

	

	
Strategies

	alias of builtins.dict

	
add_task_queue(queue, exchange=None, exchange_type=None, routing_key=None, **options)[source]

	

	
apply_eta_task(task)[source]

	Method called by the timer to apply a task with an ETA/countdown.

	
bucket_for_task(type)[source]

	

	
call_soon(p, *args, **kwargs)[source]

	

	
cancel_task_queue(queue)[source]

	

	
connect()[source]

	Establish the broker connection used for consuming tasks.

Retries establishing the connection if the
broker_connection_retry setting is enabled

	
connection_for_read(heartbeat=None)[source]

	

	
connection_for_write(heartbeat=None)[source]

	

	
create_task_handler(promise=<class 'vine.promises.promise'>)[source]

	

	
ensure_connected(conn)[source]

	

	
init_callback = None

	Optional callback called the first time the worker
is ready to receive tasks.

	
loop_args()[source]

	

	
on_close()[source]

	

	
on_connection_error_after_connected(exc)[source]

	

	
on_connection_error_before_connected(exc)[source]

	

	
on_decode_error(message, exc)[source]

	Callback called if an error occurs while decoding a message.

Simply logs the error and acknowledges the message so it
doesn’t enter a loop.

	Parameters

	
	message (kombu.Message) – The message received.

	exc (Exception [https://docs.python.org/dev/library/exceptions.html#Exception]) – The exception being handled.

	
on_invalid_task(body, message, exc)[source]

	

	
on_ready()[source]

	

	
on_send_event_buffered()[source]

	

	
on_unknown_message(body, message)[source]

	

	
on_unknown_task(body, message, exc)[source]

	

	
perform_pending_operations()[source]

	

	
pool = None

	The current worker pool instance.

	
register_with_event_loop(hub)[source]

	

	
reset_rate_limits()[source]

	

	
restart_count = -1

	

	
shutdown()[source]

	

	
start()[source]

	

	
stop()[source]

	

	
timer = None

	A timer used for high-priority internal tasks, such
as sending heartbeats.

	
update_strategies()[source]

	

	
class celery.worker.consumer.Control(c, **kwargs)[source]

	Remote control command service.

	
include_if(c)[source]

	Return true if bootstep should be included.

You can define this as an optional predicate that decides whether
this step should be created.

	
name = 'celery.worker.consumer.control.Control'

	

	
requires = (step:celery.worker.consumer.tasks.Tasks{(step:celery.worker.consumer.mingle.Mingle{(step:celery.worker.consumer.events.Events{(step:celery.worker.consumer.connection.Connection{()},)},)},)},)

	

	
class celery.worker.consumer.Events(c, task_events=True, without_heartbeat=False, without_gossip=False, **kwargs)[source]

	Service used for sending monitoring events.

	
name = 'celery.worker.consumer.events.Events'

	

	
requires = (step:celery.worker.consumer.connection.Connection{()},)

	

	
shutdown(c)[source]

	

	
start(c)[source]

	

	
stop(c)[source]

	

	
class celery.worker.consumer.Gossip(c, without_gossip=False, interval=5.0, heartbeat_interval=2.0, **kwargs)[source]

	Bootstep consuming events from other workers.

This keeps the logical clock value up to date.

	
call_task(task)[source]

	

	
compatible_transport(app)[source]

	

	
compatible_transports = {'amqp', 'redis'}

	

	
election(id, topic, action=None)[source]

	

	
get_consumers(channel)[source]

	

	
label = 'Gossip'

	

	
name = 'celery.worker.consumer.gossip.Gossip'

	

	
on_elect(event)[source]

	

	
on_elect_ack(event)[source]

	

	
on_message(prepare, message)[source]

	

	
on_node_join(worker)[source]

	

	
on_node_leave(worker)[source]

	

	
on_node_lost(worker)[source]

	

	
periodic()[source]

	

	
register_timer()[source]

	

	
requires = (step:celery.worker.consumer.mingle.Mingle{(step:celery.worker.consumer.events.Events{(step:celery.worker.consumer.connection.Connection{()},)},)},)

	

	
start(c)[source]

	

	
class celery.worker.consumer.Heart(c, without_heartbeat=False, heartbeat_interval=None, **kwargs)[source]

	Bootstep sending event heartbeats.

This service sends a worker-heartbeat message every n seconds.

Note

Not to be confused with AMQP protocol level heartbeats.

	
name = 'celery.worker.consumer.heart.Heart'

	

	
requires = (step:celery.worker.consumer.events.Events{(step:celery.worker.consumer.connection.Connection{()},)},)

	

	
shutdown(c)

	

	
start(c)[source]

	

	
stop(c)[source]

	

	
class celery.worker.consumer.Mingle(c, without_mingle=False, **kwargs)[source]

	Bootstep syncing state with neighbor workers.

At startup, or upon consumer restart, this will:

	Sync logical clocks.

	Sync revoked tasks.

	
compatible_transport(app)[source]

	

	
compatible_transports = {'amqp', 'redis'}

	

	
label = 'Mingle'

	

	
name = 'celery.worker.consumer.mingle.Mingle'

	

	
on_clock_event(c, clock)[source]

	

	
on_node_reply(c, nodename, reply)[source]

	

	
on_revoked_received(c, revoked)[source]

	

	
requires = (step:celery.worker.consumer.events.Events{(step:celery.worker.consumer.connection.Connection{()},)},)

	

	
send_hello(c)[source]

	

	
start(c)[source]

	

	
sync(c)[source]

	

	
sync_with_node(c, clock=None, revoked=None, **kwargs)[source]

	

	
class celery.worker.consumer.Tasks(c, **kwargs)[source]

	Bootstep starting the task message consumer.

	
info(c)[source]

	Return task consumer info.

	
name = 'celery.worker.consumer.tasks.Tasks'

	

	
requires = (step:celery.worker.consumer.mingle.Mingle{(step:celery.worker.consumer.events.Events{(step:celery.worker.consumer.connection.Connection{()},)},)},)

	

	
shutdown(c)[source]

	Shutdown task consumer.

	
start(c)[source]

	Start task consumer.

	
stop(c)[source]

	Stop task consumer.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.worker.consumer.agent

Celery + cell [https://pypi.python.org/pypi/cell/] integration.

	
class celery.worker.consumer.agent.Agent(c, **kwargs)[source]

	Agent starts cell [https://pypi.python.org/pypi/cell/] actors.

	
conditional = True

	

	
create(c)[source]

	Create the step.

	
name = 'celery.worker.consumer.agent.Agent'

	

	
requires = (step:celery.worker.consumer.connection.Connection{()},)

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.worker.consumer.connection

Consumer Broker Connection Bootstep.

	
class celery.worker.consumer.connection.Connection(c, **kwargs)[source]

	Service managing the consumer broker connection.

	
info(c)[source]

	

	
name = 'celery.worker.consumer.connection.Connection'

	

	
shutdown(c)[source]

	

	
start(c)[source]

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.worker.consumer.consumer

Worker Consumer Blueprint.

This module contains the components responsible for consuming messages
from the broker, processing the messages and keeping the broker connections
up and running.

	
class celery.worker.consumer.consumer.Consumer(on_task_request, init_callback=<function noop>, hostname=None, pool=None, app=None, timer=None, controller=None, hub=None, amqheartbeat=None, worker_options=None, disable_rate_limits=False, initial_prefetch_count=2, prefetch_multiplier=1, **kwargs)[source]

	Consumer blueprint.

	
class Blueprint(steps=None, name=None, on_start=None, on_close=None, on_stopped=None)[source]

	Consumer blueprint.

	
default_steps = ['celery.worker.consumer.connection:Connection', 'celery.worker.consumer.mingle:Mingle', 'celery.worker.consumer.events:Events', 'celery.worker.consumer.gossip:Gossip', 'celery.worker.consumer.heart:Heart', 'celery.worker.consumer.control:Control', 'celery.worker.consumer.tasks:Tasks', 'celery.worker.consumer.consumer:Evloop', 'celery.worker.consumer.agent:Agent']

	

	
name = 'Consumer'

	

	
shutdown(parent)[source]

	

	
Strategies

	alias of builtins.dict

	
add_task_queue(queue, exchange=None, exchange_type=None, routing_key=None, **options)[source]

	

	
apply_eta_task(task)[source]

	Method called by the timer to apply a task with an ETA/countdown.

	
bucket_for_task(type)[source]

	

	
call_soon(p, *args, **kwargs)[source]

	

	
cancel_task_queue(queue)[source]

	

	
connect()[source]

	Establish the broker connection used for consuming tasks.

Retries establishing the connection if the
broker_connection_retry setting is enabled

	
connection_for_read(heartbeat=None)[source]

	

	
connection_for_write(heartbeat=None)[source]

	

	
create_task_handler(promise=<class 'vine.promises.promise'>)[source]

	

	
ensure_connected(conn)[source]

	

	
init_callback = None

	Optional callback called the first time the worker
is ready to receive tasks.

	
loop_args()[source]

	

	
on_close()[source]

	

	
on_connection_error_after_connected(exc)[source]

	

	
on_connection_error_before_connected(exc)[source]

	

	
on_decode_error(message, exc)[source]

	Callback called if an error occurs while decoding a message.

Simply logs the error and acknowledges the message so it
doesn’t enter a loop.

	Parameters

	
	message (kombu.Message) – The message received.

	exc (Exception [https://docs.python.org/dev/library/exceptions.html#Exception]) – The exception being handled.

	
on_invalid_task(body, message, exc)[source]

	

	
on_ready()[source]

	

	
on_send_event_buffered()[source]

	

	
on_unknown_message(body, message)[source]

	

	
on_unknown_task(body, message, exc)[source]

	

	
perform_pending_operations()[source]

	

	
pool = None

	The current worker pool instance.

	
register_with_event_loop(hub)[source]

	

	
reset_rate_limits()[source]

	

	
restart_count = -1

	

	
shutdown()[source]

	

	
start()[source]

	

	
stop()[source]

	

	
timer = None

	A timer used for high-priority internal tasks, such
as sending heartbeats.

	
update_strategies()[source]

	

	
class celery.worker.consumer.consumer.Evloop(parent, **kwargs)[source]

	Event loop service.

Note

This is always started last.

	
label = 'event loop'

	

	
last = True

	

	
name = 'celery.worker.consumer.consumer.Evloop'

	

	
patch_all(c)[source]

	

	
start(c)[source]

	

	
celery.worker.consumer.consumer.dump_body(m, body)[source]

	Format message body for debugging purposes.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.worker.consumer.control

Worker Remote Control Bootstep.

Control -> celery.worker.pidbox -> kombu.pidbox [https://kombu.readthedocs.io/en/master/reference/kombu.pidbox.html#module-kombu.pidbox].

The actual commands are implemented in celery.worker.control.

	
class celery.worker.consumer.control.Control(c, **kwargs)[source]

	Remote control command service.

	
include_if(c)[source]

	Return true if bootstep should be included.

You can define this as an optional predicate that decides whether
this step should be created.

	
name = 'celery.worker.consumer.control.Control'

	

	
requires = (step:celery.worker.consumer.tasks.Tasks{(step:celery.worker.consumer.mingle.Mingle{(step:celery.worker.consumer.events.Events{(step:celery.worker.consumer.connection.Connection{()},)},)},)},)

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.worker.consumer.events

Worker Event Dispatcher Bootstep.

Events -> celery.events.EventDispatcher.

	
class celery.worker.consumer.events.Events(c, task_events=True, without_heartbeat=False, without_gossip=False, **kwargs)[source]

	Service used for sending monitoring events.

	
name = 'celery.worker.consumer.events.Events'

	

	
requires = (step:celery.worker.consumer.connection.Connection{()},)

	

	
shutdown(c)[source]

	

	
start(c)[source]

	

	
stop(c)[source]

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.worker.consumer.gossip

Worker <-> Worker communication Bootstep.

	
class celery.worker.consumer.gossip.Gossip(c, without_gossip=False, interval=5.0, heartbeat_interval=2.0, **kwargs)[source]

	Bootstep consuming events from other workers.

This keeps the logical clock value up to date.

	
call_task(task)[source]

	

	
compatible_transport(app)[source]

	

	
compatible_transports = {'amqp', 'redis'}

	

	
election(id, topic, action=None)[source]

	

	
get_consumers(channel)[source]

	

	
label = 'Gossip'

	

	
name = 'celery.worker.consumer.gossip.Gossip'

	

	
on_elect(event)[source]

	

	
on_elect_ack(event)[source]

	

	
on_message(prepare, message)[source]

	

	
on_node_join(worker)[source]

	

	
on_node_leave(worker)[source]

	

	
on_node_lost(worker)[source]

	

	
periodic()[source]

	

	
register_timer()[source]

	

	
requires = (step:celery.worker.consumer.mingle.Mingle{(step:celery.worker.consumer.events.Events{(step:celery.worker.consumer.connection.Connection{()},)},)},)

	

	
start(c)[source]

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.worker.consumer.heart

Worker Event Heartbeat Bootstep.

	
class celery.worker.consumer.heart.Heart(c, without_heartbeat=False, heartbeat_interval=None, **kwargs)[source]

	Bootstep sending event heartbeats.

This service sends a worker-heartbeat message every n seconds.

Note

Not to be confused with AMQP protocol level heartbeats.

	
name = 'celery.worker.consumer.heart.Heart'

	

	
requires = (step:celery.worker.consumer.events.Events{(step:celery.worker.consumer.connection.Connection{()},)},)

	

	
shutdown(c)

	

	
start(c)[source]

	

	
stop(c)[source]

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.worker.consumer.mingle

Worker <-> Worker Sync at startup (Bootstep).

	
class celery.worker.consumer.mingle.Mingle(c, without_mingle=False, **kwargs)[source]

	Bootstep syncing state with neighbor workers.

At startup, or upon consumer restart, this will:

	Sync logical clocks.

	Sync revoked tasks.

	
compatible_transport(app)[source]

	

	
compatible_transports = {'amqp', 'redis'}

	

	
label = 'Mingle'

	

	
name = 'celery.worker.consumer.mingle.Mingle'

	

	
on_clock_event(c, clock)[source]

	

	
on_node_reply(c, nodename, reply)[source]

	

	
on_revoked_received(c, revoked)[source]

	

	
requires = (step:celery.worker.consumer.events.Events{(step:celery.worker.consumer.connection.Connection{()},)},)

	

	
send_hello(c)[source]

	

	
start(c)[source]

	

	
sync(c)[source]

	

	
sync_with_node(c, clock=None, revoked=None, **kwargs)[source]

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.worker.consumer.tasks

Worker Task Consumer Bootstep.

	
class celery.worker.consumer.tasks.Tasks(c, **kwargs)[source]

	Bootstep starting the task message consumer.

	
info(c)[source]

	Return task consumer info.

	
name = 'celery.worker.consumer.tasks.Tasks'

	

	
requires = (step:celery.worker.consumer.mingle.Mingle{(step:celery.worker.consumer.events.Events{(step:celery.worker.consumer.connection.Connection{()},)},)},)

	

	
shutdown(c)[source]

	Shutdown task consumer.

	
start(c)[source]

	Start task consumer.

	
stop(c)[source]

	Stop task consumer.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.worker.worker

WorkController can be used to instantiate in-process workers.

The command-line interface for the worker is in celery.bin.worker,
while the worker program is in celery.apps.worker.

The worker program is responsible for adding signal handlers,
setting up logging, etc. This is a bare-bones worker without
global side-effects (i.e., except for the global state stored in
celery.worker.state).

The worker consists of several components, all managed by bootsteps
(mod:celery.bootsteps).

	
class celery.worker.worker.WorkController(app=None, hostname=None, **kwargs)[source]

	Unmanaged worker instance.

	
class Blueprint(steps=None, name=None, on_start=None, on_close=None, on_stopped=None)[source]

	Worker bootstep blueprint.

	
default_steps = {'celery.worker.autoscale:WorkerComponent', 'celery.worker.components:Beat', 'celery.worker.components:Consumer', 'celery.worker.components:Hub', 'celery.worker.components:Pool', 'celery.worker.components:StateDB', 'celery.worker.components:Timer'}

	

	
name = 'Worker'

	

	
app = None

	

	
blueprint = None

	

	
exitcode = None

	contains the exit code if a SystemExit [https://docs.python.org/dev/library/exceptions.html#SystemExit] event is handled.

	
info()[source]

	

	
on_after_init(**kwargs)[source]

	

	
on_before_init(**kwargs)[source]

	

	
on_close()[source]

	

	
on_consumer_ready(consumer)[source]

	

	
on_init_blueprint()[source]

	

	
on_start()[source]

	

	
on_stopped()[source]

	

	
pidlock = None

	

	
pool = None

	

	
prepare_args(**kwargs)[source]

	

	
register_with_event_loop(hub)[source]

	

	
reload(modules=None, reload=False, reloader=None)[source]

	

	
rusage()[source]

	

	
semaphore = None

	

	
setup_defaults(concurrency=None, loglevel='WARN', logfile=None, task_events=None, pool=None, consumer_cls=None, timer_cls=None, timer_precision=None, autoscaler_cls=None, pool_putlocks=None, pool_restarts=None, optimization=None, O=None, statedb=None, time_limit=None, soft_time_limit=None, scheduler=None, pool_cls=None, state_db=None, task_time_limit=None, task_soft_time_limit=None, scheduler_cls=None, schedule_filename=None, max_tasks_per_child=None, prefetch_multiplier=None, disable_rate_limits=None, worker_lost_wait=None, max_memory_per_child=None, **_kw)[source]

	

	
setup_includes(includes)[source]

	

	
setup_instance(queues=None, ready_callback=None, pidfile=None, include=None, use_eventloop=None, exclude_queues=None, **kwargs)[source]

	

	
setup_queues(include, exclude=None)[source]

	

	
should_use_eventloop()[source]

	

	
signal_consumer_close()[source]

	

	
start()[source]

	

	
property state

	

	
stats()[source]

	

	
stop(in_sighandler=False, exitcode=None)[source]

	Graceful shutdown of the worker server.

	
terminate(in_sighandler=False)[source]

	Not so graceful shutdown of the worker server.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.bin.base

Click customizations for Celery.

	
class celery.bin.base.CLIContext(app, no_color, workdir, quiet=False)[source]

	Context Object for the CLI.

	
ERROR[source]

	

	
OK[source]

	

	
echo(message=None, **kwargs)[source]

	

	
error(message=None, **kwargs)[source]

	

	
pretty(n)[source]

	

	
pretty_dict_ok_error(n)[source]

	

	
pretty_list(n)[source]

	

	
say_chat(direction, title, body='', show_body=False)[source]

	

	
secho(message=None, **kwargs)[source]

	

	
style(message=None, **kwargs)[source]

	

	
class celery.bin.base.CeleryCommand(name, context_settings=None, callback=None, params=None, help=None, epilog=None, short_help=None, options_metavar='[OPTIONS]', add_help_option=True, no_args_is_help=False, hidden=False, deprecated=False)[source]

	Customized command for Celery.

	
format_options(ctx, formatter)[source]

	Write all the options into the formatter if they exist.

	
class celery.bin.base.CeleryDaemonCommand(*args, **kwargs)[source]

	Daemon commands.

	
class celery.bin.base.CeleryOption(*args, **kwargs)[source]

	Customized option for Celery.

	
get_default(ctx)[source]

	Given a context variable this calculates the default value.

	
class celery.bin.base.CommaSeparatedList[source]

	Comma separated list argument.

	
convert(value, param, ctx)[source]

	Converts the value. This is not invoked for values that are
None (the missing value).

	
name = 'comma separated list'

	

	
class celery.bin.base.ISO8601DateTime[source]

	ISO 8601 Date Time argument.

	
convert(value, param, ctx)[source]

	Converts the value. This is not invoked for values that are
None (the missing value).

	
name = 'iso-86091'

	

	
class celery.bin.base.ISO8601DateTimeOrFloat[source]

	ISO 8601 Date Time or float argument.

	
convert(value, param, ctx)[source]

	Converts the value. This is not invoked for values that are
None (the missing value).

	
name = 'iso-86091 or float'

	

	
class celery.bin.base.Json[source]

	JSON formatted argument.

	
convert(value, param, ctx)[source]

	Converts the value. This is not invoked for values that are
None (the missing value).

	
name = 'json'

	

	
class celery.bin.base.LogLevel[source]

	Log level option.

	
convert(value, param, ctx)[source]

	Converts the value. This is not invoked for values that are
None (the missing value).

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.bin.celery

Celery Command Line Interface.

	
class celery.bin.celery.App[source]

	Application option.

	
convert(value, param, ctx)[source]

	Converts the value. This is not invoked for values that are
None (the missing value).

	
name = 'application'

	

	
celery.bin.celery.main() → int [https://docs.python.org/dev/library/functions.html#int][source]

	Start celery umbrella command.

This function is the main entrypoint for the CLI.

	Returns

	The exit code of the CLI.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.bin.worker

Program used to start a Celery worker instance.

	
class celery.bin.worker.Autoscale[source]

	Autoscaling parameter.

	
convert(value, param, ctx)[source]

	Converts the value. This is not invoked for values that are
None (the missing value).

	
name = '<min workers>, <max workers>'

	

	
class celery.bin.worker.CeleryBeat[source]

	Celery Beat flag.

	
convert(value, param, ctx)[source]

	Converts the value. This is not invoked for values that are
None (the missing value).

	
name = 'beat'

	

	
class celery.bin.worker.Hostname[source]

	Hostname option.

	
convert(value, param, ctx)[source]

	Converts the value. This is not invoked for values that are
None (the missing value).

	
name = 'hostname'

	

	
class celery.bin.worker.WorkersPool[source]

	Workers pool option.

	
convert(value, param, ctx)[source]

	Converts the value. This is not invoked for values that are
None (the missing value).

	
name = 'pool'

	

	
celery.bin.worker.detach(path, argv, logfile=None, pidfile=None, uid=None, gid=None, umask=None, workdir=None, fake=False, app=None, executable=None, hostname=None)[source]

	Detach program by argv.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.bin.beat

The celery beat command.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.bin.events

The celery events program.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.bin.logtool

The celery logtool command.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.bin.amqp

AMQP 0.9.1 REPL.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.bin.graph

The celery graph command.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.bin.multi

Start multiple worker instances from the command-line.

Examples

$ # Single worker with explicit name and events enabled.
$ celery multi start Leslie -E

$ # Pidfiles and logfiles are stored in the current directory
$ # by default. Use --pidfile and --logfile argument to change
$ # this. The abbreviation %n will be expanded to the current
$ # node name.
$ celery multi start Leslie -E --pidfile=/var/run/celery/%n.pid
 --logfile=/var/log/celery/%n%I.log

$ # You need to add the same arguments when you restart,
$ # as these aren't persisted anywhere.
$ celery multi restart Leslie -E --pidfile=/var/run/celery/%n.pid
 --logfile=/var/log/celery/%n%I.log

$ # To stop the node, you need to specify the same pidfile.
$ celery multi stop Leslie --pidfile=/var/run/celery/%n.pid

$ # 3 workers, with 3 processes each
$ celery multi start 3 -c 3
celery worker -n celery1@myhost -c 3
celery worker -n celery2@myhost -c 3
celery worker -n celery3@myhost -c 3

$ # override name prefix when using range
$ celery multi start 3 --range-prefix=worker -c 3
celery worker -n worker1@myhost -c 3
celery worker -n worker2@myhost -c 3
celery worker -n worker3@myhost -c 3

$ # start 3 named workers
$ celery multi start image video data -c 3
celery worker -n image@myhost -c 3
celery worker -n video@myhost -c 3
celery worker -n data@myhost -c 3

$ # specify custom hostname
$ celery multi start 2 --hostname=worker.example.com -c 3
celery worker -n celery1@worker.example.com -c 3
celery worker -n celery2@worker.example.com -c 3

$ # specify fully qualified nodenames
$ celery multi start foo@worker.example.com bar@worker.example.com -c 3

$ # fully qualified nodenames but using the current hostname
$ celery multi start foo@%h bar@%h

$ # Advanced example starting 10 workers in the background:
$ # * Three of the workers processes the images and video queue
$ # * Two of the workers processes the data queue with loglevel DEBUG
$ # * the rest processes the default' queue.
$ celery multi start 10 -l INFO -Q:1-3 images,video -Q:4,5 data
 -Q default -L:4,5 DEBUG

$ # You can show the commands necessary to start the workers with
$ # the 'show' command:
$ celery multi show 10 -l INFO -Q:1-3 images,video -Q:4,5 data
 -Q default -L:4,5 DEBUG

$ # Additional options are added to each celery worker' comamnd,
$ # but you can also modify the options for ranges of, or specific workers

$ # 3 workers: Two with 3 processes, and one with 10 processes.
$ celery multi start 3 -c 3 -c:1 10
celery worker -n celery1@myhost -c 10
celery worker -n celery2@myhost -c 3
celery worker -n celery3@myhost -c 3

$ # can also specify options for named workers
$ celery multi start image video data -c 3 -c:image 10
celery worker -n image@myhost -c 10
celery worker -n video@myhost -c 3
celery worker -n data@myhost -c 3

$ # ranges and lists of workers in options is also allowed:
$ # (-c:1-3 can also be written as -c:1,2,3)
$ celery multi start 5 -c 3 -c:1-3 10
celery worker -n celery1@myhost -c 10
celery worker -n celery2@myhost -c 10
celery worker -n celery3@myhost -c 10
celery worker -n celery4@myhost -c 3
celery worker -n celery5@myhost -c 3

$ # lists also works with named workers
$ celery multi start foo bar baz xuzzy -c 3 -c:foo,bar,baz 10
celery worker -n foo@myhost -c 10
celery worker -n bar@myhost -c 10
celery worker -n baz@myhost -c 10
celery worker -n xuzzy@myhost -c 3

	
class celery.bin.multi.MultiTool(env=None, cmd=None, fh=None, stdout=None, stderr=None, **kwargs)[source]

	The celery multi program.

	
Cluster(nodes, cmd=None)[source]

	

	
DOWN[source]

	

	
FAILED[source]

	

	
class MultiParser(cmd='celery worker', append='', prefix='', suffix='', range_prefix='celery')

	
	
class Node(name, cmd=None, append=None, options=None, extra_args=None)

	Represents a node in a cluster.

	
alive()

	

	
argv_with_executable

	

	
executable

	

	
classmethod from_kwargs(name, **kwargs)

	

	
getopt(*alt)

	

	
handle_process_exit(retcode, on_signalled=None, on_failure=None)

	

	
logfile

	

	
property pid

	

	
pidfile

	

	
prepare_argv(argv, path)

	

	
send(sig, on_error=None)

	

	
start(env=None, **kwargs)

	

	
parse(p)

	

	
OK[source]

	

	
OptionParser

	alias of celery.apps.multi.NamespacedOptionParser

	
call_command(command, argv)[source]

	

	
cluster_from_argv(argv, cmd=None)[source]

	

	
execute_from_commandline(argv, cmd=None)[source]

	

	
expand(template, *argv)[source]

	

	
get(wanted, *argv)[source]

	

	
help(*argv)[source]

	

	
kill(cluster)[source]

	

	
names(cluster)[source]

	

	
on_child_failure(node, retcode)[source]

	

	
on_child_signalled(node, signum)[source]

	

	
on_child_spawn(node, argstr, env)[source]

	

	
on_node_down(node)[source]

	

	
on_node_restart(node)[source]

	

	
on_node_shutdown_ok(node)[source]

	

	
on_node_signal(node, sig)[source]

	

	
on_node_signal_dead(node)[source]

	

	
on_node_start(node)[source]

	

	
on_node_status(node, retval)[source]

	

	
on_send_signal(node, sig)[source]

	

	
on_still_waiting_end()[source]

	

	
on_still_waiting_for(nodes)[source]

	

	
on_still_waiting_progress(nodes)[source]

	

	
on_stopping_preamble(nodes)[source]

	

	
reserved_options = [('--nosplash', 'nosplash'), ('--quiet', 'quiet'), ('-q', 'quiet'), ('--verbose', 'verbose'), ('--no-color', 'no_color')]

	

	
restart(cluster, sig, **kwargs)[source]

	

	
show(cluster)[source]

	

	
start(cluster)[source]

	

	
stop(cluster, sig, **kwargs)[source]

	

	
stop_verify(cluster, sig, **kwargs)

	

	
stopwait(cluster, sig, **kwargs)[source]

	

	
validate_arguments(argv)[source]

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.bin.call

The celery call program used to send tasks from the command-line.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.bin.control

The celery control, . inspect and . status programs.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.bin.list

The celery list bindings command, used to inspect queue bindings.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.bin.migrate

The celery migrate command, used to filter and move messages.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.bin.purge

The celery purge program, used to delete messages from queues.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.bin.result

The celery result program, used to inspect task results.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.bin.shell

The celery shell program, used to start a REPL.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.bin.upgrade

The celery upgrade command, used to upgrade from previous versions.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Internals

	Release

	5.0

	Date

	Oct 18, 2020

	Contributors Guide to the Code
	Philosophy

	Conventions and Idioms Used

	Applications vs. “single mode”

	Module Overview

	Worker overview

	Celery Deprecation Time-line
	Removals for version 5.0

	Removals for version 2.0

	Internals: The worker
	Introduction

	Data structures

	Components

	Message Protocol
	Task messages

	Event Messages

	“The Big Instance” Refactor
	Examples

	Deprecated

	Aliases (Pending deprecation)

	Default App Usage

	Internal Module Reference
	celery.worker.components

	celery.worker.loops

	celery.worker.heartbeat

	celery.worker.control

	celery.worker.pidbox

	celery.worker.autoscale

	celery.concurrency

	celery.concurrency.solo

	celery.concurrency.prefork

	celery.concurrency.eventlet

	celery.concurrency.gevent

	celery.concurrency.thread

	celery.concurrency.base

	celery.backends

	celery.backends.base

	celery.backends.asynchronous

	celery.backends.azureblockblob

	celery.backends.rpc

	celery.backends.database

	celery.backends.cache

	celery.backends.consul

	celery.backends.couchdb

	celery.backends.mongodb

	celery.backends.elasticsearch

	celery.backends.redis

	celery.backends.cassandra

	celery.backends.couchbase

	celery.backends.arangodb

	celery.backends.dynamodb

	celery.backends.filesystem

	celery.backends.cosmosdbsql

	celery.backends.s3

	celery.app.trace

	celery.app.annotations

	celery.app.routes

	celery.security.certificate

	celery.security.key

	celery.security.serialization

	celery.security.utils

	celery.events.snapshot

	celery.events.cursesmon

	celery.events.dumper

	celery.backends.database.models

	celery.backends.database.session

	celery.utils

	celery.utils.abstract

	celery.utils.collections

	celery.utils.nodenames

	celery.utils.deprecated

	celery.utils.functional

	celery.utils.graph

	celery.utils.objects

	celery.utils.term

	celery.utils.time

	celery.utils.iso8601

	celery.utils.saferepr

	celery.utils.serialization

	celery.utils.sysinfo

	celery.utils.threads

	celery.utils.timer2

	celery.utils.imports

	celery.utils.log

	celery.utils.text

	celery.utils.dispatch

	celery.utils.dispatch.signal

	celery.platforms

	celery._state

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Contributors Guide to the Code

	Philosophy

	The API>RCP Precedence Rule

	Conventions and Idioms Used

	Classes

	Naming

	Default values

	Exceptions

	Composites

	Applications vs. “single mode”

	Module Overview

	Worker overview

Philosophy

The API>RCP Precedence Rule

	The API is more important than Readability

	Readability is more important than Convention

	
	Convention is more important than Performance
	
	…unless the code is a proven hot-spot.

More important than anything else is the end-user API.
Conventions must step aside, and any suffering is always alleviated
if the end result is a better API.

Conventions and Idioms Used

Classes

Naming

	Follows PEP 8 [https://www.python.org/dev/peps/pep-0008].

	Class names must be CamelCase.

	but not if they’re verbs, verbs shall be lower_case:

- test case for a class
class TestMyClass(Case): # BAD
 pass

class test_MyClass(Case): # GOOD
 pass

- test case for a function
class TestMyFunction(Case): # BAD
 pass

class test_my_function(Case): # GOOD
 pass

- "action" class (verb)
class UpdateTwitterStatus(object): # BAD
 pass

class update_twitter_status(object): # GOOD
 pass

Note

Sometimes it makes sense to have a class mask as a function,
and there’s precedence for this in the Python standard library (e.g.,
contextmanager). Celery examples include
signature, chord,
inspect, promise and more..

	Factory functions and methods must be CamelCase (excluding verbs):

class Celery(object):

 def consumer_factory(self): # BAD
 ...

 def Consumer(self): # GOOD
 ...

Default values

Class attributes serve as default values for the instance,
as this means that they can be set by either instantiation or inheritance.

Example:

class Producer(object):
 active = True
 serializer = 'json'

 def __init__(self, serializer=None, active=None):
 self.serializer = serializer or self.serializer

 # must check for None when value can be false-y
 self.active = active if active is not None else self.active

A subclass can change the default value:

TaskProducer(Producer):
 serializer = 'pickle'

and the value can be set at instantiation:

>>> producer = TaskProducer(serializer='msgpack')

Exceptions

Custom exceptions raised by an objects methods and properties
should be available as an attribute and documented in the
method/property that throw.

This way a user doesn’t have to find out where to import the
exception from, but rather use help(obj) and access
the exception class from the instance directly.

Example:

class Empty(Exception):
 pass

class Queue(object):
 Empty = Empty

 def get(self):
 """Get the next item from the queue.

 :raises Queue.Empty: if there are no more items left.

 """
 try:
 return self.queue.popleft()
 except IndexError:
 raise self.Empty()

Composites

Similarly to exceptions, composite classes should be override-able by
inheritance and/or instantiation. Common sense can be used when
selecting what classes to include, but often it’s better to add one
too many: predicting what users need to override is hard (this has
saved us from many a monkey patch).

Example:

class Worker(object):
 Consumer = Consumer

 def __init__(self, connection, consumer_cls=None):
 self.Consumer = consumer_cls or self.Consumer

 def do_work(self):
 with self.Consumer(self.connection) as consumer:
 self.connection.drain_events()

Applications vs. “single mode”

In the beginning Celery was developed for Django, simply because
this enabled us get the project started quickly, while also having
a large potential user base.

In Django there’s a global settings object, so multiple Django projects
can’t co-exist in the same process space, this later posed a problem
for using Celery with frameworks that don’t have this limitation.

Therefore the app concept was introduced. When using apps you use ‘celery’
objects instead of importing things from Celery sub-modules, this
(unfortunately) also means that Celery essentially has two API’s.

Here’s an example using Celery in single-mode:

from celery import task
from celery.task.control import inspect

from .models import CeleryStats

@task
def write_stats_to_db():
 stats = inspect().stats(timeout=1)
 for node_name, reply in stats:
 CeleryStats.objects.update_stat(node_name, stats)

and here’s the same using Celery app objects:

from .celery import celery
from .models import CeleryStats

@app.task
def write_stats_to_db():
 stats = celery.control.inspect().stats(timeout=1)
 for node_name, reply in stats:
 CeleryStats.objects.update_stat(node_name, stats)

In the example above the actual application instance is imported
from a module in the project, this module could look something like this:

from celery import Celery

app = Celery(broker='amqp://')

Module Overview

	celery.app

This is the core of Celery: the entry-point for all functionality.

	celery.loaders

Every app must have a loader. The loader decides how configuration
is read; what happens when the worker starts; when a task starts and ends;
and so on.

The loaders included are:

	app

Custom Celery app instances uses this loader by default.

	default

“single-mode” uses this loader by default.

Extension loaders also exist, for example celery-pylons [https://pypi.python.org/pypi/celery-pylons/].

	celery.worker

This is the worker implementation.

	celery.backends

Task result backends live here.

	celery.apps

Major user applications: worker and beat.
The command-line wrappers for these are in celery.bin (see below)

	celery.bin

Command-line applications.
setup.py creates setuptools entry-points for these.

	celery.concurrency

Execution pool implementations (prefork, eventlet, gevent, solo, thread).

	celery.db

Database models for the SQLAlchemy database result backend.
(should be moved into celery.backends.database)

	celery.events

Sending and consuming monitoring events, also includes curses monitor,
event dumper and utilities to work with in-memory cluster state.

	celery.execute.trace

How tasks are executed and traced by the worker, and in eager mode.

	celery.security

Security related functionality, currently a serializer using
cryptographic digests.

	celery.task

single-mode interface to creating tasks, and controlling workers.

	t.unit (int distribution)

The unit test suite.

	celery.utils

Utility functions used by the Celery code base.
Much of it is there to be compatible across Python versions.

	celery.contrib

Additional public code that doesn’t fit into any other name-space.

Worker overview

	celery.bin.worker:Worker

This is the command-line interface to the worker.

	Responsibilities:
	
	Daemonization when --detach set,

	dropping privileges when using --uid/
--gid arguments

	Installs “concurrency patches” (eventlet/gevent monkey patches).

app.worker_main(argv) calls
instantiate('celery.bin.worker:Worker')(app).execute_from_commandline(argv)

	app.Worker -> celery.apps.worker:Worker

Responsibilities:
* sets up logging and redirects standard outs
* installs signal handlers (TERM/HUP/STOP/USR1 (cry)/USR2 (rdb))
* prints banner and warnings (e.g., pickle warning)
* handles the celery worker --purge argument

	app.WorkController -> celery.worker.WorkController

This is the real worker, built up around bootsteps.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Celery Deprecation Time-line

	Removals for version 5.0

	Old Task API

	Compat Task Modules

	Task attributes

	Modules to Remove

	Settings

	BROKER Settings

	REDIS Result Backend Settings

	Task_sent signal

	Result

	Settings

	Removals for version 2.0

Removals for version 5.0

Old Task API

Compat Task Modules

	Module celery.decorators will be removed:

This means you need to change:

from celery.decorators import task

Into:

from celery import task

	Module celery.task may be removed (not decided)

This means you should change:

from celery.task import task

into:

from celery import task

—and:

from celery.task import Task

into:

from celery import Task

Note that the new Task class no longer
uses classmethod() [https://docs.python.org/dev/library/functions.html#classmethod] for these methods:

	delay

	apply_async

	retry

	apply

	AsyncResult

	subtask

This also means that you can’t call these methods directly
on the class, but have to instantiate the task first:

>>> MyTask.delay() # NO LONGER WORKS

>>> MyTask().delay() # WORKS!

Task attributes

The task attributes:

	queue

	exchange

	exchange_type

	routing_key

	delivery_mode

	priority

is deprecated and must be set by task_routes instead.

Modules to Remove

	celery.execute

This module only contains send_task: this must be replaced with
app.send_task instead.

	celery.decorators

See Compat Task Modules

	celery.log

Use app.log instead.

	celery.messaging

Use app.amqp instead.

	celery.registry

Use celery.app.registry instead.

	celery.task.control

Use app.control instead.

	celery.task.schedules

Use celery.schedules instead.

	celery.task.chords

Use celery.chord() instead.

Settings

BROKER Settings

	Setting name

	Replace with

	BROKER_HOST

	broker_url

	BROKER_PORT

	broker_url

	BROKER_USER

	broker_url

	BROKER_PASSWORD

	broker_url

	BROKER_VHOST

	broker_url

REDIS Result Backend Settings

	Setting name

	Replace with

	CELERY_REDIS_HOST

	result_backend

	CELERY_REDIS_PORT

	result_backend

	CELERY_REDIS_DB

	result_backend

	CELERY_REDIS_PASSWORD

	result_backend

	REDIS_HOST

	result_backend

	REDIS_PORT

	result_backend

	REDIS_DB

	result_backend

	REDIS_PASSWORD

	result_backend

Task_sent signal

The task_sent signal will be removed in version 4.0.
Please use the before_task_publish and after_task_publish
signals instead.

Result

Apply to: AsyncResult,
EagerResult:

	Result.wait() -> Result.get()

	Result.task_id() -> Result.id

	Result.status -> Result.state.

Settings

	Setting name

	Replace with

	CELERY_AMQP_TASK_RESULT_EXPIRES

	result_expires

Removals for version 2.0

	The following settings will be removed:

	Setting name

	Replace with

	CELERY_AMQP_CONSUMER_QUEUES

	task_queues

	CELERY_AMQP_CONSUMER_QUEUES

	task_queues

	CELERY_AMQP_EXCHANGE

	task_default_exchange

	CELERY_AMQP_EXCHANGE_TYPE

	task_default_exchange_type

	CELERY_AMQP_CONSUMER_ROUTING_KEY

	task_queues

	CELERY_AMQP_PUBLISHER_ROUTING_KEY

	task_default_routing_key

	CELERY_LOADER definitions without class name.

For example,, celery.loaders.default, needs to include the class name:
celery.loaders.default.Loader.

	
	TaskSet.run(). Use celery.task.base.TaskSet.apply_async()
	instead.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Internals: The worker

	Introduction

	Data structures

	timer

	Components

	Consumer

	Timer

	TaskPool

Introduction

The worker consists of 4 main components: the consumer, the scheduler,
the mediator and the task pool. All these components runs in parallel working
with two data structures: the ready queue and the ETA schedule.

Data structures

timer

The timer uses heapq [https://docs.python.org/dev/library/heapq.html#module-heapq] to schedule internal functions.
It’s very efficient and can handle hundred of thousands of entries.

Components

Consumer

Receives messages from the broker using Kombu [https://pypi.python.org/pypi/Kombu/].

When a message is received it’s converted into a
celery.worker.request.Request object.

Tasks with an ETA, or rate-limit are entered into the timer,
messages that can be immediately processed are sent to the execution pool.

ETA and rate-limit when used together will result in the rate limit being
observed with the task being scheduled after the ETA.

Timer

The timer schedules internal functions, like cleanup and internal monitoring,
but also it schedules ETA tasks and rate limited tasks.
If the scheduled tasks ETA has passed it is moved to the execution pool.

TaskPool

This is a slightly modified multiprocessing.Pool.
It mostly works the same way, except it makes sure all of the workers
are running at all times. If a worker is missing, it replaces
it with a new one.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Message Protocol

	Task messages

	Version 2

	Definition

	Example

	Changes from version 1

	Version 1

	Message body

	Example message

	Task Serialization

	Event Messages

	Standard body fields

	Standard event types

	Example message

Task messages

Version 2

Definition

properties = {
 'correlation_id': uuid task_id,
 'content_type': string mimetype,
 'content_encoding': string encoding,

 # optional
 'reply_to': string queue_or_url,
}
headers = {
 'lang': string 'py'
 'task': string task,
 'id': uuid task_id,
 'root_id': uuid root_id,
 'parent_id': uuid parent_id,
 'group': uuid group_id,

 # optional
 'meth': string method_name,
 'shadow': string alias_name,
 'eta': iso8601 ETA,
 'expires': iso8601 expires,
 'retries': int retries,
 'timelimit': (soft, hard),
 'argsrepr': str repr(args),
 'kwargsrepr': str repr(kwargs),
 'origin': str nodename,
}

body = (
 object[] args,
 Mapping kwargs,
 Mapping embed {
 'callbacks': Signature[] callbacks,
 'errbacks': Signature[] errbacks,
 'chain': Signature[] chain,
 'chord': Signature chord_callback,
 }
)

Example

This example sends a task message using version 2 of the protocol:

chain: add(add(add(2, 2), 4), 8) == 2 + 2 + 4 + 8

import json
import os
import socket

task_id = uuid()
args = (2, 2)
kwargs = {}
basic_publish(
 message=json.dumps((args, kwargs, None)),
 application_headers={
 'lang': 'py',
 'task': 'proj.tasks.add',
 'argsrepr': repr(args),
 'kwargsrepr': repr(kwargs),
 'origin': '@'.join([os.getpid(), socket.gethostname()])
 }
 properties={
 'correlation_id': task_id,
 'content_type': 'application/json',
 'content_encoding': 'utf-8',
 }
)

Changes from version 1

	Protocol version detected by the presence of a task message header.

	Support for multiple languages via the lang header.

Worker may redirect the message to a worker that supports
the language.

	Meta-data moved to headers.

This means that workers/intermediates can inspect the message
and make decisions based on the headers without decoding
the payload (that may be language specific, for example serialized by the
Python specific pickle serializer).

	Always UTC

There’s no utc flag anymore, so any time information missing timezone
will be expected to be in UTC time.

	Body is only for language specific data.

	Python stores args/kwargs and embedded signatures in body.

	If a message uses raw encoding then the raw data
will be passed as a single argument to the function.

	Java/C, etc. can use a Thrift/protobuf document as the body

	origin is the name of the node sending the task.

	Dispatches to actor based on task, meth headers

meth is unused by Python, but may be used in the future
to specify class+method pairs.

	Chain gains a dedicated field.

Reducing the chain into a recursive callbacks argument
causes problems when the recursion limit is exceeded.

This is fixed in the new message protocol by specifying
a list of signatures, each task will then pop a task off the list
when sending the next message:

execute_task(message)
chain = embed['chain']
if chain:
 sig = maybe_signature(chain.pop())
 sig.apply_async(chain=chain)

	correlation_id replaces task_id field.

	root_id and parent_id fields helps keep track of work-flows.

	shadow lets you specify a different name for logs, monitors
can be used for concepts like tasks that calls a function
specified as argument:

from celery.utils.imports import qualname

class PickleTask(Task):

 def unpack_args(self, fun, args=()):
 return fun, args

 def apply_async(self, args, kwargs, **options):
 fun, real_args = self.unpack_args(*args)
 return super(PickleTask, self).apply_async(
 (fun, real_args, kwargs), shadow=qualname(fun), **options
)

@app.task(base=PickleTask)
def call(fun, args, kwargs):
 return fun(*args, **kwargs)

Version 1

In version 1 of the protocol all fields are stored in the message body:
meaning workers and intermediate consumers must deserialize the payload
to read the fields.

Message body

	
	task
	
	string

	

Name of the task. required

	
	id
	
	string

	

Unique id of the task (UUID). required

	
	args
	
	list

	

List of arguments. Will be an empty list if not provided.

	
	kwargs
	
	dictionary

	

Dictionary of keyword arguments. Will be an empty dictionary if not
provided.

	
	retries
	
	int

	

Current number of times this task has been retried.
Defaults to 0 if not specified.

	
	eta
	
	string (ISO 8601)

	

Estimated time of arrival. This is the date and time in ISO 8601
format. If not provided the message isn’t scheduled, but will be
executed asap.

	
	expires
	
	string (ISO 8601)

	

New in version 2.0.2.

Expiration date. This is the date and time in ISO 8601 format.
If not provided the message will never expire. The message
will be expired when the message is received and the expiration date
has been exceeded.

	
	taskset
	
	string

	

The group this task is part of (if any).

	
	chord
	
	Signature

	

New in version 2.3.

Signifies that this task is one of the header parts of a chord. The value
of this key is the body of the cord that should be executed when all of
the tasks in the header has returned.

	
	utc
	
	bool

	

New in version 2.5.

If true time uses the UTC timezone, if not the current local timezone
should be used.

	
	callbacks
	
	<list>Signature

	

New in version 3.0.

A list of signatures to call if the task exited successfully.

	
	errbacks
	
	<list>Signature

	

New in version 3.0.

A list of signatures to call if an error occurs while executing the task.

	
	timelimit
	
	<tuple>(float, float)

	

New in version 3.1.

Task execution time limit settings. This is a tuple of hard and soft time
limit value (int/float or None for no limit).

Example value specifying a soft time limit of 3 seconds, and a hard time
limit of 10 seconds:

{'timelimit': (3.0, 10.0)}

Example message

This is an example invocation of a celery.task.ping task in json
format:

{"id": "4cc7438e-afd4-4f8f-a2f3-f46567e7ca77",
 "task": "celery.task.PingTask",
 "args": [],
 "kwargs": {},
 "retries": 0,
 "eta": "2009-11-17T12:30:56.527191"}

Task Serialization

Several types of serialization formats are supported using the
content_type message header.

The MIME-types supported by default are shown in the following table.

	Scheme

	MIME Type

	json

	application/json

	yaml

	application/x-yaml

	pickle

	application/x-python-serialize

	msgpack

	application/x-msgpack

Event Messages

Event messages are always JSON serialized and can contain arbitrary message
body fields.

Since version 4.0. the body can consist of either a single mapping (one event),
or a list of mappings (multiple events).

There are also standard fields that must always be present in an event
message:

Standard body fields

	string type

The type of event. This is a string containing the category and
action separated by a dash delimiter (e.g., task-succeeded).

	string hostname

The fully qualified hostname of where the event occurred at.

	unsigned long long clock

The logical clock value for this event (Lamport time-stamp).

	float timestamp

The UNIX time-stamp corresponding to the time of when the event occurred.

	signed short utcoffset

This field describes the timezone of the originating host, and is
specified as the number of hours ahead of/behind UTC (e.g., -2 or
+1).

	unsigned long long pid

The process id of the process the event originated in.

Standard event types

For a list of standard event types and their fields see the
Event Reference.

Example message

This is the message fields for a task-succeeded event:

properties = {
 'routing_key': 'task.succeeded',
 'exchange': 'celeryev',
 'content_type': 'application/json',
 'content_encoding': 'utf-8',
 'delivery_mode': 1,
}
headers = {
 'hostname': 'worker1@george.vandelay.com',
}
body = {
 'type': 'task-succeeded',
 'hostname': 'worker1@george.vandelay.com',
 'pid': 6335,
 'clock': 393912923921,
 'timestamp': 1401717709.101747,
 'utcoffset': -1,
 'uuid': '9011d855-fdd1-4f8f-adb3-a413b499eafb',
 'retval': '4',
 'runtime': 0.0003212,
)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

“The Big Instance” Refactor

The app branch is a work-in-progress to remove
the use of a global configuration in Celery.

Celery can now be instantiated and several
instances of Celery may exist in the same process space.
Also, large parts can be customized without resorting to monkey
patching.

Examples

Creating a Celery instance:

>>> from celery import Celery
>>> app = Celery()
>>> app.config_from_object('celeryconfig')
>>> #app.config_from_envvar('CELERY_CONFIG_MODULE')

Creating tasks:

@app.task
def add(x, y):
 return x + y

Creating custom Task subclasses:

Task = celery.create_task_cls()

class DebugTask(Task):

 def on_failure(self, *args, **kwargs):
 import pdb
 pdb.set_trace()

@app.task(base=DebugTask)
def add(x, y):
 return x + y

Starting a worker:

worker = celery.Worker(loglevel='INFO')

Getting access to the configuration:

celery.conf.task_always_eager = True
celery.conf['task_always_eager'] = True

Controlling workers:

>>> celery.control.inspect().active()
>>> celery.control.rate_limit(add.name, '100/m')
>>> celery.control.broadcast('shutdown')
>>> celery.control.discard_all()

Other interesting attributes:

Establish broker connection.
>>> celery.broker_connection()

AMQP Specific features.
>>> celery.amqp
>>> celery.amqp.Router
>>> celery.amqp.get_queues()
>>> celery.amqp.get_task_consumer()

Loader
>>> celery.loader

Default backend
>>> celery.backend

As you can probably see, this really opens up another
dimension of customization abilities.

Deprecated

	celery.task.ping
celery.task.PingTask

Inferior to the ping remote control command.
Will be removed in Celery 2.3.

Aliases (Pending deprecation)

	
	celery.task.base
	
	.Task -> {app.Task / celery.app.task.Task}

	
	celery.task.sets
	
	.TaskSet -> {app.TaskSet}

	
	celery.decorators / celery.task
	
	.task -> {app.task}

	
	celery.execute
	
	.apply_async -> {task.apply_async}

	.apply -> {task.apply}

	.send_task -> {app.send_task}

	.delay_task -> no alternative

	
	celery.log
	
	.get_default_logger -> {app.log.get_default_logger}

	.setup_logger -> {app.log.setup_logger}

	.get_task_logger -> {app.log.get_task_logger}

	.setup_task_logger -> {app.log.setup_task_logger}

	.setup_logging_subsystem -> {app.log.setup_logging_subsystem}

	.redirect_stdouts_to_logger -> {app.log.redirect_stdouts_to_logger}

	
	celery.messaging
	
	.establish_connection -> {app.broker_connection}

	.with_connection -> {app.with_connection}

	.get_consumer_set -> {app.amqp.get_task_consumer}

	.TaskPublisher -> {app.amqp.TaskPublisher}

	.TaskConsumer -> {app.amqp.TaskConsumer}

	.ConsumerSet -> {app.amqp.ConsumerSet}

	celery.conf.* -> {app.conf}

NOTE: All configuration keys are now named the same
as in the configuration. So the key task_always_eager
is accessed as:

>>> app.conf.task_always_eager

instead of:

>>> from celery import conf
>>> conf.always_eager

	.get_queues -> {app.amqp.get_queues}

	
	celery.task.control
	
	.broadcast -> {app.control.broadcast}

	.rate_limit -> {app.control.rate_limit}

	.ping -> {app.control.ping}

	.revoke -> {app.control.revoke}

	.discard_all -> {app.control.discard_all}

	.inspect -> {app.control.inspect}

	
	celery.utils.info
	
	.humanize_seconds -> celery.utils.time.humanize_seconds

	.textindent -> celery.utils.textindent

	.get_broker_info -> {app.amqp.get_broker_info}

	.format_broker_info -> {app.amqp.format_broker_info}

	.format_queues -> {app.amqp.format_queues}

Default App Usage

To be backward compatible, it must be possible
to use all the classes/functions without passing
an explicit app instance.

This is achieved by having all app-dependent objects
use default_app if the app instance
is missing.

from celery.app import app_or_default

class SomeClass(object):

 def __init__(self, app=None):
 self.app = app_or_default(app)

The problem with this approach is that there’s a chance
that the app instance is lost along the way, and everything
seems to be working normally. Testing app instance leaks
is hard. The environment variable CELERY_TRACE_APP
can be used, when this is enabled celery.app.app_or_default()
will raise an exception whenever it has to go back to the default app
instance.

App Dependency Tree

	
	{app}
	
	celery.loaders.base.BaseLoader

	celery.backends.base.BaseBackend

	
	{app.TaskSet}
	
	celery.task.sets.TaskSet (app.TaskSet)

	
	[app.TaskSetResult]
	
	celery.result.TaskSetResult (app.TaskSetResult)

	
	{app.AsyncResult}
	
	celery.result.BaseAsyncResult / celery.result.AsyncResult

	
	celery.bin.worker.WorkerCommand
	
	
	celery.apps.worker.Worker
	
	
	celery.worker.WorkerController
	
	
	celery.worker.consumer.Consumer
	
	celery.worker.request.Request

	celery.events.EventDispatcher

	
	celery.worker.control.ControlDispatch
	
	celery.worker.control.registry.Panel

	celery.pidbox.BroadcastPublisher

	celery.pidbox.BroadcastConsumer

	celery.beat.EmbeddedService

	
	celery.bin.events.EvCommand
	
	
	celery.events.snapshot.evcam
	
	celery.events.snapshot.Polaroid

	celery.events.EventReceiver

	
	celery.events.cursesmon.evtop
	
	celery.events.EventReceiver

	celery.events.cursesmon.CursesMonitor

	
	celery.events.dumper
	
	celery.events.EventReceiver

	celery.bin.amqp.AMQPAdmin

	
	celery.bin.beat.BeatCommand
	
	
	celery.apps.beat.Beat
	
	
	celery.beat.Service
	
	celery.beat.Scheduler

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Internal Module Reference

	Release

	5.0

	Date

	Oct 18, 2020

	celery.worker.components

	celery.worker.loops

	celery.worker.heartbeat

	celery.worker.control

	celery.worker.pidbox

	celery.worker.autoscale

	celery.concurrency

	celery.concurrency.solo

	celery.concurrency.prefork

	celery.concurrency.eventlet

	celery.concurrency.gevent

	celery.concurrency.thread

	celery.concurrency.base

	celery.backends

	celery.backends.base

	celery.backends.asynchronous

	celery.backends.azureblockblob

	celery.backends.rpc

	celery.backends.database

	celery.backends.cache

	celery.backends.consul

	celery.backends.couchdb

	celery.backends.mongodb

	celery.backends.elasticsearch

	celery.backends.redis

	celery.backends.cassandra

	celery.backends.couchbase

	celery.backends.arangodb

	celery.backends.dynamodb

	celery.backends.filesystem

	celery.backends.cosmosdbsql

	celery.backends.s3

	celery.app.trace

	celery.app.annotations

	celery.app.routes

	celery.security.certificate

	celery.security.key

	celery.security.serialization

	celery.security.utils

	celery.events.snapshot

	celery.events.cursesmon

	celery.events.dumper

	celery.backends.database.models

	celery.backends.database.session

	celery.utils

	celery.utils.abstract

	celery.utils.collections

	celery.utils.nodenames

	celery.utils.deprecated

	celery.utils.functional

	celery.utils.graph

	celery.utils.objects

	celery.utils.term

	celery.utils.time

	celery.utils.iso8601

	celery.utils.saferepr

	celery.utils.serialization

	celery.utils.sysinfo

	celery.utils.threads

	celery.utils.timer2

	celery.utils.imports

	celery.utils.log

	celery.utils.text

	celery.utils.dispatch

	celery.utils.dispatch.signal

	celery.platforms

	celery._state

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.worker.components

Worker-level Bootsteps.

	
class celery.worker.components.Beat(w, beat=False, **kwargs)[source]

	Step used to embed a beat process.

Enabled when the beat argument is set.

	
conditional = True

	

	
create(w)[source]

	Create the step.

	
label = 'Beat'

	

	
name = 'celery.worker.components.Beat'

	

	
class celery.worker.components.Consumer(parent, **kwargs)[source]

	Bootstep starting the Consumer blueprint.

	
create(w)[source]

	Create the step.

	
last = True

	

	
name = 'celery.worker.components.Consumer'

	

	
class celery.worker.components.Hub(w, **kwargs)[source]

	Worker starts the event loop.

	
create(w)[source]

	Create the step.

	
include_if(w)[source]

	Return true if bootstep should be included.

You can define this as an optional predicate that decides whether
this step should be created.

	
name = 'celery.worker.components.Hub'

	

	
requires = (step:celery.worker.components.Timer{()},)

	

	
start(w)[source]

	

	
stop(w)[source]

	

	
terminate(w)[source]

	

	
class celery.worker.components.Pool(w, autoscale=None, **kwargs)[source]

	Bootstep managing the worker pool.

Describes how to initialize the worker pool, and starts and stops
the pool during worker start-up/shutdown.

Adds attributes:

	autoscale

	pool

	max_concurrency

	min_concurrency

	
close(w)[source]

	

	
create(w)[source]

	Create the step.

	
info(w)[source]

	

	
name = 'celery.worker.components.Pool'

	

	
register_with_event_loop(w, hub)[source]

	

	
requires = (step:celery.worker.components.Hub{(step:celery.worker.components.Timer{()},)},)

	

	
terminate(w)[source]

	

	
class celery.worker.components.StateDB(w, **kwargs)[source]

	Bootstep that sets up between-restart state database file.

	
create(w)[source]

	Create the step.

	
name = 'celery.worker.components.StateDB'

	

	
class celery.worker.components.Timer(parent, **kwargs)[source]

	Timer bootstep.

	
create(w)[source]

	Create the step.

	
name = 'celery.worker.components.Timer'

	

	
on_timer_error(exc)[source]

	

	
on_timer_tick(delay)[source]

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.worker.loops

The consumers highly-optimized inner loop.

	
celery.worker.loops.asynloop(obj, connection, consumer, blueprint, hub, qos, heartbeat, clock, hbrate=2.0)[source]

	Non-blocking event loop.

	
celery.worker.loops.synloop(obj, connection, consumer, blueprint, hub, qos, heartbeat, clock, hbrate=2.0, **kwargs)[source]

	Fallback blocking event loop for transports that doesn’t support AIO.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.worker.heartbeat

Heartbeat service.

This is the internal thread responsible for sending heartbeat events
at regular intervals (may not be an actual thread).

	
class celery.worker.heartbeat.Heart(timer, eventer, interval=None)[source]

	Timer sending heartbeats at regular intervals.

	Parameters

	
	timer (kombu.asynchronous.timer.Timer [https://kombu.readthedocs.io/en/master/reference/kombu.asynchronous.timer.html#kombu.asynchronous.timer.Timer]) – Timer to use.

	eventer (celery.events.EventDispatcher) – Event dispatcher
to use.

	interval (float [https://docs.python.org/dev/library/functions.html#float]) – Time in seconds between sending
heartbeats. Default is 2 seconds.

	
start()[source]

	

	
stop()[source]

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.worker.control

Worker remote control command implementations.

	
class celery.worker.control.Panel(**kwargs)[source]

	Global registry of remote control commands.

	
data = {'active': <function active>, 'active_queues': <function active_queues>, 'add_consumer': <function add_consumer>, 'autoscale': <function autoscale>, 'cancel_consumer': <function cancel_consumer>, 'clock': <function clock>, 'conf': <function conf>, 'disable_events': <function disable_events>, 'dump_active': <function active>, 'dump_conf': <function conf>, 'dump_reserved': <function reserved>, 'dump_revoked': <function revoked>, 'dump_schedule': <function scheduled>, 'dump_tasks': <function registered>, 'election': <function election>, 'enable_events': <function enable_events>, 'heartbeat': <function heartbeat>, 'hello': <function hello>, 'memdump': <function memdump>, 'memsample': <function memsample>, 'objgraph': <function objgraph>, 'ping': <function ping>, 'pool_grow': <function pool_grow>, 'pool_restart': <function pool_restart>, 'pool_shrink': <function pool_shrink>, 'query_task': <function query_task>, 'rate_limit': <function rate_limit>, 'registered': <function registered>, 'report': <function report>, 'reserved': <function reserved>, 'revoke': <function revoke>, 'revoked': <function revoked>, 'scheduled': <function scheduled>, 'shutdown': <function shutdown>, 'stats': <function stats>, 'terminate': <function terminate>, 'time_limit': <function time_limit>}

	

	
meta = {'active': controller_info_t(alias='dump_active', type='inspect', visible=True, default_timeout=1.0, help='List of tasks currently being executed.', signature=None, args=None, variadic=None), 'active_queues': controller_info_t(alias=None, type='inspect', visible=True, default_timeout=1.0, help='List the task queues a worker is currently consuming from.', signature=None, args=None, variadic=None), 'add_consumer': controller_info_t(alias=None, type='control', visible=True, default_timeout=1.0, help='Tell worker(s) to consume from task queue by name.', signature='<queue> [exchange [type [routing_key]]]', args=[('queue', <class 'str'>), ('exchange', <class 'str'>), ('exchange_type', <class 'str'>), ('routing_key', <class 'str'>)], variadic=None), 'autoscale': controller_info_t(alias=None, type='control', visible=True, default_timeout=1.0, help='Modify autoscale settings.', signature='[max [min]]', args=[('max', <class 'int'>), ('min', <class 'int'>)], variadic=None), 'cancel_consumer': controller_info_t(alias=None, type='control', visible=True, default_timeout=1.0, help='Tell worker(s) to stop consuming from task queue by name.', signature='<queue>', args=[('queue', <class 'str'>)], variadic=None), 'clock': controller_info_t(alias=None, type='inspect', visible=True, default_timeout=1.0, help='Get current logical clock value.', signature=None, args=None, variadic=None), 'conf': controller_info_t(alias='dump_conf', type='inspect', visible=True, default_timeout=1.0, help='List configuration.', signature='[include_defaults=False]', args=[('with_defaults', <function strtobool>)], variadic=None), 'disable_events': controller_info_t(alias=None, type='control', visible=True, default_timeout=1.0, help='Tell worker(s) to stop sending task-related events.', signature=None, args=None, variadic=None), 'election': controller_info_t(alias=None, type='control', visible=True, default_timeout=1.0, help='Hold election.', signature=None, args=None, variadic=None), 'enable_events': controller_info_t(alias=None, type='control', visible=True, default_timeout=1.0, help='Tell worker(s) to send task-related events.', signature=None, args=None, variadic=None), 'heartbeat': controller_info_t(alias=None, type='control', visible=True, default_timeout=1.0, help='Tell worker(s) to send event heartbeat immediately.', signature=None, args=None, variadic=None), 'hello': controller_info_t(alias=None, type='inspect', visible=False, default_timeout=1.0, help='Request mingle sync-data.', signature=None, args=None, variadic=None), 'memdump': controller_info_t(alias=None, type='inspect', visible=True, default_timeout=1.0, help='Dump statistics of previous memsample requests.', signature='[n_samples=10]', args=[('samples', <class 'int'>)], variadic=None), 'memsample': controller_info_t(alias=None, type='inspect', visible=True, default_timeout=1.0, help='Sample current RSS memory usage.', signature=None, args=None, variadic=None), 'objgraph': controller_info_t(alias=None, type='inspect', visible=True, default_timeout=60.0, help='Create graph of uncollected objects (memory-leak debugging).', signature='[object_type=Request] [num=200 [max_depth=10]]', args=[('type', <class 'str'>), ('num', <class 'int'>), ('max_depth', <class 'int'>)], variadic=None), 'ping': controller_info_t(alias=None, type='inspect', visible=True, default_timeout=0.2, help='Ping worker(s).', signature=None, args=None, variadic=None), 'pool_grow': controller_info_t(alias=None, type='control', visible=True, default_timeout=1.0, help='Grow pool by n processes/threads.', signature='[N=1]', args=[('n', <class 'int'>)], variadic=None), 'pool_restart': controller_info_t(alias=None, type='control', visible=True, default_timeout=1.0, help='Restart execution pool.', signature=None, args=None, variadic=None), 'pool_shrink': controller_info_t(alias=None, type='control', visible=True, default_timeout=1.0, help='Shrink pool by n processes/threads.', signature='[N=1]', args=[('n', <class 'int'>)], variadic=None), 'query_task': controller_info_t(alias=None, type='inspect', visible=True, default_timeout=1.0, help='Query for task information by id.', signature='[id1 [id2 [... [idN]]]]', args=None, variadic='ids'), 'rate_limit': controller_info_t(alias=None, type='control', visible=True, default_timeout=1.0, help='Tell worker(s) to modify the rate limit for a task by type.', signature='<task_name> <rate_limit (e.g., 5/s | 5/m | 5/h)>', args=[('task_name', <class 'str'>), ('rate_limit', <class 'str'>)], variadic=None), 'registered': controller_info_t(alias='dump_tasks', type='inspect', visible=True, default_timeout=1.0, help='List of registered tasks.', signature='[attr1 [attr2 [... [attrN]]]]', args=None, variadic='taskinfoitems'), 'report': controller_info_t(alias=None, type='inspect', visible=True, default_timeout=1.0, help='Information about Celery installation for bug reports.', signature=None, args=None, variadic=None), 'reserved': controller_info_t(alias='dump_reserved', type='inspect', visible=True, default_timeout=1.0, help='List of currently reserved tasks, not including scheduled/active.', signature=None, args=None, variadic=None), 'revoke': controller_info_t(alias=None, type='control', visible=True, default_timeout=1.0, help='Revoke task by task id (or list of ids).', signature='[id1 [id2 [... [idN]]]]', args=None, variadic='task_id'), 'revoked': controller_info_t(alias='dump_revoked', type='inspect', visible=True, default_timeout=1.0, help='List of revoked task-ids.', signature=None, args=None, variadic=None), 'scheduled': controller_info_t(alias='dump_schedule', type='inspect', visible=True, default_timeout=1.0, help='List of currently scheduled ETA/countdown tasks.', signature=None, args=None, variadic=None), 'shutdown': controller_info_t(alias=None, type='control', visible=True, default_timeout=1.0, help='Shutdown worker(s).', signature=None, args=None, variadic=None), 'stats': controller_info_t(alias=None, type='inspect', visible=True, default_timeout=1.0, help='Request worker statistics/information.', signature=None, args=None, variadic=None), 'terminate': controller_info_t(alias=None, type='control', visible=True, default_timeout=1.0, help='Terminate task by task id (or list of ids).', signature='<signal> [id1 [id2 [... [idN]]]]', args=[('signal', <class 'str'>)], variadic='task_id'), 'time_limit': controller_info_t(alias=None, type='control', visible=True, default_timeout=1.0, help='Tell worker(s) to modify the time limit for task by type.', signature='<task_name> <soft_secs> [hard_secs]', args=[('task_name', <class 'str'>), ('soft', <class 'float'>), ('hard', <class 'float'>)], variadic=None)}

	

	
classmethod register(*args, **kwargs)[source]

	Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.worker.pidbox

Worker Pidbox (remote control).

	
class celery.worker.pidbox.Pidbox(c)[source]

	Worker mailbox.

	
consumer = None

	

	
on_message(body, message)[source]

	

	
on_stop()[source]

	

	
reset()[source]

	

	
shutdown(c)[source]

	

	
start(c)[source]

	

	
stop(c)[source]

	

	
class celery.worker.pidbox.gPidbox(c)[source]

	Worker pidbox (greenlet).

	
loop(c)[source]

	

	
on_stop()[source]

	

	
reset()[source]

	

	
start(c)[source]

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.worker.autoscale

Pool Autoscaling.

This module implements the internal thread responsible
for growing and shrinking the pool according to the
current autoscale settings.

The autoscale thread is only enabled if
the celery worker --autoscale option is used.

	
class celery.worker.autoscale.Autoscaler(pool, max_concurrency, min_concurrency=0, worker=None, keepalive=30.0, mutex=None)[source]

	Background thread to autoscale pool workers.

	
body()[source]

	

	
info()[source]

	

	
maybe_scale(req=None)[source]

	

	
property processes

	

	
property qty

	

	
scale_down(n)[source]

	

	
scale_up(n)[source]

	

	
update(max=None, min=None)[source]

	

	
class celery.worker.autoscale.WorkerComponent(w, **kwargs)[source]

	Bootstep that starts the autoscaler thread/timer in the worker.

	
conditional = True

	

	
create(w)[source]

	Create the step.

	
info(w)[source]

	Return Autoscaler info.

	
label = 'Autoscaler'

	

	
name = 'celery.worker.autoscale.WorkerComponent'

	

	
register_with_event_loop(w, hub)[source]

	

	
requires = (step:celery.worker.components.Pool{(step:celery.worker.components.Hub{(step:celery.worker.components.Timer{()},)},)},)

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.concurrency

Pool implementation abstract factory, and alias definitions.

	
celery.concurrency.get_implementation(cls)[source]

	Return pool implementation by name.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.concurrency.solo

Single-threaded execution pool.

	
class celery.concurrency.solo.TaskPool(*args, **kwargs)[source]

	Solo task pool (blocking, inline, fast).

	
body_can_be_buffer = True

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.concurrency.prefork

Prefork execution pool.

Pool implementation using multiprocessing [https://docs.python.org/dev/library/multiprocessing.html#module-multiprocessing].

	
class celery.concurrency.prefork.TaskPool(limit=None, putlocks=True, forking_enable=True, callbacks_propagate=(), app=None, **options)[source]

	Multiprocessing Pool implementation.

	
BlockingPool

	alias of billiard.pool.Pool

	
Pool

	alias of celery.concurrency.asynpool.AsynPool

	
did_start_ok()[source]

	

	
property num_processes

	

	
on_close()[source]

	

	
on_start()[source]

	

	
on_stop()[source]

	Gracefully stop the pool.

	
on_terminate()[source]

	Force terminate the pool.

	
register_with_event_loop(loop)[source]

	

	
restart()[source]

	

	
uses_semaphore = True

	

	
write_stats = None

	

	
celery.concurrency.prefork.process_destructor(pid, exitcode)[source]

	Pool child process destructor.

Dispatch the worker_process_shutdown signal.

	
celery.concurrency.prefork.process_initializer(app, hostname)[source]

	Pool child process initializer.

Initialize the child pool process to ensure the correct
app instance is used and things like logging works.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.concurrency.eventlet

Eventlet execution pool.

	
class celery.concurrency.eventlet.TaskPool(*args, **kwargs)[source]

	Eventlet Task Pool.

	
class Timer(*args, **kwargs)

	Eventlet Timer.

	
cancel(tref)

	

	
clear()

	

	
property queue

	Snapshot of underlying datastructure.

	
grow(n=1)[source]

	

	
is_green = True

	

	
on_apply(target, args=None, kwargs=None, callback=None, accept_callback=None, **_)[source]

	

	
on_start()[source]

	

	
on_stop()[source]

	

	
shrink(n=1)[source]

	

	
signal_safe = False

	

	
task_join_will_block = False

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.concurrency.gevent

Gevent execution pool.

	
class celery.concurrency.gevent.TaskPool(*args, **kwargs)[source]

	GEvent Pool.

	
class Timer(*args, **kwargs)

	
	
clear()

	

	
property queue

	Snapshot of underlying datastructure.

	
grow(n=1)[source]

	

	
is_green = True

	

	
property num_processes

	

	
on_apply(target, args=None, kwargs=None, callback=None, accept_callback=None, timeout=None, timeout_callback=None, apply_target=<function apply_target>, **_)[source]

	

	
on_start()[source]

	

	
on_stop()[source]

	

	
shrink(n=1)[source]

	

	
signal_safe = False

	

	
task_join_will_block = False

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.concurrency.thread

Thread execution pool.

	
class celery.concurrency.thread.TaskPool(*args, **kwargs)[source]

	Thread Task Pool.

	
body_can_be_buffer = True

	

	
on_apply(target, args=None, kwargs=None, callback=None, accept_callback=None, **_)[source]

	

	
on_stop()[source]

	

	
signal_safe = False

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.concurrency.base

Base Execution Pool.

	
class celery.concurrency.base.BasePool(limit=None, putlocks=True, forking_enable=True, callbacks_propagate=(), app=None, **options)[source]

	Task pool.

	
CLOSE = 2

	

	
RUN = 1

	

	
TERMINATE = 3

	

	
class Timer(schedule=None, on_error=None, on_tick=None, on_start=None, max_interval=None, **kwargs)

	Timer thread.

Note

This is only used for transports not supporting AsyncIO.

	
class Entry(fun, args=None, kwargs=None)

	Schedule Entry.

	
args

	

	
cancel()

	

	
canceled

	

	
property cancelled

	

	
fun

	

	
kwargs

	

	
tref

	

	
Schedule

	alias of kombu.asynchronous.timer.Timer [https://kombu.readthedocs.io/en/master/reference/kombu.asynchronous.timer.html#kombu.asynchronous.timer.Timer]

	
call_after(*args, **kwargs)

	

	
call_at(*args, **kwargs)

	

	
call_repeatedly(*args, **kwargs)

	

	
cancel(tref)

	

	
clear()

	

	
empty()

	

	
ensure_started()

	

	
enter(entry, eta, priority=None)

	

	
enter_after(*args, **kwargs)

	

	
exit_after(secs, priority=10)

	

	
next()

	

	
on_tick = None

	

	
property queue

	

	
run()

	Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method
invokes the callable object passed to the object’s constructor as the
target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

	
running = False

	

	
stop()

	

	
property active

	

	
apply_async(target, args=None, kwargs=None, **options)[source]

	Equivalent of the apply() built-in function.

Callbacks should optimally return as soon as possible since
otherwise the thread which handles the result will get blocked.

	
body_can_be_buffer = False

	

	
close()[source]

	

	
did_start_ok()[source]

	

	
flush()[source]

	

	
property info

	

	
is_green = False

	set to true if pool uses greenlets.

	
maintain_pool(*args, **kwargs)[source]

	

	
property num_processes

	

	
on_apply(*args, **kwargs)[source]

	

	
on_close()[source]

	

	
on_hard_timeout(job)[source]

	

	
on_soft_timeout(job)[source]

	

	
on_start()[source]

	

	
on_stop()[source]

	

	
on_terminate()[source]

	

	
register_with_event_loop(loop)[source]

	

	
restart()[source]

	

	
signal_safe = True

	set to true if the pool can be shutdown from within
a signal handler.

	
start()[source]

	

	
stop()[source]

	

	
task_join_will_block = True

	

	
terminate()[source]

	

	
terminate_job(pid, signal=None)[source]

	

	
uses_semaphore = False

	only used by multiprocessing pool

	
celery.concurrency.base.apply_target(target, args=(), kwargs=None, callback=None, accept_callback=None, pid=None, getpid=<built-in function getpid>, propagate=(), monotonic=<built-in function monotonic>, **_)[source]

	Apply function within pool context.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.backends

Result Backends.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.backends.base

Result backend base classes.

	BaseBackend defines the interface.

	
	KeyValueStoreBackend is a common base class
	using K/V semantics like _get and _put.

	
class celery.backends.base.BaseBackend(app, serializer=None, max_cached_results=None, accept=None, expires=None, expires_type=None, url=None, **kwargs)[source]

	Base (synchronous) result backend.

	
class celery.backends.base.DisabledBackend(app, serializer=None, max_cached_results=None, accept=None, expires=None, expires_type=None, url=None, **kwargs)[source]

	Dummy result backend.

	
as_uri(*args, **kwargs)[source]

	Return the backend as an URI, sanitizing the password or not.

	
ensure_chords_allowed()[source]

	

	
get_many(*args, **kwargs)

	

	
get_result(*args, **kwargs)

	Get the result of a task.

	
get_state(*args, **kwargs)

	Get the state of a task.

	
get_status(*args, **kwargs)

	Get the state of a task.

	
get_task_meta_for(*args, **kwargs)

	

	
get_traceback(*args, **kwargs)

	Get the traceback for a failed task.

	
store_result(*args, **kwargs)[source]

	Update task state and result.

if always_retry_backend_operation is activated, in the event of a recoverable exception,
then retry operation with an exponential backoff until a limit has been reached.

	
wait_for(*args, **kwargs)

	Wait for task and return its result.

If the task raises an exception, this exception
will be re-raised by wait_for().

	Raises

	celery.exceptions.TimeoutError – If timeout is not None, and the operation
 takes longer than timeout seconds.

	
class celery.backends.base.KeyValueStoreBackend(*args, **kwargs)[source]

	Result backend base class for key/value stores.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.backends.asynchronous

Async I/O backend support utilities.

	
class celery.backends.asynchronous.AsyncBackendMixin[source]

	Mixin for backends that enables the async API.

	
add_pending_result(result, weak=False, start_drainer=True)[source]

	

	
add_pending_results(results, weak=False)[source]

	

	
property is_async

	

	
iter_native(result, no_ack=True, **kwargs)[source]

	

	
on_result_fulfilled(result)[source]

	

	
remove_pending_result(result)[source]

	

	
wait_for_pending(result, callback=None, propagate=True, **kwargs)[source]

	

	
class celery.backends.asynchronous.BaseResultConsumer(backend, app, accept, pending_results, pending_messages)[source]

	Manager responsible for consuming result messages.

	
cancel_for(task_id)[source]

	

	
consume_from(task_id)[source]

	

	
drain_events(timeout=None)[source]

	

	
drain_events_until(p, timeout=None, on_interval=None)[source]

	

	
on_after_fork()[source]

	

	
on_out_of_band_result(message)[source]

	

	
on_state_change(meta, message)[source]

	

	
on_wait_for_pending(result, timeout=None, **kwargs)[source]

	

	
start(initial_task_id, **kwargs)[source]

	

	
stop()[source]

	

	
class celery.backends.asynchronous.Drainer(result_consumer)[source]

	Result draining service.

	
drain_events_until(p, timeout=None, interval=1, on_interval=None, wait=None)[source]

	

	
start()[source]

	

	
stop()[source]

	

	
wait_for(p, wait, timeout=None)[source]

	

	
celery.backends.asynchronous.register_drainer(name)[source]

	Decorator used to register a new result drainer type.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.backends.azureblockblob

The Azure Storage Block Blob backend for Celery.

	
class celery.backends.azureblockblob.AzureBlockBlobBackend(url=None, container_name=None, retry_initial_backoff_sec=None, retry_increment_base=None, retry_max_attempts=None, *args, **kwargs)[source]

	Azure Storage Block Blob backend for Celery.

	
delete(key)[source]

	Delete the value at a given key.

	Parameters

	key – The key of the value to delete.

	
get(key)[source]

	Read the value stored at the given key.

	Parameters

	key – The key for which to read the value.

	
mget(keys)[source]

	Read all the values for the provided keys.

	Parameters

	keys – The list of keys to read.

	
set(key, value)[source]

	Store a value for a given key.

	Parameters

	
	key – The key at which to store the value.

	value – The value to store.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.backends.rpc

The RPC result backend for AMQP brokers.

RPC-style result backend, using reply-to and one queue per client.

	
exception celery.backends.rpc.BacklogLimitExceeded[source]

	Too much state history to fast-forward.

	
class celery.backends.rpc.RPCBackend(app, connection=None, exchange=None, exchange_type=None, persistent=None, serializer=None, auto_delete=True, **kwargs)[source]

	Base class for the RPC result backend.

	
exception BacklogLimitExceeded

	Exception raised when there are too many messages for a task id.

	
class Consumer(channel, queues=None, no_ack=None, auto_declare=None, callbacks=None, on_decode_error=None, on_message=None, accept=None, prefetch_count=None, tag_prefix=None)[source]

	Consumer that requires manual declaration of queues.

	
auto_declare = False

	

	
class Exchange(name='', type='', channel=None, **kwargs)

	An Exchange declaration.

	Parameters

	
	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – See name.

	type (str [https://docs.python.org/dev/library/stdtypes.html#str]) – See type.

	channel (kombu.Connection [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection], ChannelT) – See channel.

	durable (bool [https://docs.python.org/dev/library/functions.html#bool]) – See durable.

	auto_delete (bool [https://docs.python.org/dev/library/functions.html#bool]) – See auto_delete.

	delivery_mode (enum) – See delivery_mode.

	arguments (Dict) – See arguments.

	no_declare (bool [https://docs.python.org/dev/library/functions.html#bool]) – See no_declare

	
name

	Name of the exchange.
Default is no name (the default exchange).

	Type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
type

	This description of AMQP exchange types was shamelessly stolen
from the blog post `AMQP in 10 minutes: Part 4`_ by
Rajith Attapattu. Reading this article is recommended if you’re
new to amqp.

“AMQP defines four default exchange types (routing algorithms) that
covers most of the common messaging use cases. An AMQP broker can
also define additional exchange types, so see your broker
manual for more information about available exchange types.

	direct (default)

Direct match between the routing key in the message,
and the routing criteria used when a queue is bound to
this exchange.

	topic

Wildcard match between the routing key and the routing
pattern specified in the exchange/queue binding.
The routing key is treated as zero or more words delimited
by “.” and supports special wildcard characters. “*”
matches a single word and “#” matches zero or more words.

	fanout

Queues are bound to this exchange with no arguments. Hence
any message sent to this exchange will be forwarded to all
queues bound to this exchange.

	headers

Queues are bound to this exchange with a table of arguments
containing headers and values (optional). A special
argument named “x-match” determines the matching algorithm,
where “all” implies an AND (all pairs must match) and
“any” implies OR (at least one pair must match).

arguments is used to specify the arguments.

	Type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
channel

	The channel the exchange is bound to (if bound).

	Type

	ChannelT

	
durable

	Durable exchanges remain active when a server restarts.
Non-durable exchanges (transient exchanges) are purged when a
server restarts. Default is True.

	Type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
auto_delete

	If set, the exchange is deleted when all queues
have finished using it. Default is False.

	Type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
delivery_mode

	The default delivery mode used for messages.
The value is an integer, or alias string.

	1 or “transient”

The message is transient. Which means it is stored in
memory only, and is lost if the server dies or restarts.

	
	2 or “persistent” (default)
	The message is persistent. Which means the message is
stored both in-memory, and on disk, and therefore
preserved if the server dies or restarts.

The default value is 2 (persistent).

	Type

	enum

	
arguments

	Additional arguments to specify when the exchange
is declared.

	Type

	Dict

	
no_declare

	Never declare this exchange
(declare() does nothing).

	Type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
Message(body, delivery_mode=None, properties=None, **kwargs)

	Create message instance to be sent with publish().

	Parameters

	
	body (Any) – Message body.

	delivery_mode (bool [https://docs.python.org/dev/library/functions.html#bool]) – Set custom delivery mode.
Defaults to delivery_mode.

	priority (int [https://docs.python.org/dev/library/functions.html#int]) – Message priority, 0 to broker configured
max priority, where higher is better.

	content_type (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The messages content_type. If content_type
is set, no serialization occurs as it is assumed this is either
a binary object, or you’ve done your own serialization.
Leave blank if using built-in serialization as our library
properly sets content_type.

	content_encoding (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The character set in which this object
is encoded. Use “binary” if sending in raw binary objects.
Leave blank if using built-in serialization as our library
properly sets content_encoding.

	properties (Dict) – Message properties.

	headers (Dict) – Message headers.

	
PERSISTENT_DELIVERY_MODE = 2

	

	
TRANSIENT_DELIVERY_MODE = 1

	

	
attrs = (('name', None), ('type', None), ('arguments', None), ('durable', <class 'bool'>), ('passive', <class 'bool'>), ('auto_delete', <class 'bool'>), ('delivery_mode', <function Exchange.<lambda>>), ('no_declare', <class 'bool'>))

	

	
auto_delete = False

	

	
bind_to(exchange='', routing_key='', arguments=None, nowait=False, channel=None, **kwargs)

	Bind the exchange to another exchange.

	Parameters

	nowait (bool [https://docs.python.org/dev/library/functions.html#bool]) – If set the server will not respond, and the call
will not block waiting for a response.
Default is False.

	
binding(routing_key='', arguments=None, unbind_arguments=None)

	

	
property can_cache_declaration

	bool(x) -> bool

Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.

	
declare(nowait=False, passive=None, channel=None)

	Declare the exchange.

Creates the exchange on the broker, unless passive is set
in which case it will only assert that the exchange exists.

	Argument:
	
	nowait (bool): If set the server will not respond, and a
	response will not be waited for. Default is False.

	
delete(if_unused=False, nowait=False)

	Delete the exchange declaration on server.

	Parameters

	
	if_unused (bool [https://docs.python.org/dev/library/functions.html#bool]) – Delete only if the exchange has no bindings.
Default is False.

	nowait (bool [https://docs.python.org/dev/library/functions.html#bool]) – If set the server will not respond, and a
response will not be waited for. Default is False.

	
delivery_mode = None

	

	
durable = True

	

	
name = ''

	

	
no_declare = False

	

	
passive = False

	

	
publish(message, routing_key=None, mandatory=False, immediate=False, exchange=None)

	Publish message.

	Parameters

	
	message (Union[kombu.Message, str [https://docs.python.org/dev/library/stdtypes.html#str], bytes [https://docs.python.org/dev/library/stdtypes.html#bytes]]) – Message to publish.

	routing_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Message routing key.

	mandatory (bool [https://docs.python.org/dev/library/functions.html#bool]) – Currently not supported.

	immediate (bool [https://docs.python.org/dev/library/functions.html#bool]) – Currently not supported.

	
type = 'direct'

	

	
unbind_from(source='', routing_key='', nowait=False, arguments=None, channel=None)

	Delete previously created exchange binding from the server.

	
class Producer(channel, exchange=None, routing_key=None, serializer=None, auto_declare=None, compression=None, on_return=None)

	Message Producer.

	Parameters

	
	channel (kombu.Connection [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection], ChannelT) – Connection or channel.

	exchange (kombu.entity.Exchange, str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional default exchange.

	routing_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional default routing key.

	serializer (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Default serializer. Default is “json”.

	compression (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Default compression method.
Default is no compression.

	auto_declare (bool [https://docs.python.org/dev/library/functions.html#bool]) – Automatically declare the default exchange
at instantiation. Default is True.

	on_return (Callable) – Callback to call for undeliverable messages,
when the mandatory or immediate arguments to
publish() is used. This callback needs the following
signature: (exception, exchange, routing_key, message).
Note that the producer needs to drain events to use this feature.

	
auto_declare = True

	

	
property channel

	

	
close()

	

	
compression = None

	

	
property connection

	

	
declare()

	Declare the exchange.

Note

This happens automatically at instantiation when
the auto_declare flag is enabled.

	
exchange = None

	

	
maybe_declare(entity, retry=False, **retry_policy)

	Declare exchange if not already declared during this session.

	
on_return = None

	

	
publish(body, routing_key=None, delivery_mode=None, mandatory=False, immediate=False, priority=0, content_type=None, content_encoding=None, serializer=None, headers=None, compression=None, exchange=None, retry=False, retry_policy=None, declare=None, expiration=None, **properties)

	Publish message to the specified exchange.

	Parameters

	
	body (Any) – Message body.

	routing_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Message routing key.

	delivery_mode (enum) – See delivery_mode.

	mandatory (bool [https://docs.python.org/dev/library/functions.html#bool]) – Currently not supported.

	immediate (bool [https://docs.python.org/dev/library/functions.html#bool]) – Currently not supported.

	priority (int [https://docs.python.org/dev/library/functions.html#int]) – Message priority. A number between 0 and 9.

	content_type (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Content type. Default is auto-detect.

	content_encoding (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Content encoding. Default is auto-detect.

	serializer (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Serializer to use. Default is auto-detect.

	compression (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Compression method to use. Default is none.

	headers (Dict) – Mapping of arbitrary headers to pass along
with the message body.

	exchange (kombu.entity.Exchange, str [https://docs.python.org/dev/library/stdtypes.html#str]) – Override the exchange.
Note that this exchange must have been declared.

	declare (Sequence[EntityT]) – Optional list of required entities
that must have been declared before publishing the message.
The entities will be declared using
maybe_declare() [https://kombu.readthedocs.io/en/master/reference/kombu.common.html#kombu.common.maybe_declare].

	retry (bool [https://docs.python.org/dev/library/functions.html#bool]) – Retry publishing, or declaring entities if the
connection is lost.

	retry_policy (Dict) – Retry configuration, this is the keywords
supported by ensure() [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection.ensure].

	expiration (float [https://docs.python.org/dev/library/functions.html#float]) – A TTL in seconds can be specified per message.
Default is no expiration.

	**properties (Any) – Additional message properties, see AMQP spec.

	
release()

	

	
revive(channel)

	Revive the producer after connection loss.

	
routing_key = ''

	

	
serializer = None

	

	
class Queue(name='', exchange=None, routing_key='', channel=None, bindings=None, on_declared=None, **kwargs)[source]

	Queue that never caches declaration.

	
can_cache_declaration = False

	

	
class ResultConsumer(*args, **kwargs)

	
	
class Consumer(channel, queues=None, no_ack=None, auto_declare=None, callbacks=None, on_decode_error=None, on_message=None, accept=None, prefetch_count=None, tag_prefix=None)

	Message consumer.

	Parameters

	
	channel (kombu.Connection [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection], ChannelT) – see channel.

	queues (Sequence[kombu.Queue [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue]]) – see queues.

	no_ack (bool [https://docs.python.org/dev/library/functions.html#bool]) – see no_ack.

	auto_declare (bool [https://docs.python.org/dev/library/functions.html#bool]) – see auto_declare

	callbacks (Sequence[Callable]) – see callbacks.

	on_message (Callable) – See on_message

	on_decode_error (Callable) – see on_decode_error.

	prefetch_count (int [https://docs.python.org/dev/library/functions.html#int]) – see prefetch_count.

	
exception ContentDisallowed

	Consumer does not allow this content-type.

	
accept = None

	

	
add_queue(queue)

	Add a queue to the list of queues to consume from.

Note

This will not start consuming from the queue,
for that you will have to call consume() after.

	
auto_declare = True

	

	
callbacks = None

	

	
cancel()

	End all active queue consumers.

Note

This does not affect already delivered messages, but it does
mean the server will not send any more messages for this consumer.

	
cancel_by_queue(queue)

	Cancel consumer by queue name.

	
channel = None

	

	
close()

	End all active queue consumers.

Note

This does not affect already delivered messages, but it does
mean the server will not send any more messages for this consumer.

	
property connection

	

	
consume(no_ack=None)

	Start consuming messages.

Can be called multiple times, but note that while it
will consume from new queues added since the last call,
it will not cancel consuming from removed queues (
use cancel_by_queue()).

	Parameters

	no_ack (bool [https://docs.python.org/dev/library/functions.html#bool]) – See no_ack.

	
consuming_from(queue)

	Return True if currently consuming from queue’.

	
declare()

	Declare queues, exchanges and bindings.

Note

This is done automatically at instantiation
when auto_declare is set.

	
flow(active)

	Enable/disable flow from peer.

This is a simple flow-control mechanism that a peer can use
to avoid overflowing its queues or otherwise finding itself
receiving more messages than it can process.

The peer that receives a request to stop sending content
will finish sending the current content (if any), and then wait
until flow is reactivated.

	
no_ack = None

	

	
on_decode_error = None

	

	
on_message = None

	

	
prefetch_count = None

	

	
purge()

	Purge messages from all queues.

Warning

This will delete all ready messages, there is no undo operation.

	
qos(prefetch_size=0, prefetch_count=0, apply_global=False)

	Specify quality of service.

The client can request that messages should be sent in
advance so that when the client finishes processing a message,
the following message is already held locally, rather than needing
to be sent down the channel. Prefetching gives a performance
improvement.

The prefetch window is Ignored if the no_ack option is set.

	Parameters

	
	prefetch_size (int [https://docs.python.org/dev/library/functions.html#int]) – Specify the prefetch window in octets.
The server will send a message in advance if it is equal to
or smaller in size than the available prefetch size (and
also falls within other prefetch limits). May be set to zero,
meaning “no specific limit”, although other prefetch limits
may still apply.

	prefetch_count (int [https://docs.python.org/dev/library/functions.html#int]) – Specify the prefetch window in terms of
whole messages.

	apply_global (bool [https://docs.python.org/dev/library/functions.html#bool]) – Apply new settings globally on all channels.

	
property queues

	

	
receive(body, message)

	Method called when a message is received.

This dispatches to the registered callbacks.

	Parameters

	
	body (Any) – The decoded message body.

	message (Message) – The message instance.

	Raises

	NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError] – If no consumer callbacks have been
 registered.

	
recover(requeue=False)

	Redeliver unacknowledged messages.

Asks the broker to redeliver all unacknowledged messages
on the specified channel.

	Parameters

	requeue (bool [https://docs.python.org/dev/library/functions.html#bool]) – By default the messages will be redelivered
to the original recipient. With requeue set to true, the
server will attempt to requeue the message, potentially then
delivering it to an alternative subscriber.

	
register_callback(callback)

	Register a new callback to be called when a message is received.

Note

The signature of the callback needs to accept two arguments:
(body, message), which is the decoded message body
and the Message instance.

	
revive(channel)

	Revive consumer after connection loss.

	
cancel_for(task_id)

	

	
consume_from(task_id)

	

	
drain_events(timeout=None)

	

	
on_after_fork()

	

	
start(initial_task_id, no_ack=True, **kwargs)

	

	
stop()

	

	
as_uri(include_password=True)[source]

	Return the backend as an URI, sanitizing the password or not.

	
property binding

	

	
delete_group(group_id)[source]

	

	
destination_for(task_id, request)[source]

	Get the destination for result by task id.

	Returns

	tuple of (reply_to, correlation_id).

	Return type

	Tuple[str [https://docs.python.org/dev/library/stdtypes.html#str], str [https://docs.python.org/dev/library/stdtypes.html#str]]

	
ensure_chords_allowed()[source]

	

	
get_task_meta(task_id, backlog_limit=1000)[source]

	Get task meta from backend.

if always_retry_backend_operation is activated, in the event of a recoverable exception,
then retry operation with an exponential backoff until a limit has been reached.

	
oid[source]

	

	
on_out_of_band_result(task_id, message)[source]

	

	
on_reply_declare(task_id)[source]

	

	
on_result_fulfilled(result)[source]

	

	
on_task_call(producer, task_id)[source]

	

	
persistent = False

	

	
poll(task_id, backlog_limit=1000)

	Get task meta from backend.

if always_retry_backend_operation is activated, in the event of a recoverable exception,
then retry operation with an exponential backoff until a limit has been reached.

	
reload_group_result(task_id)[source]

	Reload group result, even if it has been previously fetched.

	
reload_task_result(task_id)[source]

	Reload task result, even if it has been previously fetched.

	
restore_group(group_id, cache=True)[source]

	Get the result for a group.

	
retry_policy = {'interval_max': 1, 'interval_start': 0, 'interval_step': 1, 'max_retries': 20}

	

	
revive(channel)[source]

	

	
save_group(group_id, result)[source]

	Store the result of an executed group.

	
store_result(task_id, result, state, traceback=None, request=None, **kwargs)[source]

	Send task return value and state.

	
supports_autoexpire = True

	

	
supports_native_join = True

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.backends.database

SQLAlchemy result store backend.

	
class celery.backends.database.DatabaseBackend(dburi=None, engine_options=None, url=None, **kwargs)[source]

	The database result backend.

	
ResultSession(session_manager=<celery.backends.database.session.SessionManager object>)[source]

	

	
cleanup()[source]

	Delete expired meta-data.

	
property extended_result

	

	
subpolling_interval = 0.5

	

	
task_cls

	alias of celery.backends.database.models.Task

	
taskset_cls

	alias of celery.backends.database.models.TaskSet

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.backends.cache

Memcached and in-memory cache result backend.

	
class celery.backends.cache.CacheBackend(app, expires=None, backend=None, options=None, url=None, **kwargs)[source]

	Cache result backend.

	
as_uri(*args, **kwargs)[source]

	Return the backend as an URI.

This properly handles the case of multiple servers.

	
client[source]

	

	
delete(key)[source]

	

	
expire(key, value)[source]

	

	
get(key)[source]

	

	
implements_incr = True

	

	
incr(key)[source]

	

	
mget(keys)[source]

	

	
servers = None

	

	
set(key, value)[source]

	

	
supports_autoexpire = True

	

	
supports_native_join = True

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.backends.consul

Consul result store backend.

	
	ConsulBackend implements KeyValueStoreBackend to store results
	in the key-value store of Consul.

	
class celery.backends.consul.ConsulBackend(*args, **kwargs)[source]

	Consul.io K/V store backend for Celery.

	
client = None

	

	
consistency = 'consistent'

	

	
consul = None

	

	
delete(key)[source]

	

	
get(key)[source]

	

	
mget(keys)[source]

	

	
path = None

	

	
set(key, value)[source]

	Set a key in Consul.

Before creating the key it will create a session inside Consul
where it creates a session with a TTL

The key created afterwards will reference to the session’s ID.

If the session expires it will remove the key so that results
can auto expire from the K/V store

	
supports_autoexpire = True

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.backends.couchdb

CouchDB result store backend.

	
class celery.backends.couchdb.CouchBackend(url=None, *args, **kwargs)[source]

	CouchDB backend.

	Raises

	celery.exceptions.ImproperlyConfigured – if module pycouchdb [https://pypi.python.org/pypi/pycouchdb/] is not available.

	
property connection

	

	
container = 'default'

	

	
delete(key)[source]

	

	
get(key)[source]

	

	
host = 'localhost'

	

	
mget(keys)[source]

	

	
password = None

	

	
port = 5984

	

	
scheme = 'http'

	

	
set(key, value)[source]

	

	
username = None

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.backends.mongodb

MongoDB result store backend.

	
class celery.backends.mongodb.MongoBackend(app=None, **kwargs)[source]

	MongoDB result backend.

	Raises

	celery.exceptions.ImproperlyConfigured – if module pymongo [https://pypi.python.org/pypi/pymongo/] is not available.

	
as_uri(include_password=False)[source]

	Return the backend as an URI.

	Parameters

	include_password (bool [https://docs.python.org/dev/library/functions.html#bool]) – Password censored if disabled.

	
cleanup()[source]

	Delete expired meta-data.

	
collection[source]

	Get the meta-data task collection.

	
database[source]

	Get database from MongoDB connection.

performs authentication if necessary.

	
database_name = 'celery'

	

	
decode(data)[source]

	

	
encode(data)[source]

	

	
expires_delta[source]

	

	
group_collection[source]

	Get the meta-data task collection.

	
groupmeta_collection = 'celery_groupmeta'

	

	
host = 'localhost'

	

	
max_pool_size = 10

	

	
mongo_host = None

	

	
options = None

	

	
password = None

	

	
port = 27017

	

	
supports_autoexpire = False

	

	
taskmeta_collection = 'celery_taskmeta'

	

	
user = None

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.backends.elasticsearch

Elasticsearch result store backend.

	
class celery.backends.elasticsearch.ElasticsearchBackend(url=None, *args, **kwargs)[source]

	Elasticsearch Backend.

	Raises

	celery.exceptions.ImproperlyConfigured – if module elasticsearch [https://pypi.python.org/pypi/elasticsearch/] is not available.

	
decode(payload)[source]

	

	
delete(key)[source]

	

	
doc_type = 'backend'

	

	
encode(data)[source]

	

	
es_max_retries = 3

	

	
es_retry_on_timeout = False

	

	
es_timeout = 10

	

	
exception_safe_to_retry(exc)[source]

	Check if an exception is safe to retry.

Backends have to overload this method with correct predicates dealing with their exceptions.

By default no exception is safe to retry, it’s up to backend implementation
to define which exceptions are safe.

	
get(key)[source]

	

	
host = 'localhost'

	

	
index = 'celery'

	

	
mget(keys)[source]

	

	
password = None

	

	
port = 9200

	

	
scheme = 'http'

	

	
property server

	

	
set(key, value)[source]

	

	
username = None

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.backends.redis

Redis result store backend.

	
class celery.backends.redis.RedisBackend(host=None, port=None, db=None, password=None, max_connections=None, url=None, connection_pool=None, **kwargs)[source]

	Redis task result store.

It makes use of the following commands:
GET, MGET, DEL, INCRBY, EXPIRE, SET, SETEX

	
property ConnectionPool

	

	
class ResultConsumer(*args, **kwargs)

	
	
cancel_for(task_id)

	

	
consume_from(task_id)

	

	
drain_events(timeout=None)

	

	
on_after_fork()

	

	
on_state_change(meta, message)

	

	
on_wait_for_pending(result, **kwargs)

	

	
reconnect_on_error()

	

	
start(initial_task_id, **kwargs)

	

	
stop()

	

	
add_to_chord(group_id, result)[source]

	

	
apply_chord(header_result, body, **kwargs)[source]

	

	
client[source]

	

	
delete(key)[source]

	

	
ensure(fun, args, **policy)[source]

	

	
expire(key, value)[source]

	

	
forget(task_id)[source]

	

	
get(key)[source]

	

	
incr(key)[source]

	

	
max_connections = None

	Maximum number of connections in the pool.

	
mget(keys)[source]

	

	
on_chord_part_return(request, state, result, propagate=None, **kwargs)[source]

	

	
on_connection_error(max_retries, exc, intervals, retries)[source]

	

	
on_task_call(producer, task_id)[source]

	

	
redis = None

	redis [https://pypi.python.org/pypi/redis/] client module.

	
retry_policy[source]

	

	
set(key, value, **retry_policy)[source]

	

	
supports_autoexpire = True

	

	
supports_native_join = True

	

	
class celery.backends.redis.SentinelBackend(*args, **kwargs)[source]

	Redis sentinel task result store.

	
sentinel = None

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.backends.cassandra

Apache Cassandra result store backend using the DataStax driver.

	
class celery.backends.cassandra.CassandraBackend(servers=None, keyspace=None, table=None, entry_ttl=None, port=9042, **kwargs)[source]

	Cassandra backend utilizing DataStax driver.

	Raises

	celery.exceptions.ImproperlyConfigured – if module cassandra-driver [https://pypi.python.org/pypi/cassandra-driver/] is not available,
 or if the cassandra_servers setting is not set.

	
as_uri(include_password=True)[source]

	Return the backend as an URI, sanitizing the password or not.

	
servers = None

	hostname.

	Type

	List of Cassandra servers with format

	
supports_autoexpire = True

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.backends.couchbase

Couchbase result store backend.

	
class celery.backends.couchbase.CouchbaseBackend(url=None, *args, **kwargs)[source]

	Couchbase backend.

	Raises

	celery.exceptions.ImproperlyConfigured – if module couchbase [https://pypi.python.org/pypi/couchbase/] is not available.

	
bucket = 'default'

	

	
property connection

	

	
delete(key)[source]

	

	
get(key)[source]

	

	
host = 'localhost'

	

	
key_t

	alias of builtins.str

	
mget(keys)[source]

	

	
password = None

	

	
port = 8091

	

	
quiet = False

	

	
set(key, value)[source]

	

	
supports_autoexpire = True

	

	
timeout = 2.5

	

	
username = None

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.backends.arangodb

ArangoDb result store backend.

	
class celery.backends.arangodb.ArangoDbBackend(url=None, *args, **kwargs)[source]

	ArangoDb backend.

Sample url
“arangodb://username:password@host:port/database/collection”
arangodb_backend_settings is where the settings are present
(in the app.conf)
Settings should contain the host, port, username, password, database name,
collection name else the default will be chosen.
Default database name and collection name is celery.

	Raises

	celery.exceptions.ImproperlyConfigured: – if module pyArango [https://pypi.python.org/pypi/pyArango/] is not available.

	
cleanup()[source]

	Delete expired meta-data.

	
collection = 'celery'

	

	
property connection

	Connect to the arangodb server.

	
database = 'celery'

	

	
property db

	Database Object to the given database.

	
delete(key)[source]

	

	
expires_delta[source]

	

	
get(key)[source]

	

	
host = '127.0.0.1'

	

	
http_protocol = 'http'

	

	
key_t

	alias of builtins.str

	
mget(keys)[source]

	

	
password = None

	

	
port = '8529'

	

	
set(key, value)[source]

	Insert a doc with value into task attribute and _key as key.

	
username = None

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.backends.dynamodb

AWS DynamoDB result store backend.

	
class celery.backends.dynamodb.DynamoDBBackend(url=None, table_name=None, *args, **kwargs)[source]

	AWS DynamoDB result backend.

	Raises

	celery.exceptions.ImproperlyConfigured – if module boto3 [https://pypi.python.org/pypi/boto3/] is not available.

	
aws_region = None

	AWS region (default)

	
property client

	

	
delete(key)[source]

	

	
endpoint_url = None

	The endpoint URL that is passed to boto3 (local DynamoDB) (default)

	
get(key)[source]

	

	
mget(keys)[source]

	

	
read_capacity_units = 1

	Read Provisioned Throughput (default)

	
set(key, value)[source]

	

	
supports_autoexpire = True

	

	
table_name = 'celery'

	default DynamoDB table name (default)

	
time_to_live_seconds = None

	Item time-to-live in seconds (default)

	
write_capacity_units = 1

	Write Provisioned Throughput (default)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.backends.filesystem

File-system result store backend.

	
class celery.backends.filesystem.FilesystemBackend(url=None, open=<built-in function open>, unlink=<built-in function unlink>, sep='/', encoding='UTF-8', *args, **kwargs)[source]

	File-system result backend.

	Parameters

	
	url (str [https://docs.python.org/dev/library/stdtypes.html#str]) – URL to the directory we should use

	open (Callable) – open function to use when opening files

	unlink (Callable) – unlink function to use when deleting files

	sep (str [https://docs.python.org/dev/library/stdtypes.html#str]) – directory separator (to join the directory with the key)

	encoding (str [https://docs.python.org/dev/library/stdtypes.html#str]) – encoding used on the file-system

	
delete(key)[source]

	

	
get(key)[source]

	

	
mget(keys)[source]

	

	
set(key, value)[source]

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.backends.cosmosdbsql

The CosmosDB/SQL backend for Celery (experimental).

	
class celery.backends.cosmosdbsql.CosmosDBSQLBackend(url=None, database_name=None, collection_name=None, consistency_level=None, max_retry_attempts=None, max_retry_wait_time=None, *args, **kwargs)[source]

	CosmosDB/SQL backend for Celery.

	
delete(key)[source]

	Delete the value at a given key.

	Parameters

	key – The key of the value to delete.

	
get(key)[source]

	Read the value stored at the given key.

	Parameters

	key – The key for which to read the value.

	
mget(keys)[source]

	Read all the values for the provided keys.

	Parameters

	keys – The list of keys to read.

	
set(key, value)[source]

	Store a value for a given key.

	Parameters

	
	key – The key at which to store the value.

	value – The value to store.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.backends.s3

s3 result store backend.

	
class celery.backends.s3.S3Backend(**kwargs)[source]

	An S3 task result store.

	Raises

	celery.exceptions.ImproperlyConfigured – if module boto3 [https://pypi.python.org/pypi/boto3/] is not available,
 if the aws_access_key_id or
 setting:aws_secret_access_key are not set,
 or it the bucket is not set.

	
delete(key)[source]

	

	
get(key)[source]

	

	
set(key, value)[source]

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.app.trace

Trace task execution.

This module defines how the task execution is traced:
errors are recorded, handlers are applied and so on.

	
class celery.app.trace.TraceInfo(state, retval=None)[source]

	Information about task execution.

	
handle_error_state(task, req, eager=False, call_errbacks=True)[source]

	

	
handle_failure(task, req, store_errors=True, call_errbacks=True)[source]

	Handle exception.

	
handle_ignore(task, req, **kwargs)[source]

	

	
handle_reject(task, req, **kwargs)[source]

	

	
handle_retry(task, req, store_errors=True, **kwargs)[source]

	Handle retry exception.

	
retval

	

	
state

	

	
celery.app.trace.build_tracer(name, task, loader=None, hostname=None, store_errors=True, Info=<class 'celery.app.trace.TraceInfo'>, eager=False, propagate=False, app=None, monotonic=<built-in function monotonic>, trace_ok_t=<class 'celery.app.trace.trace_ok_t'>, IGNORE_STATES=frozenset({'IGNORED', 'REJECTED', 'RETRY'}))[source]

	Return a function that traces task execution.

Catches all exceptions and updates result backend with the
state and result.

If the call was successful, it saves the result to the task result
backend, and sets the task status to “SUCCESS”.

If the call raises Retry, it extracts
the original exception, uses that as the result and sets the task state
to “RETRY”.

If the call results in an exception, it saves the exception as the task
result, and sets the task state to “FAILURE”.

Return a function that takes the following arguments:

	param uuid

	The id of the task.

	param args

	List of positional args to pass on to the function.

	param kwargs

	Keyword arguments mapping to pass on to the function.

	keyword request

	Request dict.

	
celery.app.trace.reset_worker_optimizations()[source]

	Reset previously configured optimizations.

	
celery.app.trace.setup_worker_optimizations(app, hostname=None)[source]

	Setup worker related optimizations.

	
celery.app.trace.trace_task(task, uuid, args, kwargs, request=None, **opts)[source]

	Trace task execution.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.app.annotations

Task Annotations.

Annotations is a nice term for monkey-patching task classes
in the configuration.

This prepares and performs the annotations in the
task_annotations setting.

	
class celery.app.annotations.MapAnnotation[source]

	Annotation map: task_name => attributes.

	
annotate(task)[source]

	

	
annotate_any()[source]

	

	
celery.app.annotations.prepare(annotations)[source]

	Expand the task_annotations setting.

	
celery.app.annotations.resolve_all(anno, task)[source]

	Resolve all pending annotations.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.app.routes

Task Routing.

Contains utilities for working with task routers, (task_routes).

	
class celery.app.routes.MapRoute(map)[source]

	Creates a router out of a dict [https://docs.python.org/dev/library/stdtypes.html#dict].

	
class celery.app.routes.Router(routes=None, queues=None, create_missing=False, app=None)[source]

	Route tasks based on the task_routes setting.

	
expand_destination(route)[source]

	

	
lookup_route(name, args=None, kwargs=None, options=None, task_type=None)[source]

	

	
query_router(router, task, args, kwargs, options, task_type)[source]

	

	
route(options, name, args=(), kwargs=None, task_type=None)[source]

	

	
celery.app.routes.prepare(routes)[source]

	Expand the task_routes setting.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.security.certificate

X.509 certificates.

	
class celery.security.certificate.CertStore[source]

	Base class for certificate stores.

	
add_cert(cert)[source]

	

	
itercerts()[source]

	Return certificate iterator.

	
class celery.security.certificate.Certificate(cert)[source]

	X.509 certificate.

	
get_id()[source]

	Serial number/issuer pair uniquely identifies a certificate.

	
get_issuer()[source]

	Return issuer (CA) as a string.

	
get_pubkey()[source]

	Get public key from certificate.

	
get_serial_number()[source]

	Return the serial number in the certificate.

	
has_expired()[source]

	Check if the certificate has expired.

	
verify(data, signature, digest)[source]

	Verify signature for string containing data.

	
class celery.security.certificate.FSCertStore(path)[source]

	File system certificate store.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.security.key

Private keys for the security serializer.

	
class celery.security.key.PrivateKey(key, password=None)[source]

	Represents a private key.

	
sign(data, digest)[source]

	Sign string containing data.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.security.serialization

Secure serializer.

	
class celery.security.serialization.SecureSerializer(key=None, cert=None, cert_store=None, digest='sha256', serializer='json')[source]

	Signed serializer.

	
deserialize(data)[source]

	Deserialize data structure from string.

	
serialize(data)[source]

	Serialize data structure into string.

	
celery.security.serialization.register_auth(key=None, cert=None, store=None, digest='sha256', serializer='json')[source]

	Register security serializer.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.security.utils

Utilities used by the message signing serializer.

	
celery.security.utils.get_digest_algorithm(digest='sha256')[source]

	Convert string to hash object of cryptography library.

	
celery.security.utils.reraise_errors(msg='{0!r}', errors=None)[source]

	Context reraising crypto errors as SecurityError.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.events.snapshot

Periodically store events in a database.

Consuming the events as a stream isn’t always suitable
so this module implements a system to take snapshots of the
state of a cluster at regular intervals. There’s a full
implementation of this writing the snapshots to a database
in djcelery.snapshots in the django-celery distribution.

	
class celery.events.snapshot.Polaroid(state, freq=1.0, maxrate=None, cleanup_freq=3600.0, timer=None, app=None)[source]

	Record event snapshots.

	
cancel()[source]

	

	
capture()[source]

	

	
cleanup()[source]

	

	
cleanup_signal = <Signal: cleanup_signal providing_args=set()>

	

	
clear_after = False

	

	
install()[source]

	

	
on_cleanup()[source]

	

	
on_shutter(state)[source]

	

	
shutter()[source]

	

	
shutter_signal = <Signal: shutter_signal providing_args={'state'}>

	

	
timer = None

	

	
celery.events.snapshot.evcam(camera, freq=1.0, maxrate=None, loglevel=0, logfile=None, pidfile=None, timer=None, app=None)[source]

	Start snapshot recorder.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.events.cursesmon

Graphical monitor of Celery events using curses.

	
class celery.events.cursesmon.CursesMonitor(state, app, keymap=None)[source]

	A curses based Celery task monitor.

	
alert(callback, title=None)[source]

	

	
alert_remote_control_reply(reply)[source]

	

	
background = 7

	

	
property display_height

	

	
display_task_row(lineno, task)[source]

	

	
property display_width

	

	
draw()[source]

	

	
find_position()[source]

	

	
foreground = 0

	

	
format_row(uuid, task, worker, timestamp, state)[source]

	

	
greet = 'celery events 5.0.1 (singularity)'

	

	
handle_keypress()[source]

	

	
help = 'j:down k:up i:info t:traceback r:result c:revoke ^c: quit'

	

	
help_title = 'Keys: '

	

	
info_str = 'Info: '

	

	
init_screen()[source]

	

	
keyalias = {258: 'J', 259: 'K', 343: 'I'}

	

	
keymap = {}

	

	
property limit

	

	
move_selection(direction=1)[source]

	

	
move_selection_down()[source]

	

	
move_selection_up()[source]

	

	
nap()[source]

	

	
online_str = 'Workers online: '

	

	
readline(x, y)[source]

	

	
resetscreen()[source]

	

	
revoke_selection()[source]

	

	
safe_add_str(y, x, string, *args, **kwargs)[source]

	

	
screen_delay = 10

	

	
property screen_height

	

	
property screen_width

	

	
selected_position = 0

	

	
selected_str = 'Selected: '

	

	
selected_task = None

	

	
selection_info()[source]

	

	
selection_rate_limit()[source]

	

	
selection_result()[source]

	

	
selection_traceback()[source]

	

	
property tasks

	

	
win = None

	

	
property workers

	

	
celery.events.cursesmon.evtop(app=None)[source]

	Start curses monitor.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.events.dumper

Utility to dump events to screen.

This is a simple program that dumps events to the console
as they happen. Think of it like a tcpdump for Celery events.

	
class celery.events.dumper.Dumper(out=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>)[source]

	Monitor events.

	
format_task_event(hostname, timestamp, type, task, event)[source]

	

	
on_event(ev)[source]

	

	
say(msg)[source]

	

	
celery.events.dumper.evdump(app=None, out=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>)[source]

	Start event dump.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.backends.database.models

Database models used by the SQLAlchemy result store backend.

	
class celery.backends.database.models.Task(task_id)[source]

	Task result/status.

	
classmethod configure(schema=None, name=None)[source]

	

	
date_done

	

	
id

	

	
result

	

	
status

	

	
task_id

	

	
to_dict()[source]

	

	
traceback

	

	
class celery.backends.database.models.TaskExtended(task_id)[source]

	For the extend result.

	
args

	

	
date_done

	

	
id

	

	
kwargs

	

	
name

	

	
queue

	

	
result

	

	
retries

	

	
status

	

	
task_id

	

	
to_dict()[source]

	

	
traceback

	

	
worker

	

	
class celery.backends.database.models.TaskSet(taskset_id, result)[source]

	TaskSet result.

	
classmethod configure(schema=None, name=None)[source]

	

	
date_done

	

	
id

	

	
result

	

	
taskset_id

	

	
to_dict()[source]

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.backends.database.session

SQLAlchemy session.

	
class celery.backends.database.session.SessionManager[source]

	Manage SQLAlchemy sessions.

	
create_session(dburi, short_lived_sessions=False, **kwargs)[source]

	

	
get_engine(dburi, **kwargs)[source]

	

	
prepare_models(engine)[source]

	

	
session_factory(dburi, **kwargs)[source]

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.utils

Utility functions.

Don’t import from here directly anymore, as these are only
here for backwards compatibility.

	
class celery.utils.cached_property(fget=None, fset=None, fdel=None, doc=None)[source]

	Cached property descriptor.

Caches the return value of the get method on first call.

Examples

@cached_property
def connection(self):
 return Connection()

@connection.setter # Prepares stored value
def connection(self, value):
 if value is None:
 raise TypeError('Connection must be a connection')
 return value

@connection.deleter
def connection(self, value):
 # Additional action to do at del(self.attr)
 if value is not None:
 print('Connection {0!r} deleted'.format(value)

	
deleter(fdel)[source]

	

	
setter(fset)[source]

	

	
celery.utils.chunks(it, n)[source]

	Split an iterator into chunks with n elements each.

Warning

it must be an actual iterator, if you pass this a
concrete sequence will get you repeating elements.

So chunks(iter(range(1000)), 10) is fine, but
chunks(range(1000), 10) is not.

Example

n == 2
>>> x = chunks(iter([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), 2)
>>> list(x)
[[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10]]

n == 3
>>> x = chunks(iter([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), 3)
>>> list(x)
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10]]

	
celery.utils.gen_task_name(app, name, module_name)[source]

	Generate task name from name/module pair.

	
celery.utils.gen_task_name(app, name, module_name)[source]

	Generate task name from name/module pair.

	
celery.utils.gen_unique_id(_uuid=<function uuid4>)

	Generate unique id in UUID4 format.

See also

For now this is provided by uuid.uuid4() [https://docs.python.org/dev/library/uuid.html#uuid.uuid4].

	
celery.utils.get_cls_by_name(name, aliases=None, imp=None, package=None, sep='.', default=None, **kwargs)

	Get symbol by qualified name.

The name should be the full dot-separated path to the class:

modulename.ClassName

Example:

celery.concurrency.processes.TaskPool
 ^- class name

or using ‘:’ to separate module and symbol:

celery.concurrency.processes:TaskPool

If aliases is provided, a dict containing short name/long name
mappings, the name is looked up in the aliases first.

Examples

>>> symbol_by_name('celery.concurrency.processes.TaskPool')
<class 'celery.concurrency.processes.TaskPool'>

>>> symbol_by_name('default', {
... 'default': 'celery.concurrency.processes.TaskPool'})
<class 'celery.concurrency.processes.TaskPool'>

Does not try to look up non-string names.
>>> from celery.concurrency.processes import TaskPool
>>> symbol_by_name(TaskPool) is TaskPool
True

	
celery.utils.get_full_cls_name(obj)

	Return object name.

	
celery.utils.import_from_cwd(module, imp=None, package=None)[source]

	Import module, temporarily including modules in the current directory.

Modules located in the current directory has
precedence over modules located in sys.path.

	
celery.utils.instantiate(name, *args, **kwargs)[source]

	Instantiate class by name.

See also

symbol_by_name().

	
celery.utils.memoize(maxsize=None, keyfun=None, Cache=<class 'kombu.utils.functional.LRUCache'>)[source]

	Decorator to cache function return value.

	
celery.utils.nodename(name, hostname)[source]

	Create node name from name/hostname pair.

	
celery.utils.nodesplit(name)[source]

	Split node name into tuple of name/hostname.

	
celery.utils.noop(*args, **kwargs)[source]

	No operation.

Takes any arguments/keyword arguments and does nothing.

	
celery.utils.uuid(_uuid=<function uuid4>)[source]

	Generate unique id in UUID4 format.

See also

For now this is provided by uuid.uuid4() [https://docs.python.org/dev/library/uuid.html#uuid.uuid4].

	
celery.utils.worker_direct(hostname)[source]

	Return the kombu.Queue [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue] being a direct route to a worker.

	Parameters

	hostname (str [https://docs.python.org/dev/library/stdtypes.html#str], Queue [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue]) – The fully qualified node name of
a worker (e.g., w1@example.com). If passed a
kombu.Queue [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue] instance it will simply return
that instead.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.utils.abstract

Abstract classes.

	
class celery.utils.abstract.CallableSignature[source]

	Celery Signature interface.

	
abstract property app

	

	
abstract property args

	

	
abstract property chord_size

	

	
abstract clone(args=None, kwargs=None)[source]

	

	
abstract freeze(id=None, group_id=None, chord=None, root_id=None, group_index=None)[source]

	

	
abstract property id

	

	
abstract property immutable

	

	
abstract property kwargs

	

	
abstract link(callback)[source]

	

	
abstract link_error(errback)[source]

	

	
abstract property name

	

	
abstract property options

	

	
abstract set(immutable=None, **options)[source]

	

	
abstract property subtask_type

	

	
abstract property task

	

	
abstract property type

	

	
class celery.utils.abstract.CallableTask[source]

	Task interface.

	
abstract apply(*args, **kwargs)[source]

	

	
abstract apply_async(*args, **kwargs)[source]

	

	
abstract delay(*args, **kwargs)[source]

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.utils.collections

Custom maps, sets, sequences, and other data structures.

	
class celery.utils.collections.AttributeDict[source]

	Dict subclass with attribute access.

	
class celery.utils.collections.AttributeDictMixin[source]

	Mixin for Mapping interface that adds attribute access.

I.e., d.key -> d[key]).

	
class celery.utils.collections.BufferMap(maxsize, iterable=None, bufmaxsize=1000)[source]

	Map of buffers.

	
Buffer

	alias of Messagebuffer

	
exception Empty

	Exception raised by Queue.get(block=0)/get_nowait().

	
bufmaxsize = None

	

	
extend(key, it)[source]

	

	
maxsize = None

	

	
put(key, item)[source]

	

	
take(key, *default)[source]

	

	
total = 0

	

	
class celery.utils.collections.ChainMap(*maps, **kwargs)[source]

	Key lookup on a sequence of maps.

	
add_defaults(d)[source]

	

	
bind_to(callback)[source]

	

	
changes = None

	

	
clear() → None. Remove all items from D.[source]

	

	
copy()[source]

	

	
defaults = None

	

	
classmethod fromkeys(iterable, *args)[source]

	Create a ChainMap with a single dict created from the iterable.

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.[source]

	

	
items() → a set-like object providing a view on D’s items[source]

	

	
iteritems()

	

	
iterkeys()

	

	
itervalues()

	

	
key_t = None

	

	
keys() → a set-like object providing a view on D’s keys[source]

	

	
maps = None

	

	
pop(k[, d]) → v, remove specified key and return the corresponding value.[source]

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D[source]

	

	
update([E,]**F) → None. Update D from mapping/iterable E and F.[source]

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values() → an object providing a view on D’s values[source]

	

	
class celery.utils.collections.ConfigurationView(changes, defaults=None, keys=None, prefix=None)[source]

	A view over an applications configuration dictionaries.

Custom (but older) version of collections.ChainMap [https://docs.python.org/dev/library/collections.html#collections.ChainMap].

If the key does not exist in changes, the defaults
dictionaries are consulted.

	Parameters

	
	changes (Mapping) – Map of configuration changes.

	defaults (List[Mapping]) – List of dictionaries containing
the default configuration.

	
clear()[source]

	Remove all changes, but keep defaults.

	
first(*keys)[source]

	

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.[source]

	

	
swap_with(other)[source]

	

	
class celery.utils.collections.DictAttribute(obj)[source]

	Dict interface to attributes.

obj[k] -> obj.k
obj[k] = val -> obj.k = val

	
get(key, default=None)[source]

	

	
items()[source]

	

	
iteritems()

	

	
iterkeys()

	

	
itervalues()

	

	
keys()[source]

	

	
obj = None

	

	
setdefault(key, default=None)[source]

	

	
values()[source]

	

	
class celery.utils.collections.Evictable[source]

	Mixin for classes supporting the evict method.

	
exception Empty

	Exception raised by Queue.get(block=0)/get_nowait().

	
evict()[source]

	Force evict until maxsize is enforced.

	
class celery.utils.collections.LimitedSet(maxlen=0, expires=0, data=None, minlen=0)[source]

	Kind-of Set (or priority queue) with limitations.

Good for when you need to test for membership (a in set),
but the set should not grow unbounded.

maxlen is enforced at all times, so if the limit is reached
we’ll also remove non-expired items.

You can also configure minlen: this is the minimal residual size
of the set.

All arguments are optional, and no limits are enabled by default.

	Parameters

	
	maxlen (int [https://docs.python.org/dev/library/functions.html#int]) – Optional max number of items.
Adding more items than maxlen will result in immediate
removal of items sorted by oldest insertion time.

	expires (float [https://docs.python.org/dev/library/functions.html#float]) – TTL for all items.
Expired items are purged as keys are inserted.

	minlen (int [https://docs.python.org/dev/library/functions.html#int]) – Minimal residual size of this set.
.. versionadded:: 4.0

Value must be less than maxlen if both are configured.

Older expired items will be deleted, only after the set
exceeds minlen number of items.

	data (Sequence) – Initial data to initialize set with.
Can be an iterable of (key, value) pairs,
a dict ({key: insertion_time}), or another instance
of LimitedSet.

Example

>>> s = LimitedSet(maxlen=50000, expires=3600, minlen=4000)
>>> for i in range(60000):
... s.add(i)
... s.add(str(i))
...
>>> 57000 in s # last 50k inserted values are kept
True
>>> '10' in s # '10' did expire and was purged from set.
False
>>> len(s) # maxlen is reached
50000
>>> s.purge(now=time.monotonic() + 7200) # clock + 2 hours
>>> len(s) # now only minlen items are cached
4000
>>>> 57000 in s # even this item is gone now
False

	
add(item, now=None)[source]

	Add a new item, or reset the expiry time of an existing item.

	
as_dict()[source]

	Whole set as serializable dictionary.

Example

>>> s = LimitedSet(maxlen=200)
>>> r = LimitedSet(maxlen=200)
>>> for i in range(500):
... s.add(i)
...
>>> r.update(s.as_dict())
>>> r == s
True

	
clear()[source]

	Clear all data, start from scratch again.

	
discard(item)[source]

	

	
max_heap_percent_overload = 15

	

	
pop(default=None)[source]

	Remove and return the oldest item, or None when empty.

	
pop_value(item)

	

	
purge(now=None)[source]

	Check oldest items and remove them if needed.

	Parameters

	now (float [https://docs.python.org/dev/library/functions.html#float]) – Time of purging – by default right now.
This can be useful for unit testing.

	
update(other)[source]

	Update this set from other LimitedSet, dict or iterable.

	
class celery.utils.collections.Messagebuffer(maxsize, iterable=None, deque=<class 'collections.deque'>)[source]

	A buffer of pending messages.

	
exception Empty

	Exception raised by Queue.get(block=0)/get_nowait().

	
extend(it)[source]

	

	
put(item)[source]

	

	
take(*default)[source]

	

	
class celery.utils.collections.OrderedDict[source]

	Dict where insertion order matters.

	
celery.utils.collections.force_mapping(m)[source]

	Wrap object into supporting the mapping interface if necessary.

	
celery.utils.collections.lpmerge(L, R)[source]

	In place left precedent dictionary merge.

Keeps values from L, if the value in R is None.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.utils.nodenames

Worker name utilities.

	
celery.utils.nodenames.anon_nodename(hostname=None, prefix='gen')[source]

	Return the nodename for this process (not a worker).

This is used for e.g. the origin task message field.

	
celery.utils.nodenames.default_nodename(hostname)[source]

	Return the default nodename for this process.

	
celery.utils.nodenames.gethostname() → string

	Return the current host name.

	
celery.utils.nodenames.host_format(s, host=None, name=None, **extra)[source]

	Format host %x abbreviations.

	
celery.utils.nodenames.node_format(s, name, **extra)[source]

	Format worker node name (name@host.com).

	
celery.utils.nodenames.nodename(name, hostname)[source]

	Create node name from name/hostname pair.

	
celery.utils.nodenames.nodesplit(name)[source]

	Split node name into tuple of name/hostname.

	
celery.utils.nodenames.worker_direct(hostname)[source]

	Return the kombu.Queue [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue] being a direct route to a worker.

	Parameters

	hostname (str [https://docs.python.org/dev/library/stdtypes.html#str], Queue [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue]) – The fully qualified node name of
a worker (e.g., w1@example.com). If passed a
kombu.Queue [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue] instance it will simply return
that instead.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.utils.deprecated

Deprecation utilities.

	
celery.utils.deprecated.Callable(deprecation=None, removal=None, alternative=None, description=None)[source]

	Decorator for deprecated functions.

A deprecation warning will be emitted when the function is called.

	Parameters

	
	deprecation (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Version that marks first deprecation, if this
argument isn’t set a PendingDeprecationWarning will be
emitted instead.

	removal (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Future version when this feature will be removed.

	alternative (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Instructions for an alternative solution (if any).

	description (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Description of what’s being deprecated.

	
celery.utils.deprecated.Property(deprecation=None, removal=None, alternative=None, description=None)[source]

	Decorator for deprecated properties.

	
celery.utils.deprecated.warn(description=None, deprecation=None, removal=None, alternative=None, stacklevel=2)[source]

	Warn of (pending) deprecation.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.utils.functional

Functional-style utilties.

	
class celery.utils.functional.LRUCache(limit=None)[source]

	LRU Cache implementation using a doubly linked list to track access.

	Parameters

	limit (int [https://docs.python.org/dev/library/functions.html#int]) – The maximum number of keys to keep in the cache.
When a new key is inserted and the limit has been exceeded,
the Least Recently Used key will be discarded from the
cache.

	
incr(key, delta=1)[source]

	

	
items() → a set-like object providing a view on D’s items[source]

	

	
iteritems()

	

	
iterkeys()

	

	
itervalues()

	

	
keys() → a set-like object providing a view on D’s keys[source]

	

	
popitem() → (k, v), remove and return some (key, value) pair[source]

	as a 2-tuple; but raise KeyError if D is empty.

	
update([E,]**F) → None. Update D from mapping/iterable E and F.[source]

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values() → an object providing a view on D’s values[source]

	

	
celery.utils.functional.chunks(it, n)[source]

	Split an iterator into chunks with n elements each.

Warning

it must be an actual iterator, if you pass this a
concrete sequence will get you repeating elements.

So chunks(iter(range(1000)), 10) is fine, but
chunks(range(1000), 10) is not.

Example

n == 2
>>> x = chunks(iter([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), 2)
>>> list(x)
[[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10]]

n == 3
>>> x = chunks(iter([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), 3)
>>> list(x)
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10]]

	
celery.utils.functional.dictfilter(d=None, **kw)[source]

	Remove all keys from dict d whose value is None.

	
celery.utils.functional.first(predicate, it)[source]

	Return the first element in it that predicate accepts.

If predicate is None it will return the first item that’s not
None.

	
celery.utils.functional.firstmethod(method, on_call=None)[source]

	Multiple dispatch.

Return a function that with a list of instances,
finds the first instance that gives a value for the given method.

The list can also contain lazy instances
(lazy [https://kombu.readthedocs.io/en/master/reference/kombu.utils.functional.html#kombu.utils.functional.lazy].)

	
celery.utils.functional.fun_accepts_kwargs(fun)[source]

	Return true if function accepts arbitrary keyword arguments.

	
celery.utils.functional.head_from_fun(fun, bound=False, debug=False)[source]

	Generate signature function from actual function.

	
celery.utils.functional.is_list(obj, scalars=(<class 'collections.abc.Mapping'>, <class 'str'>), iters=(<class 'collections.abc.Iterable'>,))[source]

	Return true if the object is iterable.

Note

Returns false if object is a mapping or string.

	
class celery.utils.functional.lazy(fun, *args, **kwargs)[source]

	Holds lazy evaluation.

Evaluated when called or if the evaluate() method is called.
The function is re-evaluated on every call.

	Overloaded operations that will evaluate the promise:
	__str__(), __repr__(), __cmp__().

	
evaluate()[source]

	

	
celery.utils.functional.mattrgetter(*attrs)[source]

	Get attributes, ignoring attribute errors.

Like operator.itemgetter() [https://docs.python.org/dev/library/operator.html#operator.itemgetter] but return None on missing
attributes instead of raising AttributeError [https://docs.python.org/dev/library/exceptions.html#AttributeError].

	
celery.utils.functional.maybe(typ, val)[source]

	Call typ on value if val is defined.

	
celery.utils.functional.maybe_evaluate(value)[source]

	Evaluate value only if value is a lazy instance.

	
celery.utils.functional.maybe_list(obj, scalars=(<class 'collections.abc.Mapping'>, <class 'str'>))[source]

	Return list of one element if l is a scalar.

	
celery.utils.functional.memoize(maxsize=None, keyfun=None, Cache=<class 'kombu.utils.functional.LRUCache'>)[source]

	Decorator to cache function return value.

	
class celery.utils.functional.mlazy(fun, *args, **kwargs)[source]

	Memoized lazy evaluation.

The function is only evaluated once, every subsequent access
will return the same value.

	
evaluate()[source]

	

	
evaluated = False

	Set to True after the object has been evaluated.

	
celery.utils.functional.noop(*args, **kwargs)[source]

	No operation.

Takes any arguments/keyword arguments and does nothing.

	
celery.utils.functional.padlist(container, size, default=None)[source]

	Pad list with default elements.

Example

>>> first, last, city = padlist(['George', 'Costanza', 'NYC'], 3)
('George', 'Costanza', 'NYC')
>>> first, last, city = padlist(['George', 'Costanza'], 3)
('George', 'Costanza', None)
>>> first, last, city, planet = padlist(
... ['George', 'Costanza', 'NYC'], 4, default='Earth',
...)
('George', 'Costanza', 'NYC', 'Earth')

	
celery.utils.functional.regen(it)[source]

	Convert iterator to an object that can be consumed multiple times.

Regen takes any iterable, and if the object is an
generator it will cache the evaluated list on first access,
so that the generator can be “consumed” multiple times.

	
celery.utils.functional.uniq(it)[source]

	Return all unique elements in it, preserving order.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.utils.graph

Dependency graph implementation.

	
exception celery.utils.graph.CycleError[source]

	A cycle was detected in an acyclic graph.

	
class celery.utils.graph.DOT[source]

	Constants related to the dot format.

	
ATTR = '{name}={value}'

	

	
ATTRSEP = ', '

	

	
DIRS = {'digraph': '->', 'graph': '--'}

	

	
EDGE = '{INp}"{0}" {dir} "{1}" [{attrs}]'

	

	
HEAD = '\n{IN}{type} {id} {{\n{INp}graph [{attrs}]\n'

	

	
NODE = '{INp}"{0}" [{attrs}]'

	

	
TAIL = '{IN}}}'

	

	
class celery.utils.graph.DependencyGraph(it=None, formatter=None)[source]

	A directed acyclic graph of objects and their dependencies.

Supports a robust topological sort
to detect the order in which they must be handled.

Takes an optional iterator of (obj, dependencies)
tuples to build the graph from.

Warning

Does not support cycle detection.

	
add_arc(obj)[source]

	Add an object to the graph.

	
add_edge(A, B)[source]

	Add an edge from object A to object B.

I.e. A depends on B.

	
connect(graph)[source]

	Add nodes from another graph.

	
edges()[source]

	Return generator that yields for all edges in the graph.

	
format(obj)[source]

	

	
items()

	

	
iteritems()

	

	
repr_node(obj, level=1, fmt='{0}({1})')[source]

	

	
to_dot(fh, formatter=None)[source]

	Convert the graph to DOT format.

	Parameters

	
	fh (IO) – A file, or a file-like object to write the graph to.

	formatter (celery.utils.graph.GraphFormatter) – Custom graph
formatter to use.

	
topsort()[source]

	Sort the graph topologically.

	Returns

	of objects in the order in which they must be handled.

	Return type

	List

	
update(it)[source]

	Update graph with data from a list of (obj, deps) tuples.

	
valency_of(obj)[source]

	Return the valency (degree) of a vertex in the graph.

	
class celery.utils.graph.GraphFormatter(root=None, type=None, id=None, indent=0, inw=' ', **scheme)[source]

	Format dependency graphs.

	
FMT(fmt, *args, **kwargs)[source]

	

	
attr(name, value)[source]

	

	
attrs(d, scheme=None)[source]

	

	
draw_edge(a, b, scheme=None, attrs=None)[source]

	

	
draw_node(obj, scheme=None, attrs=None)[source]

	

	
edge(a, b, **attrs)[source]

	

	
edge_scheme = {'arrowcolor': 'black', 'arrowsize': 0.7, 'color': 'darkseagreen4'}

	

	
graph_scheme = {'bgcolor': 'mintcream'}

	

	
head(**attrs)[source]

	

	
label(obj)[source]

	

	
node(obj, **attrs)[source]

	

	
node_scheme = {'color': 'palegreen4', 'fillcolor': 'palegreen3'}

	

	
scheme = {'arrowhead': 'vee', 'fontname': 'HelveticaNeue', 'shape': 'box', 'style': 'filled'}

	

	
tail()[source]

	

	
term_scheme = {'color': 'palegreen2', 'fillcolor': 'palegreen1'}

	

	
terminal_node(obj, **attrs)[source]

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.utils.objects

Object related utilities, including introspection, etc.

	
class celery.utils.objects.Bunch(**kwargs)[source]

	Object that enables you to modify attributes.

	
class celery.utils.objects.FallbackContext(provided, fallback, *fb_args, **fb_kwargs)[source]

	Context workaround.

The built-in @contextmanager utility does not work well
when wrapping other contexts, as the traceback is wrong when
the wrapped context raises.

This solves this problem and can be used instead of @contextmanager
in this example:

@contextmanager
def connection_or_default_connection(connection=None):
 if connection:
 # user already has a connection, shouldn't close
 # after use
 yield connection
 else:
 # must've new connection, and also close the connection
 # after the block returns
 with create_new_connection() as connection:
 yield connection

This wrapper can be used instead for the above like this:

def connection_or_default_connection(connection=None):
 return FallbackContext(connection, create_new_connection)

	
class celery.utils.objects.getitem_property(keypath, doc=None)[source]

	Attribute -> dict key descriptor.

The target object must support __getitem__,
and optionally __setitem__.

Example

>>> from collections import defaultdict

>>> class Me(dict):
... deep = defaultdict(dict)
...
... foo = _getitem_property('foo')
... deep_thing = _getitem_property('deep.thing')

>>> me = Me()
>>> me.foo
None

>>> me.foo = 10
>>> me.foo
10
>>> me['foo']
10

>>> me.deep_thing = 42
>>> me.deep_thing
42
>>> me.deep
defaultdict(<type 'dict'>, {'thing': 42})

	
celery.utils.objects.mro_lookup(cls, attr, stop=None, monkey_patched=None)[source]

	Return the first node by MRO order that defines an attribute.

	Parameters

	
	cls (Any) – Child class to traverse.

	attr (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Name of attribute to find.

	stop (Set[Any]) – A set of types that if reached will stop
the search.

	monkey_patched (Sequence) – Use one of the stop classes
if the attributes module origin isn’t in this list.
Used to detect monkey patched attributes.

	Returns

	The attribute value, or None if not found.

	Return type

	Any

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.utils.term

Terminals and colors.

	
class celery.utils.term.colored(*s, **kwargs)[source]

	Terminal colored text.

Example

>>> c = colored(enabled=True)
>>> print(str(c.red('the quick '), c.blue('brown ', c.bold('fox ')),
... c.magenta(c.underline('jumps over')),
... c.yellow(' the lazy '),
... c.green('dog ')))

	
black(*s)[source]

	

	
blink(*s)[source]

	

	
blue(*s)[source]

	

	
bold(*s)[source]

	

	
bright(*s)[source]

	

	
cyan(*s)[source]

	

	
embed()[source]

	

	
green(*s)[source]

	

	
iblue(*s)[source]

	

	
icyan(*s)[source]

	

	
igreen(*s)[source]

	

	
imagenta(*s)[source]

	

	
ired(*s)[source]

	

	
iwhite(*s)[source]

	

	
iyellow(*s)[source]

	

	
magenta(*s)[source]

	

	
no_color()[source]

	

	
node(s, op)[source]

	

	
red(*s)[source]

	

	
reset(*s)[source]

	

	
reverse(*s)[source]

	

	
underline(*s)[source]

	

	
white(*s)[source]

	

	
yellow(*s)[source]

	

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.utils.time

Utilities related to dates, times, intervals, and timezones.

	
class celery.utils.time.LocalTimezone[source]

	Local time implementation.

Note

Used only when the enable_utc setting is disabled.

	
dst(dt)[source]

	datetime -> DST offset as timedelta positive east of UTC.

	
fromutc(dt)[source]

	datetime in UTC -> datetime in local time.

	
tzname(dt)[source]

	datetime -> string name of time zone.

	
utcoffset(dt)[source]

	datetime -> timedelta showing offset from UTC, negative values indicating West of UTC

	
celery.utils.time.adjust_timestamp(ts, offset, here=<function utcoffset>)[source]

	Adjust timestamp based on provided utcoffset.

	
celery.utils.time.delta_resolution(dt, delta)[source]

	Round a datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime] to the resolution of timedelta.

If the timedelta [https://docs.python.org/dev/library/datetime.html#datetime.timedelta] is in days, the
datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime] will be rounded to the nearest days,
if the timedelta [https://docs.python.org/dev/library/datetime.html#datetime.timedelta] is in hours the
datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime] will be rounded to the nearest hour,
and so on until seconds, which will just return the original
datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime].

	
class celery.utils.time.ffwd(year=None, month=None, weeks=0, weekday=None, day=None, hour=None, minute=None, second=None, microsecond=None, **kwargs)[source]

	Version of dateutil.relativedelta that only supports addition.

	
celery.utils.time.get_exponential_backoff_interval(factor, retries, maximum, full_jitter=False)[source]

	Calculate the exponential backoff wait time.

	
celery.utils.time.humanize_seconds(secs, prefix='', sep='', now='now', microseconds=False)[source]

	Show seconds in human form.

For example, 60 becomes “1 minute”, and 7200 becomes “2 hours”.

	Parameters

	
	prefix (str [https://docs.python.org/dev/library/stdtypes.html#str]) – can be used to add a preposition to the output
(e.g., ‘in’ will give ‘in 1 second’, but add nothing to ‘now’).

	now (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Literal ‘now’.

	microseconds (bool [https://docs.python.org/dev/library/functions.html#bool]) – Include microseconds.

	
celery.utils.time.is_naive(dt)[source]

	Return True if datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime] is naive.

	
celery.utils.time.localize(dt, tz)[source]

	Convert aware datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime] to another timezone.

	
celery.utils.time.make_aware(dt, tz)[source]

	Set timezone for a datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime] object.

	
celery.utils.time.maybe_iso8601(dt)[source]

	Either datetime | str -> datetime or None -> None.

	
celery.utils.time.maybe_make_aware(dt, tz=None)[source]

	Convert dt to aware datetime, do nothing if dt is already aware.

	
celery.utils.time.maybe_timedelta(delta)[source]

	Convert integer to timedelta, if argument is an integer.

	
celery.utils.time.rate(r)[source]

	Convert rate string (“100/m”, “2/h” or “0.5/s”) to seconds.

	
celery.utils.time.remaining(start, ends_in, now=None, relative=False)[source]

	Calculate the remaining time for a start date and a timedelta.

For example, “how many seconds left for 30 seconds after start?”

	Parameters

	
	start (datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime]) – Starting date.

	ends_in (timedelta [https://docs.python.org/dev/library/datetime.html#datetime.timedelta]) – The end delta.

	relative (bool [https://docs.python.org/dev/library/functions.html#bool]) – If enabled the end time will be calculated
using delta_resolution() (i.e., rounded to the
resolution of ends_in).

	now (Callable) – Function returning the current time and date.
Defaults to datetime.utcnow().

	Returns

	Remaining time.

	Return type

	timedelta [https://docs.python.org/dev/library/datetime.html#datetime.timedelta]

	
celery.utils.time.to_utc(dt)[source]

	Convert naive datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime] to UTC.

	
celery.utils.time.utcoffset(time=<module 'time' (built-in)>, localtime=<built-in function localtime>)[source]

	Return the current offset to UTC in hours.

	
celery.utils.time.weekday(name)[source]

	Return the position of a weekday: 0 - 7, where 0 is Sunday.

Example

>>> weekday('sunday'), weekday('sun'), weekday('mon')
(0, 0, 1)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.utils.iso8601

Parse ISO8601 dates.

Originally taken from pyiso8601 [https://pypi.python.org/pypi/pyiso8601/]
(https://bitbucket.org/micktwomey/pyiso8601)

Modified to match the behavior of dateutil.parser:

	raise ValueError [https://docs.python.org/dev/library/exceptions.html#ValueError] instead of ParseError

	return naive datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime] by default

	uses pytz.FixedOffset

This is the original License:

Copyright (c) 2007 Michael Twomey

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sub-license, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

	
celery.utils.iso8601.parse_iso8601(datestring)[source]

	Parse and convert ISO-8601 string to datetime.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.utils.saferepr

Streaming, truncating, non-recursive version of repr() [https://docs.python.org/dev/library/functions.html#repr].

Differences from regular repr() [https://docs.python.org/dev/library/functions.html#repr]:

	Sets are represented the Python 3 way: {1, 2} vs set([1, 2]).

	Unicode strings does not have the u' prefix, even on Python 2.

	Empty set formatted as set() (Python 3), not set([]) (Python 2).

	Longs don’t have the L suffix.

Very slow with no limits, super quick with limits.

	
celery.utils.saferepr.reprstream(stack, seen=None, maxlevels=3, level=0, isinstance=<built-in function isinstance>)[source]

	Streaming repr, yielding tokens.

	
celery.utils.saferepr.saferepr(o, maxlen=None, maxlevels=3, seen=None)[source]

	Safe version of repr() [https://docs.python.org/dev/library/functions.html#repr].

Warning

Make sure you set the maxlen argument, or it will be very slow
for recursive objects. With the maxlen set, it’s often faster
than built-in repr.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.utils.serialization

Utilities for safely pickling exceptions.

	
exception celery.utils.serialization.UnpickleableExceptionWrapper(exc_module, exc_cls_name, exc_args, text=None)[source]

	Wraps unpickleable exceptions.

	Parameters

	
	exc_module (str [https://docs.python.org/dev/library/stdtypes.html#str]) – See exc_module.

	exc_cls_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – See exc_cls_name.

	exc_args (Tuple[Any, ..]) – See exc_args.

Example

>>> def pickle_it(raising_function):
... try:
... raising_function()
... except Exception as e:
... exc = UnpickleableExceptionWrapper(
... e.__class__.__module__,
... e.__class__.__name__,
... e.args,
...)
... pickle.dumps(exc) # Works fine.

	
exc_args = None

	The arguments for the original exception.

	
exc_cls_name = None

	The name of the original exception class.

	
exc_module = None

	The module of the original exception.

	
classmethod from_exception(exc)[source]

	

	
restore()[source]

	

	
celery.utils.serialization.create_exception_cls(name, module, parent=None)[source]

	Dynamically create an exception class.

	
celery.utils.serialization.find_pickleable_exception(exc, loads=<built-in function loads>, dumps=<built-in function dumps>)[source]

	Find first pickleable exception base class.

With an exception instance, iterate over its super classes (by MRO)
and find the first super exception that’s pickleable. It does
not go below Exception [https://docs.python.org/dev/library/exceptions.html#Exception] (i.e., it skips Exception [https://docs.python.org/dev/library/exceptions.html#Exception],
BaseException [https://docs.python.org/dev/library/exceptions.html#BaseException] and object [https://docs.python.org/dev/library/functions.html#object]). If that happens
you should use UnpickleableException instead.

	Parameters

	
	exc (BaseException [https://docs.python.org/dev/library/exceptions.html#BaseException]) – An exception instance.

	loads – decoder to use.

	dumps – encoder to use

	Returns

	
	Nearest pickleable parent exception class
	(except Exception [https://docs.python.org/dev/library/exceptions.html#Exception] and parents), or if the exception is
pickleable it will return None.

	Return type

	Exception [https://docs.python.org/dev/library/exceptions.html#Exception]

	
celery.utils.serialization.get_pickleable_etype(cls, loads=<built-in function loads>, dumps=<built-in function dumps>)[source]

	Get pickleable exception type.

	
celery.utils.serialization.get_pickleable_exception(exc)[source]

	Make sure exception is pickleable.

	
celery.utils.serialization.get_pickled_exception(exc)[source]

	Reverse of get_pickleable_exception().

	
celery.utils.serialization.strtobool(term, table=None)[source]

	Convert common terms for true/false to bool.

Examples (true/false/yes/no/on/off/1/0).

	
celery.utils.serialization.subclass_exception(name, parent, module)[source]

	Create new exception class.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.utils.sysinfo

System information utilities.

	
class celery.utils.sysinfo.df(path)[source]

	Disk information.

	
property available

	

	
property capacity

	

	
stat[source]

	

	
property total_blocks

	

	
celery.utils.sysinfo.load_average()[source]

	Return system load average as a triple.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.utils.threads

Threading primitives and utilities.

	
class celery.utils.threads.Local[source]

	Local object.

	
class celery.utils.threads.LocalManager(locals=None, ident_func=None)[source]

	Local objects cannot manage themselves.

For that you need a local manager.
You can pass a local manager multiple locals or add them
later by appending them to manager.locals. Every time the manager
cleans up, it will clean up all the data left in the locals for this
context.

The ident_func parameter can be added to override the default ident
function for the wrapped locals.

	
cleanup()[source]

	Manually clean up the data in the locals for this context.

Call this at the end of the request or use make_middleware().

	
get_ident()[source]

	Return context identifier.

This is the indentifer the local objects use internally
for this context. You cannot override this method to change the
behavior but use it to link other context local objects (such as
SQLAlchemy’s scoped sessions) to the Werkzeug locals.

	
celery.utils.threads.LocalStack

	alias of celery.utils.threads._LocalStack

	
class celery.utils.threads.bgThread(name=None, **kwargs)[source]

	Background service thread.

	
body()[source]

	

	
on_crash(msg, *fmt, **kwargs)[source]

	

	
run()[source]

	Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method
invokes the callable object passed to the object’s constructor as the
target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

	
stop()[source]

	Graceful shutdown.

	
celery.utils.threads.default_socket_timeout(timeout)[source]

	Context temporarily setting the default socket timeout.

	
celery.utils.threads.get_ident() → integer

	Return a non-zero integer that uniquely identifies the current thread
amongst other threads that exist simultaneously.
This may be used to identify per-thread resources.
Even though on some platforms threads identities may appear to be
allocated consecutive numbers starting at 1, this behavior should not
be relied upon, and the number should be seen purely as a magic cookie.
A thread’s identity may be reused for another thread after it exits.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.utils.timer2

Scheduler for Python functions.

Note

This is used for the thread-based worker only,
not for amqp/redis/sqs/qpid where kombu.asynchronous.timer [https://kombu.readthedocs.io/en/master/reference/kombu.asynchronous.timer.html#module-kombu.asynchronous.timer] is used.

	
class celery.utils.timer2.Entry(fun, args=None, kwargs=None)[source]

	Schedule Entry.

	
args

	

	
cancel()[source]

	

	
canceled

	

	
property cancelled

	

	
fun

	

	
kwargs

	

	
tref

	

	
celery.utils.timer2.Schedule

	alias of kombu.asynchronous.timer.Timer [https://kombu.readthedocs.io/en/master/reference/kombu.asynchronous.timer.html#kombu.asynchronous.timer.Timer]

	
class celery.utils.timer2.Timer(schedule=None, on_error=None, on_tick=None, on_start=None, max_interval=None, **kwargs)[source]

	Timer thread.

Note

This is only used for transports not supporting AsyncIO.

	
class Entry(fun, args=None, kwargs=None)

	Schedule Entry.

	
args

	

	
cancel()

	

	
canceled

	

	
property cancelled

	

	
fun

	

	
kwargs

	

	
tref

	

	
Schedule

	alias of kombu.asynchronous.timer.Timer [https://kombu.readthedocs.io/en/master/reference/kombu.asynchronous.timer.html#kombu.asynchronous.timer.Timer]

	
call_after(*args, **kwargs)[source]

	

	
call_at(*args, **kwargs)[source]

	

	
call_repeatedly(*args, **kwargs)[source]

	

	
cancel(tref)[source]

	

	
clear()[source]

	

	
empty()[source]

	

	
ensure_started()[source]

	

	
enter(entry, eta, priority=None)[source]

	

	
enter_after(*args, **kwargs)[source]

	

	
exit_after(secs, priority=10)[source]

	

	
next()

	

	
on_tick = None

	

	
property queue

	

	
run()[source]

	Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method
invokes the callable object passed to the object’s constructor as the
target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

	
running = False

	

	
stop()[source]

	

	
celery.utils.timer2.to_timestamp(d, default_timezone=<UTC>, time=<built-in function monotonic>)[source]

	Convert datetime to timestamp.

If d’ is already a timestamp, then that will be used.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.utils.imports

Utilities related to importing modules and symbols by name.

	
exception celery.utils.imports.NotAPackage[source]

	Raised when importing a package, but it’s not a package.

	
celery.utils.imports.cwd_in_path()[source]

	Context adding the current working directory to sys.path.

	
celery.utils.imports.find_module(module, path=None, imp=None)[source]

	Version of imp.find_module() [https://docs.python.org/dev/library/imp.html#imp.find_module] supporting dots.

	
celery.utils.imports.gen_task_name(app, name, module_name)[source]

	Generate task name from name/module pair.

	
celery.utils.imports.import_from_cwd(module, imp=None, package=None)[source]

	Import module, temporarily including modules in the current directory.

Modules located in the current directory has
precedence over modules located in sys.path.

	
celery.utils.imports.instantiate(name, *args, **kwargs)[source]

	Instantiate class by name.

See also

symbol_by_name().

	
celery.utils.imports.module_file(module)[source]

	Return the correct original file name of a module.

	
celery.utils.imports.qualname(obj)[source]

	Return object name.

	
celery.utils.imports.reload_from_cwd(module, reloader=None)[source]

	Reload module (ensuring that CWD is in sys.path).

	
celery.utils.imports.symbol_by_name(name, aliases=None, imp=None, package=None, sep='.', default=None, **kwargs)[source]

	Get symbol by qualified name.

The name should be the full dot-separated path to the class:

modulename.ClassName

Example:

celery.concurrency.processes.TaskPool
 ^- class name

or using ‘:’ to separate module and symbol:

celery.concurrency.processes:TaskPool

If aliases is provided, a dict containing short name/long name
mappings, the name is looked up in the aliases first.

Examples

>>> symbol_by_name('celery.concurrency.processes.TaskPool')
<class 'celery.concurrency.processes.TaskPool'>

>>> symbol_by_name('default', {
... 'default': 'celery.concurrency.processes.TaskPool'})
<class 'celery.concurrency.processes.TaskPool'>

Does not try to look up non-string names.
>>> from celery.concurrency.processes import TaskPool
>>> symbol_by_name(TaskPool) is TaskPool
True

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.utils.log

Logging utilities.

	
class celery.utils.log.ColorFormatter(fmt=None, use_color=True)[source]

	Logging formatter that adds colors based on severity.

	
COLORS = {'black': <bound method colored.black of ''>, 'blue': <bound method colored.blue of ''>, 'cyan': <bound method colored.cyan of ''>, 'green': <bound method colored.green of ''>, 'magenta': <bound method colored.magenta of ''>, 'red': <bound method colored.red of ''>, 'white': <bound method colored.white of ''>, 'yellow': <bound method colored.yellow of ''>}

	Loglevel -> Color mapping.

	
colors = {'CRITICAL': <bound method colored.magenta of ''>, 'DEBUG': <bound method colored.blue of ''>, 'ERROR': <bound method colored.red of ''>, 'WARNING': <bound method colored.yellow of ''>}

	

	
format(record)[source]

	Format the specified record as text.

The record’s attribute dictionary is used as the operand to a
string formatting operation which yields the returned string.
Before formatting the dictionary, a couple of preparatory steps
are carried out. The message attribute of the record is computed
using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is
called to format the event time. If there is exception information,
it is formatted using formatException() and appended to the message.

	
formatException(ei)[source]

	Format and return the specified exception information as a string.

This default implementation just uses
traceback.print_exception()

	
class celery.utils.log.LoggingProxy(logger, loglevel=None)[source]

	Forward file object to logging.Logger [https://docs.python.org/dev/library/logging.html#logging.Logger] instance.

	Parameters

	
	logger (Logger [https://docs.python.org/dev/library/logging.html#logging.Logger]) – Logger instance to forward to.

	loglevel (int [https://docs.python.org/dev/library/functions.html#int], str [https://docs.python.org/dev/library/stdtypes.html#str]) – Log level to use when logging messages.

	
close()[source]

	

	
closed = False

	

	
flush()[source]

	

	
isatty()[source]

	Here for file support.

	
loglevel = 40

	

	
mode = 'w'

	

	
name = None

	

	
write(data)[source]

	Write message to logging object.

	
writelines(sequence)[source]

	Write list of strings to file.

The sequence can be any iterable object producing strings.
This is equivalent to calling write() for each string.

	
celery.utils.log.get_logger(name)[source]

	Get logger by name.

	
celery.utils.log.get_multiprocessing_logger()[source]

	Return the multiprocessing logger.

	
celery.utils.log.get_task_logger(name)[source]

	Get logger for task module by name.

	
celery.utils.log.in_sighandler()[source]

	Context that records that we are in a signal handler.

	
celery.utils.log.mlevel(level)[source]

	Convert level name/int to log level.

	
celery.utils.log.reset_multiprocessing_logger()[source]

	Reset multiprocessing logging setup.

	
celery.utils.log.set_in_sighandler(value)[source]

	Set flag signifiying that we’re inside a signal handler.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.utils.text

Text formatting utilities.

	
celery.utils.text.abbr(S, max, ellipsis='...')[source]

	Abbreviate word.

	
celery.utils.text.abbrtask(S, max)[source]

	Abbreviate task name.

	
celery.utils.text.dedent(s, n=4, sep='\n')[source]

	Remove identation.

	
celery.utils.text.dedent_initial(s, n=4)[source]

	Remove identation from first line of text.

	
celery.utils.text.ensure_newlines(s, n=2)

	Ensure text s ends in separator sep’.

	
celery.utils.text.ensure_sep(sep, s, n=2)[source]

	Ensure text s ends in separator sep’.

	
celery.utils.text.fill_paragraphs(s, width, sep='\n')[source]

	Fill paragraphs with newlines (or custom separator).

	
celery.utils.text.indent(t, indent=0, sep='\n')[source]

	Indent text.

	
celery.utils.text.join(l, sep='\n')[source]

	Concatenate list of strings.

	
celery.utils.text.pluralize(n, text, suffix='s')[source]

	Pluralize term when n is greater than one.

	
celery.utils.text.pretty(value, width=80, nl_width=80, sep='\n', **kw)[source]

	Format value for printing to console.

	
celery.utils.text.simple_format(s, keys, pattern=re.compile('%(\\w)'), expand='\\1')[source]

	Format string, expanding abbreviations in keys’.

	
celery.utils.text.str_to_list(s)[source]

	Convert string to list.

	
celery.utils.text.truncate(s, maxlen=128, suffix='...')[source]

	Truncate text to a maximum number of characters.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.utils.dispatch

Observer pattern.

	
class celery.utils.dispatch.Signal(providing_args=None, use_caching=False, name=None)[source]

	Create new signal.

	Keyword Arguments

	
	providing_args (List) – A list of the arguments this signal can pass
along in a send() call.

	use_caching (bool [https://docs.python.org/dev/library/functions.html#bool]) – Enable receiver cache.

	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Name of signal, used for debugging purposes.

	
connect(*args, **kwargs)[source]

	Connect receiver to sender for signal.

	Parameters

	
	receiver (Callable) – A function or an instance method which is to
receive signals. Receivers must be hashable objects.

if weak is True, then receiver must be
weak-referenceable.

Receivers must be able to accept keyword arguments.

If receivers have a dispatch_uid attribute, the receiver will
not be added if another receiver already exists with that
dispatch_uid.

	sender (Any) – The sender to which the receiver should respond.
Must either be a Python object, or None to
receive events from any sender.

	weak (bool [https://docs.python.org/dev/library/functions.html#bool]) – Whether to use weak references to the receiver.
By default, the module will attempt to use weak references to
the receiver objects. If this parameter is false, then strong
references will be used.

	dispatch_uid (Hashable) – An identifier used to uniquely identify a
particular instance of a receiver. This will usually be a
string, though it may be anything hashable.

	retry (bool [https://docs.python.org/dev/library/functions.html#bool]) – If the signal receiver raises an exception
(e.g. ConnectionError), the receiver will be retried until it
runs successfully. A strong ref to the receiver will be stored
and the weak option will be ignored.

	
disconnect(receiver=None, sender=None, weak=None, dispatch_uid=None)[source]

	Disconnect receiver from sender for signal.

If weak references are used, disconnect needn’t be called.
The receiver will be removed from dispatch automatically.

	Parameters

	
	receiver (Callable) – The registered receiver to disconnect.
May be none if dispatch_uid is specified.

	sender (Any) – The registered sender to disconnect.

	weak (bool [https://docs.python.org/dev/library/functions.html#bool]) – The weakref state to disconnect.

	dispatch_uid (Hashable) – The unique identifier of the receiver
to disconnect.

	
has_listeners(sender=None)[source]

	

	
receivers = None

	Holds a dictionary of
{receiverkey (id): weakref(receiver)} mappings.

	
send(sender, **named)[source]

	Send signal from sender to all connected receivers.

If any receiver raises an error, the error propagates back through
send, terminating the dispatch loop, so it is quite possible to not
have all receivers called if a raises an error.

	Parameters

	
	sender (Any) – The sender of the signal.
Either a specific object or None.

	**named (Any) – Named arguments which will be passed to receivers.

	Returns

	of tuple pairs: [(receiver, response), …].

	Return type

	List

	
send_robust(sender, **named)

	Send signal from sender to all connected receivers.

If any receiver raises an error, the error propagates back through
send, terminating the dispatch loop, so it is quite possible to not
have all receivers called if a raises an error.

	Parameters

	
	sender (Any) – The sender of the signal.
Either a specific object or None.

	**named (Any) – Named arguments which will be passed to receivers.

	Returns

	of tuple pairs: [(receiver, response), …].

	Return type

	List

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.utils.dispatch.signal

Implementation of the Observer pattern.

	
class celery.utils.dispatch.signal.Signal(providing_args=None, use_caching=False, name=None)[source]

	Create new signal.

	Keyword Arguments

	
	providing_args (List) – A list of the arguments this signal can pass
along in a send() call.

	use_caching (bool [https://docs.python.org/dev/library/functions.html#bool]) – Enable receiver cache.

	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Name of signal, used for debugging purposes.

	
connect(*args, **kwargs)[source]

	Connect receiver to sender for signal.

	Parameters

	
	receiver (Callable) – A function or an instance method which is to
receive signals. Receivers must be hashable objects.

if weak is True, then receiver must be
weak-referenceable.

Receivers must be able to accept keyword arguments.

If receivers have a dispatch_uid attribute, the receiver will
not be added if another receiver already exists with that
dispatch_uid.

	sender (Any) – The sender to which the receiver should respond.
Must either be a Python object, or None to
receive events from any sender.

	weak (bool [https://docs.python.org/dev/library/functions.html#bool]) – Whether to use weak references to the receiver.
By default, the module will attempt to use weak references to
the receiver objects. If this parameter is false, then strong
references will be used.

	dispatch_uid (Hashable) – An identifier used to uniquely identify a
particular instance of a receiver. This will usually be a
string, though it may be anything hashable.

	retry (bool [https://docs.python.org/dev/library/functions.html#bool]) – If the signal receiver raises an exception
(e.g. ConnectionError), the receiver will be retried until it
runs successfully. A strong ref to the receiver will be stored
and the weak option will be ignored.

	
disconnect(receiver=None, sender=None, weak=None, dispatch_uid=None)[source]

	Disconnect receiver from sender for signal.

If weak references are used, disconnect needn’t be called.
The receiver will be removed from dispatch automatically.

	Parameters

	
	receiver (Callable) – The registered receiver to disconnect.
May be none if dispatch_uid is specified.

	sender (Any) – The registered sender to disconnect.

	weak (bool [https://docs.python.org/dev/library/functions.html#bool]) – The weakref state to disconnect.

	dispatch_uid (Hashable) – The unique identifier of the receiver
to disconnect.

	
has_listeners(sender=None)[source]

	

	
receivers = None

	Holds a dictionary of
{receiverkey (id): weakref(receiver)} mappings.

	
send(sender, **named)[source]

	Send signal from sender to all connected receivers.

If any receiver raises an error, the error propagates back through
send, terminating the dispatch loop, so it is quite possible to not
have all receivers called if a raises an error.

	Parameters

	
	sender (Any) – The sender of the signal.
Either a specific object or None.

	**named (Any) – Named arguments which will be passed to receivers.

	Returns

	of tuple pairs: [(receiver, response), …].

	Return type

	List

	
send_robust(sender, **named)

	Send signal from sender to all connected receivers.

If any receiver raises an error, the error propagates back through
send, terminating the dispatch loop, so it is quite possible to not
have all receivers called if a raises an error.

	Parameters

	
	sender (Any) – The sender of the signal.
Either a specific object or None.

	**named (Any) – Named arguments which will be passed to receivers.

	Returns

	of tuple pairs: [(receiver, response), …].

	Return type

	List

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery.platforms

Platforms.

Utilities dealing with platform specifics: signals, daemonization,
users, groups, and so on.

	
class celery.platforms.DaemonContext(pidfile=None, workdir=None, umask=None, fake=False, after_chdir=None, after_forkers=True, **kwargs)[source]

	Context manager daemonizing the process.

	
close(*args)[source]

	

	
open()[source]

	

	
redirect_to_null(fd)[source]

	

	
exception celery.platforms.LockFailed[source]

	Raised if a PID lock can’t be acquired.

	
class celery.platforms.Pidfile(path)[source]

	Pidfile.

This is the type returned by create_pidlock().

See also

Best practice is to not use this directly but rather use
the create_pidlock() function instead:
more convenient and also removes stale pidfiles (when
the process holding the lock is no longer running).

	
acquire()[source]

	Acquire lock.

	
is_locked()[source]

	Return true if the pid lock exists.

	
path = None

	Path to the pid lock file.

	
read_pid()[source]

	Read and return the current pid.

	
release(*args)[source]

	Release lock.

	
remove()[source]

	Remove the lock.

	
remove_if_stale()[source]

	Remove the lock if the process isn’t running.

I.e. process does not respons to signal.

	
write_pid()[source]

	

	
celery.platforms.close_open_fds(keep=None)[source]

	

	
celery.platforms.create_pidlock(pidfile)[source]

	Create and verify pidfile.

If the pidfile already exists the program exits with an error message,
however if the process it refers to isn’t running anymore, the pidfile
is deleted and the program continues.

This function will automatically install an atexit [https://docs.python.org/dev/library/atexit.html#module-atexit] handler
to release the lock at exit, you can skip this by calling
_create_pidlock() instead.

	Returns

	used to manage the lock.

	Return type

	Pidfile

Example

>>> pidlock = create_pidlock('/var/run/app.pid')

	
celery.platforms.detached(logfile=None, pidfile=None, uid=None, gid=None, umask=0, workdir=None, fake=False, **opts)[source]

	Detach the current process in the background (daemonize).

	Parameters

	
	logfile (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional log file.
The ability to write to this file
will be verified before the process is detached.

	pidfile (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional pid file.
The pidfile won’t be created,
as this is the responsibility of the child. But the process will
exit if the pid lock exists and the pid written is still running.

	uid (int [https://docs.python.org/dev/library/functions.html#int], str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional user id or user name to change
effective privileges to.

	gid (int [https://docs.python.org/dev/library/functions.html#int], str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional group id or group name to change
effective privileges to.

	umask (str [https://docs.python.org/dev/library/stdtypes.html#str], int [https://docs.python.org/dev/library/functions.html#int]) – Optional umask that’ll be effective in
the child process.

	workdir (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional new working directory.

	fake (bool [https://docs.python.org/dev/library/functions.html#bool]) – Don’t actually detach, intended for debugging purposes.

	**opts (Any) – Ignored.

Example

>>> from celery.platforms import detached, create_pidlock
>>> with detached(
... logfile='/var/log/app.log',
... pidfile='/var/run/app.pid',
... uid='nobody'):
... # Now in detached child process with effective user set to nobody,
... # and we know that our logfile can be written to, and that
... # the pidfile isn't locked.
... pidlock = create_pidlock('/var/run/app.pid')
...
... # Run the program
... program.run(logfile='/var/log/app.log')

	
celery.platforms.fd_by_path(paths)[source]

	Return a list of file descriptors.

This method returns list of file descriptors corresponding to
file paths passed in paths variable.

	Parameters

	paths – List[str]: List of file paths.

	Returns

	List of file descriptors.

	Return type

	List[int [https://docs.python.org/dev/library/functions.html#int]]

Example

>>> keep = fd_by_path(['/dev/urandom', '/my/precious/'])

	
celery.platforms.get_errno_name(n)[source]

	Get errno for string (e.g., ENOENT).

	
celery.platforms.get_fdmax(default=None)[source]

	Return the maximum number of open file descriptors
on this system.

	Keyword Arguments

	default – Value returned if there’s no file
descriptor limit.

	
celery.platforms.ignore_errno(*errnos, **kwargs)[source]

	Context manager to ignore specific POSIX error codes.

Takes a list of error codes to ignore: this can be either
the name of the code, or the code integer itself:

>>> with ignore_errno('ENOENT'):
... with open('foo', 'r') as fh:
... return fh.read()

>>> with ignore_errno(errno.ENOENT, errno.EPERM):
... pass

	Parameters

	types (Tuple[Exception [https://docs.python.org/dev/library/exceptions.html#Exception]]) – A tuple of exceptions to ignore
(when the errno matches). Defaults to Exception [https://docs.python.org/dev/library/exceptions.html#Exception].

	
celery.platforms.initgroups(uid, gid)[source]

	Init process group permissions.

Compat version of os.initgroups() [https://docs.python.org/dev/library/os.html#os.initgroups] that was first
added to Python 2.7.

	
celery.platforms.isatty(fh)[source]

	Return true if the process has a controlling terminal.

	
celery.platforms.maybe_drop_privileges(uid=None, gid=None)[source]

	Change process privileges to new user/group.

If UID and GID is specified, the real user/group is changed.

If only UID is specified, the real user is changed, and the group is
changed to the users primary group.

If only GID is specified, only the group is changed.

	
celery.platforms.parse_gid(gid)[source]

	Parse group id.

	Parameters

	gid (str [https://docs.python.org/dev/library/stdtypes.html#str], int [https://docs.python.org/dev/library/functions.html#int]) – Actual gid, or the name of a group.

	Returns

	The actual gid of the group.

	Return type

	int [https://docs.python.org/dev/library/functions.html#int]

	
celery.platforms.parse_uid(uid)[source]

	Parse user id.

	Parameters

	uid (str [https://docs.python.org/dev/library/stdtypes.html#str], int [https://docs.python.org/dev/library/functions.html#int]) – Actual uid, or the username of a user.

	Returns

	The actual uid.

	Return type

	int [https://docs.python.org/dev/library/functions.html#int]

	
celery.platforms.pyimplementation()[source]

	Return string identifying the current Python implementation.

	
celery.platforms.set_mp_process_title(progname, info=None, hostname=None)[source]

	Set the ps name from the current process name.

Only works if setproctitle [https://pypi.python.org/pypi/setproctitle/] is installed.

	
celery.platforms.set_process_title(progname, info=None)[source]

	Set the ps name for the currently running process.

Only works if setproctitle [https://pypi.python.org/pypi/setproctitle/] is installed.

	
celery.platforms.setgid(gid)[source]

	Version of os.setgid() [https://docs.python.org/dev/library/os.html#os.setgid] supporting group names.

	
celery.platforms.setgroups(groups)[source]

	Set active groups from a list of group ids.

	
celery.platforms.setuid(uid)[source]

	Version of os.setuid() [https://docs.python.org/dev/library/os.html#os.setuid] supporting usernames.

	
celery.platforms.signal_name(signum)[source]

	Return name of signal from signal number.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

celery._state

Internal state.

This is an internal module containing thread state
like the current_app, and current_task.

This module shouldn’t be used directly.

	
celery._state.connect_on_app_finalize(callback)[source]

	Connect callback to be called when any app is finalized.

	
celery._state.current_app = <Celery default>

	Proxy to current app.

	
celery._state.current_task = None

	Proxy to current task.

	
celery._state.get_current_app()[source]

	

	
celery._state.get_current_task()[source]

	Currently executing task.

	
celery._state.get_current_worker_task()[source]

	Currently executing task, that was applied by the worker.

This is used to differentiate between the actual task
executed by the worker and any task that was called within
a task (using task.__call__ or task.apply)

	
celery._state.set_default_app(app)[source]

	Set default app.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

History

This section contains historical change histories, for the latest
version please visit Change history.

	Release

	5.0

	Date

	Oct 18, 2020

	What’s new in Celery 4.4 (Cliffs)
	Preface

	Upgrading from Celery 4.3

	Important Notes

	News

	Change history
	4.4.7

	4.4.6

	4.4.5

	4.4.4

	4.4.3

	4.4.0

	4.4.0rc5

	4.4.0rc4

	4.4.0rc3

	4.4.0rc2

	4.4.0rc1

	4.3.0

	4.3.0 RC2

	4.3.0 RC1

	What’s new in Celery 4.3 (rhubarb)
	Preface

	Upgrading from Celery 4.2

	Important Notes

	News

	Change history
	4.3.1

	4.3.0

	4.3.0 RC2

	4.3.0 RC1

	What’s new in Celery 4.2 (windowlicker)
	Preface

	Important Notes

	News

	Change history
	4.2.1

	4.2.0

	What’s new in Celery 4.1 (latentcall)
	Preface

	Important Notes

	News

	Change history
	4.1.1

	4.1.0

	What’s new in Celery 4.0 (latentcall)
	Preface

	Upgrading from Celery 3.1

	Important Notes

	News

	Reorganization, Deprecations, and Removals

	Deprecation Time-line Changes

	Change history
	4.0.2

	4.0.1

	4.0.0

	4.0.0rc7

	What’s new in Celery 3.1 (Cipater)
	Preface

	Important Notes

	News

	Scheduled Removals

	Deprecation Time-line Changes

	Fixes

	Internal changes

	Change history
	3.1.26

	3.1.25

	3.1.24

	3.1.23

	3.1.22

	3.1.21

	3.1.20

	3.1.19

	3.1.18

	3.1.17

	3.1.16

	3.1.15

	3.1.14

	3.1.13

	3.1.12

	3.1.11

	3.1.10

	3.1.9

	3.1.8

	3.1.7

	3.1.6

	3.1.5

	3.1.4

	3.1.3

	3.1.2

	3.1.1

	3.1.0

	What’s new in Celery 3.0 (Chiastic Slide)
	Highlights

	Important Notes

	News

	Experimental

	Unscheduled Removals

	Deprecation Time-line Changes

	Fixes

	Change history for Celery 3.0
	3.0.24

	3.0.23

	3.0.22

	3.0.21

	3.0.20

	3.0.19

	3.0.18

	3.0.17

	3.0.16

	3.0.15

	3.0.14

	3.0.13

	3.0.12

	3.0.11

	3.0.10

	3.0.9

	3.0.8

	3.0.7

	3.0.6

	3.0.5

	3.0.4

	3.0.3

	3.0.2

	3.0.1

	3.0.0 (Chiastic Slide)

	What’s new in Celery 2.5
	Important Notes

	Optimization

	Deprecation Time-line Changes

	News

	Fixes

	Change history for Celery 2.5
	2.5.5

	2.5.3

	2.5.2

	2.5.1

	2.5.0

	Change history for Celery 2.4
	2.4.5

	2.4.4

	2.4.3

	2.4.2

	2.4.1

	2.4.0

	Change history for Celery 2.3
	2.3.4

	2.3.3

	2.3.2

	2.3.1

	2.3.0

	Change history for Celery 2.2
	2.2.8

	2.2.7

	2.2.6

	2.2.5

	2.2.4

	2.2.3

	2.2.2

	2.2.1

	2.2.0

	Change history for Celery 2.1
	2.1.4

	2.1.3

	2.1.2

	2.1.1

	2.1.0

	Change history for Celery 2.0
	2.0.3

	2.0.2

	2.0.1

	2.0.0

	Change history for Celery 1.0
	1.0.6

	1.0.5

	1.0.4

	1.0.3

	1.0.2

	1.0.1

	1.0.0

	0.8.4

	0.8.3

	0.8.2

	0.8.1

	0.8.0

	0.6.0

	0.4.1

	0.4.0

	0.3.20

	0.3.7

	0.3.3

	0.3.2

	0.3.1

	0.3.0

	0.2.0

	0.2.0-pre3

	0.2.0-pre2

	0.2.0-pre1

	0.1.15

	0.1.14

	0.1.13

	0.1.12

	0.1.11

	0.1.10

	0.1.8

	0.1.7

	0.1.6

	0.1.0

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

What’s new in Celery 4.4 (Cliffs)

	Author

	Asif Saif Uddin (auvipy at gmail.com)

Change history

What’s new documents describe the changes in major versions,
we also have a Change history that lists the changes in bugfix
releases (0.0.x), while older series are archived under the History
section.

Celery is a simple, flexible, and reliable distributed programming framework
to process vast amounts of messages, while providing operations with
the tools required to maintain a distributed system with python.

It’s a task queue with focus on real-time processing, while also
supporting task scheduling.

Celery has a large and diverse community of users and contributors,
you should come join us on IRC
or our mailing-list.

To read more about Celery you should go read the introduction.

While this version is backward compatible with previous versions
it’s important that you read the following section.

This version is officially supported on CPython 2.7, 3.5, 3.6, 3.7 & 3.8
and is also supported on PyPy2 & PyPy3.

Table of Contents

Make sure you read the important notes before upgrading to this version.

	Preface

	Wall of Contributors

	Upgrading from Celery 4.3

	Important Notes

	Supported Python Versions

	Dropped support for Python 3.4

	Kombu

	Billiard

	Redis Message Broker

	Redis Result Backend

	DynamoDB Result Backend

	S3 Results Backend

	SQS Message Broker

	Configuration

	News

	Task Pools

	Result Backends

	Tasks

	Canvas

Preface

The 4.4.0 release continues to improve our efforts to provide you with
the best task execution platform for Python.

This release has been codenamed Cliffs [https://www.youtube.com/watch?v=i524g6JMkwI]
which is one of my favorite tracks.

This release focuses on mostly bug fixes and usability improvement for developers.
Many long standing bugs, usability issues, documentation issues & minor ehancement
issues were squashed which improve the overall developers experience.

Celery 4.4 is the first release to support Python 3.8 & pypy36-7.2.

As we now begin to work on Celery 5, the next generation of our task execution
platform, at least another 4.x is expected before Celery 5 stable release & will
get support for at least 1 years depending on community demand and support.

We have also focused on reducing contribution friction and updated the contributing
tools.

— Asif Saif Uddin

Wall of Contributors

Note

This wall was automatically generated from git history,
so sadly it doesn’t not include the people who help with more important
things like answering mailing-list questions.

Upgrading from Celery 4.3

Please read the important notes below as there are several breaking changes.

Important Notes

Supported Python Versions

The supported Python Versions are:

	CPython 2.7

	CPython 3.5

	CPython 3.6

	CPython 3.7

	CPython 3.8

	PyPy2.7 7.2 (pypy2)

	PyPy3.5 7.1 (pypy3)

	PyPy3.6 7.2 (pypy3)

Dropped support for Python 3.4

Celery now requires either Python 2.7 or Python 3.5 and above.

Python 3.4 has reached EOL in March 2019.
In order to focus our efforts we have dropped support for Python 3.4 in
this version.

If you still require to run Celery using Python 3.4 you can still use
Celery 4.3.
However we encourage you to upgrade to a supported Python version since
no further security patches will be applied for Python 3.4.

Kombu

Starting from this release, the minimum required version is Kombu 4.6.6.

Billiard

Starting from this release, the minimum required version is Billiard 3.6.1.

Redis Message Broker

Due to multiple bugs in earlier versions of redis-py that were causing
issues for Celery, we were forced to bump the minimum required version to 3.3.0.

Redis Result Backend

Due to multiple bugs in earlier versions of redis-py that were causing
issues for Celery, we were forced to bump the minimum required version to 3.3.0.

DynamoDB Result Backend

The DynamoDB result backend has gained TTL support.
As a result the minimum boto3 version was bumped to 1.9.178 which is the first
version to support TTL for DynamoDB.

S3 Results Backend

To keep up with the current AWS API changes the minimum boto3 version was
bumped to 1.9.125.

SQS Message Broker

To keep up with the current AWS API changes the minimum boto3 version was
bumped to 1.9.125.

Configuration

CELERY_TASK_RESULT_EXPIRES has been replaced with CELERY_RESULT_EXPIRES.

News

Task Pools

Threaded Tasks Pool

We reintroduced a threaded task pool using concurrent.futures.ThreadPoolExecutor.

The previous threaded task pool was experimental.
In addition it was based on the threadpool [https://pypi.org/project/threadpool/]
package which is obsolete.

You can use the new threaded task pool by setting worker_pool to
‘threads` or by passing –pool threads to the celery worker command.

Result Backends

ElasticSearch Results Backend

HTTP Basic Authentication Support

You can now use HTTP Basic Authentication when using the ElasticSearch result
backend by providing the username and the password in the URI.

Previously, they were ignored and only unauthenticated requests were issued.

MongoDB Results Backend

Support for Authentication Source and Authentication Method

You can now specify the authSource and authMethod for the MongoDB
using the URI options. The following URI does just that:

mongodb://user:password@example.com/?authSource=the_database&authMechanism=SCRAM-SHA-256

Refer to the documentation [https://api.mongodb.com/python/current/examples/authentication.html]
for details about the various options.

Tasks

Task class definitions can now have retry attributes

You can now use autoretry_for, retry_kwargs, retry_backoff, retry_backoff_max and retry_jitter in class-based tasks:

class BaseTaskWithRetry(Task):
 autoretry_for = (TypeError,)
 retry_kwargs = {'max_retries': 5}
 retry_backoff = True
 retry_backoff_max = 700
 retry_jitter = False

Canvas

Replacing Tasks Eagerly

You can now call self.replace() on tasks which are run eagerly.
They will work exactly the same as tasks which are run asynchronously.

Chaining Groups

Chaining groups no longer result in a single group.

The following used to join the two groups into one. Now they correctly execute
one after another:

>>> result = group(add.si(1, 2), add.si(1, 2)) | group(tsum.s(), tsum.s()).delay()
>>> result.get()
[6, 6]

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Change history

This document contains change notes for bugfix & new features
in the 4.4.x series, please see What’s new in Celery 4.4 (Cliffs) for
an overview of what’s new in Celery 4.4.

4.4.7

	release-date

	2020-07-31 11.45 P.M UTC+6:00

	release-by

	Asif Saif Uddin

	Add task_received, task_rejected and task_unknown to signals module.

	[ES backend] add 401 as safe for retry.

	treat internal errors as failure.

	Remove redis fanout caveats.

	FIX: -A and –args should behave the same. (#6223)

	Class-based tasks autoretry (#6233)

	Preserve order of group results with Redis result backend (#6218)

	Replace future with celery.five Fixes #6250, and use raise_with_context instead of reraise

	Fix REMAP_SIGTERM=SIGQUIT not working

	(Fixes#6258) MongoDB: fix for serialization issue (#6259)

	Make use of ordered sets in Redis opt-in

	Test, CI, Docker & style and minor doc impovements.

4.4.6

	release-date

	2020-06-24 2.40 P.M UTC+6:00

	release-by

	Asif Saif Uddin

	Remove autoscale force_scale methods (#6085).

	Fix autoscale test

	Pass ping destination to request

	chord: merge init options with run options

	Put back KeyValueStoreBackend.set method without state

	Added –range-prefix option to celery multi (#6180)

	Added as_list function to AsyncResult class (#6179)

	Fix CassandraBackend error in threads or gevent pool (#6147)

	Kombu 4.6.11

4.4.5

	release-date

	2020-06-08 12.15 P.M UTC+6:00

	release-by

	Asif Saif Uddin

	Add missing dependency on future (#6146).

	ElasticSearch: Retry index if document was deleted between index

	fix windows build

	Customize the retry interval of chord_unlock tasks

	fix multi tests in local

4.4.4

	release-date

	2020-06-03 11.00 A.M UTC+6:00

	release-by

	Asif Saif Uddin

	Fix autoretry_for with explicit retry (#6138).

	Kombu 4.6.10

	Use Django DB max age connection setting (fixes #4116).

	Add retry on recoverable exception for the backend (#6122).

	Fix random distribution of jitter for exponential backoff.

	ElasticSearch: add setting to save meta as json.

	fix #6136. celery 4.4.3 always trying create /var/run/celery directory.

	Add task_internal_error signal (#6049).

4.4.3

	release-date

	2020-06-01 4.00 P.M UTC+6:00

	release-by

	Asif Saif Uddin

	Fix backend utf-8 encoding in s3 backend .

	Kombu 4.6.9

	Task class definitions can have retry attributes (#5869)

	Upgraded pycurl to the latest version that supports wheel.

	Add uptime to the stats inspect command

	Fixing issue #6019: unable to use mysql SSL parameters when getting

	Clean TraceBack to reduce memory leaks for exception task (#6024)

	exceptions: NotRegistered: fix up language

	Give up sending a worker-offline message if transport is not connected

	Add Task to __all__ in celery.__init__.py

	Ensure a single chain object in a chain does not raise MaximumRecursion

	Fix autoscale when prefetch_multiplier is 1

	Allow start_worker to function without ping task

	Update celeryd.conf

	Fix correctly handle configuring the serializer for always_eager mode.

	Remove doubling of prefetch_count increase when prefetch_multiplier

	Fix eager function not returning result after retries

	return retry result if not throw and is_eager

	Always requeue while worker lost regardless of the redelivered flag

	Allow relative paths in the filesystem backend (#6070)

	[Fixed Issue #6017]

	Avoid race condition due to task duplication.

	Exceptions must be old-style classes or derived from BaseException

	Fix windows build (#6104)

	Add encode to meta task in base.py (#5894)

	Update time.py to solve the microsecond issues (#5199)

	Change backend _ensure_not_eager error to warning

	Add priority support for ‘celery.chord_unlock’ task (#5766)

	Change eager retry behaviour

	Avoid race condition in elasticsearch backend

	backends base get_many pass READY_STATES arg

	Add integration tests for Elasticsearch and fix _update

	feat(backend): Adds cleanup to ArangoDB backend

	remove jython check

	fix filesystem backend cannot not be serialized by picked

4.4.0

	release-date

	2019-12-16 9.45 A.M UTC+6:00

	release-by

	Asif Saif Uddin

	This version is officially supported on CPython 2.7,
3.5, 3.6, 3.7 & 3.8 and is also supported on PyPy2 & PyPy3.

	Kombu 4.6.7

	Task class definitions can have retry attributes (#5869)

4.4.0rc5

	release-date

	2019-12-07 21.05 A.M UTC+6:00

	release-by

	Asif Saif Uddin

	Kombu 4.6.7

	Events bootstep disabled if no events (#5807)

	SQS - Reject on failure (#5843)

	Add a concurrency model with ThreadPoolExecutor (#5099)

	Add auto expiry for DynamoDB backend (#5805)

	Store extending result in all backends (#5661)

	Fix a race condition when publishing a very large chord header (#5850)

	Improve docs and test matrix

4.4.0rc4

	release-date

	2019-11-11 00.45 A.M UTC+6:00

	release-by

	Asif Saif Uddin

	Kombu 4.6.6

	Py-AMQP 2.5.2

	Python 3.8

	Numerious bug fixes

	PyPy 7.2

4.4.0rc3

	release-date

	2019-08-14 23.00 P.M UTC+6:00

	release-by

	Asif Saif Uddin

	Kombu 4.6.4

	Billiard 3.6.1

	Py-AMQP 2.5.1

	Avoid serializing datetime (#5606)

	Fix: (group() | group()) not equals single group (#5574)

	Revert “Broker connection uses the heartbeat setting from app config.

	Additional file descriptor safety checks.

	fixed call for null args (#5631)

	Added generic path for cache backend.

	Fix Nested group(chain(group)) fails (#5638)

	Use self.run() when overriding __call__ (#5652)

	Fix termination of asyncloop (#5671)

	Fix migrate task to work with both v1 and v2 of the message protocol.

	Updating task_routes config during runtime now have effect.

4.4.0rc2

	release-date

	2019-06-15 4:00 A.M UTC+6:00

	release-by

	Asif Saif Uddin

	Many bugs and regressions fixed.

	Kombu 4.6.3

4.4.0rc1

	release-date

	2019-06-06 1:00 P.M UTC+6:00

	release-by

	Asif Saif Uddin

	Python 3.4 drop

	Kombu 4.6.1

	Replace deprecated PyMongo methods usage (#5443)

	Pass task request when calling update_state (#5474)

	Fix bug in remaining time calculation in case of DST time change (#5411)

	Fix missing task name when requesting extended result (#5439)

	Fix collections import issue on Python 2.7 (#5428)

	handle AttributeError in base backend exception deserializer (#5435)

	Make AsynPool’s proc_alive_timeout configurable (#5476)

	AMQP Support for extended result (#5495)

	Fix SQL Alchemy results backend to work with extended result (#5498)

	Fix restoring of exceptions with required param (#5500)

	Django: Re-raise exception if ImportError not caused by missing tasks
module (#5211)

	Django: fixed a regression putting DB connections in invalid state when
CONN_MAX_AGE != 0 (#5515)

	Fixed OSError leading to lost connection to broker (#4457)

	Fixed an issue with inspect API unable get details of Request

	Fix mogodb backend authentication (#5527)

	Change column type for Extended Task Meta args/kwargs to LargeBinary

	Handle http_auth in Elasticsearch backend results (#5545)

	Fix task serializer being ignored with task_always_eager=True (#5549)

	Fix task.replace to work in .apply() as well as `.apply_async() (#5540)

	Fix sending of worker_process_init signal for solo worker (#5562)

	Fix exception message upacking (#5565)

	Add delay parameter function to beat_schedule (#5558)

	Multiple documentation updates

4.3.0

	release-date

	2019-03-31 7:00 P.M UTC+3:00

	release-by

	Omer Katz

	Added support for broadcasting using a regular expression pattern
or a glob pattern to multiple Pidboxes.

This allows you to inspect or ping multiple workers at once.

Contributed by Dmitry Malinovsky & Jason Held

	Added support for PEP 420 namespace packages.

This allows you to load tasks from namespace packages.

Contributed by Colin Watson

	Added acks_on_failure_or_timeout as a setting instead of
a task only option.

This was missing from the original PR but now added for completeness.

Contributed by Omer Katz

	Added the task_received signal.

Contributed by Omer Katz

	Fixed a crash of our CLI that occurred for everyone using Python < 3.6.

The crash was introduced in acd6025 [https://github.com/celery/celery/commit/acd6025b7dc4db112a31020686fc8b15e1722c67]
by using the ModuleNotFoundError [https://docs.python.org/dev/library/exceptions.html#ModuleNotFoundError] exception which was introduced
in Python 3.6.

Contributed by Omer Katz

	Fixed a crash that occurred when using the Redis result backend
while the result_expires is set to None.

Contributed by Toni Ruža & Omer Katz

	Added support the DNS seedlist connection format [https://docs.mongodb.com/manual/reference/connection-string/#dns-seedlist-connection-format]
for the MongoDB result backend.

This requires the dnspython package which will be installed by default
when installing the dependencies for the MongoDB result backend.

Contributed by George Psarakis

	Bump the minimum eventlet version to 0.24.1.

Contributed by George Psarakis

	Replace the msgpack-python package with msgpack.

We’re no longer using the deprecated package.
See our important notes for this release
for further details on how to upgrade.

Contributed by Daniel Hahler

	Allow scheduling error handlers which are not registered tasks in the current
worker.

These kind of error handlers are now possible:

from celery import Signature
Signature(
 'bar', args=['foo'],
 link_error=Signature('msg.err', queue='msg')
).apply_async()

	Additional fixes and enhancements to the SSL support of
the Redis broker and result backend.

Contributed by Jeremy Cohen

Code Cleanups, Test Coverage & CI Improvements by:

	Omer Katz

	Florian Chardin

Documentation Fixes by:

	Omer Katz

	Samuel Huang

	Amir Hossein Saeid Mehr

	Dmytro Litvinov

4.3.0 RC2

	release-date

	2019-03-03 9:30 P.M UTC+2:00

	release-by

	Omer Katz

	Filesystem Backend: Added meaningful error messages for filesystem backend.

Contributed by Lars Rinn

	New Result Backend: Added the ArangoDB backend.

Contributed by Dilip Vamsi Moturi

	Django: Prepend current working directory instead of appending so that
the project directory will have precedence over system modules as expected.

Contributed by Antonin Delpeuch

	Bump minimum py-redis version to 3.2.0.

Due to multiple bugs in earlier versions of py-redis that were causing
issues for Celery, we were forced to bump the minimum required version to 3.2.0.

Contributed by Omer Katz

	Dependencies: Bump minimum required version of Kombu to 4.4

Contributed by Omer Katz

4.3.0 RC1

	release-date

	2019-02-20 5:00 PM IST

	release-by

	Omer Katz

	Canvas: celery.chain.apply() does not ignore keyword arguments anymore when
applying the chain.

Contributed by Korijn van Golen

	Result Set: Don’t attempt to cache results in a celery.result.ResultSet.

During a join, the results cache was populated using celery.result.ResultSet.get(), if one of the results
contains an exception, joining unexpectedly failed.

The results cache is now removed.

Contributed by Derek Harland

	Application: celery.Celery.autodiscover_tasks() now attempts to import the package itself
when the related_name keyword argument is None.

Contributed by Alex Ioannidis

	Windows Support: On Windows 10, stale PID files prevented celery beat to run.
We now remove them when a SystemExit [https://docs.python.org/dev/library/exceptions.html#SystemExit] is raised.

Contributed by :github_user:`na387`

	Task: Added the new task_acks_on_failure_or_timeout setting.

Acknowledging SQS messages on failure or timing out makes it impossible to use
dead letter queues.

We introduce the new option acks_on_failure_or_timeout,
to ensure we can totally fallback on native SQS message lifecycle,
using redeliveries for retries (in case of slow processing or failure)
and transitions to dead letter queue after defined number of times.

Contributed by Mario Kostelac

	RabbitMQ Broker: Adjust HA headers to work on RabbitMQ 3.x.

This change also means we’re ending official support for RabbitMQ 2.x.

Contributed by Asif Saif Uddin

	Command Line: Improve celery update error handling.

Contributed by Federico Bond

	Canvas: Support chords with task_always_eager set to True.

Contributed by Axel Haustant

	Result Backend: Optionally store task properties in result backend.

Setting the result_extended configuration option to True enables
storing additional task properties in the result backend.

Contributed by John Arnold

	Couchbase Result Backend: Allow the Couchbase result backend to
automatically detect the serialization format.

Contributed by Douglas Rohde

	New Result Backend: Added the Azure Block Blob Storage result backend.

The backend is implemented on top of the azure-storage library which
uses Azure Blob Storage for a scalable low-cost PaaS backend.

The backend was load tested via a simple nginx/gunicorn/sanic app hosted
on a DS4 virtual machine (4 vCores, 16 GB RAM) and was able to handle
600+ concurrent users at ~170 RPS.

The commit also contains a live end-to-end test to facilitate
verification of the backend functionality. The test is activated by
setting the AZUREBLOCKBLOB_URL environment variable to
azureblockblob://{ConnectionString} where the value for
ConnectionString can be found in the Access Keys pane of a Storage
Account resources in the Azure Portal.

Contributed by Clemens Wolff

	Task: celery.app.task.update_state() now accepts keyword arguments.

This allows passing extra fields to the result backend.
These fields are unused by default but custom result backends can use them
to determine how to store results.

Contributed by Christopher Dignam

	Gracefully handle consumer kombu.exceptions.DecodeError.

When using the v2 protocol the worker no longer crashes when the consumer
encounters an error while decoding a message.

Contributed by Steven Sklar

	Deployment: Fix init.d service stop.

Contributed by Marcus McHale

	Django: Drop support for Django < 1.11.

Contributed by Asif Saif Uddin

	Django: Remove old djcelery loader.

Contributed by Asif Saif Uddin

	Result Backend: celery.worker.request.Request now passes
celery.app.task.Context to the backend’s store_result functions.

Since the class currently passes self to these functions,
revoking a task resulted in corrupted task result data when
django-celery-results was used.

Contributed by Kiyohiro Yamaguchi

	Worker: Retry if the heartbeat connection dies.

Previously, we keep trying to write to the broken connection.
This results in a memory leak because the event dispatcher will keep appending
the message to the outbound buffer.

Contributed by Raf Geens

	Celery Beat: Handle microseconds when scheduling.

Contributed by K Davis

	Asynpool: Fixed deadlock when closing socket.

Upon attempting to close a socket, celery.concurrency.asynpool.AsynPool
only removed the queue writer from the hub but did not remove the reader.
This led to a deadlock on the file descriptor
and eventually the worker stopped accepting new tasks.

We now close both the reader and the writer file descriptors in a single loop
iteration which prevents the deadlock.

Contributed by Joshua Engelman

	Celery Beat: Correctly consider timezone when calculating timestamp.

Contributed by :github_user:`yywing`

	Celery Beat: celery.beat.Scheduler.schedules_equal() can now handle
either arguments being a None value.

Contributed by :github_user:` ratson`

	Documentation/Sphinx: Fixed Sphinx support for shared_task decorated functions.

Contributed by Jon Banafato

	New Result Backend: Added the CosmosDB result backend.

This change adds a new results backend.
The backend is implemented on top of the pydocumentdb library which uses
Azure CosmosDB for a scalable, globally replicated, high-performance,
low-latency and high-throughput PaaS backend.

Contributed by Clemens Wolff

	Application: Added configuration options to allow separate multiple apps
to run on a single RabbitMQ vhost.

The newly added event_exchange and control_exchange
configuration options allow users to use separate Pidbox exchange
and a separate events exchange.

This allow different Celery applications to run separately on the same vhost.

Contributed by Artem Vasilyev

	Result Backend: Forget parent result metadata when forgetting
a result.

Contributed by :github_user:`tothegump`

	Task Store task arguments inside celery.exceptions.MaxRetriesExceededError.

Contributed by Anthony Ruhier

	Result Backend: Added the result_accept_content setting.

This feature allows to configure different accepted content for the result
backend.

A special serializer (auth) is used for signed messaging,
however the result_serializer remains in json, because we don’t want encrypted
content in our result backend.

To accept unsigned content from the result backend,
we introduced this new configuration option to specify the
accepted content from the backend.

Contributed by Benjamin Pereto

	Canvas: Fixed error callback processing for class based tasks.

Contributed by Victor Mireyev

	New Result Backend: Added the S3 result backend.

Contributed by Florian Chardin

	Task: Added support for Cythonized Celery tasks.

Contributed by Andrey Skabelin

	Riak Result Backend: Warn Riak backend users for possible Python 3.7 incompatibilities.

Contributed by George Psarakis

	Python Runtime: Added Python 3.7 support.

Contributed by Omer Katz & Asif Saif Uddin

	Auth Serializer: Revamped the auth serializer.

The auth serializer received a complete overhaul.
It was previously horribly broken.

We now depend on cryptography instead of pyOpenSSL for this serializer.

Contributed by Benjamin Pereto

	Command Line: celery report now reports kernel version along
with other platform details.

Contributed by Omer Katz

	Canvas: Fixed chords with chains which include sub chords in a group.

Celery now correctly executes the last task in these types of canvases:

c = chord(
 group([
 chain(
 dummy.si(),
 chord(
 group([dummy.si(), dummy.si()]),
 dummy.si(),
),
),
 chain(
 dummy.si(),
 chord(
 group([dummy.si(), dummy.si()]),
 dummy.si(),
),
),
]),
 dummy.si()
)

c.delay().get()

Contributed by Maximilien Cuony

	Canvas: Complex canvases with error callbacks no longer raises an AttributeError [https://docs.python.org/dev/library/exceptions.html#AttributeError].

Very complex canvases such as this [https://github.com/merchise/xopgi.base/blob/6634819ad5c701c04bc9baa5c527449070843b71/xopgi/xopgi_cdr/cdr_agent.py#L181]
no longer raise an AttributeError [https://docs.python.org/dev/library/exceptions.html#AttributeError] which prevents constructing them.

We do not know why this bug occurs yet.

Contributed by Manuel Vázquez Acosta

	Command Line: Added proper error messages in cases where app cannot be loaded.

Previously, celery crashed with an exception.

We now print a proper error message.

Contributed by Omer Katz

	Task: Added the task_default_priority setting.

You can now set the default priority of a task using
the task_default_priority setting.
The setting’s value will be used if no priority is provided for a specific
task.

Contributed by :github_user:`madprogrammer`

	Dependencies: Bump minimum required version of Kombu to 4.3
and Billiard to 3.6.

Contributed by Asif Saif Uddin

	Result Backend: Fix memory leak.

We reintroduced weak references to bound methods for AsyncResult callback promises,
after adding full weakref support for Python 2 in vine [https://github.com/celery/vine/tree/v1.2.0].
More details can be found in celery/celery#4839 [https://github.com/celery/celery/pull/4839].

Contributed by George Psarakis and :github_user:`monsterxx03`.

	Task Execution: Fixed roundtrip serialization for eager tasks.

When doing the roundtrip serialization for eager tasks,
the task serializer will always be JSON unless the serializer argument
is present in the call to celery.app.task.Task.apply_async().
If the serializer argument is present but is ‘pickle’,
an exception will be raised as pickle-serialized objects
cannot be deserialized without specifying to serialization.loads
what content types should be accepted.
The Producer’s serializer seems to be set to None,
causing the default to JSON serialization.

We now continue to use (in order) the serializer argument to celery.app.task.Task.apply_async(),
if present, or the Producer’s serializer if not None.
If the Producer’s serializer is None,
it will use the Celery app’s task_serializer configuration entry as the serializer.

Contributed by Brett Jackson

	Redis Result Backend: The celery.backends.redis.ResultConsumer class no longer assumes
celery.backends.redis.ResultConsumer.start() to be called before
celery.backends.redis.ResultConsumer.drain_events().

This fixes a race condition when using the Gevent workers pool.

Contributed by Noam Kush

	Task: Added the task_inherit_parent_priority setting.

Setting the task_inherit_parent_priority configuration option to
True will make Celery tasks inherit the priority of the previous task
linked to it.

Examples:

c = celery.chain(
 add.s(2), # priority=None
 add.s(3).set(priority=5), # priority=5
 add.s(4), # priority=5
 add.s(5).set(priority=3), # priority=3
 add.s(6), # priority=3
)

@app.task(bind=True)
def child_task(self):
 pass

@app.task(bind=True)
def parent_task(self):
 child_task.delay()

child_task will also have priority=5
parent_task.apply_async(args=[], priority=5)

Contributed by :github_user:`madprogrammer`

	Canvas: Added the result_chord_join_timeout setting.

Previously, celery.result.GroupResult.join() had a fixed timeout of 3
seconds.

The result_chord_join_timeout setting now allows you to change it.

Contributed by :github_user:`srafehi`

Code Cleanups, Test Coverage & CI Improvements by:

	Jon Dufresne

	Asif Saif Uddin

	Omer Katz

	Brett Jackson

	Bruno Alla

	:github_user:`tothegump`

	Bojan Jovanovic

	Florian Chardin

	:github_user:`walterqian`

	Fabian Becker

	Lars Rinn

	:github_user:`madprogrammer`

	Ciaran Courtney

Documentation Fixes by:

	Lewis M. Kabui

	Dash Winterson

	Shanavas M

	Brett Randall

	Przemysław Suliga

	Joshua Schmid

	Asif Saif Uddin

	Xiaodong

	Vikas Prasad

	Jamie Alessio

	Lars Kruse

	Guilherme Caminha

	Andrea Rabbaglietti

	Itay Bittan

	Noah Hall

	Peng Weikang

	Mariatta Wijaya

	Ed Morley

	Paweł Adamczak

	:github_user:`CoffeeExpress`

	:github_user:`aviadatsnyk`

	Brian Schrader

	Josue Balandrano Coronel

	Tom Clancy

	Sebastian Wojciechowski

	Meysam Azad

	Willem Thiart

	Charles Chan

	Omer Katz

	Milind Shakya

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

What’s new in Celery 4.3 (rhubarb)

	Author

	Omer Katz (omer.drow at gmail.com)

Change history

What’s new documents describe the changes in major versions,
we also have a Change history that lists the changes in bugfix
releases (0.0.x), while older series are archived under the History
section.

Celery is a simple, flexible, and reliable distributed system to
process vast amounts of messages, while providing operations with
the tools required to maintain such a system.

It’s a task queue with focus on real-time processing, while also
supporting task scheduling.

Celery has a large and diverse community of users and contributors,
you should come join us on IRC
or our mailing-list.

To read more about Celery you should go read the introduction.

While this version is backward compatible with previous versions
it’s important that you read the following section.

This version is officially supported on CPython 2.7, 3.4, 3.5, 3.6 & 3.7
and is also supported on PyPy2 & PyPy3.

Table of Contents

Make sure you read the important notes before upgrading to this version.

	Preface

	Wall of Contributors

	Upgrading from Celery 4.2

	Important Notes

	Supported Python Versions

	Kombu

	Billiard

	Eventlet Workers Pool

	MessagePack Serializer

	MongoDB Result Backend

	Redis Message Broker

	Redis Result Backend

	Riak Result Backend

	Dropped Support for RabbitMQ 2.x

	Django Support

	Revamped auth Serializer

	News

	Brokers

	Result Backends

	Tasks

	Canvas

Preface

The 4.3.0 release continues to improve our efforts to provide you with
the best task execution platform for Python.

This release has been codenamed Rhubarb [https://www.youtube.com/watch?v=_AWIqXzvX-U]
which is one of my favorite tracks from Selected Ambient Works II.

This release focuses on new features like new result backends
and a revamped security serializer along with bug fixes mainly for Celery Beat,
Canvas, a number of critical fixes for hanging workers and
fixes for several severe memory leaks.

Celery 4.3 is the first release to support Python 3.7.

We hope that 4.3 will be the last release to support Python 2.7 as we now
begin to work on Celery 5, the next generation of our task execution platform.

However, if Celery 5 will be delayed for any reason we may release
another 4.x minor version which will still support Python 2.7.

If another 4.x version will be released it will most likely drop support for
Python 3.4 as it will reach it’s EOL in March 2019.

We have also focused on reducing contribution friction.

Thanks to Josue Balandrano Coronel, one of our core contributors, we now have an
updated Contributing document.
If you intend to contribute, please review it at your earliest convenience.

I have also added new issue templates, which we will continue to improve,
so that the issues you open will have more relevant information which
will allow us to help you to resolve them more easily.

— Omer Katz

Wall of Contributors

Alexander Ioannidis <a.ioannidis.pan@gmail.com>
Amir Hossein Saeid Mehr <amir.saiedmehr@gmail.com>
Andrea Rabbaglietti <rabbagliettiandrea@gmail.com>
Andrey Skabelin <andrey.skabelin@gmail.com>
Anthony Ruhier <anthony.ruhier@gmail.com>
Antonin Delpeuch <antonin@delpeuch.eu>
Artem Vasilyev <artem.v.vasilyev@gmail.com>
Asif Saif Uddin (Auvi) <auvipy@gmail.com>
aviadatsnyk <aviad@snyk.io>
Axel Haustant <noirbizarre@users.noreply.github.com>
Benjamin Pereto <github@sandchaschte.ch>
Bojan Jovanovic <bojan.jovanovic.gtech@gmail.com>
Brett Jackson <brett@brettjackson.org>
Brett Randall <javabrett@gmail.com>
Brian Schrader <brian@brianschrader.com>
Bruno Alla <browniebroke@users.noreply.github.com>
Buddy <34044521+CoffeeExpress@users.noreply.github.com>
Charles Chan <charleswhchan@users.noreply.github.com>
Christopher Dignam <chris@dignam.xyz>
Ciaran Courtney <6096029+ciarancourtney@users.noreply.github.com>
Clemens Wolff <clemens@justamouse.com>
Colin Watson <cjwatson@ubuntu.com>
Daniel Hahler <github@thequod.de>
Dash Winterson <dashdanw@gmail.com>
Derek Harland <donkopotamus@users.noreply.github.com>
Dilip Vamsi Moturi <16288600+dilipvamsi@users.noreply.github.com>
Dmytro Litvinov <litvinov.dmytro.it@gmail.com>
Douglas Rohde <douglas.rohde2@gmail.com>
Ed Morley <501702+edmorley@users.noreply.github.com>
Fabian Becker <halfdan@xnorfz.de>
Federico Bond <federicobond@gmail.com>
Fengyuan Chen <cfy1990@gmail.com>
Florian CHARDIN <othalla.lf@gmail.com>
George Psarakis <giwrgos.psarakis@gmail.com>
Guilherme Caminha <gpkc@cin.ufpe.br>
ideascf <ideascf@163.com>
Itay <itay.bittan@gmail.com>
Jamie Alessio <jamie@stoic.net>
Jason Held <jasonsheld@gmail.com>
Jeremy Cohen <jcohen02@users.noreply.github.com>
John Arnold <johnar@microsoft.com>
Jon Banafato <jonathan.banafato@gmail.com>
Jon Dufresne <jon.dufresne@gmail.com>
Joshua Engelman <j.aaron.engelman@gmail.com>
Joshua Schmid <jschmid@suse.com>
Josue Balandrano Coronel <xirdneh@gmail.com>
K Davis <anybodys@users.noreply.github.com>
kidoz <ckidoz@gmail.com>
Kiyohiro Yamaguchi <kiyoya@gmail.com>
Korijn van Golen <korijn@gmail.com>
Lars Kruse <devel@sumpfralle.de>
Lars Rinn <lm.rinn@outlook.com>
Lewis M. Kabui <lewis.maina@andela.com>
madprogrammer <serg@anufrienko.net>
Manuel Vázquez Acosta <mvaled@users.noreply.github.com>
Marcus McHale <marcus.mchale@nuigalway.ie>
Mariatta <Mariatta@users.noreply.github.com>
Mario Kostelac <mario@intercom.io>
Matt Wiens <mwiens91@gmail.com>
Maximilien Cuony <the-glu@users.noreply.github.com>
Maximilien de Bayser <maxdebayser@gmail.com>
Meysam <MeysamAzad81@yahoo.com>
Milind Shakya <milin@users.noreply.github.com>
na387 <na387@users.noreply.github.com>
Nicholas Pilon <npilon@gmail.com>
Nick Parsons <nparsons08@gmail.com>
Nik Molnar <nik.molnar@consbio.org>
Noah Hall <noah.t.hall@gmail.com>
Noam <noamkush@users.noreply.github.com>
Omer Katz <omer.drow@gmail.com>
Paweł Adamczak <pawel.ad@gmail.com>
peng weikang <pengwk2@gmail.com>
Prathamesh Salunkhe <spratham55@gmail.com>
Przemysław Suliga <1270737+suligap@users.noreply.github.com>
Raf Geens <rafgeens@gmail.com>
(◕ᴥ◕) <ratson@users.noreply.github.com>
Robert Kopaczewski <rk@23doors.com>
Samuel Huang <samhuang91@gmail.com>
Sebastian Wojciechowski <42519683+sebwoj@users.noreply.github.com>
Seunghun Lee <waydi1@gmail.com>
Shanavas M <shanavas.m2@gmail.com>
Simon Charette <charettes@users.noreply.github.com>
Simon Schmidt <schmidt.simon@gmail.com>
srafehi <shadyrafehi@gmail.com>
Steven Sklar <sklarsa@gmail.com>
Tom Booth <thomasbo@microsoft.com>
Tom Clancy <ClancyTJD@users.noreply.github.com>
Toni Ruža <gmr.gaf@gmail.com>
tothegump <tothegump@gmail.com>
Victor Mireyev <victor@opennodecloud.com>
Vikas Prasad <vikasprasad.prasad@gmail.com>
walterqian <walter@color.com>
Willem <himself@willemthiart.com>
Xiaodong <xd_deng@hotmail.com>
yywing <386542536@qq.com>

Note

This wall was automatically generated from git history,
so sadly it doesn’t not include the people who help with more important
things like answering mailing-list questions.

Upgrading from Celery 4.2

Please read the important notes below as there are several breaking changes.

Important Notes

Supported Python Versions

The supported Python Versions are:

	CPython 2.7

	CPython 3.4

	CPython 3.5

	CPython 3.6

	CPython 3.7

	PyPy2.7 6.0 (pypy2)

	PyPy3.5 6.0 (pypy3)

Kombu

Starting from this release, the minimum required version is Kombu 4.4.

New Compression Algorithms

Kombu 4.3 includes a few new optional compression methods:

	LZMA (available from stdlib if using Python 3 or from a backported package)

	Brotli (available if you install either the brotli or the brotlipy package)

	ZStandard (available if you install the zstandard package)

Unfortunately our current protocol generates huge payloads for complex canvases.

Until we migrate to our 3rd revision of the Celery protocol in Celery 5
which will resolve this issue, please use one of the new compression methods
as a workaround.

See Compression for details.

Billiard

Starting from this release, the minimum required version is Billiard 3.6.

Eventlet Workers Pool

We now require eventlet>=0.24.1.

If you are using the eventlet workers pool please install Celery using:

$ pip install -U celery[eventlet]

MessagePack Serializer

We’ve been using the deprecated msgpack-python package for a while.
This is now fixed as we depend on the msgpack instead.

If you are currently using the MessagePack serializer please uninstall the
previous package and reinstall the new one using:

$ pip uninstall msgpack-python -y
$ pip install -U celery[msgpack]

MongoDB Result Backend

We now support the DNS seedlist connection format [https://docs.mongodb.com/manual/reference/connection-string/#dns-seedlist-connection-format] for the MongoDB result backend.

This requires the dnspython package.

If you are using the MongoDB result backend please install Celery using:

$ pip install -U celery[mongodb]

Redis Message Broker

Due to multiple bugs in earlier versions of py-redis that were causing
issues for Celery, we were forced to bump the minimum required version to 3.2.0.

Redis Result Backend

Due to multiple bugs in earlier versions of py-redis that were causing
issues for Celery, we were forced to bump the minimum required version to 3.2.0.

Riak Result Backend

The official Riak client does not support Python 3.7 as of yet.

In case you are using the Riak result backend, either attempt to install the
client from master or avoid upgrading to Python 3.7 until this matter is resolved.

In case you are using the Riak result backend with Python 3.7, we now emit
a warning.

Please track basho/riak-python-client#534 [https://github.com/basho/riak-python-client/issues/534]
for updates.

Dropped Support for RabbitMQ 2.x

Starting from this release, we officially no longer support RabbitMQ 2.x.

The last release of 2.x was in 2012 and we had to make adjustments to
correctly support high availability on RabbitMQ 3.x.

If for some reason, you are still using RabbitMQ 2.x we encourage you to upgrade
as soon as possible since security patches are no longer applied on RabbitMQ 2.x.

Django Support

Starting from this release, the minimum required Django version is 1.11.

Revamped auth Serializer

The auth serializer received a complete overhaul.
It was previously horribly broken.

We now depend on cryptography instead of pyOpenSSL for this serializer.

See Message Signing for details.

News

Brokers

Redis Broker Support for SSL URIs

The Redis broker now has support for SSL connections.

You can use broker_use_ssl as you normally did and use a
rediss:// URI.

You can also pass the SSL configuration parameters to the URI:

rediss://localhost:3456?ssl_keyfile=keyfile.key&ssl_certfile=certificate.crt&ssl_ca_certs=ca.pem&ssl_cert_reqs=CERT_REQUIRED

Configurable Events Exchange Name

Previously, the events exchange name was hardcoded.

You can use event_exchange to determine it.
The default value remains the same.

Configurable Pidbox Exchange Name

Previously, the Pidbox exchange name was hardcoded.

You can use control_exchange to determine it.
The default value remains the same.

Result Backends

Redis Result Backend Support for SSL URIs

The Redis result backend now has support for SSL connections.

You can use redis_backend_use_ssl to configure it and use a
rediss:// URI.

You can also pass the SSL configuration parameters to the URI:

rediss://localhost:3456?ssl_keyfile=keyfile.key&ssl_certfile=certificate.crt&ssl_ca_certs=ca.pem&ssl_cert_reqs=CERT_REQUIRED

Store Extended Task Metadata in Result

When result_extended is True the backend will store the following
metadata:

	Task Name

	Arguments

	Keyword arguments

	The worker the task was executed on

	Number of retries

	The queue’s name or routing key

In addition, celery.app.task.update_state() now accepts keyword arguments
which allows you to store custom data with the result.

Encode Results Using A Different Serializer

The result_accept_content setting allows to configure different
accepted content for the result backend.

A special serializer (auth) is used for signed messaging,
however the result_serializer remains in json, because we don’t want encrypted
content in our result backend.

To accept unsigned content from the result backend,
we introduced this new configuration option to specify the
accepted content from the backend.

New Result Backends

This release introduces four new result backends:

	S3 result backend

	ArangoDB result backend

	Azure Block Blob Storage result backend

	CosmosDB result backend

S3 Result Backend

Amazon Simple Storage Service (Amazon S3) is an object storage service by AWS.

The results are stored using the following path template:

<s3_bucket>/<s3_base_path>/<key>

See S3 backend settings for more information.

ArangoDB Result Backend

ArangoDB is a native multi-model database with search capabilities.
The backend stores the result in the following document format:

{

_key: {key},

task: {task}

}

See ArangoDB backend settings for more information.

Azure Block Blob Storage Result Backend

Azure Block Blob Storage is an object storage service by Microsoft.

The backend stores the result in the following path template:

<azureblockblob_container_name>/<key>

See Azure Block Blob backend settings for more information.

CosmosDB Result Backend

Azure Cosmos DB is Microsoft’s globally distributed,
multi-model database service.

The backend stores the result in the following document format:

{

id: {key},

value: {task}

}

See CosmosDB backend settings (experimental) for more information.

Tasks

Cythonized Tasks

Cythonized tasks are now supported.
You can generate C code from Cython that specifies a task using the @task
decorator and everything should work exactly the same.

Acknowledging Tasks on Failures or Timeouts

When task_acks_late is set to True tasks are acknowledged on failures or
timeouts.
This makes it hard to use dead letter queues and exchanges.

Celery 4.3 introduces the new task_acks_on_failure_or_timeout which
allows you to avoid acknowledging tasks if they failed or timed out even if
task_acks_late is set to True.

task_acks_on_failure_or_timeout is set to True by default.

Schedules Now Support Microseconds

When scheduling tasks using celery beat microseconds
are no longer ignored.

Default Task Priority

You can now set the default priority of a task using
the task_default_priority setting.
The setting’s value will be used if no priority is provided for a specific
task.

Tasks Optionally Inherit Parent’s Priority

Setting the task_inherit_parent_priority configuration option to
True will make Celery tasks inherit the priority of the previous task
linked to it.

Examples:

c = celery.chain(
 add.s(2), # priority=None
 add.s(3).set(priority=5), # priority=5
 add.s(4), # priority=5
 add.s(5).set(priority=3), # priority=3
 add.s(6), # priority=3
)

@app.task(bind=True)
def child_task(self):
 pass

@app.task(bind=True)
def parent_task(self):
 child_task.delay()

child_task will also have priority=5
parent_task.apply_async(args=[], priority=5)

Canvas

Chords can be Executed in Eager Mode

When task_always_eager is set to True, chords are executed eagerly
as well.

Configurable Chord Join Timeout

Previously, celery.result.GroupResult.join() had a fixed timeout of 3
seconds.

The result_chord_join_timeout setting now allows you to change it.

The default remains 3 seconds.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Change history

This document contains change notes for bugfix releases in
the 4.3.x series, please see What’s new in Celery 4.3 (rhubarb) for
an overview of what’s new in Celery 4.3.

4.3.1

	release-date

	2020-09-10 1:00 P.M UTC+3:00

	release-by

	Omer Katz

	Limit vine version to be below 5.0.0.

Contributed by Omer Katz

4.3.0

	release-date

	2019-03-31 7:00 P.M UTC+3:00

	release-by

	Omer Katz

	Added support for broadcasting using a regular expression pattern
or a glob pattern to multiple Pidboxes.

This allows you to inspect or ping multiple workers at once.

Contributed by Dmitry Malinovsky & Jason Held

	Added support for PEP 420 namespace packages.

This allows you to load tasks from namespace packages.

Contributed by Colin Watson

	Added acks_on_failure_or_timeout as a setting instead of
a task only option.

This was missing from the original PR but now added for completeness.

Contributed by Omer Katz

	Added the task_received signal.

Contributed by Omer Katz

	Fixed a crash of our CLI that occurred for everyone using Python < 3.6.

The crash was introduced in acd6025 [https://github.com/celery/celery/commit/acd6025b7dc4db112a31020686fc8b15e1722c67]
by using the ModuleNotFoundError [https://docs.python.org/dev/library/exceptions.html#ModuleNotFoundError] exception which was introduced
in Python 3.6.

Contributed by Omer Katz

	Fixed a crash that occurred when using the Redis result backend
while the result_expires is set to None.

Contributed by Toni Ruža & Omer Katz

	Added support the DNS seedlist connection format [https://docs.mongodb.com/manual/reference/connection-string/#dns-seedlist-connection-format]
for the MongoDB result backend.

This requires the dnspython package which will be installed by default
when installing the dependencies for the MongoDB result backend.

Contributed by George Psarakis

	Bump the minimum eventlet version to 0.24.1.

Contributed by George Psarakis

	Replace the msgpack-python package with msgpack.

We’re no longer using the deprecated package.
See our important notes for this release
for further details on how to upgrade.

Contributed by Daniel Hahler

	Allow scheduling error handlers which are not registered tasks in the current
worker.

These kind of error handlers are now possible:

from celery import Signature
Signature(
 'bar', args=['foo'],
 link_error=Signature('msg.err', queue='msg')
).apply_async()

	Additional fixes and enhancements to the SSL support of
the Redis broker and result backend.

Contributed by Jeremy Cohen

Code Cleanups, Test Coverage & CI Improvements by:

	Omer Katz

	Florian Chardin

Documentation Fixes by:

	Omer Katz

	Samuel Huang

	Amir Hossein Saeid Mehr

	Dmytro Litvinov

4.3.0 RC2

	release-date

	2019-03-03 9:30 P.M UTC+2:00

	release-by

	Omer Katz

	Filesystem Backend: Added meaningful error messages for filesystem backend.

Contributed by Lars Rinn

	New Result Backend: Added the ArangoDB backend.

Contributed by Dilip Vamsi Moturi

	Django: Prepend current working directory instead of appending so that
the project directory will have precedence over system modules as expected.

Contributed by Antonin Delpeuch

	Bump minimum py-redis version to 3.2.0.

Due to multiple bugs in earlier versions of py-redis that were causing
issues for Celery, we were forced to bump the minimum required version to 3.2.0.

Contributed by Omer Katz

	Dependencies: Bump minimum required version of Kombu to 4.4

Contributed by Omer Katz

4.3.0 RC1

	release-date

	2019-02-20 5:00 PM IST

	release-by

	Omer Katz

	Canvas: celery.chain.apply() does not ignore keyword arguments anymore when
applying the chain.

Contributed by Korijn van Golen

	Result Set: Don’t attempt to cache results in a celery.result.ResultSet.

During a join, the results cache was populated using celery.result.ResultSet.get(), if one of the results
contains an exception, joining unexpectedly failed.

The results cache is now removed.

Contributed by Derek Harland

	Application: celery.Celery.autodiscover_tasks() now attempts to import the package itself
when the related_name keyword argument is None.

Contributed by Alex Ioannidis

	Windows Support: On Windows 10, stale PID files prevented celery beat to run.
We now remove them when a SystemExit [https://docs.python.org/dev/library/exceptions.html#SystemExit] is raised.

Contributed by :github_user:`na387`

	Task: Added the new task_acks_on_failure_or_timeout setting.

Acknowledging SQS messages on failure or timing out makes it impossible to use
dead letter queues.

We introduce the new option acks_on_failure_or_timeout,
to ensure we can totally fallback on native SQS message lifecycle,
using redeliveries for retries (in case of slow processing or failure)
and transitions to dead letter queue after defined number of times.

Contributed by Mario Kostelac

	RabbitMQ Broker: Adjust HA headers to work on RabbitMQ 3.x.

This change also means we’re ending official support for RabbitMQ 2.x.

Contributed by Asif Saif Uddin

	Command Line: Improve celery update error handling.

Contributed by Federico Bond

	Canvas: Support chords with task_always_eager set to True.

Contributed by Axel Haustant

	Result Backend: Optionally store task properties in result backend.

Setting the result_extended configuration option to True enables
storing additional task properties in the result backend.

Contributed by John Arnold

	Couchbase Result Backend: Allow the Couchbase result backend to
automatically detect the serialization format.

Contributed by Douglas Rohde

	New Result Backend: Added the Azure Block Blob Storage result backend.

The backend is implemented on top of the azure-storage library which
uses Azure Blob Storage for a scalable low-cost PaaS backend.

The backend was load tested via a simple nginx/gunicorn/sanic app hosted
on a DS4 virtual machine (4 vCores, 16 GB RAM) and was able to handle
600+ concurrent users at ~170 RPS.

The commit also contains a live end-to-end test to facilitate
verification of the backend functionality. The test is activated by
setting the AZUREBLOCKBLOB_URL environment variable to
azureblockblob://{ConnectionString} where the value for
ConnectionString can be found in the Access Keys pane of a Storage
Account resources in the Azure Portal.

Contributed by Clemens Wolff

	Task: celery.app.task.update_state() now accepts keyword arguments.

This allows passing extra fields to the result backend.
These fields are unused by default but custom result backends can use them
to determine how to store results.

Contributed by Christopher Dignam

	Gracefully handle consumer kombu.exceptions.DecodeError.

When using the v2 protocol the worker no longer crashes when the consumer
encounters an error while decoding a message.

Contributed by Steven Sklar

	Deployment: Fix init.d service stop.

Contributed by Marcus McHale

	Django: Drop support for Django < 1.11.

Contributed by Asif Saif Uddin

	Django: Remove old djcelery loader.

Contributed by Asif Saif Uddin

	Result Backend: celery.worker.request.Request now passes
celery.app.task.Context to the backend’s store_result functions.

Since the class currently passes self to these functions,
revoking a task resulted in corrupted task result data when
django-celery-results was used.

Contributed by Kiyohiro Yamaguchi

	Worker: Retry if the heartbeat connection dies.

Previously, we keep trying to write to the broken connection.
This results in a memory leak because the event dispatcher will keep appending
the message to the outbound buffer.

Contributed by Raf Geens

	Celery Beat: Handle microseconds when scheduling.

Contributed by K Davis

	Asynpool: Fixed deadlock when closing socket.

Upon attempting to close a socket, celery.concurrency.asynpool.AsynPool
only removed the queue writer from the hub but did not remove the reader.
This led to a deadlock on the file descriptor
and eventually the worker stopped accepting new tasks.

We now close both the reader and the writer file descriptors in a single loop
iteration which prevents the deadlock.

Contributed by Joshua Engelman

	Celery Beat: Correctly consider timezone when calculating timestamp.

Contributed by :github_user:`yywing`

	Celery Beat: celery.beat.Scheduler.schedules_equal() can now handle
either arguments being a None value.

Contributed by :github_user:` ratson`

	Documentation/Sphinx: Fixed Sphinx support for shared_task decorated functions.

Contributed by Jon Banafato

	New Result Backend: Added the CosmosDB result backend.

This change adds a new results backend.
The backend is implemented on top of the pydocumentdb library which uses
Azure CosmosDB for a scalable, globally replicated, high-performance,
low-latency and high-throughput PaaS backend.

Contributed by Clemens Wolff

	Application: Added configuration options to allow separate multiple apps
to run on a single RabbitMQ vhost.

The newly added event_exchange and control_exchange
configuration options allow users to use separate Pidbox exchange
and a separate events exchange.

This allow different Celery applications to run separately on the same vhost.

Contributed by Artem Vasilyev

	Result Backend: Forget parent result metadata when forgetting
a result.

Contributed by :github_user:`tothegump`

	Task Store task arguments inside celery.exceptions.MaxRetriesExceededError.

Contributed by Anthony Ruhier

	Result Backend: Added the result_accept_content setting.

This feature allows to configure different accepted content for the result
backend.

A special serializer (auth) is used for signed messaging,
however the result_serializer remains in json, because we don’t want encrypted
content in our result backend.

To accept unsigned content from the result backend,
we introduced this new configuration option to specify the
accepted content from the backend.

Contributed by Benjamin Pereto

	Canvas: Fixed error callback processing for class based tasks.

Contributed by Victor Mireyev

	New Result Backend: Added the S3 result backend.

Contributed by Florian Chardin

	Task: Added support for Cythonized Celery tasks.

Contributed by Andrey Skabelin

	Riak Result Backend: Warn Riak backend users for possible Python 3.7 incompatibilities.

Contributed by George Psarakis

	Python Runtime: Added Python 3.7 support.

Contributed by Omer Katz & Asif Saif Uddin

	Auth Serializer: Revamped the auth serializer.

The auth serializer received a complete overhaul.
It was previously horribly broken.

We now depend on cryptography instead of pyOpenSSL for this serializer.

Contributed by Benjamin Pereto

	Command Line: celery report now reports kernel version along
with other platform details.

Contributed by Omer Katz

	Canvas: Fixed chords with chains which include sub chords in a group.

Celery now correctly executes the last task in these types of canvases:

c = chord(
 group([
 chain(
 dummy.si(),
 chord(
 group([dummy.si(), dummy.si()]),
 dummy.si(),
),
),
 chain(
 dummy.si(),
 chord(
 group([dummy.si(), dummy.si()]),
 dummy.si(),
),
),
]),
 dummy.si()
)

c.delay().get()

Contributed by Maximilien Cuony

	Canvas: Complex canvases with error callbacks no longer raises an AttributeError [https://docs.python.org/dev/library/exceptions.html#AttributeError].

Very complex canvases such as this [https://github.com/merchise/xopgi.base/blob/6634819ad5c701c04bc9baa5c527449070843b71/xopgi/xopgi_cdr/cdr_agent.py#L181]
no longer raise an AttributeError [https://docs.python.org/dev/library/exceptions.html#AttributeError] which prevents constructing them.

We do not know why this bug occurs yet.

Contributed by Manuel Vázquez Acosta

	Command Line: Added proper error messages in cases where app cannot be loaded.

Previously, celery crashed with an exception.

We now print a proper error message.

Contributed by Omer Katz

	Task: Added the task_default_priority setting.

You can now set the default priority of a task using
the task_default_priority setting.
The setting’s value will be used if no priority is provided for a specific
task.

Contributed by :github_user:`madprogrammer`

	Dependencies: Bump minimum required version of Kombu to 4.3
and Billiard to 3.6.

Contributed by Asif Saif Uddin

	Result Backend: Fix memory leak.

We reintroduced weak references to bound methods for AsyncResult callback promises,
after adding full weakref support for Python 2 in vine [https://github.com/celery/vine/tree/v1.2.0].
More details can be found in celery/celery#4839 [https://github.com/celery/celery/pull/4839].

Contributed by George Psarakis and :github_user:`monsterxx03`.

	Task Execution: Fixed roundtrip serialization for eager tasks.

When doing the roundtrip serialization for eager tasks,
the task serializer will always be JSON unless the serializer argument
is present in the call to celery.app.task.Task.apply_async().
If the serializer argument is present but is ‘pickle’,
an exception will be raised as pickle-serialized objects
cannot be deserialized without specifying to serialization.loads
what content types should be accepted.
The Producer’s serializer seems to be set to None,
causing the default to JSON serialization.

We now continue to use (in order) the serializer argument to celery.app.task.Task.apply_async(),
if present, or the Producer’s serializer if not None.
If the Producer’s serializer is None,
it will use the Celery app’s task_serializer configuration entry as the serializer.

Contributed by Brett Jackson

	Redis Result Backend: The celery.backends.redis.ResultConsumer class no longer assumes
celery.backends.redis.ResultConsumer.start() to be called before
celery.backends.redis.ResultConsumer.drain_events().

This fixes a race condition when using the Gevent workers pool.

Contributed by Noam Kush

	Task: Added the task_inherit_parent_priority setting.

Setting the task_inherit_parent_priority configuration option to
True will make Celery tasks inherit the priority of the previous task
linked to it.

Examples:

c = celery.chain(
 add.s(2), # priority=None
 add.s(3).set(priority=5), # priority=5
 add.s(4), # priority=5
 add.s(5).set(priority=3), # priority=3
 add.s(6), # priority=3
)

@app.task(bind=True)
def child_task(self):
 pass

@app.task(bind=True)
def parent_task(self):
 child_task.delay()

child_task will also have priority=5
parent_task.apply_async(args=[], priority=5)

Contributed by :github_user:`madprogrammer`

	Canvas: Added the result_chord_join_timeout setting.

Previously, celery.result.GroupResult.join() had a fixed timeout of 3
seconds.

The result_chord_join_timeout setting now allows you to change it.

Contributed by :github_user:`srafehi`

Code Cleanups, Test Coverage & CI Improvements by:

	Jon Dufresne

	Asif Saif Uddin

	Omer Katz

	Brett Jackson

	Bruno Alla

	:github_user:`tothegump`

	Bojan Jovanovic

	Florian Chardin

	:github_user:`walterqian`

	Fabian Becker

	Lars Rinn

	:github_user:`madprogrammer`

	Ciaran Courtney

Documentation Fixes by:

	Lewis M. Kabui

	Dash Winterson

	Shanavas M

	Brett Randall

	Przemysław Suliga

	Joshua Schmid

	Asif Saif Uddin

	Xiaodong

	Vikas Prasad

	Jamie Alessio

	Lars Kruse

	Guilherme Caminha

	Andrea Rabbaglietti

	Itay Bittan

	Noah Hall

	Peng Weikang

	Mariatta Wijaya

	Ed Morley

	Paweł Adamczak

	:github_user:`CoffeeExpress`

	:github_user:`aviadatsnyk`

	Brian Schrader

	Josue Balandrano Coronel

	Tom Clancy

	Sebastian Wojciechowski

	Meysam Azad

	Willem Thiart

	Charles Chan

	Omer Katz

	Milind Shakya

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

What’s new in Celery 4.2 (windowlicker)

	Author

	Omer Katz (omer.drow at gmail.com)

Change history

What’s new documents describe the changes in major versions,
we also have a Change history that lists the changes in bugfix
releases (0.0.x), while older series are archived under the History
section.

Celery is a simple, flexible, and reliable distributed system to
process vast amounts of messages, while providing operations with
the tools required to maintain such a system.

It’s a task queue with focus on real-time processing, while also
supporting task scheduling.

Celery has a large and diverse community of users and contributors,
you should come join us on IRC
or our mailing-list.

To read more about Celery you should go read the introduction.

While this version is backward compatible with previous versions
it’s important that you read the following section.

This version is officially supported on CPython 2.7, 3.4, 3.5 & 3.6
and is also supported on PyPy.

Table of Contents

Make sure you read the important notes before upgrading to this version.

	Preface

	Wall of Contributors

	Important Notes

	Supported Python Versions

	News

	Result Backends

	Canvas

	Tasks

	Sphinx Extension

Preface

The 4.2.0 release continues to improve our efforts to provide you with
the best task execution platform for Python.

This release is mainly a bug fix release, ironing out some issues and regressions
found in Celery 4.0.0.

Traditionally, releases were named after Autechre [https://en.wikipedia.org/wiki/Autechre]’s track names.
This release continues this tradition in a slightly different way.
Each major version of Celery will use a different artist’s track names as codenames.

From now on, the 4.x series will be codenamed after Aphex Twin [https://en.wikipedia.org/wiki/Aphex_Twin]’s track names.
This release is codenamed after his very famous track, Windowlicker [https://youtu.be/UBS4Gi1y_nc?t=4m].

Thank you for your support!

— Omer Katz

Wall of Contributors

Aaron Harnly <aharnly@wgen.net>
Aaron Harnly <github.com@bulk.harnly.net>
Aaron McMillin <github@aaron.mcmillinclan.org>
Aaron Ross <aaronelliotross@gmail.com>
Aaron Ross <aaron@wawd.com>
Aaron Schumacher <ajschumacher@gmail.com>
abecciu <augusto@becciu.org>
abhinav nilaratna <anilaratna2@bloomberg.net>
Acey9 <huiwang.e@gmail.com>
Acey <huiwang.e@gmail.com>
aclowes <aclowes@gmail.com>
Adam Chainz <adam@adamj.eu>
Adam DePue <adepue@hearsaycorp.com>
Adam Endicott <adam@zoey.local>
Adam Renberg <tgwizard@gmail.com>
Adam Venturella <aventurella@gmail.com>
Adaptification <Adaptification@users.noreply.github.com>
Adrian <adrian@planetcoding.net>
adriano petrich <petrich@gmail.com>
Adrian Rego <arego320@gmail.com>
Adrien Guinet <aguinet@quarkslab.com>
Agris Ameriks <ameriks@gmail.com>
Ahmet Demir <ahmet2mir+github@gmail.com>
air-upc <xin.shli@ele.me>
Aitor Gómez-Goiri <aitor@gomezgoiri.net>
Akira Matsuzaki <akira.matsuzaki.1977@gmail.com>
Akshar Raaj <akshar@agiliq.com>
Alain Masiero <amasiero@ocs.online.net>
Alan Hamlett <alan.hamlett@prezi.com>
Alan Hamlett <alanhamlett@users.noreply.github.com>
Alan Justino <alan.justino@yahoo.com.br>
Alan Justino da Silva <alan.justino@yahoo.com.br>
Albert Wang <albert@zerocater.com>
Alcides Viamontes Esquivel <a.viamontes.esquivel@gmail.com>
Alec Clowes <aclowes@gmail.com>
Alejandro Pernin <ale.pernin@gmail.com>
Alejandro Varas <alej0varas@gmail.com>
Aleksandr Kuznetsov <aku.ru.kz@gmail.com>
Ales Zoulek <ales.zoulek@gmail.com>
Alexander <a.a.lebedev@gmail.com>
Alexander A. Sosnovskiy <alecs.box@gmail.com>
Alexander Koshelev <daevaorn@gmail.com>
Alexander Koval <kovalidis@gmail.com>
Alexander Oblovatniy <oblalex@users.noreply.github.com>
Alexander Oblovatniy <oblovatniy@gmail.com>
Alexander Ovechkin <frostoov@gmail.com>
Alexander Smirnov <asmirnov@five9.com>
Alexandru Chirila <alex@alexkiro.com>
Alexey Kotlyarov <alexey@infoxchange.net.au>
Alexey Zatelepin <ztlpn@yandex-team.ru>
Alex Garel <alex@garel.org>
Alex Hill <alex@hill.net.au>
Alex Kiriukha <akiriukha@cogniance.com>
Alex Koshelev <daevaorn@gmail.com>
Alex Rattray <rattray.alex@gmail.com>
Alex Williams <alex.williams@skyscanner.net>
Alex Zaitsev <azaitsev@gmail.com>
Ali Bozorgkhan <alibozorgkhan@gmail.com>
Allan Caffee <allan.caffee@gmail.com>
Allard Hoeve <allard@byte.nl>
allenling <lingyiwang@haomaiyi.com>
Alli <alzeih@users.noreply.github.com>
Alman One <alman@laptop.home>
Alman One <alman-one@laptop.home>
alman-one <masiero.alain@gmail.com>
Amir Rustamzadeh <amirrustam@users.noreply.github.com>
anand21nanda@gmail.com <anand21nanda@gmail.com>
Anarchist666 <Anarchist666@yandex.ru>
Anders Pearson <anders@columbia.edu>
Andrea Rabbaglietti <silverfix@gmail.com>
Andreas Pelme <andreas@pelme.se>
Andreas Savvides <andreas@editd.com>
Andrei Fokau <andrei.fokau@neutron.kth.se>
Andrew de Quincey <adq@lidskialf.net>
Andrew Kittredge <andrewlkittredge@gmail.com>
Andrew McFague <amcfague@wgen.net>
Andrew Stewart <astewart@twistbioscience.com>
Andrew Watts <andrewwatts@gmail.com>
Andrew Wong <argsno@gmail.com>
Andrey Voronov <eyvoro@users.noreply.github.com>
Andriy Yurchuk <ayurchuk@minuteware.net>
Aneil Mallavarapu <aneil.mallavar@gmail.com>
anentropic <ego@anentropic.com>
anh <anhlh2@gmail.com>
Ankur Dedania <AbsoluteMSTR@gmail.com>
Anthony Lukach <anthonylukach@gmail.com>
antlegrand <2t.antoine@gmail.com>
Antoine Legrand <antoine.legrand@smartjog.com>
Anton <anton.gladkov@gmail.com>
Anton Gladkov <atn18@yandex-team.ru>
Antonin Delpeuch <antonin@delpeuch.eu>
Arcadiy Ivanov <arcadiy@ivanov.biz>
areski <areski@gmail.com>
Armenak Baburyan <kanemra@gmail.com>
Armin Ronacher <armin.ronacher@active-4.com>
armo <kanemra@gmail.com>
Arnaud Rocher <cailloumajor@users.noreply.github.com>
arpanshah29 <ashah29@stanford.edu>
Arsenio Santos <arsenio@gmail.com>
Arthur Vigil <ahvigil@mail.sfsu.edu>
Arthur Vuillard <arthur@hashbang.fr>
Ashish Dubey <ashish.dubey91@gmail.com>
Asif Saifuddin Auvi <auvipy@gmail.com>
Asif Saifuddin Auvi <auvipy@users.noreply.github.com>
ask <ask@0x61736b.net>
Ask Solem <ask@celeryproject.org>
Ask Solem <askh@opera.com>
Ask Solem Hoel <ask@celeryproject.org>
aydin <adigeaydin@gmail.com>
baeuml <baeuml@kit.edu>
Balachandran C <balachandran.c@gramvaani.org>
Balthazar Rouberol <balthazar.rouberol@mapado.com>
Balthazar Rouberol <balthazar.rouberol@ubertas.co.uk>
bartloop <38962178+bartloop@users.noreply.github.com>
Bartosz Ptaszynski <>
Batiste Bieler <batiste.bieler@pix4d.com>
bee-keeper <ricbottomley@gmail.com>
Bence Tamas <mr.bence.tamas@gmail.com>
Ben Firshman <ben@firshman.co.uk>
Ben Welsh <ben.welsh@gmail.com>
Berker Peksag <berker.peksag@gmail.com>
Bert Vanderbauwhede <batlock666@gmail.com>
Bert Vanderbauwhede <bert.vanderbauwhede@ugent.be>
BLAGA Razvan-Paul <razvan.paul.blaga@gmail.com>
bobbybeever <bobby.beever@yahoo.com>
bobby <bobby.beever@yahoo.com>
Bobby Powers <bobbypowers@gmail.com>
Bohdan Rybak <bohdan.rybak@gmail.com>
Brad Jasper <bjasper@gmail.com>
Branko Čibej <brane@apache.org>
BR <b.rabiega@gmail.com>
Brendan MacDonell <macdonellba@gmail.com>
Brendon Crawford <brendon@aphexcreations.net>
Brent Watson <brent@brentwatson.com>
Brian Bouterse <bmbouter@gmail.com>
Brian Dixon <bjdixon@gmail.com>
Brian Luan <jznight@gmail.com>
Brian May <brian@linuxpenguins.xyz>
Brian Peiris <brianpeiris@gmail.com>
Brian Rosner <brosner@gmail.com>
Brodie Rao <brodie@sf.io>
Bruno Alla <browniebroke@users.noreply.github.com>
Bryan Berg <bdb@north-eastham.org>
Bryan Berg <bryan@mixedmedialabs.com>
Bryan Bishop <kanzure@gmail.com>
Bryan Helmig <bryan@bryanhelmig.com>
Bryce Groff <bgroff@hawaii.edu>
Caleb Mingle <mingle@uber.com>
Carlos Garcia-Dubus <carlos.garciadm@gmail.com>
Catalin Iacob <iacobcatalin@gmail.com>
Charles McLaughlin <mclaughlinct@gmail.com>
Chase Seibert <chase.seibert+github@gmail.com>
ChillarAnand <anand21nanda@gmail.com>
Chris Adams <chris@improbable.org>
Chris Angove <cangove@wgen.net>
Chris Chamberlin <chamberlincd@gmail.com>
chrisclark <chris@untrod.com>
Chris Harris <chris.harris@kitware.com>
Chris Kuehl <chris@techxonline.net>
Chris Martin <ch.martin@gmail.com>
Chris Mitchell <chris.mit7@gmail.com>
Chris Rose <offby1@offby1.net>
Chris St. Pierre <chris.a.st.pierre@gmail.com>
Chris Streeter <chris@chrisstreeter.com>
Christian <github@penpal4u.net>
Christoph Burgmer <christoph@nwebs.de>
Christopher Hoskin <mans0954@users.noreply.github.com>
Christopher Lee <chris@cozi.com>
Christopher Peplin <github@rhubarbtech.com>
Christopher Peplin <peplin@bueda.com>
Christoph Krybus <ckrybus@googlemail.com>
clayg <clay.gerrard@gmail.com>
Clay Gerrard <clayg@clayg-desktop.(none)>
Clemens Wolff <clemens@justamouse.com>
cmclaughlin <mclaughlinct@gmail.com>
Codeb Fan <codeb2cc@gmail.com>
Colin McIntosh <colin@colinmcintosh.com>
Conrad Kramer <ckrames1234@gmail.com>
Corey Farwell <coreyf@rwell.org>
Craig Younkins <cyounkins@Craigs-MacBook-Pro.local>
csfeathers <csfeathers@users.noreply.github.com>
Cullen Rhodes <rhodes.cullen@yahoo.co.uk>
daftshady <daftonshady@gmail.com>
Dan <dmtaub@gmail.com>
Dan Hackner <dan.hackner@gmail.com>
Daniel Devine <devine@ddevnet.net>
Daniele Procida <daniele@vurt.org>
Daniel Hahler <github@thequod.de>
Daniel Hepper <daniel.hepper@gmail.com>
Daniel Huang <dxhuang@gmail.com>
Daniel Lundin <daniel.lundin@trioptima.com>
Daniel Lundin <dln@eintr.org>
Daniel Watkins <daniel@daniel-watkins.co.uk>
Danilo Bargen <mail@dbrgn.ch>
Dan McGee <dan@archlinux.org>
Dan McGee <dpmcgee@gmail.com>
Dan Wilson <danjwilson@gmail.com>
Daodao <daodaod@gmail.com>
Dave Smith <dave@thesmithfam.org>
Dave Smith <dsmith@hirevue.com>
David Arthur <darthur@digitalsmiths.com>
David Arthur <mumrah@gmail.com>
David Baumgold <david@davidbaumgold.com>
David Cramer <dcramer@gmail.com>
David Davis <daviddavis@users.noreply.github.com>
David Harrigan <dharrigan118@gmail.com>
David Harrigan <dharrigan@dyn.com>
David Markey <dmarkey@localhost.localdomain>
David Miller <david@deadpansincerity.com>
David Miller <il.livid.dream@gmail.com>
David Pravec <David.Pravec@danix.org>
David Pravec <david.pravec@nethost.cz>
David Strauss <david@davidstrauss.net>
David White <dpwhite2@ncsu.edu>
DDevine <devine@ddevnet.net>
Denis Podlesniy <Haos616@Gmail.com>
Denis Shirokov <dan@rexuni.com>
Dennis Brakhane <dennis.brakhane@inoio.de>
Derek Harland <donkopotamus@users.noreply.github.com>
derek_kim <bluewhale8202@gmail.com>
dessant <dessant@users.noreply.github.com>
Dieter Adriaenssens <ruleant@users.sourceforge.net>
Dima Kurguzov <koorgoo@gmail.com>
dimka665 <dimka665@gmail.com>
dimlev <dimlev@gmail.com>
dmarkey <david@dmarkey.com>
Dmitry Malinovsky <damalinov@gmail.com>
Dmitry Malinovsky <dmalinovsky@thumbtack.net>
dmollerm <d.moller.m@gmail.com>
Dmytro Petruk <bavaria95@gmail.com>
dolugen <dolugen@gmail.com>
dongweiming <ciici1234@hotmail.com>
dongweiming <ciici123@gmail.com>
Dongweiming <ciici123@gmail.com>
dtheodor <dimitris.theodorou@gmail.com>
Dudás Ádám <sir.dudas.adam@gmail.com>
Dustin J. Mitchell <dustin@mozilla.com>
D. Yu <darylyu@users.noreply.github.com>
Ed Morley <edmorley@users.noreply.github.com>
Eduardo Ramírez <ejramire@uc.cl>
Edward Betts <edward@4angle.com>
Emil Stanchev <stanchev.emil@gmail.com>
Eran Rundstein <eran@sandsquid.(none)>
ergo <ergo@debian.Belkin>
Eric Poelke <epoelke@gmail.com>
Eric Zarowny <ezarowny@gmail.com>
ernop <ernestfrench@gmail.com>
Evgeniy <quick.es@gmail.com>
evildmp <daniele@apple-juice.co.uk>
fatihsucu <fatihsucu0@gmail.com>
Fatih Sucu <fatihsucu@users.noreply.github.com>
Feanil Patel <feanil@edx.org>
Felipe <fcoelho@users.noreply.github.com>
Felipe Godói Rosário <felipe.rosario@geru.com.br>
Felix Berger <bflat1@gmx.net>
Fengyuan Chen <cfy1990@gmail.com>
Fernando Rocha <fernandogrd@gmail.com>
ffeast <ffeast@gmail.com>
Flavio Percoco Premoli <flaper87@gmail.com>
Florian Apolloner <apollo13@apolloner.eu>
Florian Apolloner <florian@apollo13.(none)>
Florian Demmer <fdemmer@gmail.com>
flyingfoxlee <lingyunzhi312@gmail.com>
Francois Visconte <f.visconte@gmail.com>
François Voron <fvoron@gmail.com>
Frédéric Junod <frederic.junod@camptocamp.com>
fredj <frederic.junod@camptocamp.com>
frol <frolvlad@gmail.com>
Gabriel <gabrielpjordao@gmail.com>
Gao Jiangmiao <gao.jiangmiao@h3c.com>
GDR! <gdr@gdr.name>
GDvalle <GDvalle@users.noreply.github.com>
Geoffrey Bauduin <bauduin.geo@gmail.com>
georgepsarakis <giwrgos.psarakis@gmail.com>
George Psarakis <giwrgos.psarakis@gmail.com>
George Sibble <gsibble@gmail.com>
George Tantiras <raratiru@users.noreply.github.com>
Georgy Cheshkov <medoslav@gmail.com>
Gerald Manipon <pymonger@gmail.com>
German M. Bravo <german.mb@deipi.com>
Gert Van Gool <gertvangool@gmail.com>
Gilles Dartiguelongue <gilles.dartiguelongue@esiee.org>
Gino Ledesma <gledesma@apple.com>
gmanipon <gmanipon@jpl.nasa.gov>
Grant Thomas <jgrantthomas@gmail.com>
Greg Haskins <greg@greghaskins.com>
gregoire <gregoire@audacy.fr>
Greg Taylor <gtaylor@duointeractive.com>
Greg Wilbur <gwilbur@bloomberg.net>
Guillaume Gauvrit <guillaume@gandi.net>
Guillaume Gendre <dzb.rtz@gmail.com>
Gun.io Whitespace Robot <contact@gun.io>
Gunnlaugur Thor Briem <gunnlaugur@gmail.com>
harm <harm.verhagen@gmail.com>
Harm Verhagen <harm.verhagen@gmail.com>
Harry Moreno <morenoh149@gmail.com>
hclihn <23141651+hclihn@users.noreply.github.com>
hekevintran <hekevintran@gmail.com>
honux <atoahp@hotmail.com>
Honza Kral <honza.kral@gmail.com>
Honza Král <Honza.Kral@gmail.com>
Hooksie <me@matthooks.com>
Hsiaoming Yang <me@lepture.com>
Huang Huang <mozillazg101@gmail.com>
Hynek Schlawack <hs@ox.cx>
Hynek Schlawack <schlawack@variomedia.de>
Ian Dees <ian.dees@gmail.com>
Ian McCracken <ian.mccracken@gmail.com>
Ian Wilson <ian.owings@gmail.com>
Idan Kamara <idankk86@gmail.com>
Ignas Mikalajūnas <ignas.mikalajunas@gmail.com>
Igor Kasianov <super.hang.glider@gmail.com>
illes <illes.solt@gmail.com>
Ilya <4beast@gmail.com>
Ilya Georgievsky <i.georgievsky@drweb.com>
Ionel Cristian Mărieș <contact@ionelmc.ro>
Ionel Maries Cristian <contact@ionelmc.ro>
Ionut Turturica <jonozzz@yahoo.com>
Iurii Kriachko <iurii.kriachko@gmail.com>
Ivan Metzlar <metzlar@gmail.com>
Ivan Virabyan <i.virabyan@gmail.com>
j0hnsmith <info@whywouldwe.com>
Jackie Leng <Jackie.Leng@nelen-schuurmans.nl>
J Alan Brogan <jalanb@users.noreply.github.com>
Jameel Al-Aziz <me@jalaziz.net>
James M. Allen <james.m.allen@gmail.com>
James Michael DuPont <JamesMikeDuPont@gmail.com>
James Pulec <jpulec@gmail.com>
James Remeika <james@remeika.us>
Jamie Alessio <jamie@stoic.net>
Jannis Leidel <jannis@leidel.info>
Jared Biel <jared.biel@bolderthinking.com>
Jason Baker <amnorvend@gmail.com>
Jason Baker <jason@ubuntu.ubuntu-domain>
Jason Veatch <jtveatch@gmail.com>
Jasper Bryant-Greene <jbg@rf.net.nz>
Javier Domingo Cansino <javierdo1@gmail.com>
Javier Martin Montull <javier.martin.montull@cern.ch>
Jay Farrimond <jay@instaedu.com>
Jay McGrath <jaymcgrath@users.noreply.github.com>
jbiel <jared.biel@bolderthinking.com>
jbochi <jbochi@gmail.com>
Jed Smith <jed@jedsmith.org>
Jeff Balogh <github@jeffbalogh.org>
Jeff Balogh <me@jeffbalogh.org>
Jeff Terrace <jterrace@gmail.com>
Jeff Widman <jeff@jeffwidman.com>
Jelle Verstraaten <jelle.verstraaten@xs4all.nl>
Jeremy Cline <jeremy@jcline.org>
Jeremy Zafran <jeremy.zafran@cloudlock.com>
jerry <jerry@stellaservice.com>
Jerzy Kozera <jerzy.kozera@gmail.com>
Jerzy Kozera <jerzy.kozera@sensisoft.com>
jespern <jesper@noehr.org>
Jesper Noehr <jespern@jesper-noehrs-macbook-pro.local>
Jesse <jvanderdoes@gmail.com>
jess <jessachandler@gmail.com>
Jess Johnson <jess@grokcode.com>
Jian Yu <askingyj@gmail.com>
JJ <jairojair@gmail.com>
João Ricardo <joaoricardo000@gmail.com>
Jocelyn Delalande <jdelalande@oasiswork.fr>
JocelynDelalande <JocelynDelalande@users.noreply.github.com>
Joe Jevnik <JoeJev@gmail.com>
Joe Sanford <joe@cs.tufts.edu>
Joe Sanford <josephsanford@gmail.com>
Joey Wilhelm <tarkatronic@gmail.com>
John Anderson <sontek@gmail.com>
John Arnold <johnar@microsoft.com>
John Barham <jbarham@gmail.com>
John Watson <john@dctrwatson.com>
John Watson <john@disqus.com>
John Watson <johnw@mahalo.com>
John Whitlock <John-Whitlock@ieee.org>
Jonas Haag <jonas@lophus.org>
Jonas Obrist <me@ojii.ch>
Jonatan Heyman <jonatan@heyman.info>
Jonathan Jordan <jonathan@metaltoad.com>
Jonathan Sundqvist <sundqvist.jonathan@gmail.com>
jonathan vanasco <jonathan@2xlp.com>
Jon Chen <bsd@voltaire.sh>
Jon Dufresne <jon.dufresne@gmail.com>
Josh <kaizoku@phear.cc>
Josh Kupershmidt <schmiddy@gmail.com>
Joshua “jag” Ginsberg <jag@flowtheory.net>
Josue Balandrano Coronel <xirdneh@gmail.com>
Jozef <knaperek@users.noreply.github.com>
jpellerin <jpellerin@jpdesk.(none)>
jpellerin <none@none>
JP <jpellerin@gmail.com>
JTill <jtillman@hearsaycorp.com>
Juan Gutierrez <juanny.gee@gmail.com>
Juan Ignacio Catalano <catalanojuan@gmail.com>
Juan Rossi <juan@getmango.com>
Juarez Bochi <jbochi@gmail.com>
Jude Nagurney <jude@pwan.org>
Julien Deniau <julien@sitioweb.fr>
julienp <julien@caffeine.lu>
Julien Poissonnier <julien@caffeine.lu>
Jun Sakai <jsakai@splunk.com>
Justin Patrin <jpatrin@skyhighnetworks.com>
Justin Patrin <papercrane@reversefold.com>
Kalle Bronsen <bronsen@nrrd.de>
kamalgill <kamalgill@mac.com>
Kamil Breguła <mik-laj@users.noreply.github.com>
Kanan Rahimov <mail@kenanbek.me>
Kareem Zidane <kzidane@cs50.harvard.edu>
Keith Perkins <keith@tasteoftheworld.us>
Ken Fromm <ken@frommworldwide.com>
Ken Reese <krrg@users.noreply.github.com>
keves <e@keves.org>
Kevin Gu <guqi@reyagroup.com>
Kevin Harvey <kharvey@axialhealthcare.com>
Kevin McCarthy <me@kevinmccarthy.org>
Kevin Richardson <kevin.f.richardson@gmail.com>
Kevin Richardson <kevin@kevinrichardson.co>
Kevin Tran <hekevintran@gmail.com>
Kieran Brownlees <kbrownlees@users.noreply.github.com>
Kirill Pavlov <pavlov99@yandex.ru>
Kirill Romanov <djaler1@gmail.com>
komu <komuw05@gmail.com>
Konstantinos Koukopoulos <koukopoulos@gmail.com>
Konstantin Podshumok <kpp.live@gmail.com>
Kornelijus Survila <kornholijo@gmail.com>
Kouhei Maeda <mkouhei@gmail.com>
Kracekumar Ramaraju <me@kracekumar.com>
Krzysztof Bujniewicz <k.bujniewicz@bankier.pl>
kuno <neokuno@gmail.com>
Kxrr <Hi@Kxrr.Us>
Kyle Kelley <rgbkrk@gmail.com>
Laurent Peuch <cortex@worlddomination.be>
lead2gold <caronc@users.noreply.github.com>
Leo Dirac <leo@banyanbranch.com>
Leo Singer <leo.singer@ligo.org>
Lewis M. Kabui <lewis.maina@andela.com>
llllllllll <joejev@gmail.com>
Locker537 <Locker537@gmail.com>
Loic Bistuer <loic.bistuer@sixmedia.com>
Loisaida Sam <sam.sandberg@gmail.com>
lookfwd <lookfwd@gmail.com>
Loren Abrams <labrams@hearsaycorp.com>
Loren Abrams <loren.abrams@gmail.com>
Lucas Wiman <lucaswiman@counsyl.com>
lucio <lucio@prometeo.spirit.net.ar>
Luis Clara Gomez <ekkolabs@gmail.com>
Lukas Linhart <lukas.linhart@centrumholdings.com>
Łukasz Kożuchowski <lukasz.kozuchowski@10clouds.com>
Łukasz Langa <lukasz@langa.pl>
Łukasz Oleś <lukaszoles@gmail.com>
Luke Burden <lukeburden@gmail.com>
Luke Hutscal <luke@creaturecreative.com>
Luke Plant <L.Plant.98@cantab.net>
Luke Pomfrey <luke.pomfrey@titanemail.com>
Luke Zapart <drx@drx.pl>
mabouels <abouelsaoud@gmail.com>
Maciej Obuchowski <obuchowski.maciej@gmail.com>
Mads Jensen <mje@inducks.org>
Manuel Kaufmann <humitos@gmail.com>
Manuel Vázquez Acosta <mvaled@users.noreply.github.com>
Marat Sharafutdinov <decaz89@gmail.com>
Marcelo Da Cruz Pinto <Marcelo_DaCruzPinto@McAfee.com>
Marc Gibbons <marc_gibbons@rogers.com>
Marc Hörsken <mback2k@users.noreply.github.com>
Marcin Kuźmiński <marcin@python-blog.com>
marcinkuzminski <marcin@python-works.com>
Marcio Ribeiro <binary@b1n.org>
Marco Buttu <marco.buttu@gmail.com>
Marco Schweighauser <marco@mailrelay.ch>
mariia-zelenova <32500603+mariia-zelenova@users.noreply.github.com>
Marin Atanasov Nikolov <dnaeon@gmail.com>
Marius Gedminas <marius@gedmin.as>
mark hellewell <mark.hellewell@gmail.com>
Mark Lavin <markdlavin@gmail.com>
Mark Lavin <mlavin@caktusgroup.com>
Mark Parncutt <me@markparncutt.com>
Mark Story <mark@freshbooks.com>
Mark Stover <stovenator@gmail.com>
Mark Thurman <mthurman@gmail.com>
Markus Kaiserswerth <github@sensun.org>
Markus Ullmann <mail@markus-ullmann.de>
martialp <martialp@users.noreply.github.com>
Martin Davidsson <martin@dropcam.com>
Martin Galpin <m@66laps.com>
Martin Melin <git@martinmelin.com>
Matt Davis <matteius@gmail.com>
Matthew Duggan <mgithub@guarana.org>
Matthew J Morrison <mattj.morrison@gmail.com>
Matthew Miller <matthewgarrettmiller@gmail.com>
Matthew Schinckel <matt@schinckel.net>
mattlong <matt@crocodoc.com>
Matt Long <matt@crocodoc.com>
Matt Robenolt <matt@ydekproductions.com>
Matt Robenolt <m@robenolt.com>
Matt Williamson <dawsdesign@gmail.com>
Matt Williamson <matt@appdelegateinc.com>
Matt Wise <matt@nextdoor.com>
Matt Woodyard <matt@mattwoodyard.com>
Mauro Rocco <fireantology@gmail.com>
Maxim Bodyansky <maxim@viking.(none)>
Maxime Beauchemin <maxime.beauchemin@apache.org>
Maxime Vdb <mvergerdelbove@work4labs.com>
Mayflower <fucongwang@gmail.com>
mbacho <mbacho@users.noreply.github.com>
mher <mher.movsisyan@gmail.com>
Mher Movsisyan <mher.movsisyan@gmail.com>
Michael Aquilina <michaelaquilina@gmail.com>
Michael Duane Mooring <mikeumus@gmail.com>
Michael Elsdoerfer michael@elsdoerfer.com <michael@puppetmaster.(none)>
Michael Elsdorfer <michael@elsdoerfer.com>
Michael Elsdörfer <michael@elsdoerfer.com>
Michael Fladischer <FladischerMichael@fladi.at>
Michael Floering <michaelfloering@gmail.com>
Michael Howitz <mh@gocept.com>
michael <michael@giver.dpool.org>
Michael <michael-k@users.noreply.github.com>
michael <michael@puppetmaster.(none)>
Michael Peake <michaeljpeake@icloud.com>
Michael Permana <michael@origamilogic.com>
Michael Permana <mpermana@hotmail.com>
Michael Robellard <mikerobellard@onshift.com>
Michael Robellard <mrobellard@onshift.com>
Michal Kuffa <beezz@users.noreply.github.com>
Miguel Hernandez Martos <enlavin@gmail.com>
Mike Attwood <mike@cybersponse.com>
Mike Chen <yi.chen.it@gmail.com>
Mike Helmick <michaelhelmick@users.noreply.github.com>
mikemccabe <mike@mcca.be>
Mikhail Gusarov <dottedmag@dottedmag.net>
Mikhail Korobov <kmike84@gmail.com>
Mikołaj <mikolevy1@gmail.com>
Milen Pavlov <milen.pavlov@gmail.com>
Misha Wolfson <myw@users.noreply.github.com>
Mitar <mitar.github@tnode.com>
Mitar <mitar@tnode.com>
Mitchel Humpherys <mitch.special@gmail.com>
mklauber <matt+github@mklauber.com>
mlissner <mlissner@michaeljaylissner.com>
monkut <nafein@hotmail.com>
Morgan Doocy <morgan@doocy.net>
Morris Tweed <tweed.morris@gmail.com>
Morton Fox <github@qslw.com>
Môshe van der Sterre <me@moshe.nl>
Moussa Taifi <moutai10@gmail.com>
mozillazg <opensource.mozillazg@gmail.com>
mpavlov <milen.pavlov@gmail.com>
mperice <mperice@users.noreply.github.com>
mrmmm <mohammad.almeer@gmail.com>
Muneyuki Noguchi <nogu.dev@gmail.com>
m-vdb <mvergerdelbove@work4labs.com>
nadad <nadad6@gmail.com>
Nathaniel Varona <nathaniel.varona@gmail.com>
Nathan Van Gheem <vangheem@gmail.com>
Nat Williams <nat.williams@gmail.com>
Neil Chintomby <mace033@gmail.com>
Neil Chintomby <neil@mochimedia.com>
Nicholas Pilon <npilon@gmail.com>
nicholsonjf <nicholsonjf@gmail.com>
Nick Eaket <4418194+neaket360pi@users.noreply.github.com>
Nick Johnson <njohnson@limcollective.com>
Nicolas Mota <nicolas_mota@live.com>
nicolasunravel <nicolas@unravel.ie>
Niklas Aldergren <niklas@aldergren.com>
Noah Kantrowitz <noah@coderanger.net>
Noel Remy <mocramis@gmail.com>
NoKriK <nokrik@nokrik.net>
Norman Richards <orb@nostacktrace.com>
NotSqrt <notsqrt@gmail.com>
nott <reg@nott.cc>
ocean1 <ocean1@users.noreply.github.com>
ocean1 <ocean_ieee@yahoo.it>
ocean1 <ocean.kuzuri@gmail.com>
OddBloke <daniel.watkins@glassesdirect.com>
Oleg Anashkin <oleg.anashkin@gmail.com>
Olivier Aubert <contact@olivieraubert.net>
Omar Khan <omar@omarkhan.me>
Omer Katz <omer.drow@gmail.com>
Omer Korner <omerkorner@gmail.com>
orarbel <orarbel@gmail.com>
orf <tom@tomforb.es>
Ori Hoch <ori@uumpa.com>
outself <yura.nevsky@gmail.com>
Pablo Marti <pmargam@gmail.com>
pachewise <pachewise@users.noreply.github.com>
partizan <serg.partizan@gmail.com>
Pär Wieslander <wieslander@gmail.com>
Patrick Altman <paltman@gmail.com>
Patrick Cloke <clokep@users.noreply.github.com>
Patrick <paltman@gmail.com>
Patrick Stegmann <code@patrick-stegmann.de>
Patrick Stegmann <wonderb0lt@users.noreply.github.com>
Patrick Zhang <patdujour@gmail.com>
Paul English <paul@onfrst.com>
Paul Jensen <pjensen@interactdirect.com>
Paul Kilgo <pkilgo@clemson.edu>
Paul McMillan <paul.mcmillan@nebula.com>
Paul McMillan <Paul@McMillan.ws>
Paulo <PauloPeres@users.noreply.github.com>
Paul Pearce <pearce@cs.berkeley.edu>
Pavel Savchenko <pavel@modlinltd.com>
Pavlo Kapyshin <i@93z.org>
pegler <pegler@gmail.com>
Pepijn de Vos <pepijndevos@gmail.com>
Peter Bittner <django@bittner.it>
Peter Brook <peter.d.brook@gmail.com>
Philip Garnero <philip.garnero@corp.ovh.com>
Pierre Fersing <pierref@pierref.org>
Piotr Maślanka <piotr.maslanka@henrietta.com.pl>
Piotr Sikora <piotr.sikora@frickle.com>
PMickael <exploze@gmail.com>
PMickael <mickael.penhard@gmail.com>
Polina Giralt <polina.giralt@gmail.com>
precious <vs.kulaga@gmail.com>
Preston Moore <prestonkmoore@gmail.com>
Primož Kerin <kerin.primoz@gmail.com>
Pysaoke <pysaoke@gmail.com>
Rachel Johnson <racheljohnson457@gmail.com>
Rachel Willmer <rachel@willmer.org>
raducc <raducc@users.noreply.github.com>
Raf Geens <rafgeens@gmail.com>
Raghuram Srinivasan <raghu@set.tv>
Raphaël Riel <raphael.riel@gmail.com>
Raphaël Slinckx <rslinckx@gmail.com>
Régis B <github@behmo.com>
Remigiusz Modrzejewski <lrem@maxnet.org.pl>
Rémi Marenco <remi.marenco@gmail.com>
rfkrocktk <rfkrocktk@gmail.com>
Rick van Hattem <rick.van.hattem@fawo.nl>
Rick Wargo <rickwargo@users.noreply.github.com>
Rico Moorman <rico.moorman@gmail.com>
Rik <gitaarik@gmail.com>
Rinat Shigapov <rinatshigapov@gmail.com>
Riyad Parvez <social.riyad@gmail.com>
rlotun <rlotun@gmail.com>
rnoel <rnoel@ltutech.com>
Robert Knight <robertknight@gmail.com>
Roberto Gaiser <gaiser@geekbunker.org>
roderick <mail@roderick.de>
Rodolphe Quiedeville <rodolphe@quiedeville.org>
Roger Hu <rhu@hearsaycorp.com>
Roger Hu <roger.hu@gmail.com>
Roman Imankulov <roman@netangels.ru>
Roman Sichny <roman@sichnyi.com>
Romuald Brunet <romuald@gandi.net>
Ronan Amicel <ronan.amicel@gmail.com>
Ross Deane <ross.deane@gmail.com>
Ross Lawley <ross.lawley@gmail.com>
Ross Patterson <me@rpatterson.net>
Ross <ross@duedil.com>
Rudy Attias <rudy.attias@gmail.com>
rumyana neykova <rumi.neykova@gmail.com>
Rumyana Neykova <rumi.neykova@gmail.com>
Rune Halvorsen <runefh@gmail.com>
Rune Halvorsen <runeh@vorkosigan.(none)>
runeh <runeh@vorkosigan.(none)>
Russell Keith-Magee <russell@keith-magee.com>
Ryan Guest <ryanguest@gmail.com>
Ryan Hiebert <ryan@ryanhiebert.com>
Ryan Kelly <rkelly@truveris.com>
Ryan Luckie <rtluckie@gmail.com>
Ryan Petrello <lists@ryanpetrello.com>
Ryan P. Kelly <rpkelly@cpan.org>
Ryan P Kilby <rpkilby@ncsu.edu>
Salvatore Rinchiera <srinchiera@college.harvard.edu>
Sam Cooke <sam@mixcloud.com>
samjy <sam+git@samjy.com>
Sammie S. Taunton <diemuzi@gmail.com>
Samuel Dion-Girardeau <samueldg@users.noreply.github.com>
Samuel Dion-Girardeau <samuel.diongirardeau@gmail.com>
Samuel GIFFARD <samuel@giffard.co>
Scott Cooper <scttcper@gmail.com>
screeley <screeley@screeley-laptop.(none)>
sdcooke <sam@mixcloud.com>
Sean O’Connor <sean@seanoc.com>
Sean Wang <seanw@patreon.com>
Sebastian Kalinowski <sebastian@kalinowski.eu>
Sébastien Fievet <zyegfryed@gmail.com>
Seong Won Mun <longfinfunnel@gmail.com>
Sergey Fursov <GeyseR85@gmail.com>
Sergey Tikhonov <zimbler@gmail.com>
Sergi Almacellas Abellana <sergi@koolpi.com>
Sergio Fernandez <ElAutoestopista@users.noreply.github.com>
Seungha Kim <seungha.dev@gmail.com>
shalev67 <shalev67@gmail.com>
Shitikanth <golu3990@gmail.com>
Silas Sewell <silas@sewell.org>
Simon Charette <charette.s@gmail.com>
Simon Engledew <simon@engledew.com>
Simon Josi <simon.josi@atizo.com>
Simon Legner <Simon.Legner@gmail.com>
Simon Peeters <peeters.simon@gmail.com>
Simon Schmidt <schmidt.simon@gmail.com>
skovorodkin <sergey@skovorodkin.com>
Slam <3lnc.slam@gmail.com>
Smirl <smirlie@googlemail.com>
squfrans <frans@squla.com>
Srinivas Garlapati <srinivasa.b.garlapati@gmail.com>
Stas Rudakou <stas@garage22.net>
Static <staticfox@staticfox.net>
Steeve Morin <steeve.morin@gmail.com>
Stefan hr Berder <stefan.berder@ledapei.com>
Stefan Kjartansson <esteban.supreme@gmail.com>
Steffen Allner <sa@gocept.com>
Stephen Weber <mordel@gmail.com>
Steven Johns <duoi@users.noreply.github.com>
Steven Parker <voodoonofx@gmail.com>
Steven <rh0dium@users.noreply.github.com>
Steven Sklar <steve@predata.com>
Steven Skoczen <steven@aquameta.com>
Steven Skoczen <steven@quantumimagery.com>
Steve Peak <steve@stevepeak.net>
stipa <stipa@debian.local.local>
sukrit007 <sukrit007@gmail.com>
Sukrit Khera <sukrit007@gmail.com>
Sundar Raman <cybertoast@gmail.com>
sunfinite <sunfinite@gmail.com>
sww <sww@users.noreply.github.com>
Tadej Janež <tadej.janez@tadej.hicsalta.si>
Taha Jahangir <mtjahangir@gmail.com>
Takeshi Kanemoto <tak.kanemoto@gmail.com>
TakesxiSximada <takesxi.sximada@gmail.com>
Tamer Sherif <tamer.sherif@flyingelephantlab.com>
Tao Qingyun <845767657@qq.com>
Tarun Bhardwaj <mailme@tarunbhardwaj.com>
Tayfun Sen <tayfun.sen@markafoni.com>
Tayfun Sen <tayfun.sen@skyscanner.net>
Tayfun Sen <totayfun@gmail.com>
tayfun <tayfun.sen@markafoni.com>
Taylor C. Richberger <taywee@gmx.com>
taylornelson <taylor@sourcedna.com>
Theodore Dubois <tbodt@users.noreply.github.com>
Theo Spears <github@theos.me.uk>
Thierry RAMORASOAVINA <thierry.ramorasoavina@orange.com>
Thijs Triemstra <info@collab.nl>
Thomas French <thomas@sandtable.com>
Thomas Grainger <tagrain@gmail.com>
Thomas Johansson <prencher@prencher.dk>
Thomas Meson <zllak@hycik.org>
Thomas Minor <sxeraverx@gmail.com>
Thomas Wright <tom.tdw@gmail.com>
Timo Sugliani <timo.sugliani@gmail.com>
Timo Sugliani <tsugliani@tsugliani-desktop.(none)>
Titusz <tp@py7.de>
tnir <tnir@users.noreply.github.com>
Tobias Kunze <rixx@cutebit.de>
Tocho Tochev <tocho@tochev.net>
Tomas Machalek <tomas.machalek@gmail.com>
Tomasz Święcicki <tomislater@gmail.com>
Tom ‘Biwaa’ Riat <riat.tom@gmail.com>
Tomek Święcicki <tomislater@gmail.com>
Tom S <scytale@gmail.com>
tothegump <tothegump@gmail.com>
Travis Swicegood <development@domain51.com>
Travis Swicegood <travis@domain51.com>
Travis <treeder@gmail.com>
Trevor Skaggs <skaggs.trevor@gmail.com>
Ujjwal Ojha <ojhaujjwal@users.noreply.github.com>
unknown <Jonatan@.(none)>
Valentyn Klindukh <vklindukh@cogniance.com>
Viktor Holmqvist <viktorholmqvist@gmail.com>
Vincent Barbaresi <vbarbaresi@users.noreply.github.com>
Vincent Driessen <vincent@datafox.nl>
Vinod Chandru <vinod.chandru@gmail.com>
Viraj <vnavkal0@gmail.com>
Vitaly Babiy <vbabiy86@gmail.com>
Vitaly <olevinsky.v.s@gmail.com>
Vivek Anand <vivekanand1101@users.noreply.github.com>
Vlad <frolvlad@gmail.com>
Vladimir Gorbunov <vsg@suburban.me>
Vladimir Kryachko <v.kryachko@gmail.com>
Vladimir Rutsky <iamironbob@gmail.com>
Vladislav Stepanov <8uk.8ak@gmail.com>
Vsevolod <Vsevolod@zojax.com>
Wes Turner <wes.turner@gmail.com>
wes <wes@policystat.com>
Wes Winham <winhamwr@gmail.com>
w- <github@wangsanata.com>
whendrik <whendrik@gmail.com>
Wido den Hollander <wido@widodh.nl>
Wieland Hoffmann <mineo@users.noreply.github.com>
Wiliam Souza <wiliamsouza83@gmail.com>
Wil Langford <wil.langford+github@gmail.com>
William King <willtrking@gmail.com>
Will <paradox41@users.noreply.github.com>
Will Thompson <will@willthompson.co.uk>
winhamwr <winhamwr@gmail.com>
Wojciech Żywno <w.zywno@gmail.com>
W. Trevor King <wking@tremily.us>
wyc <wayne@neverfear.org>
wyc <wyc@fastmail.fm>
xando <sebastian.pawlus@gmail.com>
Xavier Damman <xdamman@gmail.com>
Xavier Hardy <xavierhardy@users.noreply.github.com>
Xavier Ordoquy <xordoquy@linovia.com>
xin li <xin.shli@ele.me>
xray7224 <xray7224@googlemail.com>
y0ngdi <36658095+y0ngdi@users.noreply.github.com>
Yan Kalchevskiy <yan.kalchevskiy@gmail.com>
Yohann Rebattu <yohann@rebattu.fr>
Yoichi NAKAYAMA <yoichi.nakayama@gmail.com>
Yuhannaa <yuhannaa@gmail.com>
YuLun Shih <shih@yulun.me>
Yury V. Zaytsev <yury@shurup.com>
Yuval Greenfield <ubershmekel@gmail.com>
Zach Smith <zmsmith27@gmail.com>
Zhang Chi <clvrobj@gmail.com>
Zhaorong Ma <mazhaorong@gmail.com>
Zoran Pavlovic <xcepticzoki@gmail.com>
ztlpn <mvzp10@gmail.com>
何翔宇(Sean Ho) <h1x2y3awalm@gmail.com>
許邱翔 <wdv4758h@gmail.com>

Note

This wall was automatically generated from git history,
so sadly it doesn’t not include the people who help with more important
things like answering mailing-list questions.

Important Notes

Supported Python Versions

The supported Python Versions are:

	CPython 2.7

	CPython 3.4

	CPython 3.5

	CPython 3.6

	PyPy 5.8 (pypy2)

News

Result Backends

New Redis Sentinel Results Backend

Redis Sentinel provides high availability for Redis.
A new result backend supporting it was added.

Cassandra Results Backend

A new cassandra_options configuration option was introduced in order to configure
the cassandra client.

See Cassandra backend settings for more information.

DynamoDB Results Backend

A new dynamodb_endpoint_url configuration option was introduced in order
to point the result backend to a local endpoint during development or testing.

See AWS DynamoDB backend settings for more information.

Python 2/3 Compatibility Fixes

Both the CouchDB and the Consul result backends accepted byte strings without decoding them to Unicode first.
This is now no longer the case.

Canvas

Multiple bugs were resolved resulting in a much smoother experience when using Canvas.

Tasks

Bound Tasks as Error Callbacks

We fixed a regression that occurred when bound tasks are used as error callbacks.
This used to work in Celery 3.x but raised an exception in 4.x until this release.

In both 4.0 and 4.1 the following code wouldn’t work:

@app.task(name="raise_exception", bind=True)
def raise_exception(self):
 raise Exception("Bad things happened")

@app.task(name="handle_task_exception", bind=True)
def handle_task_exception(self):
 print("Exception detected")

subtask = raise_exception.subtask()

subtask.apply_async(link_error=handle_task_exception.s())

Task Representation

	Shadowing task names now works as expected.
The shadowed name is properly presented in flower, the logs and the traces.

	argsrepr and kwargsrepr were previously not used even if specified.
They now work as expected. See Hiding sensitive information in arguments for more information.

Custom Requests

We now allow tasks to use custom request classes
for custom task classes.

See Requests and custom requests for more information.

Retries with Exponential Backoff

Retries can now be performed with exponential backoffs to avoid overwhelming
external services with requests.

See Automatic retry for known exceptions for more information.

Sphinx Extension

Tasks were supposed to be automatically documented when using Sphinx’s Autodoc was used.
The code that would have allowed automatic documentation had a few bugs which are now fixed.

Also, The extension is now documented properly. See Documenting Tasks with Sphinx for more information.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Change history

This document contains change notes for bugfix releases in
the 4.2.x series, please see What’s new in Celery 4.2 (windowlicker) for
an overview of what’s new in Celery 4.2.

4.2.1

	release-date

	2018-07-18 11:00 AM IST

	release-by

	Omer Katz

	Result Backend: Fix deserialization of exceptions that are present in the producer codebase but not in the consumer codebase.

Contributed by John Arnold

	Message Protocol Compatibility: Fix error caused by an invalid (None) timelimit value in the message headers when migrating messages from 3.x to 4.x.

Contributed by Robert Kopaczewski

	Result Backend: Fix serialization of exception arguments when exception arguments are not JSON serializable by default.

Contributed by Tom Booth

	Worker: Fixed multiple issues with rate limited tasks

Maintain scheduling order.
Fix possible scheduling of a celery.worker.request.Request with the wrong kombu.utils.limits.TokenBucket [https://kombu.readthedocs.io/en/master/reference/kombu.utils.limits.html#kombu.utils.limits.TokenBucket] which could cause tasks’ rate limit to behave incorrectly.
Fix possible duplicated execution of tasks that were rate limited or if ETA/Countdown was provided for them.

Contributed by @ideascf [https://github.com/ideascf/]

	Worker: Defensively handle invalid timelimit header values in requests.

Contributed by Omer Katz

Documentation fixes:

	Matt Wiens

	Seunghun Lee

	Lewis M. Kabui

	Prathamesh Salunkhe

4.2.0

	release-date

	2018-06-10 21:30 PM IST

	release-by

	Omer Katz

	Task: Add ignore_result as task execution option (#4709, #3834)

Contributed by Andrii Kostenko and George Psarakis.

	Redis Result Backend: Do not create PubSub subscriptions when results are ignored (#4709, #3834)

Contributed by Andrii Kostenko and George Psarakis.

	Redis Result Backend: Result consumer always unsubscribes when task state is ready (#4666)

Contributed by George Psarakis.

	Development/Testing: Add docker-compose and base Dockerfile for development (#4482)

Contributed by Chris Mitchell.

	Documentation/Sphinx: Teach autodoc to document tasks if undoc-members is not set (#4588)

Contributed by Leo Singer.

	Documentation/Sphinx: Put back undoc-members option in sphinx test (#4586)

Contributed by Leo Singer.

	Documentation/Sphinx: Sphinx autodoc picks up tasks automatically only if undoc-members is set (#4584)

Contributed by Leo Singer.

	Task: Fix shadow_name issue when using previous version Task class (#4572)

Contributed by @pachewise [https://github.com/pachewise/].

	Task: Add support for bound tasks as link_error parameter (Fixes #3723) (#4545)

Contributed by @brabiega [https://github.com/brabiega/].

	Deployment: Add a command line option for setting the Result Backend URL (#4549)

Contributed by @y0ngdi [https://github.com/y0ngdi/].

	CI: Enable pip cache in appveyor build (#4546)

Contributed by Thijs Triemstra.

	Concurrency/Asynpool: Fix errno property name shadowing.

Contributed by Omer Katz.

	DynamoDB Backend: Configurable endpoint URL (#4532)

Contributed by Bohdan Rybak.

	Timezones: Correctly detect UTC timezone and timezone from settings (Fixes #4517) (#4519)

Contributed by @last-partizan [https://github.com/last-partizan/].

	Control: Cleanup the mailbox’s producer pool after forking (#4472)

Contributed by Nick Eaket.

	Documentation: Start Celery and Celery Beat on Azure WebJob (#4484)

Contributed by PauloPeres.

	Celery Beat: Schedule due tasks on startup, after Beat restart has occurred (#4493)

Contributed by Igor Kasianov.

	Worker: Use absolute time when task is accepted by worker pool (#3684)

Contributed by Régis Behmo.

	Canvas: Propagate arguments to chains inside groups (#4481)

Contributed by Chris Mitchell.

	Canvas: Fix Task.replace behavior in nested chords (fixes #4368) (#4369)

Contributed by Denis Shirokov & Alex Hill.

	Installation: Pass python_requires argument to setuptools (#4479)

Contributed by Jon Dufresne.

	Message Protocol Compatibility: Handle “hybrid” messages that have moved between Celery versions (#4358) (Issue #4356)

Contributed by Russell Keith-Magee.

	Canvas: request on_timeout now ignores soft time limit exception (fixes #4412) (#4473)

Contributed by Alex Garel.

	Redis Result Backend: Integration test to verify PubSub unsubscriptions (#4468)

Contributed by George Psarakis.

	Message Protocol Properties: Allow the shadow keyword argument and the shadow_name method to set shadow properly (#4381)

Contributed by @hclihn [https://github.com/hclihn/].

	Canvas: Run chord_unlock on same queue as chord body (#4448) (Issue #4337)

Contributed by Alex Hill.

	Canvas: Support chords with empty header group (#4443)

Contributed by Alex Hill.

	Timezones: make astimezone call in localize more safe (#4324)

Contributed by Matt Davis.

	Canvas: Fix length-1 and nested chords (#4437) (Issues #4393, #4055, #3885, #3597, #3574, #3323, #4301)

Contributed by Alex Hill.

	CI: Run Openstack Bandit [https://pypi.org/project/bandit/1.0.1/] in Travis CI in order to detect security issues.

Contributed by Omer Katz.

	CI: Run isort [https://github.com/timothycrosley/isort] in Travis CI in order to lint Python import statements.

Contributed by Omer Katz.

	Canvas: Resolve TypeError on .get from nested groups (#4432) (Issue #4274)

Contributed by Misha Wolfson.

	CouchDB Backend: Correct CouchDB key string type for Python 2/3 compatibility (#4166)

Contributed by @fmind [https://github.com/fmind/] && Omer Katz.

	Group Result: Fix current_app fallback in GroupResult.restore() (#4431)

Contributed by Alex Hill.

	Consul Backend: Correct key string type for Python 2/3 compatibility (#4416)

Contributed by Wido den Hollander.

	Group Result: Correctly restore an empty GroupResult (#2202) (#4427)

Contributed by Alex Hill & Omer Katz.

	Result: Disable synchronous waiting for sub-tasks on eager mode(#4322)

Contributed by Denis Podlesniy.

	Celery Beat: Detect timezone or Daylight Saving Time changes (#1604) (#4403)

Contributed by Vincent Barbaresi.

	Canvas: Fix append to an empty chain. Fixes #4047. (#4402)

Contributed by Omer Katz.

	Task: Allow shadow to override task name in trace and logging messages. (#4379)

Contributed by @hclihn [https://github.com/hclihn/].

	Documentation/Sphinx: Fix getfullargspec Python 2.x compatibility in contrib/sphinx.py (#4399)

Contributed by Javier Martin Montull.

	Documentation: Updated installation instructions for SQS broker (#4382)

Contributed by Sergio Fernandez.

	Celery Beat: Better equality comparison for ScheduleEntry instances (#4312)

Contributed by @mariia-zelenova [https://github.com/mariia-zelenova/].

	Task: Adding ‘shadow’ property to as_task_v2 (#4350)

Contributed by Marcelo Da Cruz Pinto.

	Try to import directly, do not use deprecated imp method (#4216)

Contributed by Tobias Kunze.

	Task: Enable kwargsrepr and argsrepr override for modifying task argument representation (#4260)

Contributed by James M. Allen.

	Result Backend: Add Redis Sentinel backend (#4144)

Contributed by Geoffrey Bauduin.

	Use unique time values for Collections/LimitedSet (#3879 and #3891) (#3892)

Contributed by @lead2gold [https://github.com/lead2gold/].

	CI: Report coverage for all result backends.

Contributed by Omer Katz.

	Django: Use Django DB max age connection setting (fixes #4116) (#4292)

Contributed by Marco Schweighauser.

	Canvas: Properly take into account chain tasks link_error (#4240)

Contributed by @agladkov [https://github.com/agladkov/].

	Canvas: Allow to create group with single task (fixes issue #4255) (#4280)

Contributed by @agladkov [https://github.com/agladkov/].

	Canvas: Copy dictionary parameter in chord.from_dict before modifying (fixes issue #4223) (#4278)

Contributed by @agladkov [https://github.com/agladkov/].

	Results Backend: Add Cassandra options (#4224)

Contributed by Scott Cooper.

	Worker: Apply rate limiting for tasks with ETA (#4251)

Contributed by @arpanshah29 [https://github.com/arpanshah29/].

	Celery Beat: support scheduler entries without a schedule (#4235)

Contributed by Markus Kaiserswerth.

	SQS Broker: Updated SQS requirements file with correct boto3 version (#4231)

Contributed by Alejandro Varas.

	Remove unused code from _create_app contextmanager (#4204)

Contributed by Ryan P Kilby.

	Group Result: Modify GroupResult.as_tuple() to include parent (fixes #4106) (#4205)

Contributed by @pachewise [https://github.com/pachewise/].

	Beat: Set default scheduler class in beat command. (#4189)

Contributed by @Kxrr [https://github.com/Kxrr/].

	Worker: Retry signal receiver after raised exception (#4192)

Contributed by David Davis.

	Task: Allow custom Request class for tasks (#3977)

Contributed by Manuel Vázquez Acosta.

	Django: Django fixup should close all cache backends (#4187)

Contributed by Raphaël Riel.

	Deployment: Adds stopasgroup to the supervisor scripts (#4200)

Contributed by @martialp [https://github.com/martialp/].

	Using Exception.args to serialize/deserialize exceptions (#4085)

Contributed by Alexander Ovechkin.

	Timezones: Correct calculation of application current time with timezone (#4173)

Contributed by George Psarakis.

	Remote Debugger: Set the SO_REUSEADDR option on the socket (#3969)

Contributed by Theodore Dubois.

	Django: Celery ignores exceptions raised during django.setup() (#4146)

Contributed by Kevin Gu.

	Use heartbeat setting from application configuration for Broker connection (#4148)

Contributed by @mperice [https://github.com/mperice/].

	Celery Beat: Fixed exception caused by next_transit receiving an unexpected argument. (#4103)

Contributed by DDevine.

	Task Introduce exponential backoff with Task auto-retry (#4101)

Contributed by David Baumgold.

	AsyncResult: Remove weak-references to bound methods in AsyncResult promises. (#4131)

Contributed by Vinod Chandru.

	Development/Testing: Allow eager application of canvas structures (#4576)

Contributed by Nicholas Pilon.

	Command Line: Flush stderr before exiting with error code 1.

Contributed by Antonin Delpeuch.

	Task: Escapes single quotes in kwargsrepr strings.

Contributed by Kareem Zidane

	AsyncResult: Restore ability to join over ResultSet after fixing celery/#3818.

Contributed by Derek Harland

	Redis Results Backend: Unsubscribe on message success.

Previously Celery would leak channels, filling the memory of the Redis instance.

Contributed by George Psarakis

	Task: Only convert eta to isoformat when it is not already a string.

Contributed by Omer Katz

	Redis Results Backend: The result_backend setting now supports rediss:// URIs

Contributed by James Remeika

	Canvas Keyword arguments are passed to tasks in chain as expected.

Contributed by @tothegump [https://github.com/tothegump/]

	Django Fix a regression causing Celery to crash when using Django.

Contributed by Jonas Haag

	Canvas Chain with one task now runs as expected.

Contributed by @tothegump [https://github.com/tothegump/]

	Kombu Celery 4.2 now requires Kombu 4.2 or better.

Contributed by Omer Katz & Asif Saifuddin Auvi

	GreenletExit is not in __all__ in greenlet.py which can not be imported by Python 3.6.

The import was adjusted to work on Python 3.6 as well.

Contributed by Hsiaoming Yang

	Fixed a regression that occurred during the development of Celery 4.2 which caused celery report to crash when Django is installed.

Contributed by Josue Balandrano Coronel

	Matched the behavior of GroupResult.as_tuple() to that of AsyncResult.as_tuple().

The group’s parent is now serialized correctly.

Contributed by Josue Balandrano Coronel

	Use Redis coercion mechanism for converting URI query parameters.

Contributed by Justin Patrin

	Fixed the representation of GroupResult.

The dependency graph is now presented correctly.

Contributed by Josue Balandrano Coronel

Documentation, CI, Installation and Tests fixes:

	Sammie S. Taunton

	Dan Wilson

	@pachewise [https://github.com/pachewise/]

	Sergi Almacellas Abellana

	Omer Katz

	Alex Zaitsev

	Leo Singer

	Rachel Johnson

	Jon Dufresne

	Samuel Dion-Girardeau

	Ryan Guest

	Huang Huang

	Geoffrey Bauduin

	Andrew Wong

	Mads Jensen

	Jackie Leng

	Harry Moreno

	@michael-k [https://github.com/michael-k/]

	Nicolas Mota

	Armenak Baburyan

	Patrick Zhang

	@anentropic [https://github.com/anentropic/]

	@jairojair [https://github.com/jairojair/]

	Ben Welsh

	Michael Peake

	Fengyuan Chen

	@arpanshah29 [https://github.com/arpanshah29/]

	Xavier Hardy

	Shitikanth

	Igor Kasianov

	John Arnold

	@dmollerm [https://github.com/dmollerm/]

	Robert Knight

	Asif Saifuddin Auvi

	Eduardo Ramírez

	Kamil Breguła

	Juan Gutierrez

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

What’s new in Celery 4.1 (latentcall)

	Author

	Omer Katz (omer.drow at gmail.com)

Change history

What’s new documents describe the changes in major versions,
we also have a Change history that lists the changes in bugfix
releases (0.0.x), while older series are archived under the History
section.

Celery is a simple, flexible, and reliable distributed system to
process vast amounts of messages, while providing operations with
the tools required to maintain such a system.

It’s a task queue with focus on real-time processing, while also
supporting task scheduling.

Celery has a large and diverse community of users and contributors,
you should come join us on IRC
or our mailing-list.

To read more about Celery you should go read the introduction.

While this version is backward compatible with previous versions
it’s important that you read the following section.

This version is officially supported on CPython 2.7, 3.4, 3.5 & 3.6
and is also supported on PyPy.

Table of Contents

Make sure you read the important notes before upgrading to this version.

	Preface

	Wall of Contributors

	Important Notes

	Added support for Python 3.6 & PyPy 5.8.0

	News

	Result Backends

	Periodic Tasks

	Tasks

	Canvas

Preface

The 4.1.0 release continues to improve our efforts to provide you with
the best task execution platform for Python.

This release is mainly a bug fix release, ironing out some issues and regressions
found in Celery 4.0.0.

We added official support for Python 3.6 and PyPy 5.8.0.

This is the first time we release without Ask Solem as an active contributor.
We’d like to thank him for his hard work in creating and maintaining Celery over the years.

Since Ask Solem was not involved there were a few kinks in the release process
which we promise to resolve in the next release.
This document was missing when we did release Celery 4.1.0.
Also, we did not update the release codename as we should have.
We apologize for the inconvenience.

For the time being, I, Omer Katz will be the release manager.

Thank you for your support!

— Omer Katz

Wall of Contributors

Acey <huiwang.e@gmail.com>
Acey9 <huiwang.e@gmail.com>
Alan Hamlett <alanhamlett@users.noreply.github.com>
Alan Justino da Silva <alan.justino@yahoo.com.br>
Alejandro Pernin <ale.pernin@gmail.com>
Alli <alzeih@users.noreply.github.com>
Andreas Pelme <andreas@pelme.se>
Andrew de Quincey <adq@lidskialf.net>
Anthony Lukach <anthonylukach@gmail.com>
Arcadiy Ivanov <arcadiy@ivanov.biz>
Arnaud Rocher <cailloumajor@users.noreply.github.com>
Arthur Vigil <ahvigil@mail.sfsu.edu>
Asif Saifuddin Auvi <auvipy@users.noreply.github.com>
Ask Solem <ask@celeryproject.org>
BLAGA Razvan-Paul <razvan.paul.blaga@gmail.com>
Brendan MacDonell <macdonellba@gmail.com>
Brian Luan <jznight@gmail.com>
Brian May <brian@linuxpenguins.xyz>
Bruno Alla <browniebroke@users.noreply.github.com>
Chris Kuehl <chris@techxonline.net>
Christian <github@penpal4u.net>
Christopher Hoskin <mans0954@users.noreply.github.com>
Daniel Hahler <github@thequod.de>
Daniel Huang <dxhuang@gmail.com>
Derek Harland <donkopotamus@users.noreply.github.com>
Dmytro Petruk <bavaria95@gmail.com>
Ed Morley <edmorley@users.noreply.github.com>
Eric Poelke <epoelke@gmail.com>
Felipe <fcoelho@users.noreply.github.com>
François Voron <fvoron@gmail.com>
GDR! <gdr@gdr.name>
George Psarakis <giwrgos.psarakis@gmail.com>
J Alan Brogan <jalanb@users.noreply.github.com>
James Michael DuPont <JamesMikeDuPont@gmail.com>
Jamie Alessio <jamie@stoic.net>
Javier Domingo Cansino <javierdo1@gmail.com>
Jay McGrath <jaymcgrath@users.noreply.github.com>
Jian Yu <askingyj@gmail.com>
Joey Wilhelm <tarkatronic@gmail.com>
Jon Dufresne <jon.dufresne@gmail.com>
Kalle Bronsen <bronsen@nrrd.de>
Kirill Romanov <djaler1@gmail.com>
Laurent Peuch <cortex@worlddomination.be>
Luke Plant <L.Plant.98@cantab.net>
Marat Sharafutdinov <decaz89@gmail.com>
Marc Gibbons <marc_gibbons@rogers.com>
Marc Hörsken <mback2k@users.noreply.github.com>
Michael <michael-k@users.noreply.github.com>
Michael Howitz <mh@gocept.com>
Michal Kuffa <beezz@users.noreply.github.com>
Mike Chen <yi.chen.it@gmail.com>
Mike Helmick <michaelhelmick@users.noreply.github.com>
Morgan Doocy <morgan@doocy.net>
Moussa Taifi <moutai10@gmail.com>
Omer Katz <omer.drow@gmail.com>
Patrick Cloke <clokep@users.noreply.github.com>
Peter Bittner <django@bittner.it>
Preston Moore <prestonkmoore@gmail.com>
Primož Kerin <kerin.primoz@gmail.com>
Pysaoke <pysaoke@gmail.com>
Rick Wargo <rickwargo@users.noreply.github.com>
Rico Moorman <rico.moorman@gmail.com>
Roman Sichny <roman@sichnyi.com>
Ross Patterson <me@rpatterson.net>
Ryan Hiebert <ryan@ryanhiebert.com>
Rémi Marenco <remi.marenco@gmail.com>
Salvatore Rinchiera <srinchiera@college.harvard.edu>
Samuel Dion-Girardeau <samuel.diongirardeau@gmail.com>
Sergey Fursov <GeyseR85@gmail.com>
Simon Legner <Simon.Legner@gmail.com>
Simon Schmidt <schmidt.simon@gmail.com>
Slam <3lnc.slam@gmail.com>
Static <staticfox@staticfox.net>
Steffen Allner <sa@gocept.com>
Steven <rh0dium@users.noreply.github.com>
Steven Johns <duoi@users.noreply.github.com>
Tamer Sherif <tamer.sherif@flyingelephantlab.com>
Tao Qingyun <845767657@qq.com>
Tayfun Sen <totayfun@gmail.com>
Taylor C. Richberger <taywee@gmx.com>
Thierry RAMORASOAVINA <thierry.ramorasoavina@orange.com>
Tom ‘Biwaa’ Riat <riat.tom@gmail.com>
Viktor Holmqvist <viktorholmqvist@gmail.com>
Viraj <vnavkal0@gmail.com>
Vivek Anand <vivekanand1101@users.noreply.github.com>
Will <paradox41@users.noreply.github.com>
Wojciech Żywno <w.zywno@gmail.com>
Yoichi NAKAYAMA <yoichi.nakayama@gmail.com>
YuLun Shih <shih@yulun.me>
Yuhannaa <yuhannaa@gmail.com>
abhinav nilaratna <anilaratna2@bloomberg.net>
aydin <adigeaydin@gmail.com>
csfeathers <csfeathers@users.noreply.github.com>
georgepsarakis <giwrgos.psarakis@gmail.com>
orf <tom@tomforb.es>
shalev67 <shalev67@gmail.com>
sww <sww@users.noreply.github.com>
tnir <tnir@users.noreply.github.com>
何翔宇(Sean Ho) <h1x2y3awalm@gmail.com>

Note

This wall was automatically generated from git history,
so sadly it doesn’t not include the people who help with more important
things like answering mailing-list questions.

Important Notes

Added support for Python 3.6 & PyPy 5.8.0

We now run our unit test suite and integration test suite on Python 3.6.x
and PyPy 5.8.0.

We expect newer versions of PyPy to work but unfortunately we do not have the
resources to test PyPy with those versions.

The supported Python Versions are:

	CPython 2.7

	CPython 3.4

	CPython 3.5

	CPython 3.6

	PyPy 5.8 (pypy2)

News

Result Backends

New DynamoDB Results Backend

We added a new results backend for those of you who are using DynamoDB.

If you are interested in using this results backend, refer to AWS DynamoDB backend settings for more information.

Elasticsearch

The Elasticsearch results backend is now more robust and configurable.

See Elasticsearch backend settings for more information
about the new configuration options.

Redis

The Redis results backend can now use TLS to encrypt the communication with the
Redis database server.

See Redis backend settings.

MongoDB

The MongoDB results backend can now handle binary-encoded task results.

This was a regression from 4.0.0 which resulted in a problem using serializers
such as MsgPack or Pickle in conjunction with the MongoDB results backend.

Periodic Tasks

The task schedule now updates automatically when new tasks are added.
Now if you use the Django database scheduler, you can add and remove tasks from the schedule without restarting Celery beat.

Tasks

The disable_sync_subtasks argument was added to allow users to override disabling
synchronous subtasks.

See Avoid launching synchronous subtasks

Canvas

Multiple bugs were resolved resulting in a much smoother experience when using Canvas.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Change history

This document contains change notes for bugfix releases in
the 4.1.x series, please see What’s new in Celery 4.2 (windowlicker) for
an overview of what’s new in Celery 4.2.

4.1.1

	release-date

	2018-05-21 12:48 PM PST

	release-by

	Omer Katz

Important

Please upgrade as soon as possible or pin Kombu to 4.1.0.

	Breaking Change: The module async in Kombu changed to asynchronous.

Contributed by Omer Katz & Asif Saifuddin Auvi

4.1.0

	release-date

	2017-07-25 00:00 PM PST

	release-by

	Omer Katz

	Configuration: CELERY_SEND_EVENTS instead of CELERYD_SEND_EVENTS for 3.1.x compatibility (#3997)

Contributed by abhinav nilaratna.

	App: Restore behavior so Broadcast queues work. (#3934)

Contributed by Patrick Cloke.

	Sphinx: Make appstr use standard format (#4134) (#4139)

Contributed by Preston Moore.

	App: Make id, name always accessible from logging.Formatter via extra (#3994)

Contributed by Yoichi NAKAYAMA.

	Worker: Add worker_shutting_down signal (#3998)

Contributed by Daniel Huang.

	PyPy: Support PyPy version 5.8.0 (#4128)

Contributed by Omer Katz.

	Results: Elasticsearch: Fix serializing keys (#3924)

Contributed by @staticfox [https://github.com/staticfox/].

	Canvas: Deserialize all tasks in a chain (#4015)

Contributed by @fcoelho [https://github.com/fcoelho/].

	Systemd: Recover loglevel for ExecStart in systemd config (#4023)

Contributed by Yoichi NAKAYAMA.

	Sphinx: Use the Sphinx add_directive_to_domain API. (#4037)

Contributed by Patrick Cloke.

	App: Pass properties to before_task_publish signal (#4035)

Contributed by Javier Domingo Cansino.

	Results: Add SSL option for Redis backends (#3831)

Contributed by Chris Kuehl.

	Beat: celery.schedule.crontab: fix reduce (#3826) (#3827)

Contributed by Taylor C. Richberger.

	State: Fix celery issues when using flower REST API

Contributed by Thierry RAMORASOAVINA.

	Results: Elasticsearch: Fix serializing document id.

Contributed by Acey9.

	Beat: Make shallow copy of schedules dictionary

Contributed by Brian May.

	Beat: Populate heap when periodic tasks are changed

Contributed by Wojciech Żywno.

	Task: Allow class methods to define tasks (#3952)

Contributed by georgepsarakis.

	Platforms: Always return boolean value when checking if signal is supported (#3962).

Contributed by Jian Yu.

	Canvas: Avoid duplicating chains in chords (#3779)

Contributed by Ryan Hiebert.

	Canvas: Lookup task only if list has items (#3847)

Contributed by Marc Gibbons.

	Results: Allow unicode message for exception raised in task (#3903)

Contributed by George Psarakis.

	Python3: Support for Python 3.6 (#3904, #3903, #3736)

Contributed by Jon Dufresne, George Psarakis, Asif Saifuddin Auvi, Omer Katz.

	App: Fix retried tasks with expirations (#3790)

Contributed by Brendan MacDonell.

	
	Fixes items format route in docs (#3875)

Contributed by Slam.

	Utils: Fix maybe_make_aware (#3850)

Contributed by Taylor C. Richberger.

	Task: Fix task ETA issues when timezone is defined in configuration (#3867)

Contributed by George Psarakis.

	Concurrency: Consumer does not shutdown properly when embedded in gevent application (#3746)

Contributed by Arcadiy Ivanov.

	Canvas: Fix #3725: Task replaced with group does not complete (#3731)

Contributed by Morgan Doocy.

	Task: Correct order in chains with replaced tasks (#3730)

Contributed by Morgan Doocy.

	Result: Enable synchronous execution of sub-tasks (#3696)

Contributed by shalev67.

	Task: Fix request context for blocking task apply (added hostname) (#3716)

Contributed by Marat Sharafutdinov.

	Utils: Fix task argument handling (#3678) (#3693)

Contributed by Roman Sichny.

	Beat: Provide a transparent method to update the Scheduler heap (#3721)

Contributed by Alejandro Pernin.

	Beat: Specify default value for pidfile option of celery beat. (#3722)

Contributed by Arnaud Rocher.

	Results: Elasticsearch: Stop generating a new field every time when a new result is being put (#3708)

Contributed by Mike Chen.

	Requirements

	Now depends on Kombu 4.1.0 [https://kombu.readthedocs.io/en/master/changelog.html#version-4-1-0].

	Results: Elasticsearch now reuses fields when new results are added.

Contributed by Mike Chen.

	Results: Fixed MongoDB integration when using binary encodings
(Issue #3575).

Contributed by Andrew de Quincey.

	Worker: Making missing *args and **kwargs in Task protocol 1
return empty value in protocol 2 (Issue #3687).

Contributed by Roman Sichny.

	App: Fixed TypeError [https://docs.python.org/dev/library/exceptions.html#TypeError] in AMQP when using deprecated signal
(Issue #3707).

Contributed by @michael-k [https://github.com/michael-k/].

	Beat: Added a transparent method to update the scheduler heap.

Contributed by Alejandro Pernin.

	Task: Fixed handling of tasks with keyword arguments on Python 3
(Issue #3657).

Contributed by Roman Sichny.

	Task: Fixed request context for blocking task apply by adding missing
hostname attribute.

Contributed by Marat Sharafutdinov.

	Task: Added option to run subtasks synchronously with
disable_sync_subtasks argument.

Contributed by @shalev67 [https://github.com/shalev67/].

	App: Fixed chaining of replaced tasks (Issue #3726).

Contributed by Morgan Doocy.

	Canvas: Fixed bug where replaced tasks with groups were not completing
(Issue #3725).

Contributed by Morgan Doocy.

	Worker: Fixed problem where consumer does not shutdown properly when
embedded in a gevent application (Issue #3745).

Contributed by Arcadiy Ivanov.

	Results: Added support for using AWS DynamoDB as a result backend (#3736).

Contributed by George Psarakis.

	Testing: Added caching on pip installs.

Contributed by @orf [https://github.com/orf/].

	Worker: Prevent consuming queue before ready on startup (Issue #3620).

Contributed by Alan Hamlett.

	App: Fixed task ETA issues when timezone is defined in configuration
(Issue #3753).

Contributed by George Psarakis.

	Utils: maybe_make_aware should not modify datetime when it is
already timezone-aware (Issue #3849).

Contributed by Taylor C. Richberger.

	App: Fixed retrying tasks with expirations (Issue #3734).

Contributed by Brendan MacDonell.

	Results: Allow unicode message for exceptions raised in task
(Issue #3858).

Contributed by @staticfox [https://github.com/staticfox/].

	Canvas: Fixed IndexError [https://docs.python.org/dev/library/exceptions.html#IndexError] raised when chord has an empty header.

Contributed by Marc Gibbons.

	Canvas: Avoid duplicating chains in chords (Issue #3771).

Contributed by Ryan Hiebert and George Psarakis.

	Utils: Allow class methods to define tasks (Issue #3863).

Contributed by George Psarakis.

	Beat: Populate heap when periodic tasks are changed.

Contributed by @wzywno [https://github.com/wzywno/] and Brian May.

	Results: Added support for Elasticsearch backend options settings.

Contributed by @Acey9 [https://github.com/Acey9/].

	Events: Ensure Task.as_dict() works when not all information about
task is available.

Contributed by @tramora [https://github.com/tramora/].

	Schedules: Fixed pickled crontab schedules to restore properly (Issue #3826).

Contributed by Taylor C. Richberger.

	Results: Added SSL option for redis backends (Issue #3830).

Contributed by Chris Kuehl.

	Documentation and examples improvements by:

	Bruno Alla

	Jamie Alessio

	Vivek Anand

	Peter Bittner

	Kalle Bronsen

	Jon Dufresne

	James Michael DuPont

	Sergey Fursov

	Samuel Dion-Girardeau

	Daniel Hahler

	Mike Helmick

	Marc Hörsken

	Christopher Hoskin

	Daniel Huang

	Primož Kerin

	Michal Kuffa

	Simon Legner

	Anthony Lukach

	Ed Morley

	Jay McGrath

	Rico Moorman

	Viraj Navkal

	Ross Patterson

	Dmytro Petruk

	Luke Plant

	Eric Poelke

	Salvatore Rinchiera

	Arnaud Rocher

	Kirill Romanov

	Simon Schmidt

	Tamer Sherif

	YuLun Shih

	Ask Solem

	Tom ‘Biwaa’ Riat

	Arthur Vigil

	Joey Wilhelm

	Jian Yu

	YuLun Shih

	Arthur Vigil

	Joey Wilhelm

	@baixuexue123 [https://github.com/baixuexue123/]

	@bronsen [https://github.com/bronsen/]

	@michael-k [https://github.com/michael-k/]

	@orf [https://github.com/orf/]

	@3lnc [https://github.com/3lnc/]

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

What’s new in Celery 4.0 (latentcall)

	Author

	Ask Solem (ask at celeryproject.org)

Change history

What’s new documents describe the changes in major versions,
we also have a Change history that lists the changes in bugfix
releases (0.0.x), while older series are archived under the History
section.

Celery is a simple, flexible, and reliable distributed system to
process vast amounts of messages, while providing operations with
the tools required to maintain such a system.

It’s a task queue with focus on real-time processing, while also
supporting task scheduling.

Celery has a large and diverse community of users and contributors,
you should come join us on IRC
or our mailing-list.

To read more about Celery you should go read the introduction.

While this version is backward compatible with previous versions
it’s important that you read the following section.

This version is officially supported on CPython 2.7, 3.4, and 3.5.
and also supported on PyPy.

Table of Contents

Make sure you read the important notes before upgrading to this version.

	Preface

	Wall of Contributors

	Upgrading from Celery 3.1

	Step 1: Upgrade to Celery 3.1.25

	Step 2: Update your configuration with the new setting names

	Step 3: Read the important notes in this document

	Step 4: Upgrade to Celery 4.0

	Important Notes

	Dropped support for Python 2.6

	Last major version to support Python 2

	Django support

	Removed features

	Features removed for simplicity

	Features removed for lack of funding

	New Task Message Protocol

	Lowercase setting names

	Json is now the default serializer

	The Task base class no longer automatically register tasks

	Task argument checking

	Redis Events not backward compatible

	Redis Priorities Reversed

	Django: Auto-discover now supports Django app configurations

	Worker direct queues no longer use auto-delete

	Old command-line programs removed

	News

	New protocol highlights

	Prefork Pool Improvements

	Tasks now log from the child process

	-Ofair is now the default scheduling strategy

	Limit child process resident memory size

	One log-file per child process

	Transports

	RabbitMQ priority queue support

	Configure broker URL for read/write separately

	RabbitMQ queue extensions support

	Amazon SQS transport now officially supported

	Apache QPid transport now officially supported

	Redis: Support for Sentinel

	Tasks

	Task Auto-retry Decorator

	Task.replace Improvements

	Remote Task Tracebacks

	Handling task connection errors

	Gevent/Eventlet: Dedicated thread for consuming results

	AsyncResult.then(on_success, on_error)

	New Task Router API

	Canvas Refactor

	Periodic Tasks

	New API for configuring periodic tasks

	Optimized Beat implementation

	Schedule tasks based on sunrise, sunset, dawn and dusk

	Result Backends

	RPC Result Backend matured

	Redis: Result backend optimizations

	New Riak result backend introduced

	New CouchDB result backend introduced

	New Consul result backend introduced

	Brand new Cassandra result backend

	New Elasticsearch result backend introduced

	New File-system result backend introduced

	Event Batching

	In Other News…

	Requirements

	Tasks

	Beat

	App

	Logging

	Execution Pools

	Testing

	Transports

	Programs

	Worker

	Debugging Utilities

	Signals

	Events

	Deployment

	Result Backends

	Documentation Improvements

	Reorganization, Deprecations, and Removals

	Incompatible changes

	Unscheduled Removals

	Reorganization Deprecations

	Scheduled Removals

	Modules

	Result

	TaskSet

	Events

	Magic keyword arguments

	Removed Settings

	Logging Settings

	Task Settings

	Changes to internal API

	Deprecation Time-line Changes

Preface

Welcome to Celery 4!

This is a massive release with over two years of changes.
Not only does it come with many new features, but it also fixes
a massive list of bugs, so in many ways you could call it
our “Snow Leopard” release.

The next major version of Celery will support Python 3.5 only, where
we are planning to take advantage of the new asyncio library.

This release would not have been possible without the support
of my employer, Robinhood [https://robinhood.com] (we’re hiring!).

	Ask Solem

Dedicated to Sebastian “Zeb” Bjørnerud (RIP),
with special thanks to Ty Wilkins [http://tywilkins.com], for designing our new logo,
all the contributors who help make this happen, and my colleagues
at Robinhood [https://robinhood.com].

Wall of Contributors

Aaron McMillin, Adam Chainz, Adam Renberg, Adriano Martins de Jesus,
Adrien Guinet, Ahmet Demir, Aitor Gómez-Goiri, Alan Justino,
Albert Wang, Alex Koshelev, Alex Rattray, Alex Williams, Alexander Koshelev,
Alexander Lebedev, Alexander Oblovatniy, Alexey Kotlyarov, Ali Bozorgkhan,
Alice Zoë Bevan–McGregor, Allard Hoeve, Alman One, Amir Rustamzadeh,
Andrea Rabbaglietti, Andrea Rosa, Andrei Fokau, Andrew Rodionoff,
Andrew Stewart, Andriy Yurchuk, Aneil Mallavarapu, Areski Belaid,
Armenak Baburyan, Arthur Vuillard, Artyom Koval, Asif Saifuddin Auvi,
Ask Solem, Balthazar Rouberol, Batiste Bieler, Berker Peksag,
Bert Vanderbauwhede, Brendan Smithyman, Brian Bouterse, Bryce Groff,
Cameron Will, ChangBo Guo, Chris Clark, Chris Duryee, Chris Erway,
Chris Harris, Chris Martin, Chillar Anand, Colin McIntosh, Conrad Kramer,
Corey Farwell, Craig Jellick, Cullen Rhodes, Dallas Marlow, Daniel Devine,
Daniel Wallace, Danilo Bargen, Davanum Srinivas, Dave Smith, David Baumgold,
David Harrigan, David Pravec, Dennis Brakhane, Derek Anderson,
Dmitry Dygalo, Dmitry Malinovsky, Dongweiming, Dudás Ádám,
Dustin J. Mitchell, Ed Morley, Edward Betts, Éloi Rivard, Emmanuel Cazenave,
Fahad Siddiqui, Fatih Sucu, Feanil Patel, Federico Ficarelli, Felix Schwarz,
Felix Yan, Fernando Rocha, Flavio Grossi, Frantisek Holop, Gao Jiangmiao,
George Whewell, Gerald Manipon, Gilles Dartiguelongue, Gino Ledesma, Greg Wilbur,
Guillaume Seguin, Hank John, Hogni Gylfason, Ilya Georgievsky,
Ionel Cristian Mărieș, Ivan Larin, James Pulec, Jared Lewis, Jason Veatch,
Jasper Bryant-Greene, Jeff Widman, Jeremy Tillman, Jeremy Zafran,
Jocelyn Delalande, Joe Jevnik, Joe Sanford, John Anderson, John Barham,
John Kirkham, John Whitlock, Jonathan Vanasco, Joshua Harlow, João Ricardo,
Juan Carlos Ferrer, Juan Rossi, Justin Patrin, Kai Groner, Kevin Harvey,
Kevin Richardson, Komu Wairagu, Konstantinos Koukopoulos, Kouhei Maeda,
Kracekumar Ramaraju, Krzysztof Bujniewicz, Latitia M. Haskins, Len Buckens,
Lev Berman, lidongming, Lorenzo Mancini, Lucas Wiman, Luke Pomfrey,
Luyun Xie, Maciej Obuchowski, Manuel Kaufmann, Marat Sharafutdinov,
Marc Sibson, Marcio Ribeiro, Marin Atanasov Nikolov, Mathieu Fenniak,
Mark Parncutt, Mauro Rocco, Maxime Beauchemin, Maxime Vdb, Mher Movsisyan,
Michael Aquilina, Michael Duane Mooring, Michael Permana, Mickaël Penhard,
Mike Attwood, Mitchel Humpherys, Mohamed Abouelsaoud, Morris Tweed, Morton Fox,
Môshe van der Sterre, Nat Williams, Nathan Van Gheem, Nicolas Unravel,
Nik Nyby, Omer Katz, Omer Korner, Ori Hoch, Paul Pearce, Paulo Bu,
Pavlo Kapyshin, Philip Garnero, Pierre Fersing, Piotr Kilczuk,
Piotr Maślanka, Quentin Pradet, Radek Czajka, Raghuram Srinivasan,
Randy Barlow, Raphael Michel, Rémy Léone, Robert Coup, Robert Kolba,
Rockallite Wulf, Rodolfo Carvalho, Roger Hu, Romuald Brunet, Rongze Zhu,
Ross Deane, Ryan Luckie, Rémy Greinhofer, Samuel Giffard, Samuel Jaillet,
Sergey Azovskov, Sergey Tikhonov, Seungha Kim, Simon Peeters,
Spencer E. Olson, Srinivas Garlapati, Stephen Milner, Steve Peak, Steven Sklar,
Stuart Axon, Sukrit Khera, Tadej Janež, Taha Jahangir, Takeshi Kanemoto,
Tayfun Sen, Tewfik Sadaoui, Thomas French, Thomas Grainger, Tomas Machalek,
Tobias Schottdorf, Tocho Tochev, Valentyn Klindukh, Vic Kumar,
Vladimir Bolshakov, Vladimir Gorbunov, Wayne Chang, Wieland Hoffmann,
Wido den Hollander, Wil Langford, Will Thompson, William King, Yury Selivanov,
Vytis Banaitis, Zoran Pavlovic, Xin Li, 許邱翔, @allenling [https://github.com/allenling/],
@alzeih [https://github.com/alzeih/], @bastb [https://github.com/bastb/], @bee-keeper [https://github.com/bee-keeper/],
@ffeast [https://github.com/ffeast/], @firefly4268 [https://github.com/firefly4268/],
@flyingfoxlee [https://github.com/flyingfoxlee/], @gdw2 [https://github.com/gdw2/], @gitaarik [https://github.com/gitaarik/],
@hankjin [https://github.com/hankjin/], @lvh [https://github.com/lvh/], @m-vdb [https://github.com/m-vdb/],
@kindule [https://github.com/kindule/], @mdk [https://github.com/mdk/]:, @michael-k [https://github.com/michael-k/],
@mozillazg [https://github.com/mozillazg/], @nokrik [https://github.com/nokrik/], @ocean1 [https://github.com/ocean1/],
@orlo666 [https://github.com/orlo666/], @raducc [https://github.com/raducc/], @wanglei [https://github.com/wanglei/],
@worldexception [https://github.com/worldexception/], @xBeAsTx [https://github.com/xBeAsTx/].

Note

This wall was automatically generated from git history,
so sadly it doesn’t not include the people who help with more important
things like answering mailing-list questions.

Upgrading from Celery 3.1

Step 1: Upgrade to Celery 3.1.25

If you haven’t already, the first step is to upgrade to Celery 3.1.25.

This version adds forward compatibility to the new message protocol,
so that you can incrementally upgrade from 3.1 to 4.0.

Deploy the workers first by upgrading to 3.1.25, this means these
workers can process messages sent by clients using both 3.1 and 4.0.

After the workers are upgraded you can upgrade the clients (e.g. web servers).

Step 2: Update your configuration with the new setting names

This version radically changes the configuration setting names,
to be more consistent.

The changes are fully backwards compatible, so you have the option to wait
until the old setting names are deprecated, but to ease the transition
we have included a command-line utility that rewrites your settings
automatically.

See Lowercase setting names for more information.

Step 3: Read the important notes in this document

Make sure you are not affected by any of the important upgrade notes
mentioned in the following section.

An especially important note is that Celery now checks the arguments
you send to a task by matching it to the signature (Task argument checking).

Step 4: Upgrade to Celery 4.0

At this point you can upgrade your workers and clients with the new version.

Important Notes

Dropped support for Python 2.6

Celery now requires Python 2.7 or later,
and also drops support for Python 3.3 so supported versions are:

	CPython 2.7

	CPython 3.4

	CPython 3.5

	PyPy 5.4 (pypy2)

	PyPy 5.5-alpha (pypy3)

Last major version to support Python 2

Starting from Celery 5.0 only Python 3.5+ will be supported.

To make sure you’re not affected by this change you should pin
the Celery version in your requirements file, either to a specific
version: celery==4.0.0, or a range: celery>=4.0,<5.0.

Dropping support for Python 2 will enable us to remove massive
amounts of compatibility code, and going with Python 3.5 allows
us to take advantage of typing, async/await, asyncio, and similar
concepts there’s no alternative for in older versions.

Celery 4.x will continue to work on Python 2.7, 3.4, 3.5; just as Celery 3.x
still works on Python 2.6.

Django support

Celery 4.x requires Django 1.8 or later, but we really recommend
using at least Django 1.9 for the new transaction.on_commit feature.

A common problem when calling tasks from Django is when the task is related
to a model change, and you wish to cancel the task if the transaction is
rolled back, or ensure the task is only executed after the changes have been
written to the database.

transaction.atomic enables you to solve this problem by adding
the task as a callback to be called only when the transaction is committed.

Example usage:

from functools import partial
from django.db import transaction

from .models import Article, Log
from .tasks import send_article_created_notification

def create_article(request):
 with transaction.atomic():
 article = Article.objects.create(**request.POST)
 # send this task only if the rest of the transaction succeeds.
 transaction.on_commit(partial(
 send_article_created_notification.delay, article_id=article.pk))
 Log.objects.create(type=Log.ARTICLE_CREATED, object_pk=article.pk)

Removed features

	Microsoft Windows is no longer supported.

The test suite is passing, and Celery seems to be working with Windows,
but we make no guarantees as we are unable to diagnose issues on this
platform. If you are a company requiring support on this platform,
please get in touch.

	Jython is no longer supported.

Features removed for simplicity

	Webhook task machinery (celery.task.http) has been removed.

Nowadays it’s easy to use the requests [https://pypi.python.org/pypi/requests/] module to write
webhook tasks manually. We would love to use requests but we
are simply unable to as there’s a very vocal ‘anti-dependency’
mob in the Python community

If you need backwards compatibility
you can simply copy + paste the 3.1 version of the module and make sure
it’s imported by the worker:
https://github.com/celery/celery/blob/3.1/celery/task/http.py

	Tasks no longer sends error emails.

This also removes support for app.mail_admins, and any functionality
related to sending emails.

	celery.contrib.batches has been removed.

This was an experimental feature, so not covered by our deprecation
timeline guarantee.

You can copy and pase the existing batches code for use within your projects:
https://github.com/celery/celery/blob/3.1/celery/contrib/batches.py

Features removed for lack of funding

We announced with the 3.1 release that some transports were
moved to experimental status, and that there’d be no official
support for the transports.

As this subtle hint for the need of funding failed
we’ve removed them completely, breaking backwards compatibility.

	Using the Django ORM as a broker is no longer supported.

You can still use the Django ORM as a result backend:
see django-celery-results - Using the Django ORM/Cache as a result backend section for more information.

	Using SQLAlchemy as a broker is no longer supported.

You can still use SQLAlchemy as a result backend.

	Using CouchDB as a broker is no longer supported.

You can still use CouchDB as a result backend.

	Using IronMQ as a broker is no longer supported.

	Using Beanstalk as a broker is no longer supported.

In addition some features have been removed completely so that
attempting to use them will raise an exception:

	The --autoreload feature has been removed.

This was an experimental feature, and not covered by our deprecation
timeline guarantee. The flag is removed completely so the worker
will crash at startup when present. Luckily this
flag isn’t used in production systems.

	The experimental threads pool is no longer supported and has been removed.

	The force_execv feature is no longer supported.

The celery worker command now ignores the --no-execv,
--force-execv, and the CELERYD_FORCE_EXECV setting.

This flag will be removed completely in 5.0 and the worker
will raise an error.

	The old legacy “amqp” result backend has been deprecated, and will
be removed in Celery 5.0.

Please use the rpc result backend for RPC-style calls, and a
persistent result backend for multi-consumer results.

We think most of these can be fixed without considerable effort, so if you’re
interested in getting any of these features back, please get in touch.

Now to the good news…

New Task Message Protocol

This version introduces a brand new task message protocol,
the first major change to the protocol since the beginning of the project.

The new protocol is enabled by default in this version and since the new
version isn’t backwards compatible you have to be careful when upgrading.

The 3.1.25 version was released to add compatibility with the new protocol
so the easiest way to upgrade is to upgrade to that version first, then
upgrade to 4.0 in a second deployment.

If you wish to keep using the old protocol you may also configure
the protocol version number used:

app = Celery()
app.conf.task_protocol = 1

Read more about the features available in the new protocol in the news
section found later in this document.

Lowercase setting names

In the pursuit of beauty all settings are now renamed to be in all
lowercase and some setting names have been renamed for consistency.

This change is fully backwards compatible so you can still use the uppercase
setting names, but we would like you to upgrade as soon as possible and
you can do this automatically using the celery upgrade settings
command:

$ celery upgrade settings proj/settings.py

This command will modify your module in-place to use the new lower-case
names (if you want uppercase with a “CELERY” prefix see block below),
and save a backup in proj/settings.py.orig.

For Django users and others who want to keep uppercase names

If you’re loading Celery configuration from the Django settings module
then you’ll want to keep using the uppercase names.

You also want to use a CELERY_ prefix so that no Celery settings
collide with Django settings used by other apps.

To do this, you’ll first need to convert your settings file
to use the new consistent naming scheme, and add the prefix to all
Celery related settings:

$ celery upgrade settings proj/settings.py --django

After upgrading the settings file, you need to set the prefix explicitly
in your proj/celery.py module:

app.config_from_object('django.conf:settings', namespace='CELERY')

You can find the most up to date Django Celery integration example
here: First steps with Django.

Note

This will also add a prefix to settings that didn’t previously
have one, for example BROKER_URL should be written
CELERY_BROKER_URL with a namespace of CELERY
CELERY_BROKER_URL.

Luckily you don’t have to manually change the files, as
the celery upgrade settings --django program should do the
right thing.

The loader will try to detect if your configuration is using the new format,
and act accordingly, but this also means you’re not allowed to mix and
match new and old setting names, that’s unless you provide a value for both
alternatives.

The major difference between previous versions, apart from the lower case
names, are the renaming of some prefixes, like celerybeat_ to beat_,
celeryd_ to worker_.

The celery_ prefix has also been removed, and task related settings
from this name-space is now prefixed by task_, worker related settings
with worker_.

Apart from this most of the settings will be the same in lowercase, apart from
a few special ones:

	Setting name

	Replace with

	CELERY_MAX_CACHED_RESULTS

	result_cache_max

	CELERY_MESSAGE_COMPRESSION

	result_compression/task_compression.

	CELERY_TASK_RESULT_EXPIRES

	result_expires

	CELERY_RESULT_DBURI

	result_backend

	CELERY_RESULT_ENGINE_OPTIONS

	database_engine_options

	-*-_DB_SHORT_LIVED_SESSIONS

	database_short_lived_sessions

	CELERY_RESULT_DB_TABLE_NAMES

	database_db_names

	CELERY_ACKS_LATE

	task_acks_late

	CELERY_ALWAYS_EAGER

	task_always_eager

	CELERY_ANNOTATIONS

	task_annotations

	CELERY_MESSAGE_COMPRESSION

	task_compression

	CELERY_CREATE_MISSING_QUEUES

	task_create_missing_queues

	CELERY_DEFAULT_DELIVERY_MODE

	task_default_delivery_mode

	CELERY_DEFAULT_EXCHANGE

	task_default_exchange

	CELERY_DEFAULT_EXCHANGE_TYPE

	task_default_exchange_type

	CELERY_DEFAULT_QUEUE

	task_default_queue

	CELERY_DEFAULT_RATE_LIMIT

	task_default_rate_limit

	CELERY_DEFAULT_ROUTING_KEY

	task_default_routing_key

	-"-_EAGER_PROPAGATES_EXCEPTIONS

	task_eager_propagates

	CELERY_IGNORE_RESULT

	task_ignore_result

	CELERY_TASK_PUBLISH_RETRY

	task_publish_retry

	CELERY_TASK_PUBLISH_RETRY_POLICY

	task_publish_retry_policy

	CELERY_QUEUES

	task_queues

	CELERY_ROUTES

	task_routes

	CELERY_SEND_TASK_SENT_EVENT

	task_send_sent_event

	CELERY_TASK_SERIALIZER

	task_serializer

	CELERYD_TASK_SOFT_TIME_LIMIT

	task_soft_time_limit

	CELERYD_TASK_TIME_LIMIT

	task_time_limit

	CELERY_TRACK_STARTED

	task_track_started

	CELERY_DISABLE_RATE_LIMITS

	worker_disable_rate_limits

	CELERY_ENABLE_REMOTE_CONTROL

	worker_enable_remote_control

	CELERYD_SEND_EVENTS

	worker_send_task_events

You can see a full table of the changes in New lowercase settings.

Json is now the default serializer

The time has finally come to end the reign of pickle [https://docs.python.org/dev/library/pickle.html#module-pickle] as the default
serialization mechanism, and json is the default serializer starting from this
version.

This change was announced with the release of Celery 3.1.

If you’re still depending on pickle [https://docs.python.org/dev/library/pickle.html#module-pickle] being the default serializer,
then you have to configure your app before upgrading to 4.0:

task_serializer = 'pickle'
result_serializer = 'pickle'
accept_content = {'pickle'}

The Json serializer now also supports some additional types:

	datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime], time [https://docs.python.org/dev/library/datetime.html#datetime.time], date [https://docs.python.org/dev/library/datetime.html#datetime.date]

Converted to json text, in ISO-8601 format.

	Decimal [https://docs.python.org/dev/library/decimal.html#decimal.Decimal]

Converted to json text.

	django.utils.functional.Promise

Django only: Lazy strings used for translation etc., are evaluated
and conversion to a json type is attempted.

	uuid.UUID [https://docs.python.org/dev/library/uuid.html#uuid.UUID]

Converted to json text.

You can also define a __json__ method on your custom classes to support
JSON serialization (must return a json compatible type):

class Person:
 first_name = None
 last_name = None
 address = None

 def __json__(self):
 return {
 'first_name': self.first_name,
 'last_name': self.last_name,
 'address': self.address,
 }

The Task base class no longer automatically register tasks

The Task class is no longer using a special meta-class
that automatically registers the task in the task registry.

Instead this is now handled by the app.task decorators.

If you’re still using class based tasks, then you need to register
these manually:

class CustomTask(Task):
 def run(self):
 print('running')
CustomTask = app.register_task(CustomTask())

The best practice is to use custom task classes only for overriding
general behavior, and then using the task decorator to realize the task:

@app.task(bind=True, base=CustomTask)
def custom(self):
 print('running')

This change also means that the abstract attribute of the task
no longer has any effect.

Task argument checking

The arguments of the task are now verified when calling the task,
even asynchronously:

>>> @app.task
... def add(x, y):
... return x + y

>>> add.delay(8, 8)
<AsyncResult: f59d71ca-1549-43e0-be41-4e8821a83c0c>

>>> add.delay(8)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "celery/app/task.py", line 376, in delay
 return self.apply_async(args, kwargs)
 File "celery/app/task.py", line 485, in apply_async
 check_arguments(*(args or ()), **(kwargs or {}))
TypeError: add() takes exactly 2 arguments (1 given)

You can disable the argument checking for any task by setting its
typing attribute to False:

>>> @app.task(typing=False)
... def add(x, y):
... return x + y

Or if you would like to disable this completely for all tasks
you can pass strict_typing=False when creating the app:

app = Celery(..., strict_typing=False)

Redis Events not backward compatible

The Redis fanout_patterns and fanout_prefix transport
options are now enabled by default.

Workers/monitors without these flags enabled won’t be able to
see workers with this flag disabled. They can still execute tasks,
but they cannot receive each others monitoring messages.

You can upgrade in a backward compatible manner by first configuring
your 3.1 workers and monitors to enable the settings, before the final
upgrade to 4.0:

BROKER_TRANSPORT_OPTIONS = {
 'fanout_patterns': True,
 'fanout_prefix': True,
}

Redis Priorities Reversed

Priority 0 is now lowest, 9 is highest.

This change was made to make priority support consistent with how
it works in AMQP.

Contributed by Alex Koshelev.

Django: Auto-discover now supports Django app configurations

The autodiscover_tasks() function can now be called without arguments,
and the Django handler will automatically find your installed apps:

app.autodiscover_tasks()

The Django integration example in the documentation has been updated to use the argument-less call.

This also ensures compatibility with the new, ehm, AppConfig stuff
introduced in recent Django versions.

Worker direct queues no longer use auto-delete

Workers/clients running 4.0 will no longer be able to send
worker direct messages to workers running older versions, and vice versa.

If you’re relying on worker direct messages you should upgrade
your 3.x workers and clients to use the new routing settings first,
by replacing celery.utils.worker_direct() with this implementation:

from kombu import Exchange, Queue

worker_direct_exchange = Exchange('C.dq2')

def worker_direct(hostname):
 return Queue(
 '{hostname}.dq2'.format(hostname),
 exchange=worker_direct_exchange,
 routing_key=hostname,
)

This feature closed Issue #2492.

Old command-line programs removed

Installing Celery will no longer install the celeryd,
celerybeat and celeryd-multi programs.

This was announced with the release of Celery 3.1, but you may still
have scripts pointing to the old names, so make sure you update these
to use the new umbrella command:

	Program

	New Status

	Replacement

	celeryd

	REMOVED

	celery worker

	celerybeat

	REMOVED

	celery beat

	celeryd-multi

	REMOVED

	celery multi

News

New protocol highlights

The new protocol fixes many problems with the old one, and enables
some long-requested features:

	Most of the data are now sent as message headers, instead of being
serialized with the message body.

In version 1 of the protocol the worker always had to deserialize
the message to be able to read task meta-data like the task id,
name, etc. This also meant that the worker was forced to double-decode
the data, first deserializing the message on receipt, serializing
the message again to send to child process, then finally the child process
deserializes the message again.

Keeping the meta-data fields in the message headers means the worker
doesn’t actually have to decode the payload before delivering
the task to the child process, and also that it’s now possible
for the worker to reroute a task written in a language different
from Python to a different worker.

	A new lang message header can be used to specify the programming
language the task is written in.

	Worker stores results for internal errors like ContentDisallowed,
and other deserialization errors.

	Worker stores results and sends monitoring events for unregistered
task errors.

	Worker calls callbacks/errbacks even when the result is sent by the
parent process (e.g., WorkerLostError when a child process
terminates, deserialization errors, unregistered tasks).

	A new origin header contains information about the process sending
the task (worker node-name, or PID and host-name information).

	A new shadow header allows you to modify the task name used in logs.

This is useful for dispatch like patterns, like a task that calls
any function using pickle (don’t do this at home):

from celery import Task
from celery.utils.imports import qualname

class call_as_task(Task):

 def shadow_name(self, args, kwargs, options):
 return 'call_as_task:{0}'.format(qualname(args[0]))

 def run(self, fun, *args, **kwargs):
 return fun(*args, **kwargs)
call_as_task = app.register_task(call_as_task())

	New argsrepr and kwargsrepr fields contain textual representations
of the task arguments (possibly truncated) for use in logs, monitors, etc.

This means the worker doesn’t have to deserialize the message payload
to display the task arguments for informational purposes.

	Chains now use a dedicated chain field enabling support for chains
of thousands and more tasks.

	New parent_id and root_id headers adds information about
a tasks relationship with other tasks.

	parent_id is the task id of the task that called this task

	root_id is the first task in the work-flow.

These fields can be used to improve monitors like flower to group
related messages together (like chains, groups, chords, complete
work-flows, etc).

	app.TaskProducer replaced by app.amqp.create_task_message() and
app.amqp.send_task_message().

Dividing the responsibilities into creating and sending means that
people who want to send messages using a Python AMQP client directly,
don’t have to implement the protocol.

The app.amqp.create_task_message() method calls either
app.amqp.as_task_v2(), or app.amqp.as_task_v1() depending
on the configured task protocol, and returns a special
task_message tuple containing the
headers, properties and body of the task message.

See also

The new task protocol is documented in full here:
Version 2.

Prefork Pool Improvements

Tasks now log from the child process

Logging of task success/failure now happens from the child process
executing the task. As a result logging utilities,
like Sentry can get full information about tasks, including
variables in the traceback stack.

-Ofair is now the default scheduling strategy

To re-enable the default behavior in 3.1 use the -Ofast command-line
option.

There’s been lots of confusion about what the -Ofair command-line option
does, and using the term “prefetch” in explanations have probably not helped
given how confusing this terminology is in AMQP.

When a Celery worker using the prefork pool receives a task, it needs to
delegate that task to a child process for execution.

The prefork pool has a configurable number of child processes
(--concurrency) that can be used to execute tasks, and each child process
uses pipes/sockets to communicate with the parent process:

	inqueue (pipe/socket): parent sends task to the child process

	outqueue (pipe/socket): child sends result/return value to the parent.

In Celery 3.1 the default scheduling mechanism was simply to send
the task to the first inqueue that was writable, with some heuristics
to make sure we round-robin between them to ensure each child process
would receive the same amount of tasks.

This means that in the default scheduling strategy, a worker may send
tasks to the same child process that is already executing a task. If that
task is long running, it may block the waiting task for a long time. Even
worse, hundreds of short-running tasks may be stuck behind a long running task
even when there are child processes free to do work.

The -Ofair scheduling strategy was added to avoid this situation,
and when enabled it adds the rule that no task should be sent to the a child
process that is already executing a task.

The fair scheduling strategy may perform slightly worse if you have only
short running tasks.

Limit child process resident memory size

You can now limit the maximum amount of memory allocated per prefork
pool child process by setting the worker
--max-memory-per-child option,
or the worker_max_memory_per_child setting.

The limit is for RSS/resident memory size and is specified in kilobytes.

A child process having exceeded the limit will be terminated and replaced
with a new process after the currently executing task returns.

See Max memory per child setting for more information.

Contributed by Dave Smith.

One log-file per child process

Init-scrips and celery multi now uses the %I log file format
option (e.g., /var/log/celery/%n%I.log).

This change was necessary to ensure each child
process has a separate log file after moving task logging
to the child process, as multiple processes writing to the same
log file can cause corruption.

You’re encouraged to upgrade your init-scripts and
celery multi arguments to use this new option.

Transports

RabbitMQ priority queue support

See RabbitMQ Message Priorities for more information.

Contributed by Gerald Manipon.

Configure broker URL for read/write separately

New broker_read_url and broker_write_url settings
have been added so that separate broker URLs can be provided
for connections used for consuming/publishing.

In addition to the configuration options, two new methods have been
added the app API:

	app.connection_for_read()

	app.connection_for_write()

These should now be used in place of app.connection() to specify
the intent of the required connection.

Note

Two connection pools are available: app.pool (read), and
app.producer_pool (write). The latter doesn’t actually give connections
but full kombu.Producer [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer] instances.

def publish_some_message(app, producer=None):
 with app.producer_or_acquire(producer) as producer:
 ...

def consume_messages(app, connection=None):
 with app.connection_or_acquire(connection) as connection:
 ...

RabbitMQ queue extensions support

Queue declarations can now set a message TTL and queue expiry time directly,
by using the message_ttl and expires arguments

New arguments have been added to Queue [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue] that lets
you directly and conveniently configure RabbitMQ queue extensions
in queue declarations:

	Queue(expires=20.0)

Set queue expiry time in float seconds.

See kombu.Queue.expires [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue.expires].

	Queue(message_ttl=30.0)

Set queue message time-to-live float seconds.

See kombu.Queue.message_ttl [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue.message_ttl].

	Queue(max_length=1000)

Set queue max length (number of messages) as int.

See kombu.Queue.max_length [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue.max_length].

	Queue(max_length_bytes=1000)

Set queue max length (message size total in bytes) as int.

See kombu.Queue.max_length_bytes [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue.max_length_bytes].

	Queue(max_priority=10)

Declare queue to be a priority queue that routes messages
based on the priority field of the message.

See kombu.Queue.max_priority [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue.max_priority].

Amazon SQS transport now officially supported

The SQS broker transport has been rewritten to use async I/O and as such
joins RabbitMQ, Redis and QPid as officially supported transports.

The new implementation also takes advantage of long polling,
and closes several issues related to using SQS as a broker.

This work was sponsored by Nextdoor.

Apache QPid transport now officially supported

Contributed by Brian Bouterse.

Redis: Support for Sentinel

You can point the connection to a list of sentinel URLs like:

sentinel://0.0.0.0:26379;sentinel://0.0.0.0:26380/...

where each sentinel is separated by a ;. Multiple sentinels are handled
by kombu.Connection [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection] constructor, and placed in the alternative
list of servers to connect to in case of connection failure.

Contributed by Sergey Azovskov, and Lorenzo Mancini.

Tasks

Task Auto-retry Decorator

Writing custom retry handling for exception events is so common
that we now have built-in support for it.

For this a new autoretry_for argument is now supported by
the task decorators, where you can specify a tuple of exceptions
to automatically retry for:

from twitter.exceptions import FailWhaleError

@app.task(autoretry_for=(FailWhaleError,))
def refresh_timeline(user):
 return twitter.refresh_timeline(user)

See Automatic retry for known exceptions for more information.

Contributed by Dmitry Malinovsky.

Task.replace Improvements

	self.replace(signature) can now replace any task, chord or group,
and the signature to replace with can be a chord, group or any other
type of signature.

	No longer inherits the callbacks and errbacks of the existing task.

If you replace a node in a tree, then you wouldn’t expect the new node to
inherit the children of the old node.

	Task.replace_in_chord has been removed, use .replace instead.

	If the replacement is a group, that group will be automatically converted
to a chord, where the callback “accumulates” the results of the group tasks.

A new built-in task (celery.accumulate was added for this purpose)

Contributed by Steeve Morin, and Ask Solem.

Remote Task Tracebacks

The new task_remote_tracebacks will make task tracebacks more
useful by injecting the stack of the remote worker.

This feature requires the additional tblib [https://pypi.python.org/pypi/tblib/] library.

Contributed by Ionel Cristian Mărieș.

Handling task connection errors

Connection related errors occurring while sending a task is now re-raised
as a kombu.exceptions.OperationalError error:

>>> try:
... add.delay(2, 2)
... except add.OperationalError as exc:
... print('Could not send task %r: %r' % (add, exc))

See Connection Error Handling for more information.

Gevent/Eventlet: Dedicated thread for consuming results

When using gevent [https://pypi.python.org/pypi/gevent/], or eventlet [https://pypi.python.org/pypi/eventlet/] there is now a single
thread responsible for consuming events.

This means that if you have many calls retrieving results, there will be
a dedicated thread for consuming them:

result = add.delay(2, 2)

this call will delegate to the result consumer thread:
once the consumer thread has received the result this greenlet can
continue.
value = result.get(timeout=3)

This makes performing RPC calls when using gevent/eventlet perform much
better.

AsyncResult.then(on_success, on_error)

The AsyncResult API has been extended to support the promise protocol.

This currently only works with the RPC (amqp) and Redis result backends, but
lets you attach callbacks to when tasks finish:

import gevent.monkey
monkey.patch_all()

import time
from celery import Celery

app = Celery(broker='amqp://', backend='rpc')

@app.task
def add(x, y):
 return x + y

def on_result_ready(result):
 print('Received result for id %r: %r' % (result.id, result.result,))

add.delay(2, 2).then(on_result_ready)

time.sleep(3) # run gevent event loop for a while.

Demonstrated using gevent [https://pypi.python.org/pypi/gevent/] here, but really this is an API that’s more
useful in callback-based event loops like twisted [https://pypi.python.org/pypi/twisted/], or tornado [https://pypi.python.org/pypi/tornado/].

New Task Router API

The task_routes setting can now hold functions, and map routes
now support glob patterns and regexes.

Instead of using router classes you can now simply define a function:

def route_for_task(name, args, kwargs, options, task=None, **kwargs):
 from proj import tasks

 if name == tasks.add.name:
 return {'queue': 'hipri'}

If you don’t need the arguments you can use start arguments, just make
sure you always also accept star arguments so that we have the ability
to add more features in the future:

def route_for_task(name, *args, **kwargs):
 from proj import tasks
 if name == tasks.add.name:
 return {'queue': 'hipri', 'priority': 9}

Both the options argument and the new task keyword argument
are new to the function-style routers, and will make it easier to write
routers based on execution options, or properties of the task.

The optional task keyword argument won’t be set if a task is called
by name using app.send_task().

For more examples, including using glob/regexes in routers please see
task_routes and Automatic routing.

Canvas Refactor

The canvas/work-flow implementation have been heavily refactored
to fix some long outstanding issues.

	Error callbacks can now take real exception and traceback instances
(Issue #2538).

>>> add.s(2, 2).on_error(log_error.s()).delay()

Where log_error could be defined as:

@app.task
def log_error(request, exc, traceback):
 with open(os.path.join('/var/errors', request.id), 'a') as fh:
 print('--\n\n{0} {1} {2}'.format(
 task_id, exc, traceback), file=fh)

See Canvas: Designing Work-flows for more examples.

	chain(a, b, c) now works the same as a | b | c.

This means chain may no longer return an instance of chain,
instead it may optimize the workflow so that e.g. two groups
chained together becomes one group.

	Now unrolls groups within groups into a single group (Issue #1509).

	chunks/map/starmap tasks now routes based on the target task

	chords and chains can now be immutable.

	Fixed bug where serialized signatures weren’t converted back into
signatures (Issue #2078)

Fix contributed by Ross Deane.

	Fixed problem where chains and groups didn’t work when using JSON
serialization (Issue #2076).

Fix contributed by Ross Deane.

	Creating a chord no longer results in multiple values for keyword
argument ‘task_id’ (Issue #2225).

Fix contributed by Aneil Mallavarapu.

	Fixed issue where the wrong result is returned when a chain
contains a chord as the penultimate task.

Fix contributed by Aneil Mallavarapu.

	Special case of group(A.s() | group(B.s() | C.s())) now works.

	Chain: Fixed bug with incorrect id set when a subtask is also a chain.

	group | group is now flattened into a single group (Issue #2573).

	Fixed issue where group | task wasn’t upgrading correctly
to chord (Issue #2922).

	Chords now properly sets result.parent links.

	chunks/map/starmap are now routed based on the target task.

	
	Signature.link now works when argument is scalar (not a list)
	(Issue #2019).

	group() now properly forwards keyword arguments (Issue #3426).

Fix contributed by Samuel Giffard.

	A chord where the header group only consists of a single task
is now turned into a simple chain.

	Passing a link argument to group.apply_async() now raises an error
(Issue #3508).

	chord | sig now attaches to the chord callback (Issue #3356).

Periodic Tasks

New API for configuring periodic tasks

This new API enables you to use signatures when defining periodic tasks,
removing the chance of mistyping task names.

An example of the new API is here.

Optimized Beat implementation

The celery beat implementation has been optimized
for millions of periodic tasks by using a heap to schedule entries.

Contributed by Ask Solem and Alexander Koshelev.

Schedule tasks based on sunrise, sunset, dawn and dusk

See Solar schedules for more information.

Contributed by Mark Parncutt.

Result Backends

RPC Result Backend matured

Lots of bugs in the previously experimental RPC result backend have been fixed
and can now be considered to production use.

Contributed by Ask Solem, Morris Tweed.

Redis: Result backend optimizations

result.get() is now using pub/sub for streaming task results

Calling result.get() when using the Redis result backend
used to be extremely expensive as it was using polling to wait
for the result to become available. A default polling
interval of 0.5 seconds didn’t help performance, but was
necessary to avoid a spin loop.

The new implementation is using Redis Pub/Sub mechanisms to
publish and retrieve results immediately, greatly improving
task round-trip times.

Contributed by Yaroslav Zhavoronkov and Ask Solem.

New optimized chord join implementation

This was an experimental feature introduced in Celery 3.1,
that could only be enabled by adding ?new_join=1 to the
result backend URL configuration.

We feel that the implementation has been tested thoroughly enough
to be considered stable and enabled by default.

The new implementation greatly reduces the overhead of chords,
and especially with larger chords the performance benefit can be massive.

New Riak result backend introduced

See conf-riak-result-backend for more information.

Contributed by Gilles Dartiguelongue, Alman One and NoKriK.

New CouchDB result backend introduced

See CouchDB backend settings for more information.

Contributed by Nathan Van Gheem.

New Consul result backend introduced

Add support for Consul as a backend using the Key/Value store of Consul.

Consul has an HTTP API where through you can store keys with their values.

The backend extends KeyValueStoreBackend and implements most of the methods.

Mainly to set, get and remove objects.

This allows Celery to store Task results in the K/V store of Consul.

Consul also allows to set a TTL on keys using the Sessions from Consul. This way
the backend supports auto expiry of Task results.

For more information on Consul visit https://consul.io/

The backend uses python-consul [https://pypi.python.org/pypi/python-consul/] for talking to the HTTP API.
This package is fully Python 3 compliant just as this backend is:

$ pip install python-consul

That installs the required package to talk to Consul’s HTTP API from Python.

You can also specify consul as an extension in your dependency on Celery:

$ pip install celery[consul]

See Bundles for more information.

Contributed by Wido den Hollander.

Brand new Cassandra result backend

A brand new Cassandra backend utilizing the new cassandra-driver [https://pypi.python.org/pypi/cassandra-driver/]
library is replacing the old result backend using the older
pycassa [https://pypi.python.org/pypi/pycassa/] library.

See Cassandra backend settings for more information.

To depend on Celery with Cassandra as the result backend use:

$ pip install celery[cassandra]

You can also combine multiple extension requirements,
please see Bundles for more information.

New Elasticsearch result backend introduced

See Elasticsearch backend settings for more information.

To depend on Celery with Elasticsearch as the result bakend use:

$ pip install celery[elasticsearch]

You can also combine multiple extension requirements,
please see Bundles for more information.

Contributed by Ahmet Demir.

New File-system result backend introduced

See File-system backend settings for more information.

Contributed by Môshe van der Sterre.

Event Batching

Events are now buffered in the worker and sent as a list, reducing
the overhead required to send monitoring events.

For authors of custom event monitors there will be no action
required as long as you’re using the Python Celery
helpers (Receiver) to implement your monitor.

However, if you’re parsing raw event messages you must now account
for batched event messages, as they differ from normal event messages
in the following way:

	The routing key for a batch of event messages will be set to
<event-group>.multi where the only batched event group
is currently task (giving a routing key of task.multi).

	The message body will be a serialized list-of-dictionaries instead
of a dictionary. Each item in the list can be regarded
as a normal event message body.

In Other News…

Requirements

	Now depends on Kombu 4.0 [https://kombu.readthedocs.io/en/master/changelog.html#version-4-0].

	Now depends on billiard [https://pypi.python.org/pypi/billiard/] version 3.5.

	No longer depends on anyjson [https://pypi.python.org/pypi/anyjson/]. Good-bye old friend :(

Tasks

	The “anon-exchange” is now used for simple name-name direct routing.

This increases performance as it completely bypasses the routing table,
in addition it also improves reliability for the Redis broker transport.

	An empty ResultSet now evaluates to True.

Fix contributed by Colin McIntosh.

	The default routing key (task_default_routing_key) and exchange
name (task_default_exchange) is now taken from the
task_default_queue setting.

This means that to change the name of the default queue, you now
only have to set a single setting.

	New task_reject_on_worker_lost setting, and
reject_on_worker_lost task attribute decides what happens
when the child worker process executing a late ack task is terminated.

Contributed by Michael Permana.

	Task.subtask renamed to Task.signature with alias.

	Task.subtask_from_request renamed to
Task.signature_from_request with alias.

	The delivery_mode attribute for kombu.Queue [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue] is now
respected (Issue #1953).

	Routes in task-routes can now specify a
Queue [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue] instance directly.

Example:

task_routes = {'proj.tasks.add': {'queue': Queue('add')}}

	AsyncResult now raises ValueError [https://docs.python.org/dev/library/exceptions.html#ValueError] if task_id is None.
(Issue #1996).

	Retried tasks didn’t forward expires setting (Issue #3297).

	result.get() now supports an on_message argument to set a
callback to be called for every message received.

	New abstract classes added:

	CallableTask

Looks like a task.

	CallableSignature

Looks like a task signature.

	Task.replace now properly forwards callbacks (Issue #2722).

Fix contributed by Nicolas Unravel.

	Task.replace: Append to chain/chord (Closes #3232)

Fixed issue #3232, adding the signature to the chain (if there’s any).
Fixed the chord suppress if the given signature contains one.

Fix contributed by @honux [https://github.com/honux/].

	Task retry now also throws in eager mode.

Fix contributed by Feanil Patel.

Beat

	Fixed crontab infinite loop with invalid date.

When occurrence can never be reached (example, April, 31th), trying
to reach the next occurrence would trigger an infinite loop.

Try fixing that by raising a RuntimeError [https://docs.python.org/dev/library/exceptions.html#RuntimeError] after 2,000 iterations

(Also added a test for crontab leap years in the process)

Fix contributed by Romuald Brunet.

	Now ensures the program exits with a non-zero exit code when an
exception terminates the service.

Fix contributed by Simon Peeters.

App

	Dates are now always timezone aware even if
enable_utc is disabled (Issue #943).

Fix contributed by Omer Katz.

	Config: App preconfiguration is now also pickled with the configuration.

Fix contributed by Jeremy Zafran.

	
	The application can now change how task names are generated using
	the gen_task_name() method.

Contributed by Dmitry Malinovsky.

	App has new app.current_worker_task property that
returns the task that’s currently being worked on (or None).
(Issue #2100).

Logging

	get_task_logger() now raises an exception
if trying to use the name “celery” or “celery.task” (Issue #3475).

Execution Pools

	Eventlet/Gevent: now enables AMQP heartbeat (Issue #3338).

	Eventlet/Gevent: Fixed race condition leading to “simultaneous read”
errors (Issue #2755).

	Prefork: Prefork pool now uses poll instead of select where
available (Issue #2373).

	Prefork: Fixed bug where the pool would refuse to shut down the
worker (Issue #2606).

	Eventlet: Now returns pool size in celery inspect stats
command.

Contributed by Alexander Oblovatniy.

Testing

	Celery is now a pytest [https://pypi.python.org/pypi/pytest/] plugin, including fixtures
useful for unit and integration testing.

See the testing user guide for more information.

Transports

	amqps:// can now be specified to require SSL.

	Redis Transport: The Redis transport now supports the
broker_use_ssl option.

Contributed by Robert Kolba.

	JSON serializer now calls obj.__json__ for unsupported types.

This means you can now define a __json__ method for custom
types that can be reduced down to a built-in json type.

Example:

class Person:
 first_name = None
 last_name = None
 address = None

 def __json__(self):
 return {
 'first_name': self.first_name,
 'last_name': self.last_name,
 'address': self.address,
 }

	JSON serializer now handles datetime’s, Django promise, UUID and Decimal.

	New Queue.consumer_arguments can be used for the ability to
set consumer priority via x-priority.

See https://www.rabbitmq.com/consumer-priority.html

Example:

consumer = Consumer(channel, consumer_arguments={'x-priority': 3})

	Queue/Exchange: no_declare option added (also enabled for
internal amq. exchanges).

Programs

	Celery is now using argparse [https://docs.python.org/dev/library/argparse.html#module-argparse], instead of optparse [https://docs.python.org/dev/library/optparse.html#module-optparse].

	All programs now disable colors if the controlling terminal is not a TTY.

	celery worker: The -q argument now disables the startup
banner.

	celery worker: The “worker ready” message is now logged
using severity info, instead of warn.

	celery multi: %n format for is now synonym with
%N to be consistent with celery worker.

	celery inspect/celery control: now supports a new
--json option to give output in json format.

	celery inspect registered: now ignores built-in tasks.

	celery purge now takes -Q and -X options
used to specify what queues to include and exclude from the purge.

	New celery logtool: Utility for filtering and parsing
celery worker log-files

	celery multi: now passes through %i and %I log
file formats.

	General: %p can now be used to expand to the full worker node-name
in log-file/pid-file arguments.

	
	A new command line option
	--executable is now
available for daemonizing programs (celery worker and
celery beat).

Contributed by Bert Vanderbauwhede.

	celery worker: supports new
--prefetch-multiplier option.

Contributed by Mickaël Penhard.

	The --loader argument is now always effective even if an app argument is
set (Issue #3405).

	inspect/control now takes commands from registry

This means user remote-control commands can also be used from the
command-line.

Note that you need to specify the arguments/and type of arguments
for the arguments to be correctly passed on the command-line.

There are now two decorators, which use depends on the type of
command: @inspect_command + @control_command:

from celery.worker.control import control_command

@control_command(
 args=[('n', int)]
 signature='[N=1]',
)
def something(state, n=1, **kwargs):
 ...

Here args is a list of args supported by the command.
The list must contain tuples of (argument_name, type).

signature is just the command-line help used in e.g.
celery -A proj control --help.

Commands also support variadic arguments, which means that any
arguments left over will be added to a single variable. Here demonstrated
by the terminate command which takes a signal argument and a variable
number of task_ids:

from celery.worker.control import control_command

@control_command(
 args=[('signal', str)],
 signature='<signal> [id1, [id2, [..., [idN]]]]',
 variadic='ids',
)
def terminate(state, signal, ids, **kwargs):
 ...

This command can now be called using:

$ celery -A proj control terminate SIGKILL id1 id2 id3`

See Writing your own remote control commands for more information.

Worker

	Improvements and fixes for LimitedSet.

Getting rid of leaking memory + adding minlen size of the set:
the minimal residual size of the set after operating for some time.
minlen items are kept, even if they should’ve been expired.

Problems with older and even more old code:

	Heap would tend to grow in some scenarios
(like adding an item multiple times).

	Adding many items fast wouldn’t clean them soon enough (if ever).

	When talking to other workers, revoked._data was sent, but
it was processed on the other side as iterable.
That means giving those keys new (current)
time-stamp. By doing this workers could recycle
items forever. Combined with 1) and 2), this means that in
large set of workers, you’re getting out of memory soon.

All those problems should be fixed now.

This should fix issues #3095, #3086.

Contributed by David Pravec.

	New settings to control remote control command queues.

	control_queue_expires

Set queue expiry time for both remote control command queues,
and remote control reply queues.

	control_queue_ttl

Set message time-to-live for both remote control command queues,
and remote control reply queues.

Contributed by Alan Justino.

	The worker_shutdown signal is now always called during shutdown.

Previously it would not be called if the worker instance was collected
by gc first.

	Worker now only starts the remote control command consumer if the
broker transport used actually supports them.

	Gossip now sets x-message-ttl for event queue to heartbeat_interval s.
(Issue #2005).

	Now preserves exit code (Issue #2024).

	Now rejects messages with an invalid ETA value (instead of ack, which means
they will be sent to the dead-letter exchange if one is configured).

	Fixed crash when the -purge argument was used.

	Log–level for unrecoverable errors changed from error to
critical.

	Improved rate limiting accuracy.

	Account for missing timezone information in task expires field.

Fix contributed by Albert Wang.

	
	The worker no longer has a Queues bootsteps, as it is now
	superfluous.

	Now emits the “Received task” line even for revoked tasks.
(Issue #3155).

	Now respects broker_connection_retry setting.

Fix contributed by Nat Williams.

	New control_queue_ttl and control_queue_expires
settings now enables you to configure remote control command
message TTLs, and queue expiry time.

Contributed by Alan Justino.

	New celery.worker.state.requests enables O(1) loookup
of active/reserved tasks by id.

	Auto-scale didn’t always update keep-alive when scaling down.

Fix contributed by Philip Garnero.

	Fixed typo options_list -> option_list.

Fix contributed by Greg Wilbur.

	Some worker command-line arguments and Worker() class arguments have
been renamed for consistency.

All of these have aliases for backward compatibility.

	--send-events -> --task-events

	--schedule -> --schedule-filename

	--maxtasksperchild -> --max-tasks-per-child

	Beat(scheduler_cls=) -> Beat(scheduler=)

	Worker(send_events=True) -> Worker(task_events=True)

	Worker(task_time_limit=) -> Worker(time_limit=)

	Worker(task_soft_time_limit=) -> Worker(soft_time_limit=)

	Worker(state_db=) -> Worker(statedb=)

	Worker(working_directory=) -> Worker(workdir=)

Debugging Utilities

	celery.contrib.rdb: Changed remote debugger banner so that you can copy and paste
the address easily (no longer has a period in the address).

Contributed by Jonathan Vanasco.

	Fixed compatibility with recent psutil [https://pypi.python.org/pypi/psutil/] versions (Issue #3262).

Signals

	App: New signals for app configuration/finalization:

	app.on_configure

	app.on_after_configure

	app.on_after_finalize

	Task: New task signals for rejected task messages:

	celery.signals.task_rejected.

	celery.signals.task_unknown.

	Worker: New signal for when a heartbeat event is sent.

	celery.signals.heartbeat_sent

Contributed by Kevin Richardson.

Events

	Event messages now uses the RabbitMQ x-message-ttl option
to ensure older event messages are discarded.

The default is 5 seconds, but can be changed using the
event_queue_ttl setting.

	Task.send_event now automatically retries sending the event
on connection failure, according to the task publish retry settings.

	Event monitors now sets the event_queue_expires
setting by default.

The queues will now expire after 60 seconds after the monitor stops
consuming from it.

	Fixed a bug where a None value wasn’t handled properly.

Fix contributed by Dongweiming.

	New event_queue_prefix setting can now be used
to change the default celeryev queue prefix for event receiver queues.

Contributed by Takeshi Kanemoto.

	State.tasks_by_type and State.tasks_by_worker can now be
used as a mapping for fast access to this information.

Deployment

	Generic init-scripts now support
CELERY_SU and CELERYD_SU_ARGS environment variables
to set the path and arguments for su (su(1)).

	Generic init-scripts now better support FreeBSD and other BSD
systems by searching /usr/local/etc/ for the configuration file.

Contributed by Taha Jahangir.

	Generic init-script: Fixed strange bug for celerybeat where
restart didn’t always work (Issue #3018).

	The systemd init script now uses a shell when executing
services.

Contributed by Tomas Machalek.

Result Backends

	Redis: Now has a default socket timeout of 120 seconds.

The default can be changed using the new redis_socket_timeout
setting.

Contributed by Raghuram Srinivasan.

	RPC Backend result queues are now auto delete by default (Issue #2001).

	RPC Backend: Fixed problem where exception
wasn’t deserialized properly with the json serializer (Issue #2518).

Fix contributed by Allard Hoeve.

	CouchDB: The backend used to double-json encode results.

Fix contributed by Andrew Stewart.

	CouchDB: Fixed typo causing the backend to not be found
(Issue #3287).

Fix contributed by Andrew Stewart.

	MongoDB: Now supports setting the result_serialzier setting
to bson to use the MongoDB libraries own serializer.

Contributed by Davide Quarta.

	
	MongoDB: URI handling has been improved to use
	database name, user and password from the URI if provided.

Contributed by Samuel Jaillet.

	SQLAlchemy result backend: Now ignores all result
engine options when using NullPool (Issue #1930).

	SQLAlchemy result backend: Now sets max char size to 155 to deal
with brain damaged MySQL Unicode implementation (Issue #1748).

	General: All Celery exceptions/warnings now inherit from common
CeleryError/CeleryWarning.
(Issue #2643).

Documentation Improvements

Contributed by:

	Adam Chainz

	Amir Rustamzadeh

	Arthur Vuillard

	Batiste Bieler

	Berker Peksag

	Bryce Groff

	Daniel Devine

	Edward Betts

	Jason Veatch

	Jeff Widman

	Maciej Obuchowski

	Manuel Kaufmann

	Maxime Beauchemin

	Mitchel Humpherys

	Pavlo Kapyshin

	Pierre Fersing

	Rik

	Steven Sklar

	Tayfun Sen

	Wieland Hoffmann

Reorganization, Deprecations, and Removals

Incompatible changes

	Prefork: Calling result.get() or joining any result from within a task
now raises RuntimeError [https://docs.python.org/dev/library/exceptions.html#RuntimeError].

In previous versions this would emit a warning.

	celery.worker.consumer is now a package, not a module.

	Module celery.worker.job renamed to celery.worker.request.

	Beat: Scheduler.Publisher/.publisher renamed to
.Producer/.producer.

	Result: The task_name argument/attribute of app.AsyncResult was
removed.

This was historically a field used for pickle [https://docs.python.org/dev/library/pickle.html#module-pickle] compatibility,
but is no longer needed.

	Backends: Arguments named status renamed to state.

	Backends: backend.get_status() renamed to backend.get_state().

	Backends: backend.maybe_reraise() renamed to .maybe_throw()

The promise API uses .throw(), so this change was made to make it more
consistent.

There’s an alias available, so you can still use maybe_reraise until
Celery 5.0.

Unscheduled Removals

	The experimental celery.contrib.methods feature has been removed,
as there were far many bugs in the implementation to be useful.

	The CentOS init-scripts have been removed.

These didn’t really add any features over the generic init-scripts,
so you’re encouraged to use them instead, or something like
supervisor [https://pypi.python.org/pypi/supervisor/].

Reorganization Deprecations

These symbols have been renamed, and while there’s an alias available in this
version for backward compatibility, they will be removed in Celery 5.0, so
make sure you rename these ASAP to make sure it won’t break for that release.

Chances are that you’ll only use the first in this list, but you never
know:

	celery.utils.worker_direct ->
celery.utils.nodenames.worker_direct().

	celery.utils.nodename -> celery.utils.nodenames.nodename().

	celery.utils.anon_nodename ->
celery.utils.nodenames.anon_nodename().

	celery.utils.nodesplit -> celery.utils.nodenames.nodesplit().

	celery.utils.default_nodename ->
celery.utils.nodenames.default_nodename().

	celery.utils.node_format -> celery.utils.nodenames.node_format().

	celery.utils.host_format -> celery.utils.nodenames.host_format().

Scheduled Removals

Modules

	Module celery.worker.job has been renamed to celery.worker.request.

This was an internal module so shouldn’t have any effect.
It’s now part of the public API so must not change again.

	Module celery.task.trace has been renamed to celery.app.trace
as the celery.task package is being phased out. The module
will be removed in version 5.0 so please change any import from:

from celery.task.trace import X

to:

from celery.app.trace import X

	Old compatibility aliases in the celery.loaders module
has been removed.

	Removed celery.loaders.current_loader(), use: current_app.loader

	Removed celery.loaders.load_settings(), use: current_app.conf

Result

	
	AsyncResult.serializable() and celery.result.from_serializable
	has been removed:

Use instead:

>>> tup = result.as_tuple()
>>> from celery.result import result_from_tuple
>>> result = result_from_tuple(tup)

	Removed BaseAsyncResult, use AsyncResult for instance checks
instead.

	Removed TaskSetResult, use GroupResult instead.

	TaskSetResult.total -> len(GroupResult)

	TaskSetResult.taskset_id -> GroupResult.id

	Removed ResultSet.subtasks, use ResultSet.results instead.

TaskSet

TaskSet has been removed, as it was replaced by the group construct in
Celery 3.0.

If you have code like this:

>>> from celery.task import TaskSet

>>> TaskSet(add.subtask((i, i)) for i in xrange(10)).apply_async()

You need to replace that with:

>>> from celery import group
>>> group(add.s(i, i) for i in xrange(10))()

Events

	Removals for class celery.events.state.Worker:

	Worker._defaults attribute.

Use {k: getattr(worker, k) for k in worker._fields}.

	Worker.update_heartbeat

Use Worker.event(None, timestamp, received)

	Worker.on_online

Use Worker.event('online', timestamp, received, fields)

	Worker.on_offline

Use Worker.event('offline', timestamp, received, fields)

	Worker.on_heartbeat

Use Worker.event('heartbeat', timestamp, received, fields)

	Removals for class celery.events.state.Task:

	Task._defaults attribute.

Use {k: getattr(task, k) for k in task._fields}.

	Task.on_sent

Use Worker.event('sent', timestamp, received, fields)

	Task.on_received

Use Task.event('received', timestamp, received, fields)

	Task.on_started

Use Task.event('started', timestamp, received, fields)

	Task.on_failed

Use Task.event('failed', timestamp, received, fields)

	Task.on_retried

Use Task.event('retried', timestamp, received, fields)

	Task.on_succeeded

Use Task.event('succeeded', timestamp, received, fields)

	Task.on_revoked

Use Task.event('revoked', timestamp, received, fields)

	Task.on_unknown_event

Use Task.event(short_type, timestamp, received, fields)

	Task.update

Use Task.event(short_type, timestamp, received, fields)

	Task.merge

Contact us if you need this.

Magic keyword arguments

Support for the very old magic keyword arguments accepted by tasks is
finally removed in this version.

If you’re still using these you have to rewrite any task still
using the old celery.decorators module and depending
on keyword arguments being passed to the task,
for example:

from celery.decorators import task

@task()
def add(x, y, task_id=None):
 print('My task id is %r' % (task_id,))

should be rewritten into:

from celery import task

@task(bind=True)
def add(self, x, y):
 print('My task id is {0.request.id}'.format(self))

Removed Settings

The following settings have been removed, and is no longer supported:

Logging Settings

	Setting name

	Replace with

	CELERYD_LOG_LEVEL

	celery worker --loglevel

	CELERYD_LOG_FILE

	celery worker --logfile

	CELERYBEAT_LOG_LEVEL

	celery beat --loglevel

	CELERYBEAT_LOG_FILE

	celery beat --logfile

	CELERYMON_LOG_LEVEL

	celerymon is deprecated, use flower

	CELERYMON_LOG_FILE

	celerymon is deprecated, use flower

	CELERYMON_LOG_FORMAT

	celerymon is deprecated, use flower

Task Settings

	Setting name

	Replace with

	CELERY_CHORD_PROPAGATES

	N/A

Changes to internal API

	Module celery.datastructures renamed to celery.utils.collections.

	Module celery.utils.timeutils renamed to celery.utils.time.

	celery.utils.datastructures.DependencyGraph moved to
celery.utils.graph.

	celery.utils.jsonify is now celery.utils.serialization.jsonify().

	celery.utils.strtobool is now
celery.utils.serialization.strtobool().

	celery.utils.is_iterable has been removed.

Instead use:

isinstance(x, collections.Iterable)

	celery.utils.lpmerge is now celery.utils.collections.lpmerge().

	celery.utils.cry is now celery.utils.debug.cry().

	celery.utils.isatty is now celery.platforms.isatty().

	celery.utils.gen_task_name is now
celery.utils.imports.gen_task_name().

	celery.utils.deprecated is now celery.utils.deprecated.Callable()

	celery.utils.deprecated_property is now
celery.utils.deprecated.Property().

	celery.utils.warn_deprecated is now celery.utils.deprecated.warn()

Deprecation Time-line Changes

See the Celery Deprecation Time-line.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Change history

This document contains change notes for bugfix releases in
the 4.0.x series (latentcall), please see What’s new in Celery 4.0 (latentcall) for
an overview of what’s new in Celery 4.0.

4.0.2

	release-date

	2016-12-15 03:40 PM PST

	release-by

	Ask Solem

	Requirements

	Now depends on Kombu 4.0.2 [https://kombu.readthedocs.io/en/master/changelog.html#version-4-0-2].

	Tasks: Fixed problem with JSON serialization of group
(keys must be string error, Issue #3688).

	Worker: Fixed JSON serialization issue when using inspect active
and friends (Issue #3667).

	App: Fixed saferef errors when using signals (Issue #3670).

	Prefork: Fixed bug with pack requiring bytes argument
on Python 2.7.5 and earlier (Issue #3674).

	Tasks: Saferepr did not handle unicode in bytestrings on Python 2
(Issue #3676).

	Testing: Added new celery_worker_paremeters fixture.

Contributed by Michael Howitz.

	Tasks: Added new app argument to GroupResult.restore
(Issue #3669).

This makes the restore method behave the same way as the GroupResult
constructor.

Contributed by Andreas Pelme.

	Tasks: Fixed type checking crash when task takes *args on Python 3
(Issue #3678).

	Documentation and examples improvements by:

	BLAGA Razvan-Paul

	Michael Howitz

	@paradox41 [https://github.com/paradox41/]

4.0.1

	release-date

	2016-12-08 05:22 PM PST

	release-by

	Ask Solem

	[Security: CELERYSA-0003 [https://github.com/celery/celery/tree/master/docs/sec/CELERYSA-0003.txt]] Insecure default configuration

The default accept_content setting was set to allow
deserialization of pickled messages in Celery 4.0.0.

The insecure default has been fixed in 4.0.1, and you can also
configure the 4.0.0 version to explicitly only allow json serialized
messages:

app.conf.accept_content = ['json']

	Tasks: Added new method to register class-based tasks (Issue #3615).

To register a class based task you should now call app.register_task:

from celery import Celery, Task

app = Celery()

class CustomTask(Task):

 def run(self):
 return 'hello'

app.register_task(CustomTask())

	Tasks: Argument checking now supports keyword-only arguments on Python3
(Issue #3658).

Contributed by @sww [https://github.com/sww/].

	Tasks: The task-sent event was not being sent even if
configured to do so (Issue #3646).

	Worker: Fixed AMQP heartbeat support for eventlet/gevent pools
(Issue #3649).

	App: app.conf.humanize() would not work if configuration
not finalized (Issue #3652).

	Utils: saferepr attempted to show iterables as lists
and mappings as dicts.

	Utils: saferepr did not handle unicode-errors
when attempting to format bytes on Python 3 (Issue #3610).

	Utils: saferepr should now properly represent byte strings
with non-ascii characters (Issue #3600).

	Results: Fixed bug in elasticsearch where _index method missed
the body argument (Issue #3606).

Fix contributed by 何翔宇 (Sean Ho).

	Canvas: Fixed ValueError [https://docs.python.org/dev/library/exceptions.html#ValueError] in chord with single task header
(Issue #3608).

Fix contributed by Viktor Holmqvist.

	Task: Ensure class-based task has name prior to registration
(Issue #3616).

Fix contributed by Rick Wargo.

	Beat: Fixed problem with strings in shelve (Issue #3644).

Fix contributed by Alli.

	Worker: Fixed KeyError [https://docs.python.org/dev/library/exceptions.html#KeyError] in inspect stats when -O argument
set to something other than fast or fair (Issue #3621).

	Task: Retried tasks were no longer sent to the original queue
(Issue #3622).

	Worker: Python 3: Fixed None/int type comparison in
apps/worker.py (Issue #3631).

	Results: Redis has a new redis_socket_connect_timeout
setting.

	Results: Redis result backend passed the socket_connect_timeout
argument to UNIX socket based connections by mistake, causing a crash.

	Worker: Fixed missing logo in worker splash screen when running on
Python 3.x (Issue #3627).

Fix contributed by Brian Luan.

	Deps: Fixed celery[redis] bundle installation (Issue #3643).

Fix contributed by Rémi Marenco.

	Deps: Bundle celery[sqs] now also requires pycurl [https://pypi.python.org/pypi/pycurl/]
(Issue #3619).

	Worker: Hard time limits were no longer being respected (Issue #3618).

	Worker: Soft time limit log showed Trues instead of the number
of seconds.

	App: registry_cls argument no longer had any effect (Issue #3613).

	Worker: Event producer now uses connection_for_Write (Issue #3525).

	Results: Redis/memcache backends now uses result_expires
to expire chord counter (Issue #3573).

Contributed by Tayfun Sen.

	Django: Fixed command for upgrading settings with Django (Issue #3563).

Fix contributed by François Voron.

	Testing: Added a celery_parameters test fixture to be able to use
customized Celery init parameters. (#3626)

Contributed by Steffen Allner.

	Documentation improvements contributed by

	@csfeathers [https://github.com/csfeathers/]

	Moussa Taifi

	Yuhannaa

	Laurent Peuch

	Christian

	Bruno Alla

	Steven Johns

	@tnir [https://github.com/tnir/]

	GDR!

4.0.0

	release-date

	2016-11-04 02:00 P.M PDT

	release-by

	Ask Solem

See What’s new in Celery 4.0 (latentcall) (in docs/whatsnew-4.0.rst).

4.0.0rc7

	release-date

	2016-11-02 01:30 P.M PDT

Important notes

	Database result backend related setting names changed from
sqlalchemy_* -> database_*.

The sqlalchemy_ named settings won’t work at all in this
version so you need to rename them. This is a last minute change,
and as they were not supported in 3.1 we will not be providing
aliases.

	chain(A, B, C) now works the same way as A | B | C.

This means calling chain() might not actually return a chain,
it can return a group or any other type depending on how the
workflow can be optimized.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

What’s new in Celery 3.1 (Cipater)

	Author

	Ask Solem (ask at celeryproject.org)

Change history

What’s new documents describe the changes in major versions,
we also have a Change history that lists the changes in bugfix
releases (0.0.x), while older series are archived under the History
section.

Celery is a simple, flexible, and reliable distributed system to
process vast amounts of messages, while providing operations with
the tools required to maintain such a system.

It’s a task queue with focus on real-time processing, while also
supporting task scheduling.

Celery has a large and diverse community of users and contributors,
you should come join us on IRC
or our mailing-list.

To read more about Celery you should go read the introduction.

While this version is backward compatible with previous versions
it’s important that you read the following section.

This version is officially supported on CPython 2.6, 2.7, and 3.3,
and also supported on PyPy.

Table of Contents

Make sure you read the important notes before upgrading to this version.

	Preface

	Important Notes

	Dropped support for Python 2.5

	Last version to enable Pickle by default

	Old command-line programs removed and deprecated

	News

	Prefork Pool Improvements

	Django supported out of the box

	Events are now ordered using logical time

	New worker node name format (name@host)

	Bound tasks

	Mingle: Worker synchronization

	Gossip: Worker <-> Worker communication

	Bootsteps: Extending the worker

	New RPC result backend

	Time limits can now be set by the client

	Redis: Broadcast messages and virtual hosts

	pytz replaces python-dateutil dependency

	Support for setuptools extra requirements

	subtask.__call__() now executes the task directly

	In Other News

	Scheduled Removals

	Deprecation Time-line Changes

	Fixes

	Internal changes

Preface

Deadlocks have long plagued our workers, and while uncommon they’re
not acceptable. They’re also infamous for being extremely hard to diagnose
and reproduce, so to make this job easier I wrote a stress test suite that
bombards the worker with different tasks in an attempt to break it.

What happens if thousands of worker child processes are killed every
second? what if we also kill the broker connection every 10
seconds? These are examples of what the stress test suite will do to the
worker, and it reruns these tests using different configuration combinations
to find edge case bugs.

The end result was that I had to rewrite the prefork pool to avoid the use
of the POSIX semaphore. This was extremely challenging, but after
months of hard work the worker now finally passes the stress test suite.

There’s probably more bugs to find, but the good news is
that we now have a tool to reproduce them, so should you be so unlucky to
experience a bug then we’ll write a test for it and squash it!

Note that I’ve also moved many broker transports into experimental status:
the only transports recommended for production use today is RabbitMQ and
Redis.

I don’t have the resources to maintain all of them, so bugs are left
unresolved. I wish that someone will step up and take responsibility for
these transports or donate resources to improve them, but as the situation
is now I don’t think the quality is up to date with the rest of the code-base
so I cannot recommend them for production use.

The next version of Celery 4.0 will focus on performance and removing
rarely used parts of the library. Work has also started on a new message
protocol, supporting multiple languages and more. The initial draft can
be found here.

This has probably been the hardest release I’ve worked on, so no
introduction to this changelog would be complete without a massive
thank you to everyone who contributed and helped me test it!

Thank you for your support!

— Ask Solem

Important Notes

Dropped support for Python 2.5

Celery now requires Python 2.6 or later.

The new dual code base runs on both Python 2 and 3, without
requiring the 2to3 porting tool.

Note

This is also the last version to support Python 2.6! From Celery 4.0 and
on-wards Python 2.7 or later will be required.

Last version to enable Pickle by default

Starting from Celery 4.0 the default serializer will be json.

If you depend on pickle being accepted you should be prepared
for this change by explicitly allowing your worker
to consume pickled messages using the CELERY_ACCEPT_CONTENT
setting:

CELERY_ACCEPT_CONTENT = ['pickle', 'json', 'msgpack', 'yaml']

Make sure you only select the serialization formats you’ll actually be using,
and make sure you’ve properly secured your broker from unwanted access
(see the Security Guide).

The worker will emit a deprecation warning if you don’t define this setting.

for Kombu users

Kombu 3.0 no longer accepts pickled messages by default, so if you
use Kombu directly then you have to configure your consumers:
see the Kombu 3.0 Changelog [https://kombu.readthedocs.io/en/master/changelog.html#version-3-0-0] for more
information.

Old command-line programs removed and deprecated

Everyone should move to the new celery umbrella
command, so we’re incrementally deprecating the old command names.

In this version we’ve removed all commands that aren’t used
in init-scripts. The rest will be removed in 4.0.

	Program

	New Status

	Replacement

	celeryd

	DEPRECATED

	celery worker

	celerybeat

	DEPRECATED

	celery beat

	celeryd-multi

	DEPRECATED

	celery multi

	celeryctl

	REMOVED

	celery inspect|control

	celeryev

	REMOVED

	celery events

	camqadm

	REMOVED

	celery amqp

If this isn’t a new installation then you may want to remove the old
commands:

$ pip uninstall celery
$ # repeat until it fails
...
$ pip uninstall celery
$ pip install celery

Please run celery --help for help using the umbrella command.

News

Prefork Pool Improvements

These improvements are only active if you use an async capable
transport. This means only RabbitMQ (AMQP) and Redis are supported
at this point and other transports will still use the thread-based fallback
implementation.

	Pool is now using one IPC queue per child process.

Previously the pool shared one queue between all child processes,
using a POSIX semaphore as a mutex to achieve exclusive read and write
access.

The POSIX semaphore has now been removed and each child process
gets a dedicated queue. This means that the worker will require more
file descriptors (two descriptors per process), but it also means
that performance is improved and we can send work to individual child
processes.

POSIX semaphores aren’t released when a process is killed, so killing
processes could lead to a deadlock if it happened while the semaphore was
acquired. There’s no good solution to fix this, so the best option
was to remove the semaphore.

	Asynchronous write operations

The pool now uses async I/O to send work to the child processes.

	Lost process detection is now immediate.

If a child process is killed or exits mysteriously the pool previously
had to wait for 30 seconds before marking the task with a
WorkerLostError. It had to do this because
the out-queue was shared between all processes, and the pool couldn’t
be certain whether the process completed the task or not. So an arbitrary
timeout of 30 seconds was chosen, as it was believed that the out-queue
would’ve been drained by this point.

This timeout is no longer necessary, and so the task can be marked as
failed as soon as the pool gets the notification that the process exited.

	Rare race conditions fixed

Most of these bugs were never reported to us, but were discovered while
running the new stress test suite.

Caveats

Long running tasks

The new pool will send tasks to a child process as long as the process
in-queue is writable, and since the socket is buffered this means
that the processes are, in effect, prefetching tasks.

This benefits performance but it also means that other tasks may be stuck
waiting for a long running task to complete:

-> send T1 to Process A
A executes T1
-> send T2 to Process B
B executes T2
<- T2 complete

-> send T3 to Process A
A still executing T1, T3 stuck in local buffer and
won't start until T1 returns

The buffer size varies based on the operating system: some may
have a buffer as small as 64KB but on recent Linux versions the buffer
size is 1MB (can only be changed system wide).

You can disable this prefetching behavior by enabling the
-Ofair worker option:

$ celery -A proj worker -l info -Ofair

With this option enabled the worker will only write to workers that are
available for work, disabling the prefetch behavior.

Max tasks per child

If a process exits and pool prefetch is enabled the worker may have
already written many tasks to the process in-queue, and these tasks
must then be moved back and rewritten to a new process.

This is very expensive if you have the
--max-tasks-per-child
option set to a low value (e.g., less than 10), you should not be
using the -Ofast scheduler option.

Django supported out of the box

Celery 3.0 introduced a shiny new API, but unfortunately didn’t
have a solution for Django users.

The situation changes with this version as Django is now supported
in core and new Django users coming to Celery are now expected
to use the new API directly.

The Django community has a convention where there’s a separate
django-x package for every library, acting like a bridge between
Django and the library.

Having a separate project for Django users has been a pain for Celery,
with multiple issue trackers and multiple documentation
sources, and then lastly since 3.0 we even had different APIs.

With this version we challenge that convention and Django users will
use the same library, the same API and the same documentation as
everyone else.

There’s no rush to port your existing code to use the new API,
but if you’d like to experiment with it you should know that:

	You need to use a Celery application instance.

The new Celery API introduced in 3.0 requires users to instantiate the
library by creating an application:

from celery import Celery

app = Celery()

	You need to explicitly integrate Celery with Django

Celery won’t automatically use the Django settings, so you can
either configure Celery separately or you can tell it to use the Django
settings with:

app.config_from_object('django.conf:settings')

Neither will it automatically traverse your installed apps to find task
modules. If you want this behavior, you must explicitly pass a list of
Django instances to the Celery app:

from django.conf import settings
app.autodiscover_tasks(lambda: settings.INSTALLED_APPS)

	You no longer use manage.py

Instead you use the celery command directly:

$ celery -A proj worker -l info

For this to work your app module must store the DJANGO_SETTINGS_MODULE [https://django.readthedocs.io/en/latest/topics/settings.html#envvar-DJANGO_SETTINGS_MODULE]
environment variable, see the example in the Django
guide.

To get started with the new API you should first read the First Steps with Celery
tutorial, and then you should read the Django-specific instructions in
First steps with Django.

The fixes and improvements applied by the django-celery [https://pypi.python.org/pypi/django-celery/] library
are now automatically applied by core Celery when it detects that
the DJANGO_SETTINGS_MODULE [https://django.readthedocs.io/en/latest/topics/settings.html#envvar-DJANGO_SETTINGS_MODULE] environment variable is set.

The distribution ships with a new example project using Django
in examples/django:

https://github.com/celery/celery/tree/3.1/examples/django

Some features still require the django-celery [https://pypi.python.org/pypi/django-celery/] library:

	Celery doesn’t implement the Django database or cache result backends.

	
	Celery doesn’t ship with the database-based periodic task
	scheduler.

Note

If you’re still using the old API when you upgrade to Celery 3.1
then you must make sure that your settings module contains
the djcelery.setup_loader() line, since this will
no longer happen as a side-effect of importing the django-celery [https://pypi.python.org/pypi/django-celery/]
module.

New users (or if you’ve ported to the new API) don’t need the setup_loader
line anymore, and must make sure to remove it.

Events are now ordered using logical time

Keeping physical clocks in perfect sync is impossible, so using
time-stamps to order events in a distributed system isn’t reliable.

Celery event messages have included a logical clock value for some time,
but starting with this version that field is also used to order them.

Also, events now record timezone information
by including a new utcoffset field in the event message.
This is a signed integer telling the difference from UTC time in hours,
so for example, an event sent from the Europe/London timezone in daylight savings
time will have an offset of 1.

app.events.Receiver will automatically convert the time-stamps
to the local timezone.

Note

The logical clock is synchronized with other nodes
in the same cluster (neighbors), so this means that the logical
epoch will start at the point when the first worker in the cluster
starts.

If all of the workers are shutdown the clock value will be lost
and reset to 0. To protect against this, you should specify the
celery worker --statedb option such that the worker can
persist the clock value at shutdown.

You may notice that the logical clock is an integer value and
increases very rapidly. Don’t worry about the value overflowing
though, as even in the most busy clusters it may take several
millennium before the clock exceeds a 64 bits value.

New worker node name format (name@host)

Node names are now constructed by two elements: name and host-name
separated by ‘@’.

This change was made to more easily identify multiple instances running
on the same machine.

If a custom name isn’t specified then the
worker will use the name ‘celery’ by default, resulting in a
fully qualified node name of ‘celery@hostname’:

$ celery worker -n example.com
celery@example.com

To also set the name you must include the @:

$ celery worker -n worker1@example.com
worker1@example.com

The worker will identify itself using the fully qualified
node name in events and broadcast messages, so where before
a worker would identify itself as ‘worker1.example.com’, it’ll now
use ‘celery@worker1.example.com’.

Remember that the -n argument also supports
simple variable substitutions, so if the current host-name
is george.example.com then the %h macro will expand into that:

$ celery worker -n worker1@%h
worker1@george.example.com

The available substitutions are as follows:

	Variable

	Substitution

	%h

	Full host-name (including domain name)

	%d

	Domain name only

	%n

	Host-name only (without domain name)

	%%

	The character %

Bound tasks

The task decorator can now create “bound tasks”, which means that the
task will receive the self argument.

@app.task(bind=True)
def send_twitter_status(self, oauth, tweet):
 try:
 twitter = Twitter(oauth)
 twitter.update_status(tweet)
 except (Twitter.FailWhaleError, Twitter.LoginError) as exc:
 raise self.retry(exc=exc)

Using bound tasks is now the recommended approach whenever
you need access to the task instance or request context.
Previously one would’ve to refer to the name of the task
instead (send_twitter_status.retry), but this could lead to problems
in some configurations.

Mingle: Worker synchronization

The worker will now attempt to synchronize with other workers in
the same cluster.

Synchronized data currently includes revoked tasks and logical clock.

This only happens at start-up and causes a one second start-up delay
to collect broadcast responses from other workers.

You can disable this bootstep using the
celery worker --without-mingle option.

Gossip: Worker <-> Worker communication

Workers are now passively subscribing to worker related events like
heartbeats.

This means that a worker knows what other workers are doing and
can detect if they go offline. Currently this is only used for clock
synchronization, but there are many possibilities for future additions
and you can write extensions that take advantage of this already.

Some ideas include consensus protocols, reroute task to best worker (based on
resource usage or data locality) or restarting workers when they crash.

We believe that although this is a small addition, it opens
amazing possibilities.

You can disable this bootstep using the
celery worker --without-gossip option.

Bootsteps: Extending the worker

By writing bootsteps you can now easily extend the consumer part
of the worker to add additional features, like custom message consumers.

The worker has been using bootsteps for some time, but these were never
documented. In this version the consumer part of the worker
has also been rewritten to use bootsteps and the new Extensions and Bootsteps
guide documents examples extending the worker, including adding
custom message consumers.

See the Extensions and Bootsteps guide for more information.

Note

Bootsteps written for older versions won’t be compatible
with this version, as the API has changed significantly.

The old API was experimental and internal but should you be so unlucky
to use it then please contact the mailing-list and we’ll help you port
the bootstep to the new API.

New RPC result backend

This new experimental version of the amqp result backend is a good
alternative to use in classical RPC scenarios, where the process that initiates
the task is always the process to retrieve the result.

It uses Kombu to send and retrieve results, and each client
uses a unique queue for replies to be sent to. This avoids
the significant overhead of the original amqp result backend which creates
one queue per task.

By default results sent using this backend won’t persist, so they won’t
survive a broker restart. You can enable
the CELERY_RESULT_PERSISTENT setting to change that.

CELERY_RESULT_BACKEND = 'rpc'
CELERY_RESULT_PERSISTENT = True

Note that chords are currently not supported by the RPC backend.

Time limits can now be set by the client

Two new options have been added to the Calling API: time_limit and
soft_time_limit:

>>> res = add.apply_async((2, 2), time_limit=10, soft_time_limit=8)

>>> res = add.subtask((2, 2), time_limit=10, soft_time_limit=8).delay()

>>> res = add.s(2, 2).set(time_limit=10, soft_time_limit=8).delay()

Contributed by Mher Movsisyan.

Redis: Broadcast messages and virtual hosts

Broadcast messages are currently seen by all virtual hosts when
using the Redis transport. You can now fix this by enabling a prefix to all channels
so that the messages are separated:

BROKER_TRANSPORT_OPTIONS = {'fanout_prefix': True}

Note that you’ll not be able to communicate with workers running older
versions or workers that doesn’t have this setting enabled.

This setting will be the default in a future version.

Related to Issue #1490.

pytz [https://pypi.python.org/pypi/pytz/] replaces python-dateutil [https://pypi.python.org/pypi/python-dateutil/] dependency

Celery no longer depends on the python-dateutil [https://pypi.python.org/pypi/python-dateutil/] library,
but instead a new dependency on the pytz [https://pypi.python.org/pypi/pytz/] library was added.

The pytz [https://pypi.python.org/pypi/pytz/] library was already recommended for accurate timezone support.

This also means that dependencies are the same for both Python 2 and
Python 3, and that the requirements/default-py3k.txt file has
been removed.

Support for setuptools [https://pypi.python.org/pypi/setuptools/] extra requirements

Pip now supports the setuptools [https://pypi.python.org/pypi/setuptools/] extra requirements format,
so we’ve removed the old bundles concept, and instead specify
setuptools extras.

You install extras by specifying them inside brackets:

$ pip install celery[redis,mongodb]

The above will install the dependencies for Redis and MongoDB. You can list
as many extras as you want.

Warning

You can’t use the celery-with-* packages anymore, as these won’t be
updated to use Celery 3.1.

	Extension

	Requirement entry

	Type

	Redis

	celery[redis]

	transport, result backend

	MongoDB

	celery[mongodb]

	transport, result backend

	CouchDB

	celery[couchdb]

	transport

	Beanstalk

	celery[beanstalk]

	transport

	ZeroMQ

	celery[zeromq]

	transport

	Zookeeper

	celery[zookeeper]

	transport

	SQLAlchemy

	celery[sqlalchemy]

	transport, result backend

	librabbitmq

	celery[librabbitmq]

	transport (C amqp client)

The complete list with examples is found in the Bundles section.

subtask.__call__() now executes the task directly

A misunderstanding led to Signature.__call__ being an alias of
.delay but this doesn’t conform to the calling API of Task which
calls the underlying task method.

This means that:

@app.task
def add(x, y):
 return x + y

add.s(2, 2)()

now does the same as calling the task directly:

>>> add(2, 2)

In Other News

	Now depends on Kombu 3.0 [https://kombu.readthedocs.io/en/master/changelog.html#version-3-0-0].

	Now depends on billiard [https://pypi.python.org/pypi/billiard/] version 3.3.

	Worker will now crash if running as the root user with pickle enabled.

	Canvas: group.apply_async and chain.apply_async no longer starts
separate task.

That the group and chord primitives supported the “calling API” like other
subtasks was a nice idea, but it was useless in practice and often
confused users. If you still want this behavior you can define a
task to do it for you.

	New method Signature.freeze() can be used to “finalize”
signatures/subtask.

Regular signature:

>>> s = add.s(2, 2)
>>> result = s.freeze()
>>> result
<AsyncResult: ffacf44b-f8a1-44e9-80a3-703150151ef2>
>>> s.delay()
<AsyncResult: ffacf44b-f8a1-44e9-80a3-703150151ef2>

Group:

>>> g = group(add.s(2, 2), add.s(4, 4))
>>> result = g.freeze()
<GroupResult: e1094b1d-08fc-4e14-838e-6d601b99da6d [
 70c0fb3d-b60e-4b22-8df7-aa25b9abc86d,
 58fcd260-2e32-4308-a2ea-f5be4a24f7f4]>
>>> g()
<GroupResult: e1094b1d-08fc-4e14-838e-6d601b99da6d [70c0fb3d-b60e-4b22-8df7-aa25b9abc86d, 58fcd260-2e32-4308-a2ea-f5be4a24f7f4]>

	Chord exception behavior defined (Issue #1172).

From this version the chord callback will change state to FAILURE
when a task part of a chord raises an exception.

See more at Error handling.

	New ability to specify additional command line options
to the worker and beat programs.

The app.user_options attribute can be used
to add additional command-line arguments, and expects
optparse [https://docs.python.org/dev/library/optparse.html#module-optparse]-style options:

from celery import Celery
from celery.bin import Option

app = Celery()
app.user_options['worker'].add(
 Option('--my-argument'),
)

See the Extensions and Bootsteps guide for more information.

	All events now include a pid field, which is the process id of the
process that sent the event.

	Event heartbeats are now calculated based on the time when the event
was received by the monitor, and not the time reported by the worker.

This means that a worker with an out-of-sync clock will no longer
show as ‘Offline’ in monitors.

A warning is now emitted if the difference between the senders
time and the internal time is greater than 15 seconds, suggesting
that the clocks are out of sync.

	Monotonic clock support.

A monotonic clock is now used for timeouts and scheduling.

The monotonic clock function is built-in starting from Python 3.4,
but we also have fallback implementations for Linux and macOS.

	celery worker now supports a new
--detach argument to start
the worker as a daemon in the background.

	app.events.Receiver now sets a local_received field for incoming
events, which is set to the time of when the event was received.

	app.events.Dispatcher now accepts a groups argument
which decides a white-list of event groups that’ll be sent.

The type of an event is a string separated by ‘-‘, where the part
before the first ‘-‘ is the group. Currently there are only
two groups: worker and task.

A dispatcher instantiated as follows:

>>> app.events.Dispatcher(connection, groups=['worker'])

will only send worker related events and silently drop any attempts
to send events related to any other group.

	New BROKER_FAILOVER_STRATEGY setting.

This setting can be used to change the transport fail-over strategy,
can either be a callable returning an iterable or the name of a
Kombu built-in failover strategy. Default is “round-robin”.

Contributed by Matt Wise.

	Result.revoke will no longer wait for replies.

You can add the reply=True argument if you really want to wait for
responses from the workers.

	Better support for link and link_error tasks for chords.

Contributed by Steeve Morin.

	Worker: Now emits warning if the CELERYD_POOL setting is set
to enable the eventlet/gevent pools.

The -P option should always be used to select the eventlet/gevent pool
to ensure that the patches are applied as early as possible.

If you start the worker in a wrapper (like Django’s manage.py)
then you must apply the patches manually, for example by creating an alternative
wrapper that monkey patches at the start of the program before importing
any other modules.

	There’s a now an ‘inspect clock’ command which will collect the current
logical clock value from workers.

	celery inspect stats now contains the process id of the worker’s main
process.

Contributed by Mher Movsisyan.

	New remote control command to dump a workers configuration.

Example:

$ celery inspect conf

Configuration values will be converted to values supported by JSON
where possible.

Contributed by Mher Movsisyan.

	New settings CELERY_EVENT_QUEUE_TTL and
CELERY_EVENT_QUEUE_EXPIRES.

These control when a monitors event queue is deleted, and for how long
events published to that queue will be visible. Only supported on
RabbitMQ.

	New Couchbase result backend.

This result backend enables you to store and retrieve task results
using Couchbase [https://www.couchbase.com].

See Couchbase backend settings for more information
about configuring this result backend.

Contributed by Alain Masiero.

	CentOS init-script now supports starting multiple worker instances.

See the script header for details.

Contributed by Jonathan Jordan.

	AsyncResult.iter_native now sets default interval parameter to 0.5

Fix contributed by Idan Kamara

	New setting BROKER_LOGIN_METHOD.

This setting can be used to specify an alternate login method
for the AMQP transports.

Contributed by Adrien Guinet

	The dump_conf remote control command will now give the string
representation for types that aren’t JSON compatible.

	Function celery.security.setup_security is now app.setup_security().

	Task retry now propagates the message expiry value (Issue #980).

The value is forwarded at is, so the expiry time won’t change.
To update the expiry time you’d’ve to pass a new expires
argument to retry().

	Worker now crashes if a channel error occurs.

Channel errors are transport specific and is the list of exceptions
returned by Connection.channel_errors.
For RabbitMQ this means that Celery will crash if the equivalence
checks for one of the queues in CELERY_QUEUES mismatches, which
makes sense since this is a scenario where manual intervention is
required.

	Calling AsyncResult.get() on a chain now propagates errors for previous
tasks (Issue #1014).

	The parent attribute of AsyncResult is now reconstructed when using JSON
serialization (Issue #1014).

	Worker disconnection logs are now logged with severity warning instead of
error.

Contributed by Chris Adams.

	events.State no longer crashes when it receives unknown event types.

	SQLAlchemy Result Backend: New CELERY_RESULT_DB_TABLENAMES
setting can be used to change the name of the database tables used.

Contributed by Ryan Petrello.

	
	SQLAlchemy Result Backend: Now calls enginge.dispose after fork
	(Issue #1564).

If you create your own SQLAlchemy engines then you must also
make sure that these are closed after fork in the worker:

from multiprocessing.util import register_after_fork

engine = create_engine(*engine_args)
register_after_fork(engine, engine.dispose)

	A stress test suite for the Celery worker has been written.

This is located in the funtests/stress directory in the git
repository. There’s a README file there to get you started.

	The logger named celery.concurrency has been renamed to celery.pool.

	New command line utility celery graph.

This utility creates graphs in GraphViz dot format.

You can create graphs from the currently installed bootsteps:

Create graph of currently installed bootsteps in both the worker
and consumer name-spaces.
$ celery graph bootsteps | dot -T png -o steps.png

Graph of the consumer name-space only.
$ celery graph bootsteps consumer | dot -T png -o consumer_only.png

Graph of the worker name-space only.
$ celery graph bootsteps worker | dot -T png -o worker_only.png

Or graphs of workers in a cluster:

Create graph from the current cluster
$ celery graph workers | dot -T png -o workers.png

Create graph from a specified list of workers
$ celery graph workers nodes:w1,w2,w3 | dot -T png workers.png

also specify the number of threads in each worker
$ celery graph workers nodes:w1,w2,w3 threads:2,4,6

…also specify the broker and backend URLs shown in the graph
$ celery graph workers broker:amqp:// backend:redis://

…also specify the max number of workers/threads shown (wmax/tmax),
enumerating anything that exceeds that number.
$ celery graph workers wmax:10 tmax:3

	Changed the way that app instances are pickled.

Apps can now define a __reduce_keys__ method that’s used instead
of the old AppPickler attribute. For example, if your app defines a custom
‘foo’ attribute that needs to be preserved when pickling you can define
a __reduce_keys__ as such:

import celery

class Celery(celery.Celery):

 def __init__(self, *args, **kwargs):
 super(Celery, self).__init__(*args, **kwargs)
 self.foo = kwargs.get('foo')

 def __reduce_keys__(self):
 return super(Celery, self).__reduce_keys__().update(
 foo=self.foo,
)

This is a much more convenient way to add support for pickling custom
attributes. The old AppPickler is still supported but its use is
discouraged and we would like to remove it in a future version.

	Ability to trace imports for debugging purposes.

The C_IMPDEBUG can be set to trace imports as they
occur:

$ C_IMDEBUG=1 celery worker -l info

$ C_IMPDEBUG=1 celery shell

	Message headers now available as part of the task request.

Example adding and retrieving a header value:

@app.task(bind=True)
def t(self):
 return self.request.headers.get('sender')

>>> t.apply_async(headers={'sender': 'George Costanza'})

	New before_task_publish signal dispatched before a task message
is sent and can be used to modify the final message fields (Issue #1281).

	New after_task_publish signal replaces the old task_sent
signal.

The task_sent signal is now deprecated and shouldn’t be used.

	New worker_process_shutdown signal is dispatched in the
prefork pool child processes as they exit.

Contributed by Daniel M Taub.

	celery.platforms.PIDFile renamed to celery.platforms.Pidfile.

	MongoDB Backend: Can now be configured using a URL:

	MongoDB Backend: No longer using deprecated pymongo.Connection.

	MongoDB Backend: Now disables auto_start_request.

	MongoDB Backend: Now enables use_greenlets when eventlet/gevent is used.

	subtask() / maybe_subtask() renamed to
signature()/maybe_signature().

Aliases still available for backwards compatibility.

	The correlation_id message property is now automatically set to the
id of the task.

	The task message eta and expires fields now includes timezone
information.

	All result backends store_result/mark_as_* methods must now accept
a request keyword argument.

	Events now emit warning if the broken yajl library is used.

	The celeryd_init signal now takes an extra keyword argument:
option.

This is the mapping of parsed command line arguments, and can be used to
prepare new preload arguments (app.user_options['preload']).

	New callback: app.on_configure().

This callback is called when an app is about to be configured (a
configuration key is required).

	Worker: No longer forks on HUP.

This means that the worker will reuse the same pid for better
support with external process supervisors.

Contributed by Jameel Al-Aziz.

	Worker: The log message Got task from broker … was changed to
Received task ….

	Worker: The log message Skipping revoked task … was changed
to Discarding revoked task ….

	Optimization: Improved performance of ResultSet.join_native().

Contributed by Stas Rudakou.

	The task_revoked signal now accepts new request argument
(Issue #1555).

The revoked signal is dispatched after the task request is removed from
the stack, so it must instead use the
Request object to get information
about the task.

	Worker: New -X command line argument to
exclude queues (Issue #1399).

The -X argument is the inverse of the
-Q argument and accepts a list of queues
to exclude (not consume from):

Consume from all queues in CELERY_QUEUES, but not the 'foo' queue.
$ celery worker -A proj -l info -X foo

	Adds C_FAKEFORK environment variable for simple
init-script/celery multi debugging.

This means that you can now do:

$ C_FAKEFORK=1 celery multi start 10

or:

$ C_FAKEFORK=1 /etc/init.d/celeryd start

to avoid the daemonization step to see errors that aren’t visible
due to missing stdout/stderr.

A dryrun command has been added to the generic init-script that
enables this option.

	New public API to push and pop from the current task stack:

celery.app.push_current_task() and
celery.app.pop_current_task`().

	RetryTaskError has been renamed to Retry.

The old name is still available for backwards compatibility.

	New semi-predicate exception Reject.

This exception can be raised to reject/requeue the task message,
see Reject for examples.

	Semipredicates documented: (Retry/Ignore/Reject).

Scheduled Removals

	The BROKER_INSIST setting and the insist argument
to ~@connection is no longer supported.

	The CELERY_AMQP_TASK_RESULT_CONNECTION_MAX setting is no longer
supported.

Use BROKER_POOL_LIMIT instead.

	The CELERY_TASK_ERROR_WHITELIST setting is no longer supported.

You should set the ErrorMail attribute
of the task class instead. You can also do this using
CELERY_ANNOTATIONS:

from celery import Celery
from celery.utils.mail import ErrorMail

class MyErrorMail(ErrorMail):
 whitelist = (KeyError, ImportError)

 def should_send(self, context, exc):
 return isinstance(exc, self.whitelist)

app = Celery()
app.conf.CELERY_ANNOTATIONS = {
 '*': {
 'ErrorMail': MyErrorMails,
 }
}

	Functions that creates a broker connections no longer
supports the connect_timeout argument.

This can now only be set using the BROKER_CONNECTION_TIMEOUT
setting. This is because functions no longer create connections
directly, but instead get them from the connection pool.

	The CELERY_AMQP_TASK_RESULT_EXPIRES setting is no longer supported.

Use CELERY_TASK_RESULT_EXPIRES instead.

Deprecation Time-line Changes

See the Celery Deprecation Time-line.

Fixes

	AMQP Backend: join didn’t convert exceptions when using the json
serializer.

	Non-abstract task classes are now shared between apps (Issue #1150).

Note that non-abstract task classes shouldn’t be used in the
new API. You should only create custom task classes when you
use them as a base class in the @task decorator.

This fix ensure backwards compatibility with older Celery versions
so that non-abstract task classes works even if a module is imported
multiple times so that the app is also instantiated multiple times.

	Worker: Workaround for Unicode errors in logs (Issue #427).

	Task methods: .apply_async now works properly if args list is None
(Issue #1459).

	Eventlet/gevent/solo/threads pools now properly handles BaseException [https://docs.python.org/dev/library/exceptions.html#BaseException]
errors raised by tasks.

	autoscale and pool_grow/pool_shrink remote
control commands will now also automatically increase and decrease the
consumer prefetch count.

Fix contributed by Daniel M. Taub.

	celery control pool_ commands didn’t coerce string arguments to int.

	Redis/Cache chords: Callback result is now set to failure if the group
disappeared from the database (Issue #1094).

	Worker: Now makes sure that the shutdown process isn’t initiated more
than once.

	Programs: celery multi now properly handles both -f and
--logfile options (Issue #1541).

Internal changes

	Module celery.task.trace has been renamed to celery.app.trace.

	Module celery.concurrency.processes has been renamed to
celery.concurrency.prefork.

	Classes that no longer fall back to using the default app:

	Result backends (celery.backends.base.BaseBackend)

	celery.worker.WorkController

	celery.worker.Consumer

	celery.worker.request.Request

This means that you have to pass a specific app when instantiating
these classes.

	EventDispatcher.copy_buffer renamed to
app.events.Dispatcher.extend_buffer().

	Removed unused and never documented global instance
celery.events.state.state.

	app.events.Receiver is now a kombu.mixins.ConsumerMixin [https://kombu.readthedocs.io/en/master/reference/kombu.mixins.html#kombu.mixins.ConsumerMixin]
subclass.

	celery.apps.worker.Worker has been refactored as a subclass of
celery.worker.WorkController.

This removes a lot of duplicate functionality.

	The Celery.with_default_connection method has been removed in favor
of with app.connection_or_acquire (app.connection_or_acquire())

	The celery.results.BaseDictBackend class has been removed and is replaced by
celery.results.BaseBackend.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Change history

This document contains change notes for bugfix releases in the 3.1.x series
(Cipater), please see What’s new in Celery 3.1 (Cipater) for an overview of what’s
new in Celery 3.1.

3.1.26

	release-date

	2018-23-03 16:00 PM IST

	release-by

	Omer Katz

	Fixed a crash caused by tasks cycling between Celery 3 and Celery 4 workers.

3.1.25

	release-date

	2016-10-10 12:00 PM PDT

	release-by

	Ask Solem

	Requirements

	Now depends on Kombu 3.0.37 [https://kombu.readthedocs.io/en/master/changelog.html#version-3-0-37]

	Fixed problem with chords in group introduced in 3.1.24 (Issue #3504).

3.1.24

	release-date

	2016-09-30 04:21 PM PDT

	release-by

	Ask Solem

	Requirements

	Now depends on Kombu 3.0.36 [https://kombu.readthedocs.io/en/master/changelog.html#version-3-0-36].

	Now supports Task protocol 2 from the future 4.0 release.

Workers running 3.1.24 are now able to process messages
sent using the new task message protocol [http://docs.celeryproject.org/en/master/internals/protocol.html#version-2] to be introduced
in Celery 4.0.

Users upgrading to Celery 4.0 when this is released are encouraged
to upgrade to this version as an intermediate step, as this
means workers not yet upgraded will be able to process
messages from clients/workers running 4.0.

	Task.send_events can now be set to disable sending of events
for that task only.

Example when defining the task:

@app.task(send_events=False)
def add(x, y):
 return x + y

	Utils: Fixed compatibility with recent psutil [https://pypi.python.org/pypi/psutil/] versions
(Issue #3262).

	Canvas: Chord now forwards partial arguments to its subtasks.

Fix contributed by Tayfun Sen.

	App: Arguments to app such as backend, broker, etc
are now pickled and sent to the child processes on Windows.

Fix contributed by Jeremy Zafran.

	Deployment: Generic init scripts now supports being symlinked
in runlevel directories (Issue #3208).

	Deployment: Updated CentOS scripts to work with CentOS 7.

Contributed by Joe Sanford.

	Events: The curses monitor no longer crashes when the
result of a task is empty.

Fix contributed by Dongweiming.

	Worker: repr(worker) would crash when called early
in the startup process (Issue #2514).

	Tasks: GroupResult now defines __bool__ and __nonzero__.

This is to fix an issue where a ResultSet or GroupResult with an empty
result list are not properly tupled with the as_tuple() method when it is
a parent result. This is due to the as_tuple() method performing a logical
and operation on the ResultSet.

Fix contributed by Colin McIntosh.

	Worker: Fixed wrong values in autoscale related logging message.

Fix contributed by @raducc.

	Documentation improvements by

	Alexandru Chirila

	Michael Aquilina

	Mikko Ekström

	Mitchel Humpherys

	Thomas A. Neil

	Tiago Moreira Vieira

	Yuriy Syrovetskiy

	@dessant

3.1.23

	release-date

	2016-03-09 06:00 P.M PST

	release-by

	Ask Solem

	Programs: Last release broke support for the --hostnmame argument
to celery multi and celery worker --detach
(Issue #3103).

	Results: MongoDB result backend could crash the worker at startup
if not configured using an URL.

3.1.22

	release-date

	2016-03-07 01:30 P.M PST

	release-by

	Ask Solem

	Programs: The worker would crash immediately on startup on
backend.as_uri() when using some result backends (Issue #3094).

	Programs: celery multi/celery worker --detach
would create an extraneous logfile including literal formats (e.g. %I)
in the filename (Issue #3096).

3.1.21

	release-date

	2016-03-04 11:16 a.m. PST

	release-by

	Ask Solem

	Requirements

	Now depends on Kombu 3.0.34 [https://kombu.readthedocs.io/en/master/changelog.html#version-3-0-34].

	Now depends on billiard 3.3.0.23.

	Prefork pool: Fixes 100% CPU loop on Linux epoll
(Issue #1845).

Also potential fix for: Issue #2142, Issue #2606

	Prefork pool: Fixes memory leak related to processes exiting
(Issue #2927).

	Worker: Fixes crash at start-up when trying to censor passwords
in MongoDB and Cache result backend URLs (Issue #3079, Issue #3045,
Issue #3049, Issue #3068, Issue #3073).

Fix contributed by Maxime Verger.

	Task: An exception is now raised if countdown/expires is less
than -2147483648 (Issue #3078).

	Programs: celery shell --ipython now compatible with newer
IPython [https://pypi.python.org/pypi/IPython/] versions.

	Programs: The DuplicateNodeName warning emitted by inspect/control
now includes a list of the node names returned.

Contributed by Sebastian Kalinowski.

	Utils: The .discard(item) method of
LimitedSet didn’t actually remove the item
(Issue #3087).

Fix contributed by Dave Smith.

	Worker: Node name formatting now emits less confusing error message
for unmatched format keys (Issue #3016).

	Results: RPC/AMQP backends: Fixed deserialization of JSON exceptions
(Issue #2518).

Fix contributed by Allard Hoeve.

	Prefork pool: The process inqueue damaged error message now includes
the original exception raised.

	Documentation: Includes improvements by:

	Jeff Widman.

3.1.20

	release-date

	2016-01-22 06:50 p.m. UTC

	release-by

	Ask Solem

	Requirements

	Now depends on Kombu 3.0.33 [https://kombu.readthedocs.io/en/master/changelog.html#version-3-0-33].

	Now depends on billiard 3.3.0.22.

Includes binary wheels for Microsoft Windows x86 and x86_64!

	Task: Error emails now uses utf-8 character set by default
(Issue #2737).

	Task: Retry now forwards original message headers (Issue #3017).

	Worker: Bootsteps can now hook into on_node_join/leave/lost.

See Attributes for an example.

	Events: Fixed handling of DST timezones (Issue #2983).

	Results: Redis backend stopped respecting certain settings.

Contributed by Jeremy Llewellyn.

	Results: Database backend now properly supports JSON exceptions
(Issue #2441).

	Results: Redis new_join didn’t properly call task errbacks on chord
error (Issue #2796).

	Results: Restores Redis compatibility with Python redis [https://pypi.python.org/pypi/redis/] < 2.10.0
(Issue #2903).

	Results: Fixed rare issue with chord error handling (Issue #2409).

	Tasks: Using queue-name values in CELERY_ROUTES now works
again (Issue #2987).

	General: Result backend password now sanitized in report output
(Issue #2812, Issue #2004).

	Configuration: Now gives helpful error message when the result backend
configuration points to a module, and not a class (Issue #2945).

	Results: Exceptions sent by JSON serialized workers are now properly
handled by pickle configured workers.

	Programs: celery control autoscale now works (Issue #2950).

	Programs: celery beat --detached now runs after fork callbacks.

	General: Fix for LRU cache implementation on Python 3.5 (Issue #2897).

Contributed by Dennis Brakhane.

Python 3.5’s OrderedDict doesn’t allow mutation while it is being
iterated over. This breaks “update” if it is called with a dict
larger than the maximum size.

This commit changes the code to a version that doesn’t iterate over
the dict, and should also be a little bit faster.

	Init-scripts: The beat init-script now properly reports service as down
when no pid file can be found.

Eric Zarowny

	Beat: Added cleaning of corrupted scheduler files for some storage
backend errors (Issue #2985).

Fix contributed by Aleksandr Kuznetsov.

	Beat: Now syncs the schedule even if the schedule is empty.

Fix contributed by Colin McIntosh.

	
	Supervisord: Set higher process priority in the supervisord [https://pypi.python.org/pypi/supervisord/]
	example.

Contributed by George Tantiras.

	Documentation: Includes improvements by:

@Bryson [https://github.com/Bryson/]
Caleb Mingle
Christopher Martin
Dieter Adriaenssens
Jason Veatch
Jeremy Cline
Juan Rossi
Kevin Harvey
Kevin McCarthy
Kirill Pavlov
Marco Buttu
@Mayflower [https://github.com/Mayflower/]
Mher Movsisyan
Michael Floering
@michael-k [https://github.com/michael-k/]
Nathaniel Varona
Rudy Attias
Ryan Luckie
Steven Parker
@squfrans [https://github.com/squfrans/]
Tadej Janež
TakesxiSximada
Tom S

3.1.19

	release-date

	2015-10-26 01:00 p.m. UTC

	release-by

	Ask Solem

	Requirements

	Now depends on Kombu 3.0.29 [https://kombu.readthedocs.io/en/master/changelog.html#version-3-0-29].

	Now depends on billiard 3.3.0.21.

	Results: Fixed MongoDB result backend URL parsing problem
(Issue celery/kombu#375).

	Worker: Task request now properly sets priority in delivery_info.

Fix contributed by Gerald Manipon.

	Beat: PyPy shelve may raise KeyError when setting keys
(Issue #2862).

	Programs: celery beat --deatched now working on PyPy.

Fix contributed by Krzysztof Bujniewicz.

	Results: Redis result backend now ensures all pipelines are cleaned up.

Contributed by Justin Patrin.

	Results: Redis result backend now allows for timeout to be set in the
query portion of the result backend URL.

For example CELERY_RESULT_BACKEND = 'redis://?timeout=10'

Contributed by Justin Patrin.

	Results: result.get now properly handles failures where the
exception value is set to None (Issue #2560).

	Prefork pool: Fixed attribute error proc.dead.

	Worker: Fixed worker hanging when gossip/heartbeat disabled
(Issue #1847).

Fix contributed by Aaron Webber and Bryan Helmig.

	Results: MongoDB result backend now supports pymongo 3.x
(Issue #2744).

Fix contributed by Sukrit Khera.

	Results: RPC/AMQP backends didn’t deserialize exceptions properly
(Issue #2691).

Fix contributed by Sukrit Khera.

	Programs: Fixed problem with celery amqp’s
basic_publish (Issue #2013).

	Worker: Embedded beat now properly sets app for thread/process
(Issue #2594).

	Documentation: Many improvements and typos fixed.

Contributions by:

Carlos Garcia-Dubus
D. Yu
@jerry [https://github.com/jerry/]
Jocelyn Delalande
Josh Kupershmidt
Juan Rossi
@kanemra [https://github.com/kanemra/]
Paul Pearce
Pavel Savchenko
Sean Wang
Seungha Kim
Zhaorong Ma

3.1.18

	release-date

	2015-04-22 05:30 p.m. UTC

	release-by

	Ask Solem

	Requirements

	Now depends on Kombu 3.0.25 [https://kombu.readthedocs.io/en/master/changelog.html#version-3-0-25].

	Now depends on billiard 3.3.0.20.

	Django: Now supports Django 1.8 (Issue #2536).

Fix contributed by Bence Tamas and Mickaël Penhard.

	Results: MongoDB result backend now compatible with pymongo 3.0.

Fix contributed by Fatih Sucu.

	Tasks: Fixed bug only happening when a task has multiple callbacks
(Issue #2515).

Fix contributed by NotSqrt.

	Commands: Preload options now support --arg value syntax.

Fix contributed by John Anderson.

	Compat: A typo caused celery.log.setup_logging_subsystem to be
undefined.

Fix contributed by Gunnlaugur Thor Briem.

	init-scripts: The beat generic init-script now uses
/bin/sh instead of bash (Issue #2496).

Fix contributed by Jelle Verstraaten.

	Django: Fixed a TypeError [https://docs.python.org/dev/library/exceptions.html#TypeError] sometimes occurring in logging
when validating models.

Fix contributed by Alexander.

	Commands: Worker now supports new
--executable argument that can
be used with celery worker --detach.

Contributed by Bert Vanderbauwhede.

	Canvas: Fixed crash in chord unlock fallback task (Issue #2404).

	Worker: Fixed rare crash occurring with
--autoscale enabled (Issue #2411).

	Django: Properly recycle worker Django database connections when the
Django CONN_MAX_AGE setting is enabled (Issue #2453).

Fix contributed by Luke Burden.

3.1.17

	release-date

	2014-11-19 03:30 p.m. UTC

	release-by

	Ask Solem

Don’t enable the CELERYD_FORCE_EXECV setting!

Please review your configuration and disable this option if you’re using the
RabbitMQ or Redis transport.

Keeping this option enabled after 3.1 means the async based prefork pool will
be disabled, which can easily cause instability.

	Requirements

	Now depends on Kombu 3.0.24 [https://kombu.readthedocs.io/en/master/changelog.html#version-3-0-24].

Includes the new Qpid transport coming in Celery 3.2, backported to
support those who may still require Python 2.6 compatibility.

	Now depends on billiard 3.3.0.19.

	celery[librabbitmq] now depends on librabbitmq 1.6.1.

	Task: The timing of ETA/countdown tasks were off after the example LocalTimezone
implementation in the Python documentation no longer works in Python 3.4.
(Issue #2306).

	Task: Raising Ignore no longer sends
task-failed event (Issue #2365).

	Redis result backend: Fixed unbound local errors.

Fix contributed by Thomas French.

	Task: Callbacks wasn’t called properly if link was a list of
signatures (Issue #2350).

	Canvas: chain and group now handles json serialized signatures
(Issue #2076).

	Results: .join_native() would accidentally treat the STARTED
state as being ready (Issue #2326).

This could lead to the chord callback being called with invalid arguments
when using chords with the CELERY_TRACK_STARTED setting
enabled.

	Canvas: The chord_size attribute is now set for all canvas primitives,
making sure more combinations will work with the new_join optimization
for Redis (Issue #2339).

	Task: Fixed problem with app not being properly propagated to
trace_task in all cases.

Fix contributed by @kristaps [https://github.com/kristaps/].

	Worker: Expires from task message now associated with a timezone.

Fix contributed by Albert Wang.

	Cassandra result backend: Fixed problems when using detailed mode.

When using the Cassandra backend in detailed mode, a regression
caused errors when attempting to retrieve results.

Fix contributed by Gino Ledesma.

	Mongodb Result backend: Pickling the backend instance will now include
the original URL (Issue #2347).

Fix contributed by Sukrit Khera.

	Task: Exception info wasn’t properly set for tasks raising
Reject (Issue #2043).

	Worker: Duplicates are now removed when loading the set of revoked tasks
from the worker state database (Issue #2336).

	celery.contrib.rdb: Fixed problems with rdb.set_trace calling stop
from the wrong frame.

Fix contributed by @llllllllll [https://github.com/llllllllll/].

	Canvas: chain and chord can now be immutable.

	Canvas: chord.apply_async will now keep partial args set in
self.args (Issue #2299).

	Results: Small refactoring so that results are decoded the same way in
all result backends.

	Logging: The processName format was introduced in Python 2.6.2 so for
compatibility this format is now excluded when using earlier versions
(Issue #1644).

3.1.16

	release-date

	2014-10-03 06:00 p.m. UTC

	release-by

	Ask Solem

	Worker: 3.1.15 broke -Ofair
behavior (Issue #2286).

This regression could result in all tasks executing
in a single child process if -Ofair was enabled.

	Canvas: celery.signature now properly forwards app argument
in all cases.

	Task: .retry() didn’t raise the exception correctly
when called without a current exception.

Fix contributed by Andrea Rabbaglietti.

	Worker: The enable_events remote control command
disabled worker-related events by mistake (Issue #2272).

Fix contributed by Konstantinos Koukopoulos.

	Django: Adds support for Django 1.7 class names in INSTALLED_APPS
when using app.autodiscover_tasks() (Issue #2248).

	Sphinx: celery.contrib.sphinx now uses getfullargspec
on Python 3 (Issue #2302).

	Redis/Cache Backends: Chords will now run at most once if one or more tasks
in the chord are executed multiple times for some reason.

3.1.15

	release-date

	2014-09-14 11:00 p.m. UTC

	release-by

	Ask Solem

	Django: Now makes sure django.setup() is called
before importing any task modules (Django 1.7 compatibility, Issue #2227)

	Results: result.get() was misbehaving by calling
backend.get_task_meta in a finally [https://docs.python.org/dev/reference/compound_stmts.html#finally] call leading to
AMQP result backend queues not being properly cleaned up (Issue #2245).

3.1.14

	release-date

	2014-09-08 03:00 p.m. UTC

	release-by

	Ask Solem

	Requirements

	Now depends on Kombu 3.0.22 [https://kombu.readthedocs.io/en/master/changelog.html#version-3-0-22].

	Init-scripts: The generic worker init-scripts status command
now gets an accurate pidfile list (Issue #1942).

	
	Init-scripts: The generic beat script now implements the status
	command.

Contributed by John Whitlock.

	Commands: Multi now writes informational output to stdout instead of stderr.

	Worker: Now ignores not implemented error for pool.restart
(Issue #2153).

	Task: Retry no longer raises retry exception when executed in eager
mode (Issue #2164).

	AMQP Result backend: Now ensured on_interval is called at least
every second for blocking calls to properly propagate parent errors.

	Django: Compatibility with Django 1.7 on Windows (Issue #2126).

	Programs: --umask argument can now be
specified in both octal (if starting with 0) or decimal.

3.1.13

Security Fixes

	[Security: CELERYSA-0002 [https://github.com/celery/celery/tree/master/docs/sec/CELERYSA-0002.txt]] Insecure default umask.

The built-in utility used to daemonize the Celery worker service sets
an insecure umask by default (umask 0).

This means that any files or directories created by the worker will
end up having world-writable permissions.

Special thanks to Red Hat for originally discovering and reporting the
issue!

This version will no longer set a default umask by default, so if unset
the umask of the parent process will be used.

News

	Requirements

	Now depends on Kombu 3.0.21 [https://kombu.readthedocs.io/en/master/changelog.html#version-3-0-21].

	Now depends on billiard 3.3.0.18.

	App: backend argument now also sets the CELERY_RESULT_BACKEND
setting.

	Task: signature_from_request now propagates reply_to so that
the RPC backend works with retried tasks (Issue #2113).

	Task: retry will no longer attempt to re-queue the task if sending
the retry message fails.

Unrelated exceptions being raised could cause a message loop, so it was
better to remove this behavior.

	Beat: Accounts for standard 1ms drift by always waking up 0.010s
earlier.

This will adjust the latency so that the periodic tasks won’t move
1ms after every invocation.

	Documentation fixes

Contributed by Yuval Greenfield, Lucas Wiman, @nicholsonjf [https://github.com/nicholsonjf/].

	Worker: Removed an outdated assert statement that could lead to errors
being masked (Issue #2086).

3.1.12

	release-date

	2014-06-09 10:12 p.m. UTC

	release-by

	Ask Solem

	Requirements

Now depends on Kombu 3.0.19 [https://kombu.readthedocs.io/en/master/changelog.html#version-3-0-19].

	App: Connections weren’t being closed after fork due to an error in the
after fork handler (Issue #2055).

This could manifest itself by causing framing errors when using RabbitMQ.
(Unexpected frame).

	Django: django.setup() was being called too late when
using Django 1.7 (Issue #1802).

	Django: Fixed problems with event timezones when using Django
(Substantial drift).

Celery didn’t take into account that Django modifies the
time.timeone attributes and friends.

	Canvas: Signature.link now works when the link option is a scalar
value (Issue #2019).

	Prefork pool: Fixed race conditions for when file descriptors are
removed from the event loop.

Fix contributed by Roger Hu.

	Prefork pool: Improved solution for dividing tasks between child
processes.

This change should improve performance when there are many child
processes, and also decrease the chance that two subsequent tasks are
written to the same child process.

	Worker: Now ignores unknown event types, instead of crashing.

Fix contributed by Illes Solt.

	Programs: celery worker --detach no longer closes open file
descriptors when C_FAKEFORK is used so that the workers output
can be seen.

	Programs: The default working directory for celery worker
--detach is now the current working directory, not /.

	Canvas: signature(s, app=app) didn’t upgrade serialized signatures
to their original class (subtask_type) when the app keyword argument
was used.

	Control: The duplicate nodename warning emitted by control commands
now shows the duplicate node name.

	Tasks: Can now call ResultSet.get() on a result set without members.

Fix contributed by Alexey Kotlyarov.

	App: Fixed strange traceback mangling issue for
app.connection_or_acquire.

	Programs: The celery multi stopwait command is now documented
in usage.

	Other: Fixed cleanup problem with PromiseProxy when an error is
raised while trying to evaluate the promise.

	Other: The utility used to censor configuration values now handles
non-string keys.

Fix contributed by Luke Pomfrey.

	Other: The inspect conf command didn’t handle non-string keys well.

Fix contributed by Jay Farrimond.

	Programs: Fixed argument handling problem in
celery worker --detach.

Fix contributed by Dmitry Malinovsky.

	Programs: celery worker --detach didn’t forward working
directory option (Issue #2003).

	Programs: celery inspect registered no longer includes
the list of built-in tasks.

	Worker: The requires attribute for boot steps weren’t being handled
correctly (Issue #2002).

	Eventlet: The eventlet pool now supports the pool_grow and
pool_shrink remote control commands.

Contributed by Mher Movsisyan.

	Eventlet: The eventlet pool now implements statistics for
:program:celery inspect stats.

Contributed by Mher Movsisyan.

	Documentation: Clarified Task.rate_limit behavior.

Contributed by Jonas Haag.

	Documentation: AbortableTask examples now updated to use the new
API (Issue #1993).

	Documentation: The security documentation examples used an out of date
import.

Fix contributed by Ian Dees.

	Init-scripts: The CentOS init-scripts didn’t quote
CELERY_CHDIR.

Fix contributed by @ffeast [https://github.com/ffeast/].

3.1.11

	release-date

	2014-04-16 11:00 p.m. UTC

	release-by

	Ask Solem

	Now compatible with RabbitMQ 3.3.0

You need to run Celery 3.1.11 or later when using RabbitMQ 3.3,
and if you use the librabbitmq module you also have to upgrade
to librabbitmq 1.5.0:

$ pip install -U librabbitmq

	Requirements:

	Now depends on Kombu 3.0.15 [https://kombu.readthedocs.io/en/master/changelog.html#version-3-0-15].

	Now depends on billiard 3.3.0.17 [https://github.com/celery/billiard/blob/master/CHANGES.txt].

	Bundle celery[librabbitmq] now depends on librabbitmq 1.5.0.

	Tasks: The CELERY_DEFAULT_DELIVERY_MODE setting was being
ignored (Issue #1953).

	Worker: New celery worker --heartbeat-interval can be used
to change the time (in seconds) between sending event heartbeats.

Contributed by Matthew Duggan and Craig Northway.

	App: Fixed memory leaks occurring when creating lots of temporary
app instances (Issue #1949).

	MongoDB: SSL configuration with non-MongoDB transport breaks MongoDB
results backend (Issue #1973).

Fix contributed by Brian Bouterse.

	Logging: The color formatter accidentally modified record.msg
(Issue #1939).

	Results: Fixed problem with task trails being stored multiple times,
causing result.collect() to hang (Issue #1936, Issue #1943).

	Results: ResultSet now implements a .backend attribute for
compatibility with AsyncResult.

	Results: .forget() now also clears the local cache.

	Results: Fixed problem with multiple calls to result._set_cache
(Issue #1940).

	Results: join_native populated result cache even if disabled.

	Results: The YAML result serializer should now be able to handle storing
exceptions.

	Worker: No longer sends task error emails for expected errors (in
@task(throws=(...,))).

	Canvas: Fixed problem with exception deserialization when using
the JSON serializer (Issue #1987).

	Eventlet: Fixes crash when celery.contrib.batches attempted to
cancel a non-existing timer (Issue #1984).

	Can now import celery.version_info_t, and celery.five (Issue #1968).

3.1.10

	release-date

	2014-03-22 09:40 p.m. UTC

	release-by

	Ask Solem

	Requirements:

	Now depends on Kombu 3.0.14 [https://kombu.readthedocs.io/en/master/changelog.html#version-3-0-14].

	Results:

Reliability improvements to the SQLAlchemy database backend. Previously the
connection from the MainProcess was improperly shared with the workers.
(Issue #1786)

	Redis: Important note about events (Issue #1882).

There’s a new transport option for Redis that enables monitors
to filter out unwanted events. Enabling this option in the workers
will increase performance considerably:

BROKER_TRANSPORT_OPTIONS = {'fanout_patterns': True}

Enabling this option means that your workers won’t be able to see
workers with the option disabled (or is running an older version of
Celery), so if you do enable it then make sure you do so on all
nodes.

See Caveats.

This will be the default in Celery 3.2.

	Results: The app.AsyncResult object now keeps a local cache
of the final state of the task.

This means that the global result cache can finally be disabled,
and you can do so by setting CELERY_MAX_CACHED_RESULTS to
-1. The lifetime of the cache will then be bound to the
lifetime of the result object, which will be the default behavior
in Celery 3.2.

	Events: The “Substantial drift” warning message is now logged once
per node name only (Issue #1802).

	Worker: Ability to use one log file per child process when using the
prefork pool.

This can be enabled by using the new %i and %I format specifiers
for the log file name. See Prefork pool process index.

	Redis: New experimental chord join implementation.

This is an optimization for chords when using the Redis result backend,
where the join operation is now considerably faster and using less
resources than the previous strategy.

The new option can be set in the result backend URL:

CELERY_RESULT_BACKEND = 'redis://localhost?new_join=1'

This must be enabled manually as it’s incompatible
with workers and clients not using it, so be sure to enable
the option in all clients and workers if you decide to use it.

	Multi: With -opt:index (e.g., -c:1) the index now always refers
to the position of a node in the argument list.

This means that referring to a number will work when specifying a list
of node names and not just for a number range:

celery multi start A B C D -c:1 4 -c:2-4 8

In this example 1 refers to node A (as it’s the first node in the
list).

	Signals: The sender argument to Signal.connect can now be a proxy
object, which means that it can be used with the task decorator
(Issue #1873).

	Task: A regression caused the queue argument to Task.retry to be
ignored (Issue #1892).

	App: Fixed error message for config_from_envvar().

Fix contributed by Dmitry Malinovsky.

	Canvas: Chords can now contain a group of other chords (Issue #1921).

	Canvas: Chords can now be combined when using the amqp result backend
(a chord where the callback is also a chord).

	Canvas: Calling result.get() for a chain task will now complete
even if one of the tasks in the chain is ignore_result=True
(Issue #1905).

	Canvas: Worker now also logs chord errors.

	Canvas: A chord task raising an exception will now result in
any errbacks (link_error) to the chord callback to also be called.

	Results: Reliability improvements to the SQLAlchemy database backend
(Issue #1786).

Previously the connection from the MainProcess was improperly
inherited by child processes.

Fix contributed by Ionel Cristian Mărieș.

	Task: Task callbacks and errbacks are now called using the group
primitive.

	Task: Task.apply now properly sets request.headers
(Issue #1874).

	Worker: Fixed UnicodeEncodeError [https://docs.python.org/dev/library/exceptions.html#UnicodeEncodeError] occurring when worker is started
by supervisor [https://pypi.python.org/pypi/supervisor/].

Fix contributed by Codeb Fan.

	Beat: No longer attempts to upgrade a newly created database file
(Issue #1923).

	Beat: New setting :setting:CELERYBEAT_SYNC_EVERY can be be used
to control file sync by specifying the number of tasks to send between
each sync.

Contributed by Chris Clark.

	Commands: celery inspect memdump no longer crashes
if the psutil module isn’t installed (Issue #1914).

	Worker: Remote control commands now always accepts json serialized
messages (Issue #1870).

	Worker: Gossip will now drop any task related events it receives
by mistake (Issue #1882).

3.1.9

	release-date

	2014-02-10 06:43 p.m. UTC

	release-by

	Ask Solem

	Requirements:

	Now depends on Kombu 3.0.12 [https://kombu.readthedocs.io/en/master/changelog.html#version-3-0-12].

	Prefork pool: Better handling of exiting child processes.

Fix contributed by Ionel Cristian Mărieș.

	Prefork pool: Now makes sure all file descriptors are removed
from the hub when a process is cleaned up.

Fix contributed by Ionel Cristian Mărieș.

	New Sphinx extension: for autodoc documentation of tasks:
celery.contrib.spinx (Issue #1833).

	Django: Now works with Django 1.7a1.

	Task: Task.backend is now a property that forwards to app.backend
if no custom backend has been specified for the task (Issue #1821).

	Generic init-scripts: Fixed bug in stop command.

Fix contributed by Rinat Shigapov.

	Generic init-scripts: Fixed compatibility with GNU stat.

Fix contributed by Paul Kilgo.

	Generic init-scripts: Fixed compatibility with the minimal
dash shell (Issue #1815).

	Commands: The celery amqp basic.publish command wasn’t
working properly.

Fix contributed by Andrey Voronov.

	Commands: Did no longer emit an error message if the pidfile exists
and the process is still alive (Issue #1855).

	Commands: Better error message for missing arguments to preload
options (Issue #1860).

	Commands: celery -h didn’t work because of a bug in the
argument parser (Issue #1849).

	Worker: Improved error message for message decoding errors.

	Time: Now properly parses the Z timezone specifier in ISO 8601 date
strings.

Fix contributed by Martin Davidsson.

	Worker: Now uses the negotiated heartbeat value to calculate
how often to run the heartbeat checks.

	Beat: Fixed problem with beat hanging after the first schedule
iteration (Issue #1822).

Fix contributed by Roger Hu.

	Signals: The header argument to before_task_publish is now
always a dictionary instance so that signal handlers can add headers.

	Worker: A list of message headers is now included in message related
errors.

3.1.8

	release-date

	2014-01-17 10:45 p.m. UTC

	release-by

	Ask Solem

	Requirements:

	Now depends on Kombu 3.0.10 [https://kombu.readthedocs.io/en/master/changelog.html#version-3-0-10].

	Now depends on billiard 3.3.0.14 [https://github.com/celery/billiard/blob/master/CHANGES.txt].

	Worker: The event loop wasn’t properly reinitialized at consumer restart
which would force the worker to continue with a closed epoll instance on
Linux, resulting in a crash.

	Events: Fixed issue with both heartbeats and task events that could
result in the data not being kept in sorted order.

As a result this would force the worker to log “heartbeat missed”
events even though the remote node was sending heartbeats in a timely manner.

	Results: The pickle serializer no longer converts group results to tuples,
and will keep the original type (Issue #1750).

	Results: ResultSet.iterate is now pending deprecation.

The method will be deprecated in version 3.2 and removed in version 3.3.

Use result.get(callback=) (or result.iter_native() where available)
instead.

	Worker|eventlet/gevent: A regression caused Control-c to be
ineffective for shutdown.

	Redis result backend: Now using a pipeline to store state changes
for improved performance.

Contributed by Pepijn de Vos.

	Redis result backend: Will now retry storing the result if disconnected.

	Worker|gossip: Fixed attribute error occurring when another node leaves.

Fix contributed by Brodie Rao.

	Generic init-scripts: Now runs a check at start-up to verify
that any configuration scripts are owned by root and that they
aren’t world/group writable.

The init-script configuration is a shell script executed by root,
so this is a preventive measure to ensure that users don’t
leave this file vulnerable to changes by unprivileged users.

Note

Note that upgrading Celery won’t update the init-scripts,
instead you need to manually copy the improved versions from the
source distribution:
https://github.com/celery/celery/tree/3.1/extra/generic-init.d

	Commands: The celery purge command now warns that the operation
will delete all tasks and prompts the user for confirmation.

A new -f was added that can be used to disable
interactive mode.

	Task: .retry() didn’t raise the value provided in the exc argument
when called outside of an error context (Issue #1755).

	Commands: The celery multi command didn’t forward command
line configuration to the target workers.

The change means that multi will forward the special -- argument and
configuration content at the end of the arguments line to the specified
workers.

Example using command-line configuration to set a broker heartbeat
from celery multi:

$ celery multi start 1 -c3 -- broker.heartbeat=30

Fix contributed by Antoine Legrand.

	Canvas: chain.apply_async() now properly forwards execution options.

Fix contributed by Konstantin Podshumok.

	Redis result backend: Now takes connection_pool argument that can be
used to change the connection pool class/constructor.

	Worker: Now truncates very long arguments and keyword arguments logged by
the pool at debug severity.

	Worker: The worker now closes all open files on SIGHUP (regression)
(Issue #1768).

Fix contributed by Brodie Rao

	Worker: Will no longer accept remote control commands while the
worker start-up phase is incomplete (Issue #1741).

	Commands: The output of the event dump utility
(celery events -d) can now be piped into other commands.

	Documentation: The RabbitMQ installation instructions for macOS was
updated to use modern Homebrew practices.

Contributed by Jon Chen.

	Commands: The celery inspect conf utility now works.

	Commands: The --no-color argument was
not respected by all commands (Issue #1799).

	App: Fixed rare bug with autodiscover_tasks() (Issue #1797).

	Distribution: The sphinx docs will now always add the parent directory
to path so that the current Celery source code is used as a basis for
API documentation (Issue #1782).

	Documentation: supervisor [https://pypi.python.org/pypi/supervisor/] examples contained an
extraneous ‘-‘ in a --logfile argument
example.

Fix contributed by Mohammad Almeer.

3.1.7

	release-date

	2013-12-17 06:00 p.m. UTC

	release-by

	Ask Solem

Important Notes

Init-script security improvements

Where the generic init-scripts (for celeryd, and celerybeat) before
delegated the responsibility of dropping privileges to the target application,
it will now use su instead, so that the Python program isn’t trusted
with superuser privileges.

This isn’t in reaction to any known exploit, but it will
limit the possibility of a privilege escalation bug being abused in the
future.

You have to upgrade the init-scripts manually from this directory:
https://github.com/celery/celery/tree/3.1/extra/generic-init.d

AMQP result backend

The 3.1 release accidentally left the amqp backend configured to be
non-persistent by default.

Upgrading from 3.0 would give a “not equivalent” error when attempting to
set or retrieve results for a task. That’s unless you manually set the
persistence setting:

CELERY_RESULT_PERSISTENT = True

This version restores the previous value so if you already forced
the upgrade by removing the existing exchange you must either
keep the configuration by setting CELERY_RESULT_PERSISTENT = False
or delete the celeryresults exchange again.

Synchronous subtasks

Tasks waiting for the result of a subtask will now emit
a RuntimeWarning [https://docs.python.org/dev/library/exceptions.html#RuntimeWarning] warning when using the prefork pool,
and in 3.2 this will result in an exception being raised.

It’s not legal for tasks to block by waiting for subtasks
as this is likely to lead to resource starvation and eventually
deadlock when using the prefork pool (see also Avoid launching synchronous subtasks).

If you really know what you’re doing you can avoid the warning (and
the future exception being raised) by moving the operation in a
white-list block:

from celery.result import allow_join_result

@app.task
def misbehaving():
 result = other_task.delay()
 with allow_join_result():
 result.get()

Note also that if you wait for the result of a subtask in any form
when using the prefork pool you must also disable the pool prefetching
behavior with the worker -Ofair option.

Fixes

	Now depends on Kombu 3.0.8 [https://kombu.readthedocs.io/en/master/changelog.html#version-3-0-8].

	Now depends on billiard 3.3.0.13

	Events: Fixed compatibility with non-standard json libraries
that sends float as decimal.Decimal [https://docs.python.org/dev/library/decimal.html#decimal.Decimal] (Issue #1731)

	Events: State worker objects now always defines attributes:
active, processed, loadavg, sw_ident, sw_ver
and sw_sys.

	Worker: Now keeps count of the total number of tasks processed,
not just by type (all_active_count).

	Init-scripts: Fixed problem with reading configuration file
when the init-script is symlinked to a runlevel (e.g., S02celeryd).
(Issue #1740).

This also removed a rarely used feature where you can symlink the script
to provide alternative configurations. You instead copy the script
and give it a new name, but perhaps a better solution is to provide
arguments to CELERYD_OPTS to separate them:

CELERYD_NODES="X1 X2 Y1 Y2"
CELERYD_OPTS="-A:X1 x -A:X2 x -A:Y1 y -A:Y2 y"

	Fallback chord unlock task is now always called after the chord header
(Issue #1700).

This means that the unlock task won’t be started if there’s
an error sending the header.

	Celery command: Fixed problem with arguments for some control commands.

Fix contributed by Konstantin Podshumok.

	Fixed bug in utcoffset where the offset when in DST would be
completely wrong (Issue #1743).

	Worker: Errors occurring while attempting to serialize the result of a
task will now cause the task to be marked with failure and a
kombu.exceptions.EncodingError error.

Fix contributed by Ionel Cristian Mărieș.

	Worker with -B argument didn’t properly
shut down the beat instance.

	Worker: The %n and %h formats are now also supported by the
--logfile,
--pidfile and
--statedb arguments.

Example:

$ celery -A proj worker -n foo@%h --logfile=%n.log --statedb=%n.db

	Redis/Cache result backends: Will now timeout if keys evicted while trying
to join a chord.

	The fallback unlock chord task now raises Retry so that the
retry even is properly logged by the worker.

	Multi: Will no longer apply Eventlet/gevent monkey patches (Issue #1717).

	Redis result backend: Now supports UNIX sockets.

Like the Redis broker transport the result backend now also supports
using redis+socket:///tmp/redis.sock URLs.

Contributed by Alcides Viamontes Esquivel.

	Events: Events sent by clients was mistaken for worker related events
(Issue #1714).

For events.State the tasks now have a Task.client attribute
that’s set when a task-sent event is being received.

Also, a clients logical clock isn’t in sync with the cluster so
they live in a “time bubble.” So for this reason monitors will no
longer attempt to merge with the clock of an event sent by a client,
instead it will fake the value by using the current clock with
a skew of -1.

	Prefork pool: The method used to find terminated processes was flawed
in that it didn’t also take into account missing popen objects.

	Canvas: group and chord now works with anon signatures as long
as the group/chord object is associated with an app instance (Issue #1744).

You can pass the app by using group(..., app=app).

3.1.6

	release-date

	2013-12-02 06:00 p.m. UTC

	release-by

	Ask Solem

	Now depends on billiard 3.3.0.10.

	Now depends on Kombu 3.0.7 [https://kombu.readthedocs.io/en/master/changelog.html#version-3-0-7].

	Fixed problem where Mingle caused the worker to hang at start-up
(Issue #1686).

	Beat: Would attempt to drop privileges twice (Issue #1708).

	Windows: Fixed error with geteuid not being available (Issue #1676).

	Tasks can now provide a list of expected error classes (Issue #1682).

The list should only include errors that the task is expected to raise
during normal operation:

@task(throws=(KeyError, HttpNotFound))

What happens when an exceptions is raised depends on the type of error:

	Expected errors (included in Task.throws)

Will be logged using severity INFO, and traceback is excluded.

	Unexpected errors

Will be logged using severity ERROR, with traceback included.

	Cache result backend now compatible with Python 3 (Issue #1697).

	CentOS init-script: Now compatible with SysV style init symlinks.

Fix contributed by Jonathan Jordan.

	Events: Fixed problem when task name isn’t defined (Issue #1710).

Fix contributed by Mher Movsisyan.

	Task: Fixed unbound local errors (Issue #1684).

Fix contributed by Markus Ullmann.

	Canvas: Now unrolls groups with only one task (optimization) (Issue #1656).

	Task: Fixed problem with ETA and timezones.

Fix contributed by Alexander Koval.

	Django: Worker now performs model validation (Issue #1681).

	Task decorator now emits less confusing errors when used with
incorrect arguments (Issue #1692).

	Task: New method Task.send_event can be used to send custom events
to Flower and other monitors.

	Fixed a compatibility issue with non-abstract task classes

	Events from clients now uses new node name format (gen<pid>@<hostname>).

	Fixed rare bug with Callable not being defined at interpreter shutdown
(Issue #1678).

Fix contributed by Nick Johnson.

	Fixed Python 2.6 compatibility (Issue #1679).

3.1.5

	release-date

	2013-11-21 06:20 p.m. UTC

	release-by

	Ask Solem

	Now depends on Kombu 3.0.6 [https://kombu.readthedocs.io/en/master/changelog.html#version-3-0-6].

	Now depends on billiard 3.3.0.8

	App: config_from_object is now lazy (Issue #1665).

	App: autodiscover_tasks is now lazy.

Django users should now wrap access to the settings object
in a lambda:

app.autodiscover_tasks(lambda: settings.INSTALLED_APPS)

this ensures that the settings object isn’t prepared
prematurely.

	Fixed regression for --app argument
experienced by some users (Issue #1653).

	Worker: Now respects the --uid and
--gid arguments even if
--detach isn’t enabled.

	Beat: Now respects the --uid and
--gid arguments even if
--detach isn’t enabled.

	Python 3: Fixed unorderable error occurring with the worker
-B argument enabled.

	celery.VERSION is now a named tuple.

	maybe_signature(list) is now applied recursively (Issue #1645).

	celery shell command: Fixed IPython.frontend deprecation warning.

	The default app no longer includes the built-in fix-ups.

This fixes a bug where celery multi would attempt
to load the Django settings module before entering
the target working directory.

	The Django daemonization tutorial was changed.

Users no longer have to explicitly export DJANGO_SETTINGS_MODULE
in /etc/default/celeryd when the new project layout is used.

	Redis result backend: expiry value can now be 0 (Issue #1661).

	Censoring settings now accounts for non-string keys (Issue #1663).

	App: New autofinalize option.

Apps are automatically finalized when the task registry is accessed.
You can now disable this behavior so that an exception is raised
instead.

Example:

app = Celery(autofinalize=False)

raises RuntimeError
tasks = app.tasks

@app.task
def add(x, y):
 return x + y

raises RuntimeError
add.delay(2, 2)

app.finalize()
no longer raises:
tasks = app.tasks
add.delay(2, 2)

	The worker didn’t send monitoring events during shutdown.

	Worker: Mingle and gossip is now automatically disabled when
used with an unsupported transport (Issue #1664).

	celery command: Preload options now supports
the rare --opt value format (Issue #1668).

	celery command: Accidentally removed options
appearing before the sub-command, these are now moved to the end
instead.

	Worker now properly responds to inspect stats commands
even if received before start-up is complete (Issue #1659).

	task_postrun is now sent within a finally [https://docs.python.org/dev/reference/compound_stmts.html#finally] block,
to make sure the signal is always sent.

	Beat: Fixed syntax error in string formatting.

Contributed by @nadad [https://github.com/nadad/].

	Fixed typos in the documentation.

Fixes contributed by Loic Bistuer, @sunfinite [https://github.com/sunfinite/].

	Nested chains now works properly when constructed using the
chain type instead of the | operator (Issue #1656).

3.1.4

	release-date

	2013-11-15 11:40 p.m. UTC

	release-by

	Ask Solem

	Now depends on Kombu 3.0.5 [https://kombu.readthedocs.io/en/master/changelog.html#version-3-0-5].

	Now depends on billiard 3.3.0.7

	Worker accidentally set a default socket timeout of 5 seconds.

	Django: Fix-up now sets the default app so that threads will use
the same app instance (e.g., for manage.py runserver).

	Worker: Fixed Unicode error crash at start-up experienced by some users.

	Calling .apply_async on an empty chain now works again (Issue #1650).

	The celery multi show command now generates the same arguments
as the start command does.

	The --app argument could end up using a module
object instead of an app instance (with a resulting crash).

	Fixed a syntax error problem in the beat init-script.

Fix contributed by Vsevolod.

	Tests now passing on PyPy 2.1 and 2.2.

3.1.3

	release-date

	2013-11-13 00:55 a.m. UTC

	release-by

	Ask Solem

	Fixed compatibility problem with Python 2.7.0 - 2.7.5 (Issue #1637)

unpack_from started supporting memoryview arguments
in Python 2.7.6.

	Worker: -B argument accidentally closed
files used for logging.

	Task decorated tasks now keep their docstring (Issue #1636)

3.1.2

	release-date

	2013-11-12 08:00 p.m. UTC

	release-by

	Ask Solem

	Now depends on billiard 3.3.0.6

	No longer needs the billiard C extension to be installed.

	The worker silently ignored task errors.

	Django: Fixed ImproperlyConfigured error raised
when no database backend specified.

Fix contributed by @j0hnsmith [https://github.com/j0hnsmith/].

	Prefork pool: Now using _multiprocessing.read with memoryview
if available.

	close_open_fds now uses os.closerange if available.

	get_fdmax now takes value from sysconfig if possible.

3.1.1

	release-date

	2013-11-11 06:30 p.m. UTC

	release-by

	Ask Solem

	Now depends on billiard 3.3.0.4.

	Python 3: Fixed compatibility issues.

	Windows: Accidentally showed warning that the billiard C extension
wasn’t installed (Issue #1630).

	Django: Tutorial updated with a solution that sets a default
DJANGO_SETTINGS_MODULE [https://django.readthedocs.io/en/latest/topics/settings.html#envvar-DJANGO_SETTINGS_MODULE] so that it doesn’t have to be typed
in with the celery command.

Also fixed typos in the tutorial, and added the settings
required to use the Django database backend.

Thanks to Chris Ward, @orarbel [https://github.com/orarbel/].

	Django: Fixed a problem when using the Django settings in Django 1.6.

	Django: Fix-up shouldn’t be applied if the django loader is active.

	Worker: Fixed attribute error for human_write_stats when using the
compatibility prefork pool implementation.

	Worker: Fixed compatibility with billiard without C extension.

	Inspect.conf: Now supports a with_defaults argument.

	Group.restore: The backend argument wasn’t respected.

3.1.0

	release-date

	2013-11-09 11:00 p.m. UTC

	release-by

	Ask Solem

See What’s new in Celery 3.1 (Cipater).

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

What’s new in Celery 3.0 (Chiastic Slide)

Celery is a simple, flexible, and reliable distributed system to
process vast amounts of messages, while providing operations with
the tools required to maintain such a system.

It’s a task queue with focus on real-time processing, while also
supporting task scheduling.

Celery has a large and diverse community of users and contributors,
you should come join us on IRC
or our mailing-list.

To read more about Celery you should go read the introduction.

While this version is backward compatible with previous versions
it’s important that you read the following section.

If you use Celery in combination with Django you must also
read the django-celery changelog [https://github.com/celery/django-celery/tree/master/Changelog] and upgrade
to django-celery 3.0 [https://pypi.python.org/pypi/django-celery/].

This version is officially supported on CPython 2.5, 2.6, 2.7, 3.2 and 3.3,
as well as PyPy and Jython.

Highlights

Overview

	A new and improved API, that’s both simpler and more powerful.

Everyone must read the new First Steps with Celery tutorial,
and the new Next Steps tutorial. Oh, and
why not reread the user guide while you’re at it :)

There are no current plans to deprecate the old API,
so you don’t have to be in a hurry to port your applications.

	The worker is now thread-less, giving great performance improvements.

	The new “Canvas” makes it easy to define complex work-flows.

Ever wanted to chain tasks together? This is possible, but
not just that, now you can even chain together groups and chords,
or even combine multiple chains.

Read more in the Canvas user guide.

	All of Celery’s command-line programs are now available from a single
celery umbrella command.

	This is the last version to support Python 2.5.

Starting with Celery 3.1, Python 2.6 or later is required.

	Support for the new librabbitmq [https://pypi.python.org/pypi/librabbitmq/] C client.

Celery will automatically use the librabbitmq [https://pypi.python.org/pypi/librabbitmq/] module
if installed, which is a very fast and memory-optimized
replacement for the amqp [https://pypi.python.org/pypi/amqp/] module.

	Redis support is more reliable with improved ack emulation.

	Celery now always uses UTC

	Over 600 commits, 30k additions/36k deletions.

In comparison 1.0➝ 2.0 had 18k additions/8k deletions.

Important Notes

Broadcast exchanges renamed

The workers remote control command exchanges has been renamed
(a new pidbox name), this is because the auto_delete flag on
the exchanges has been removed, and that makes it incompatible with
earlier versions.

You can manually delete the old exchanges if you want,
using the celery amqp command (previously called camqadm):

$ celery amqp exchange.delete celeryd.pidbox
$ celery amqp exchange.delete reply.celeryd.pidbox

Event-loop

The worker is now running without threads when used with RabbitMQ (AMQP),
or Redis as a broker, resulting in:

	Much better overall performance.

	Fixes several edge case race conditions.

	Sub-millisecond timer precision.

	Faster shutdown times.

The transports supported are: py-amqp librabbitmq, redis,
and amqplib.
Hopefully this can be extended to include additional broker transports
in the future.

For increased reliability the CELERY_FORCE_EXECV setting is enabled
by default if the event-loop isn’t used.

New celery umbrella command

All Celery’s command-line programs are now available from a single
celery umbrella command.

You can see a list of sub-commands and options by running:

$ celery help

Commands include:

	celery worker (previously celeryd).

	celery beat (previously celerybeat).

	celery amqp (previously camqadm).

The old programs are still available (celeryd, celerybeat, etc),
but you’re discouraged from using them.

Now depends on billiard [https://pypi.python.org/pypi/billiard/]

Billiard is a fork of the multiprocessing containing
the no-execv patch by sbt (http://bugs.python.org/issue8713),
and also contains the pool improvements previously located in Celery.

This fork was necessary as changes to the C extension code was required
for the no-execv patch to work.

	Issue #625

	Issue #627

	Issue #640

	django-celery #122 <https://github.com/celery/django-celery/issues/122

	django-celery #124 <https://github.com/celery/django-celery/issues/122

celery.app.task no longer a package

The celery.app.task module is now a module instead of a package.

The setup.py install script will try to remove the old package,
but if that doesn’t work for some reason you have to remove
it manually. This command helps:

$ rm -r $(dirname $(python -c 'import celery;print(celery.__file__)'))/app/task/

If you experience an error like ImportError: cannot import name _unpickle_task,
you just have to remove the old package and everything is fine.

Last version to support Python 2.5

The 3.0 series will be last version to support Python 2.5,
and starting from 3.1 Python 2.6 and later will be required.

With several other distributions taking the step to discontinue
Python 2.5 support, we feel that it is time too.

Python 2.6 should be widely available at this point, and we urge
you to upgrade, but if that’s not possible you still have the option
to continue using the Celery 3.0, and important bug fixes
introduced in Celery 3.1 will be back-ported to Celery 3.0 upon request.

UTC timezone is now used

This means that ETA/countdown in messages aren’t compatible with Celery
versions prior to 2.5.

You can disable UTC and revert back to old local time by setting
the CELERY_ENABLE_UTC setting.

Redis: Ack emulation improvements

Reducing the possibility of data loss.

Acks are now implemented by storing a copy of the message when the message
is consumed. The copy isn’t removed until the consumer acknowledges
or rejects it.

This means that unacknowledged messages will be redelivered either
when the connection is closed, or when the visibility timeout is exceeded.

	Visibility timeout

This is a timeout for acks, so that if the consumer
doesn’t ack the message within this time limit, the message
is redelivered to another consumer.

The timeout is set to one hour by default, but
can be changed by configuring a transport option:

BROKER_TRANSPORT_OPTIONS = {'visibility_timeout': 18000} # 5 hours

Note

Messages that haven’t been acked will be redelivered
if the visibility timeout is exceeded, for Celery users
this means that ETA/countdown tasks that are scheduled to execute
with a time that exceeds the visibility timeout will be executed
twice (or more). If you plan on using long ETA/countdowns you
should tweak the visibility timeout accordingly.

Setting a long timeout means that it’ll take a long time
for messages to be redelivered in the event of a power failure,
but if so happens you could temporarily set the visibility timeout lower
to flush out messages when you start up the systems again.

News

Chaining Tasks

Tasks can now have callbacks and errbacks, and dependencies are recorded

	The task message format have been updated with two new extension keys

Both keys can be empty/undefined or a list of subtasks.

	callbacks

Applied if the task exits successfully, with the result
of the task as an argument.

	errbacks

Applied if an error occurred while executing the task,
with the uuid of the task as an argument. Since it may not be possible
to serialize the exception instance, it passes the uuid of the task
instead. The uuid can then be used to retrieve the exception and
traceback of the task from the result backend.

	link and link_error keyword arguments has been added
to apply_async.

These add callbacks and errbacks to the task, and
you can read more about them at Linking (callbacks/errbacks).

	We now track what subtasks a task sends, and some result backends
supports retrieving this information.

	task.request.children

Contains the result instances of the subtasks
the currently executing task has applied.

	AsyncResult.children

Returns the tasks dependencies, as a list of
AsyncResult/ResultSet instances.

	AsyncResult.iterdeps

Recursively iterates over the tasks dependencies,
yielding (parent, node) tuples.

Raises IncompleteStream if any of the dependencies
hasn’t returned yet.

	AsyncResult.graph

A DependencyGraph of the tasks
dependencies. With this you can also convert to dot format:

with open('graph.dot') as fh:
 result.graph.to_dot(fh)

then produce an image of the graph:

$ dot -Tpng graph.dot -o graph.png

	A new special subtask called chain is also included:

>>> from celery import chain

(2 + 2) * 8 / 2
>>> res = chain(add.subtask((2, 2)),
 mul.subtask((8,)),
 div.subtask((2,))).apply_async()
>>> res.get() == 16

>>> res.parent.get() == 32

>>> res.parent.parent.get() == 4

	Adds AsyncResult.get_leaf()

Waits and returns the result of the leaf subtask.
That’s the last node found when traversing the graph,
but this means that the graph can be 1-dimensional only (in effect
a list).

	Adds subtask.link(subtask) + subtask.link_error(subtask)

Shortcut to s.options.setdefault('link', []).append(subtask)

	Adds subtask.flatten_links()

Returns a flattened list of all dependencies (recursively)

Redis: Priority support

The message’s priority field is now respected by the Redis
transport by having multiple lists for each named queue.
The queues are then consumed by in order of priority.

The priority field is a number in the range of 0 - 9, where
0 is the default and highest priority.

The priority range is collapsed into four steps by default, since it is
unlikely that nine steps will yield more benefit than using four steps.
The number of steps can be configured by setting the priority_steps
transport option, which must be a list of numbers in sorted order:

>>> BROKER_TRANSPORT_OPTIONS = {
... 'priority_steps': [0, 2, 4, 6, 8, 9],
... }

Priorities implemented in this way isn’t as reliable as
priorities on the server side, which is why
the feature is nicknamed “quasi-priorities”;
Using routing is still the suggested way of ensuring
quality of service, as client implemented priorities
fall short in a number of ways, for example if the worker
is busy with long running tasks, has prefetched many messages,
or the queues are congested.

Still, it is possible that using priorities in combination
with routing can be more beneficial than using routing
or priorities alone. Experimentation and monitoring
should be used to prove this.

Contributed by Germán M. Bravo.

Redis: Now cycles queues so that consuming is fair

This ensures that a very busy queue won’t block messages
from other queues, and ensures that all queues have
an equal chance of being consumed from.

This used to be the case before, but the behavior was
accidentally changed while switching to using blocking pop.

group/chord/chain are now subtasks

	group is no longer an alias to TaskSet, but new all together,
since it was very difficult to migrate the TaskSet class to become
a subtask.

	A new shortcut has been added to tasks:

>>> task.s(arg1, arg2, kw=1)

as a shortcut to:

>>> task.subtask((arg1, arg2), {'kw': 1})

	Tasks can be chained by using the | operator:

>>> (add.s(2, 2), pow.s(2)).apply_async()

	Subtasks can be “evaluated” using the ~ operator:

>>> ~add.s(2, 2)
4

>>> ~(add.s(2, 2) | pow.s(2))

is the same as:

>>> chain(add.s(2, 2), pow.s(2)).apply_async().get()

	A new subtask_type key has been added to the subtask dictionary.

This can be the string "chord", "group", "chain",
"chunks", "xmap", or "xstarmap".

	maybe_subtask now uses subtask_type to reconstruct
the object, to be used when using non-pickle serializers.

	The logic for these operations have been moved to dedicated
tasks celery.chord, celery.chain and celery.group.

	subtask no longer inherits from AttributeDict.

It’s now a pure dict subclass with properties for attribute
access to the relevant keys.

	The repr’s now outputs how the sequence would like imperatively:

>>> from celery import chord

>>> (chord([add.s(i, i) for i in xrange(10)], xsum.s())
 | pow.s(2))
tasks.xsum([tasks.add(0, 0),
 tasks.add(1, 1),
 tasks.add(2, 2),
 tasks.add(3, 3),
 tasks.add(4, 4),
 tasks.add(5, 5),
 tasks.add(6, 6),
 tasks.add(7, 7),
 tasks.add(8, 8),
 tasks.add(9, 9)]) | tasks.pow(2)

New remote control commands

These commands were previously experimental, but they’ve proven
stable and is now documented as part of the official API.

	add_consumer/cancel_consumer

Tells workers to consume from a new queue, or cancel consuming from a
queue. This command has also been changed so that the worker remembers
the queues added, so that the change will persist even if
the connection is re-connected.

These commands are available programmatically as
app.control.add_consumer() / app.control.cancel_consumer():

>>> celery.control.add_consumer(queue_name,
... destination=['w1.example.com'])
>>> celery.control.cancel_consumer(queue_name,
... destination=['w1.example.com'])

or using the celery control command:

$ celery control -d w1.example.com add_consumer queue
$ celery control -d w1.example.com cancel_consumer queue

Note

Remember that a control command without destination will be
sent to all workers.

	autoscale

Tells workers with --autoscale enabled to change autoscale
max/min concurrency settings.

This command is available programmatically as app.control.autoscale():

>>> celery.control.autoscale(max=10, min=5,
... destination=['w1.example.com'])

or using the celery control command:

$ celery control -d w1.example.com autoscale 10 5

	pool_grow/pool_shrink

Tells workers to add or remove pool processes.

These commands are available programmatically as
app.control.pool_grow() / app.control.pool_shrink():

>>> celery.control.pool_grow(2, destination=['w1.example.com'])
>>> celery.contorl.pool_shrink(2, destination=['w1.example.com'])

or using the celery control command:

$ celery control -d w1.example.com pool_grow 2
$ celery control -d w1.example.com pool_shrink 2

	celery control now supports rate_limit and
time_limit commands.

See celery control --help for details.

Crontab now supports Day of Month, and Month of Year arguments

See the updated list of examples at Crontab schedules.

Immutable subtasks

subtask’s can now be immutable, which means that the arguments
won’t be modified when calling callbacks:

>>> chain(add.s(2, 2), clear_static_electricity.si())

means it’ll not receive the argument of the parent task,
and .si() is a shortcut to:

>>> clear_static_electricity.subtask(immutable=True)

Logging Improvements

Logging support now conforms better with best practices.

	Classes used by the worker no longer uses app.get_default_logger, but uses
celery.utils.log.get_logger which simply gets the logger not setting the
level, and adds a NullHandler.

	Loggers are no longer passed around, instead every module using logging
defines a module global logger that’s used throughout.

	All loggers inherit from a common logger called “celery”.

	Before task.get_logger would setup a new logger for every task,
and even set the log level. This is no longer the case.

	Instead all task loggers now inherit from a common “celery.task” logger
that’s set up when programs call setup_logging_subsystem.

	Instead of using LoggerAdapter to augment the formatter with
the task_id and task_name field, the task base logger now use
a special formatter adding these values at run-time from the
currently executing task.

	In fact, task.get_logger is no longer recommended, it is better
to add a module-level logger to your tasks module.

For example, like this:

from celery.utils.log import get_task_logger

logger = get_task_logger(__name__)

@celery.task
def add(x, y):
 logger.debug('Adding %r + %r' % (x, y))
 return x + y

The resulting logger will then inherit from the "celery.task" logger
so that the current task name and id is included in logging output.

	Redirected output from stdout/stderr is now logged to a “celery.redirected”
logger.

	In addition a few warnings.warn have been replaced with logger.warn.

	Now avoids the ‘no handlers for logger multiprocessing’ warning

Task registry no longer global

Every Celery instance now has its own task registry.

You can make apps share registries by specifying it:

>>> app1 = Celery()
>>> app2 = Celery(tasks=app1.tasks)

Note that tasks are shared between registries by default, so that
tasks will be added to every subsequently created task registry.
As an alternative tasks can be private to specific task registries
by setting the shared argument to the @task decorator:

@celery.task(shared=False)
def add(x, y):
 return x + y

Abstract tasks are now lazily bound

The Task class is no longer bound to an app
by default, it will first be bound (and configured) when
a concrete subclass is created.

This means that you can safely import and make task base classes,
without also initializing the app environment:

from celery.task import Task

class DebugTask(Task):
 abstract = True

 def __call__(self, *args, **kwargs):
 print('CALLING %r' % (self,))
 return self.run(*args, **kwargs)

>>> DebugTask
<unbound DebugTask>

>>> @celery1.task(base=DebugTask)
... def add(x, y):
... return x + y
>>> add.__class__
<class add of <Celery default:0x101510d10>>

Lazy task decorators

The @task decorator is now lazy when used with custom apps.

That is, if accept_magic_kwargs is enabled (her by called “compat mode”), the task
decorator executes inline like before, however for custom apps the @task
decorator now returns a special PromiseProxy object that’s only evaluated
on access.

All promises will be evaluated when app.finalize() is called, or implicitly
when the task registry is first used.

Smart –app option

The --app option now ‘auto-detects’

	If the provided path is a module it tries to get an
attribute named ‘celery’.

	If the provided path is a package it tries
to import a sub module named celery’,
and get the celery attribute from that module.

For example, if you have a project named proj where the
celery app is located in from proj.celery import app,
then the following will be equivalent:

$ celery worker --app=proj
$ celery worker --app=proj.celery:
$ celery worker --app=proj.celery:app

In Other News

	New CELERYD_WORKER_LOST_WAIT to control the timeout in
seconds before billiard.WorkerLostError is raised
when a worker can’t be signaled (Issue #595).

Contributed by Brendon Crawford.

	Redis event monitor queues are now automatically deleted (Issue #436).

	App instance factory methods have been converted to be cached
descriptors that creates a new subclass on access.

For example, this means that app.Worker is an actual class
and will work as expected when:

class Worker(app.Worker):
 ...

	New signal: task_success.

	Multiprocessing logs are now only emitted if the MP_LOG
environment variable is set.

	The Celery instance can now be created with a broker URL

app = Celery(broker='redis://')

	Result backends can now be set using a URL

Currently only supported by redis. Example use:

CELERY_RESULT_BACKEND = 'redis://localhost/1'

	Heartbeat frequency now every 5s, and frequency sent with event

The heartbeat frequency is now available in the worker event messages,
so that clients can decide when to consider workers offline based on
this value.

	Module celery.actors has been removed, and will be part of cl instead.

	Introduces new celery command, which is an entry-point for all other
commands.

The main for this command can be run by calling celery.start().

	Annotations now supports decorators if the key starts with ‘@’.

For example:

def debug_args(fun):

 @wraps(fun)
 def _inner(*args, **kwargs):
 print('ARGS: %r' % (args,))
 return _inner

CELERY_ANNOTATIONS = {
 'tasks.add': {'@__call__': debug_args},
}

Also tasks are now always bound by class so that
annotated methods end up being bound.

	Bug-report now available as a command and broadcast command

	Get it from a Python REPL:

>>> import celery
>>> print(celery.bugreport())

	Using the celery command line program:

$ celery report

	Get it from remote workers:

$ celery inspect report

	Module celery.log moved to celery.app.log.

	Module celery.task.control moved to celery.app.control.

	New signal: task_revoked

Sent in the main process when the task is revoked or terminated.

	AsyncResult.task_id renamed to AsyncResult.id

	TasksetResult.taskset_id renamed to .id

	xmap(task, sequence) and xstarmap(task, sequence)

Returns a list of the results applying the task function to every item
in the sequence.

Example:

>>> from celery import xstarmap

>>> xstarmap(add, zip(range(10), range(10)).apply_async()
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

	chunks(task, sequence, chunksize)

	group.skew(start=, stop=, step=)

Skew will skew the countdown for the individual tasks in a group – for
example with this group:

>>> g = group(add.s(i, i) for i in xrange(10))

Skewing the tasks from 0 seconds to 10 seconds:

>>> g.skew(stop=10)

Will have the first task execute in 0 seconds, the second in 1 second,
the third in 2 seconds and so on.

	99% test Coverage

	CELERY_QUEUES can now be a list/tuple of Queue [https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue]
instances.

Internally app.amqp.queues is now a mapping of name/Queue instances,
instead of converting on the fly.

	Can now specify connection for app.control.inspect.

from kombu import Connection

i = celery.control.inspect(connection=Connection('redis://'))
i.active_queues()

	CELERY_FORCE_EXECV is now enabled by default.

If the old behavior is wanted the setting can be set to False,
or the new –no-execv option to celery worker.

	Deprecated module celery.conf has been removed.

	The CELERY_TIMEZONE now always require the pytz [https://pypi.python.org/pypi/pytz/]
library to be installed (except if the timezone is set to UTC).

	The Tokyo Tyrant backend has been removed and is no longer supported.

	Now uses maybe_declare() [https://kombu.readthedocs.io/en/master/reference/kombu.common.html#kombu.common.maybe_declare] to cache queue declarations.

	There’s no longer a global default for the
CELERYBEAT_MAX_LOOP_INTERVAL setting, it is instead
set by individual schedulers.

	Worker: now truncates very long message bodies in error reports.

	No longer deep-copies exceptions when trying to serialize errors.

	CELERY_BENCH environment variable, will now also list
memory usage statistics at worker shutdown.

	Worker: now only ever use a single timer for all timing needs,
and instead set different priorities.

	An exceptions arguments are now safely pickled

Contributed by Matt Long.

	Worker/Beat no longer logs the start-up banner.

Previously it would be logged with severity warning,
now it’s only written to stdout.

	The contrib/ directory in the distribution has been renamed to
extra/.

	New signal: task_revoked

	celery.contrib.migrate: Many improvements, including;
filtering, queue migration, and support for acking messages on the broker
migrating from.

Contributed by John Watson.

	Worker: Prefetch count increments are now optimized and grouped together.

	Worker: No longer calls consume on the remote control command queue
twice.

Probably didn’t cause any problems, but was unnecessary.

Internals

	app.broker_connection is now app.connection

Both names still work.

	Compatibility modules are now generated dynamically upon use.

These modules are celery.messaging, celery.log,
celery.decorators and celery.registry.

	celery.utils refactored into multiple modules:

celery.utils.text
celery.utils.imports
celery.utils.functional

	Now using kombu.utils.encoding [https://kombu.readthedocs.io/en/master/reference/kombu.utils.encoding.html#module-kombu.utils.encoding] instead of
celery.utils.encoding.

	Renamed module celery.routes -> celery.app.routes.

	Renamed package celery.db -> celery.backends.database.

	Renamed module celery.abstract -> celery.worker.bootsteps.

	Command line docs are now parsed from the module docstrings.

	Test suite directory has been reorganized.

	setup.py now reads docs from the requirements/ directory.

	Celery commands no longer wraps output (Issue #700).

Contributed by Thomas Johansson.

Experimental

celery.contrib.methods: Task decorator for methods

This is an experimental module containing a task
decorator, and a task decorator filter, that can be used
to create tasks out of methods:

from celery.contrib.methods import task_method

class Counter(object):

 def __init__(self):
 self.value = 1

 @celery.task(name='Counter.increment', filter=task_method)
 def increment(self, n=1):
 self.value += 1
 return self.value

See celery.contrib.methods for more information.

Unscheduled Removals

Usually we don’t make backward incompatible removals,
but these removals should have no major effect.

	The following settings have been renamed:

	CELERYD_ETA_SCHEDULER -> CELERYD_TIMER

	CELERYD_ETA_SCHEDULER_PRECISION -> CELERYD_TIMER_PRECISION

Deprecation Time-line Changes

See the Celery Deprecation Time-line.

	The celery.backends.pyredis compat module has been removed.

Use celery.backends.redis instead!

	The following undocumented API’s has been moved:

	control.inspect.add_consumer -> app.control.add_consumer().

	control.inspect.cancel_consumer -> app.control.cancel_consumer().

	control.inspect.enable_events -> app.control.enable_events().

	control.inspect.disable_events -> app.control.disable_events().

This way inspect() is only used for commands that don’t
modify anything, while idempotent control commands that make changes
are on the control objects.

Fixes

	Retry SQLAlchemy backend operations on DatabaseError/OperationalError
(Issue #634)

	Tasks that called retry wasn’t acknowledged if acks late was enabled

Fix contributed by David Markey.

	The message priority argument wasn’t properly propagated to Kombu
(Issue #708).

Fix contributed by Eran Rundstein

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Change history for Celery 3.0

	3.0.24

	3.0.23

	3.0.22

	3.0.21

	3.0.20

	3.0.19

	3.0.18

	3.0.17

	3.0.16

	3.0.15

	3.0.14

	3.0.13

	3.0.12

	3.0.11

	3.0.10

	3.0.9

	3.0.8

	3.0.7

	3.0.6

	3.0.5

	3.0.4

	3.0.3

	3.0.2

	3.0.1

	3.0.0 (Chiastic Slide)

If you’re looking for versions prior to 3.0.x you should go to History.

3.0.24

	release-date

	2013-10-11 04:40 p.m. BST

	release-by

	Ask Solem

	Now depends on Kombu 2.5.15 [https://kombu.readthedocs.io/en/master/changelog.html#version-2-5-15].

	Now depends on billiard [https://pypi.python.org/pypi/billiard/] version 2.7.3.34.

	AMQP Result backend: No longer caches queue declarations.

The queues created by the AMQP result backend are always unique,
so caching the declarations caused a slow memory leak.

	Worker: Fixed crash when hostname contained Unicode characters.

Contributed by Daodao.

	The worker would no longer start if the -P solo pool was selected
(Issue #1548).

	Redis/Cache result backends wouldn’t complete chords
if any of the tasks were retried (Issue #1401).

	Task decorator is no longer lazy if app is finalized.

	AsyncResult: Fixed bug with copy(AsyncResult) when no
current_app available.

	ResultSet: Now properly propagates app when passed string id’s.

	Loader now ignores CELERY_CONFIG_MODULE if value is empty string.

	Fixed race condition in Proxy object where it tried to
delete an attribute twice, resulting in AttributeError [https://docs.python.org/dev/library/exceptions.html#AttributeError].

	Task methods now works with the CELERY_ALWAYS_EAGER setting
(Issue #1478).

	Broadcast [https://kombu.readthedocs.io/en/master/reference/kombu.common.html#kombu.common.Broadcast] queues were accidentally declared
when publishing tasks (Issue #1540).

	New C_FAKEFORK environment variable can be used to
debug the init-scripts.

Setting this will skip the daemonization step so that errors
printed to stderr after standard outs are closed can be seen:

$ C_FAKEFORK /etc/init.d/celeryd start

This works with the celery multi command in general.

	get_pickleable_etype didn’t always return a value (Issue #1556).

	Fixed bug where app.GroupResult.restore would fall back to the default
app.

	Fixed rare bug where built-in tasks would use the current_app.

	maybe_fileno() now handles ValueError [https://docs.python.org/dev/library/exceptions.html#ValueError].

3.0.23

	release-date

	2013-09-02 01:00 p.m. BST

	release-by

	Ask Solem

	Now depends on Kombu 2.5.14 [https://kombu.readthedocs.io/en/master/changelog.html#version-2-5-14].

	send_task didn’t honor link and link_error arguments.

This had the side effect of chains not calling unregistered tasks,
silently discarding them.

Fix contributed by Taylor Nelson.

	celery.state: Optimized precedence lookup.

Contributed by Matt Robenolt.

	POSIX: Daemonization didn’t redirect sys.stdin to /dev/null.

Fix contributed by Alexander Smirnov.

	Canvas: group bug caused fallback to default app when .apply_async used
(Issue #1516)

	Canvas: generator arguments wasn’t always pickleable.

3.0.22

	release-date

	2013-08-16 04:30 p.m. BST

	release-by

	Ask Solem

	Now depends on Kombu 2.5.13 [https://kombu.readthedocs.io/en/master/changelog.html#version-2-5-13].

	Now depends on billiard [https://pypi.python.org/pypi/billiard/] 2.7.3.32

	Fixed bug with monthly and yearly Crontabs (Issue #1465).

Fix contributed by Guillaume Gauvrit.

	Fixed memory leak caused by time limits (Issue #1129, Issue #1427)

	Worker will now sleep if being restarted more than 5 times
in one second to avoid spamming with worker-online events.

	Includes documentation fixes

Contributed by: Ken Fromm, Andreas Savvides, Alex Kiriukha,
Michael Fladischer.

3.0.21

	release-date

	2013-07-05 04:30 p.m. BST

	release-by

	Ask Solem

	Now depends on billiard [https://pypi.python.org/pypi/billiard/] 2.7.3.31.

This version fixed a bug when running without the billiard C extension.

	3.0.20 broke eventlet/gevent support (worker not starting).

	Fixed memory leak problem when MongoDB result backend was used with the
gevent pool.

Fix contributed by Ross Lawley.

3.0.20

	release-date

	2013-06-28 04:00 p.m. BST

	release-by

	Ask Solem

	Contains workaround for deadlock problems.

A better solution will be part of Celery 3.1.

	Now depends on Kombu 2.5.12 [https://kombu.readthedocs.io/en/master/changelog.html#version-2-5-12].

	Now depends on billiard [https://pypi.python.org/pypi/billiard/] 2.7.3.30.

	--loader argument no longer supported
importing loaders from the current directory.

	[Worker] Fixed memory leak when restarting after connection lost
(Issue #1325).

	[Worker] Fixed UnicodeDecodeError at start-up (Issue #1373).

Fix contributed by Jessica Tallon.

	[Worker] Now properly rewrites unpickleable exceptions again.

	Fixed possible race condition when evicting items from the revoked task set.

	[generic-init.d] Fixed compatibility with Ubuntu’s minimal Dash
shell (Issue #1387).

Fix contributed by @monkut [https://github.com/monkut/].

	Task.apply/ALWAYS_EAGER now also executes callbacks and errbacks
(Issue #1336).

	[Worker] The worker-shutdown signal was no longer being dispatched
(Issue #1339)j

	[Python 3] Fixed problem with threading.Event.

Fix contributed by Xavier Ordoquy.

	[Python 3] Now handles io.UnsupportedOperation that may be raised
by file.fileno() in Python 3.

	[Python 3] Fixed problem with qualname.

	[events.State] Now ignores unknown event-groups.

	[MongoDB backend] No longer uses deprecated safe parameter.

Fix contributed by @rfkrocktk [https://github.com/rfkrocktk/].

	The eventlet pool now imports on Windows.

	[Canvas] Fixed regression where immutable chord members may receive
arguments (Issue #1340).

Fix contributed by Peter Brook.

	[Canvas] chain now accepts generator argument again (Issue #1319).

	celery.migrate command now consumes from all queues if no queues
specified.

Fix contributed by John Watson.

3.0.19

	release-date

	2013-04-17 04:30:00 p.m. BST

	release-by

	Ask Solem

	Now depends on billiard [https://pypi.python.org/pypi/billiard/] 2.7.3.28

	A Python 3 related fix managed to disable the deadlock fix
announced in 3.0.18.

Tests have been added to make sure this doesn’t happen again.

	Task retry policy: Default max_retries is now 3.

This ensures clients won’t be hanging while the broker is down.

Note

You can set a longer retry for the worker by
using the celeryd_after_setup signal:

from celery.signals import celeryd_after_setup

@celeryd_after_setup.connect
def configure_worker(instance, conf, **kwargs):
 conf.CELERY_TASK_PUBLISH_RETRY_POLICY = {
 'max_retries': 100,
 'interval_start': 0,
 'interval_max': 1,
 'interval_step': 0.2,
 }

	Worker: Will now properly display message body in error messages
even if the body is a buffer instance.

	3.0.18 broke the MongoDB result backend (Issue #1303).

3.0.18

	release-date

	2013-04-12 05:00:00 p.m. BST

	release-by

	Ask Solem

	Now depends on kombu [https://pypi.python.org/pypi/kombu/] 2.5.10.

See the kombu changelog [https://kombu.readthedocs.io/en/master/changelog.html#version-2-5-10].

	Now depends on billiard [https://pypi.python.org/pypi/billiard/] 2.7.3.27.

	Can now specify a white-list of accepted serializers using
the new CELERY_ACCEPT_CONTENT setting.

This means that you can force the worker to discard messages
serialized with pickle and other untrusted serializers.
For example to only allow JSON serialized messages use:

CELERY_ACCEPT_CONTENT = ['json']

you can also specify MIME types in the white-list:

CELERY_ACCEPT_CONTENT = ['application/json']

	Fixed deadlock in multiprocessing’s pool caused by the
semaphore not being released when terminated by signal.

	Processes Pool: It’s now possible to debug pool processes using GDB.

	celery report now censors possibly secret settings, like passwords
and secret tokens.

You should still check the output before pasting anything
on the internet.

	Connection URLs now ignore multiple ‘+’ tokens.

	Worker/statedb: Now uses pickle protocol 2 (Python 2.5+)

	Fixed Python 3 compatibility issues.

	Worker: A warning is now given if a worker is started with the
same node name as an existing worker.

	Worker: Fixed a deadlock that could occur while revoking tasks (Issue #1297).

	Worker: The HUP handler now closes all open file descriptors
before restarting to ensure file descriptors doesn’t leak (Issue #1270).

	Worker: Optimized storing/loading the revoked tasks list (Issue #1289).

After this change the celery worker --statedb file will
take up more disk space, but loading from and storing the revoked
tasks will be considerably faster (what before took 5 minutes will
now take less than a second).

	Celery will now suggest alternatives if there’s a typo in the
broker transport name (e.g., ampq -> amqp).

	Worker: The auto-reloader would cause a crash if a monitored file
was unlinked.

Fix contributed by Agris Ameriks.

	Fixed AsyncResult pickling error.

Fix contributed by Thomas Minor.

	Fixed handling of Unicode in logging output when using log colors
(Issue #427).

	ConfigurationView is now a MutableMapping.

Contributed by Aaron Harnly.

	Fixed memory leak in LRU cache implementation.

Fix contributed by Romuald Brunet.

	celery.contrib.rdb: Now works when sockets are in non-blocking mode.

Fix contributed by Theo Spears.

	The inspect reserved remote control command included active (started) tasks
with the reserved tasks (Issue #1030).

	The task_failure signal received a modified traceback object
meant for pickling purposes, this has been fixed so that it now
receives the real traceback instead.

	The @task decorator silently ignored positional arguments,
it now raises the expected TypeError [https://docs.python.org/dev/library/exceptions.html#TypeError] instead (Issue #1125).

	The worker will now properly handle messages with invalid
ETA/expires fields (Issue #1232).

	The pool_restart remote control command now reports
an error if the CELERYD_POOL_RESTARTS setting isn’t set.

	add_defaults`() can now be used with non-dict objects.

	Fixed compatibility problems in the Proxy class (Issue #1087).

The class attributes __module__, __name__ and __doc__
are now meaningful string objects.

Thanks to Marius Gedminas.

	MongoDB Backend: The MONGODB_BACKEND_SETTINGS setting
now accepts a option key that lets you forward arbitrary kwargs
to the underlying pymongo.Connection object (Issue #1015).

	Beat: The daily backend cleanup task is no longer enabled
for result backends that support automatic result expiration (Issue #1031).

	Canvas list operations now takes application instance from the first
task in the list, instead of depending on the current_app (Issue #1249).

	Worker: Message decoding error log message now includes traceback
information.

	Worker: The start-up banner now includes system platform.

	celery inspect|status|control now gives an error if used
with a SQL based broker transport.

3.0.17

	release-date

	2013-03-22 04:00:00 p.m. UTC

	release-by

	Ask Solem

	Now depends on kombu 2.5.8

	Now depends on billiard 2.7.3.23

	RabbitMQ/Redis: thread-less and lock-free rate-limit implementation.

This means that rate limits pose minimal overhead when used with
RabbitMQ/Redis or future transports using the event-loop,
and that the rate-limit implementation is now thread-less and lock-free.

The thread-based transports will still use the old implementation for
now, but the plan is to use the timer also for other
broker transports in Celery 3.1.

	Rate limits now works with eventlet/gevent if using RabbitMQ/Redis as the
broker.

	A regression caused task.retry to ignore additional keyword arguments.

Extra keyword arguments are now used as execution options again.
Fix contributed by Simon Engledew.

	Windows: Fixed problem with the worker trying to pickle the Django settings
module at worker start-up.

	generic-init.d: No longer double quotes $CELERYD_CHDIR (Issue #1235).

	generic-init.d: Removes bash-specific syntax.

Fix contributed by Pär Wieslander.

	Cassandra Result Backend: Now handles the
AllServersUnavailable error (Issue #1010).

Fix contributed by Jared Biel.

	Result: Now properly forwards apps to GroupResults when deserializing
(Issue #1249).

Fix contributed by Charles-Axel Dein.

	GroupResult.revoke now supports the terminate and signal
keyword arguments.

	Worker: Multiprocessing pool workers now import task modules/configuration
before setting up the logging system so that logging signals can be
connected before they’re dispatched.

	chord: The AsyncResult instance returned now has its parent
attribute set to the header GroupResult.

This is consistent with how chain works.

3.0.16

	release-date

	2013-03-07 04:00:00 p.m. UTC

	release-by

	Ask Solem

	Happy International Women’s Day!

We have a long way to go, so this is a chance for you to get involved in one
of the organizations working for making our communities more
diverse.

	PyLadies — http://pyladies.com

	Girls Who Code — http://www.girlswhocode.com

	Women Who Code — http://www.meetup.com/Women-Who-Code-SF/

	Now depends on kombu [https://pypi.python.org/pypi/kombu/] version 2.5.7

	Now depends on billiard [https://pypi.python.org/pypi/billiard/] version 2.7.3.22

	AMQP heartbeats are now disabled by default.

Some users experiences issues with heartbeats enabled,
and it’s not strictly necessary to use them.

If you’re experiencing problems detecting connection failures,
you can re-enable heartbeats by configuring the BROKER_HEARTBEAT
setting.

	Worker: Now propagates connection errors occurring in multiprocessing
callbacks, so that the connection can be reset (Issue #1226).

	Worker: Now propagates connection errors occurring in timer callbacks,
so that the connection can be reset.

	The modules in CELERY_IMPORTS and CELERY_INCLUDE
are now imported in the original order (Issue #1161).

The modules in CELERY_IMPORTS will be imported first,
then continued by CELERY_INCLUDE.

Thanks to Joey Wilhelm.

	New bash completion for celery available in the git repository:

https://github.com/celery/celery/tree/3.0/extra/bash-completion

You can source this file or put it in bash_completion.d to
get auto-completion for the celery command-line utility.

	The node name of a worker can now include unicode characters (Issue #1186).

	The repr of a crontab object now displays correctly (Issue #972).

	events.State no longer modifies the original event dictionary.

	No longer uses Logger.warn deprecated in Python 3.

	Cache Backend: Now works with chords again (Issue #1094).

	Chord unlock now handles errors occurring while calling the callback.

	Generic worker init.d script: Status check is now performed by
querying the pid of the instance instead of sending messages.

Contributed by Milen Pavlov.

	Improved init-scripts for CentOS.

	Updated to support Celery 3.x conventions.

	Now uses CentOS built-in status and killproc

	Support for multi-node / multi-pid worker services.

	Standard color-coded CentOS service-init output.

	A test suite.

Contributed by Milen Pavlov.

	ResultSet.join now always works with empty result set (Issue #1219).

	A group consisting of a single task is now supported (Issue #1219).

	Now supports the pycallgraph program (Issue #1051).

	Fixed Jython compatibility problems.

	Django tutorial: Now mentions that the example app must be added to
INSTALLED_APPS (Issue #1192).

3.0.15

	release-date

	2013-02-11 04:30:00 p.m. UTC

	release-by

	Ask Solem

	Now depends on billiard 2.7.3.21 which fixed a syntax error crash.

	Fixed bug with CELERY_SEND_TASK_SENT_EVENT.

3.0.14

	release-date

	2013-02-08 05:00:00 p.m. UTC

	release-by

	Ask Solem

	Now depends on Kombu 2.5.6

	Now depends on billiard 2.7.3.20

	execv is now disabled by default.

It was causing too many problems for users, you can still enable
it using the CELERYD_FORCE_EXECV setting.

execv was only enabled when transports other than AMQP/Redis was used,
and it’s there to prevent deadlocks caused by mutexes not being released
before the process forks. Unfortunately it also changes the environment
introducing many corner case bugs that’re hard to fix without adding
horrible hacks. Deadlock issues are reported far less often than the
bugs that execv are causing, so we now disable it by default.

Work is in motion to create non-blocking versions of these transports
so that execv isn’t necessary (which is the situation with the amqp
and redis broker transports)

	Chord exception behavior defined (Issue #1172).

From Celery 3.1 the chord callback will change state to FAILURE
when a task part of a chord raises an exception.

It was never documented what happens in this case,
and the actual behavior was very unsatisfactory, indeed
it will just forward the exception value to the chord callback.

For backward compatibility reasons we don’t change to the new
behavior in a bugfix release, even if the current behavior was
never documented. Instead you can enable the
CELERY_CHORD_PROPAGATES setting to get the new behavior
that’ll be default from Celery 3.1.

See more at Error handling.

	worker: Fixes bug with ignored and retried tasks.

The on_chord_part_return and Task.after_return callbacks,
nor the task_postrun signal should be called when the task was
retried/ignored.

Fix contributed by Vlad.

	GroupResult.join_native now respects the propagate argument.

	subtask.id added as an alias to subtask['options'].id

>>> s = add.s(2, 2)
>>> s.id = 'my-id'
>>> s['options']
{'task_id': 'my-id'}

>>> s.id
'my-id'

	worker: Fixed error Could not start worker processes occurring
when restarting after connection failure (Issue #1118).

	Adds new signal task-retried (Issue #1169).

	celery events –dumper now handles connection loss.

	Will now retry sending the task-sent event in case of connection failure.

	amqp backend: Now uses Message.requeue instead of republishing
the message after poll.

	New BROKER_HEARTBEAT_CHECKRATE setting introduced to modify the
rate at which broker connection heartbeats are monitored.

The default value was also changed from 3.0 to 2.0.

	celery.events.state.State is now pickleable.

Fix contributed by Mher Movsisyan.

	celery.utils.functional.LRUCache is now pickleable.

Fix contributed by Mher Movsisyan.

	The stats broadcast command now includes the workers pid.

Contributed by Mher Movsisyan.

	New conf remote control command to get a workers current configuration.

Contributed by Mher Movsisyan.

	Adds the ability to modify the chord unlock task’s countdown
argument (Issue #1146).

Contributed by Jun Sakai

	beat: The scheduler now uses the now()` method of the schedule,
so that schedules can provide a custom way to get the current date and time.

Contributed by Raphaël Slinckx

	Fixed pickling of configuration modules on Windows or when execv is used
(Issue #1126).

	Multiprocessing logger is now configured with loglevel ERROR
by default.

Since 3.0 the multiprocessing loggers were disabled by default
(only configured when the MP_LOG environment variable was set).

3.0.13

	release-date

	2013-01-07 04:00:00 p.m. UTC

	release-by

	Ask Solem

	Now depends on Kombu 2.5

	amqp [https://pypi.python.org/pypi/amqp/] has replaced amqplib [https://pypi.python.org/pypi/amqplib/] as the default transport,
gaining support for AMQP 0.9, and the RabbitMQ extensions,
including Consumer Cancel Notifications and heartbeats.

	support for multiple connection URLs for failover.

	Read more in the Kombu 2.5 changelog [https://kombu.readthedocs.io/en/master/changelog.html#version-2-5-0].

	Now depends on billiard 2.7.3.19

	Fixed a deadlock issue that could occur when the producer pool
inherited the connection pool instance of the parent process.

	The --loader option now works again (Issue #1066).

	celery umbrella command: All sub-commands now supports
the --workdir option (Issue #1063).

	Groups included in chains now give GroupResults (Issue #1057)

Previously it would incorrectly add a regular result instead of a group
result, but now this works:

>>> # [4 + 4, 4 + 8, 16 + 8]
>>> res = (add.s(2, 2) | group(add.s(4), add.s(8), add.s(16)))()
>>> res
<GroupResult: a0acf905-c704-499e-b03a-8d445e6398f7 [
 4346501c-cb99-4ad8-8577-12256c7a22b1,
 b12ead10-a622-4d44-86e9-3193a778f345,
 26c7a420-11f3-4b33-8fac-66cd3b62abfd]>

	Chains can now chain other chains and use partial arguments (Issue #1057).

Example:

>>> c1 = (add.s(2) | add.s(4))
>>> c2 = (add.s(8) | add.s(16))

>>> c3 = (c1 | c2)

>>> # 8 + 2 + 4 + 8 + 16
>>> assert c3(8).get() == 38

	Subtasks can now be used with unregistered tasks.

You can specify subtasks even if you just have the name:

>>> s = subtask(task_name, args=(), kwargs=())
>>> s.delay()

	The celery shell command now always adds the current
directory to the module path.

	The worker will now properly handle the pytz.AmbiguousTimeError
exception raised when an ETA/countdown is prepared while being in DST
transition (Issue #1061).

	force_execv: Now makes sure that task symbols in the original
task modules will always use the correct app instance (Issue #1072).

	AMQP Backend: Now republishes result messages that have been polled
(using result.ready() and friends, result.get() won’t do this
in this version).

	Crontab schedule values can now “wrap around”

This means that values like 11-1 translates to [11, 12, 1].

Contributed by Loren Abrams.

	multi stopwait command now shows the pid of processes.

Contributed by Loren Abrams.

	
	Handling of ETA/countdown fixed when the CELERY_ENABLE_UTC
	setting is disabled (Issue #1065).

	A number of unneeded properties were included in messages,
caused by accidentally passing Queue.as_dict as message properties.

	Rate limit values can now be float

This also extends the string format so that values like "0.5/s" works.

Contributed by Christoph Krybus

	Fixed a typo in the broadcast routing documentation (Issue #1026).

	Rewrote confusing section about idempotence in the task user guide.

	Fixed typo in the daemonization tutorial (Issue #1055).

	Fixed several typos in the documentation.

Contributed by Marius Gedminas.

	Batches: Now works when using the eventlet pool.

Fix contributed by Thomas Grainger.

	Batches: Added example sending results to celery.contrib.batches.

Contributed by Thomas Grainger.

	MongoDB backend: Connection max_pool_size can now be set in
CELERY_MONGODB_BACKEND_SETTINGS.

Contributed by Craig Younkins.

	Fixed problem when using earlier versions of pytz [https://pypi.python.org/pypi/pytz/].

Fix contributed by Vlad.

	Docs updated to include the default value for the
CELERY_TASK_RESULT_EXPIRES setting.

	Improvements to the django-celery [https://pypi.python.org/pypi/django-celery/] tutorial.

Contributed by Locker537.

	The add_consumer control command didn’t properly persist
the addition of new queues so that they survived connection failure
(Issue #1079).

3.0.12

	release-date

	2012-11-06 02:00 p.m. UTC

	release-by

	Ask Solem

	Now depends on kombu 2.4.8

	[Redis] New and improved fair queue cycle algorithm (Kevin McCarthy).

	[Redis] Now uses a Redis-based mutex when restoring messages.

	
	[Redis] Number of messages that can be restored in one interval is no
	longer limited (but can be set using the
unacked_restore_limit
transport option).

	Heartbeat value can be specified in broker URLs (Mher Movsisyan).

	Fixed problem with msgpack on Python 3 (Jasper Bryant-Greene).

	Now depends on billiard 2.7.3.18

	Celery can now be used with static analysis tools like PyDev/PyCharm/pylint
etc.

	Development documentation has moved to Read The Docs.

The new URL is: http://docs.celeryproject.org/en/master

	New CELERY_QUEUE_HA_POLICY setting used to set the default
HA policy for queues when using RabbitMQ.

	New method Task.subtask_from_request returns a subtask using the current
request.

	Results get_many method didn’t respect timeout argument.

Fix contributed by Remigiusz Modrzejewski

	generic_init.d scripts now support setting CELERY_CREATE_DIRS to
always create log and pid directories (Issue #1045).

This can be set in your /etc/default/celeryd.

	Fixed strange kombu import problem on Python 3.2 (Issue #1034).

	Worker: ETA scheduler now uses millisecond precision (Issue #1040).

	The --config argument to programs is
now supported by all loaders.

	The CASSANDRA_OPTIONS setting has now been documented.

Contributed by Jared Biel.

	Task methods (celery.contrib.methods) cannot be used with the old
task base class, the task decorator in that module now inherits from the new.

	An optimization was too eager and caused some logging messages to never emit.

	celery.contrib.batches now works again.

	Fixed missing white-space in bdist_rpm requirements (Issue #1046).

	Event state’s tasks_by_name applied limit before filtering by name.

Fix contributed by Alexander A. Sosnovskiy.

3.0.11

	release-date

	2012-09-26 04:00 p.m. UTC

	release-by

	Ask Solem

	[security:low] generic-init.d scripts changed permissions of /var/log & /var/run

In the daemonization tutorial the recommended directories were as follows:

CELERYD_LOG_FILE="/var/log/celery/%n.log"
CELERYD_PID_FILE="/var/run/celery/%n.pid"

But in the scripts themselves the default files were /var/log/celery%n.log
and /var/run/celery%n.pid, so if the user didn’t change the location
by configuration, the directories /var/log and /var/run would be
created - and worse have their permissions and owners changed.

This change means that:

	Default pid file is /var/run/celery/%n.pid

	Default log file is /var/log/celery/%n.log

	The directories are only created and have their permissions
changed if no custom locations are set.

Users can force paths to be created by calling the create-paths
sub-command:

$ sudo /etc/init.d/celeryd create-paths

Upgrading Celery won’t update init-scripts

To update the init-scripts you have to re-download
the files from source control and update them manually.
You can find the init-scripts for version 3.0.x at:

https://github.com/celery/celery/tree/3.0/extra/generic-init.d

	Now depends on billiard 2.7.3.17

	Fixes request stack protection when app is initialized more than
once (Issue #1003).

	ETA tasks now properly works when system timezone isn’t same
as the configured timezone (Issue #1004).

	Terminating a task now works if the task has been sent to the
pool but not yet acknowledged by a pool process (Issue #1007).

Fix contributed by Alexey Zatelepin

	Terminating a task now properly updates the state of the task to revoked,
and sends a task-revoked event.

	Generic worker init-script now waits for workers to shutdown by default.

	Multi: No longer parses –app option (Issue #1008).

	Multi: stop_verify command renamed to stopwait.

	Daemonization: Now delays trying to create pidfile/logfile until after
the working directory has been changed into.

	celery worker and celery beat commands now respects
the --no-color option (Issue #999).

	Fixed typos in eventlet examples (Issue #1000)

Fix contributed by Bryan Bishop.
Congratulations on opening bug #1000!

	Tasks that raise Ignore are now acknowledged.

	Beat: Now shows the name of the entry in sending due task logs.

3.0.10

	release-date

	2012-09-20 05:30 p.m. BST

	release-by

	Ask Solem

	Now depends on kombu 2.4.7

	Now depends on billiard 2.7.3.14

	Fixes crash at start-up when using Django and pre-1.4 projects
(setup_environ).

	Hard time limits now sends the KILL signal shortly after TERM,
to terminate processes that have signal handlers blocked by C extensions.

	Billiard now installs even if the C extension cannot be built.

It’s still recommended to build the C extension if you’re using
a transport other than RabbitMQ/Redis (or use forced execv for some
other reason).

	Pool now sets a current_process().index attribute that can be used to create
as many log files as there are processes in the pool.

	Canvas: chord/group/chain no longer modifies the state when called

Previously calling a chord/group/chain would modify the ids of subtasks
so that:

>>> c = chord([add.s(2, 2), add.s(4, 4)], xsum.s())
>>> c()
>>> c() <-- call again

at the second time the ids for the tasks would be the same as in the
previous invocation. This is now fixed, so that calling a subtask
won’t mutate any options.

	Canvas: Chaining a chord to another task now works (Issue #965).

	Worker: Fixed a bug where the request stack could be corrupted if
relative imports are used.

Problem usually manifested itself as an exception while trying to
send a failed task result (NoneType does not have id attribute).

Fix contributed by Sam Cooke.

	Tasks can now raise Ignore to skip updating states
or events after return.

Example:

from celery.exceptions import Ignore

@task
def custom_revokes():
 if redis.sismember('tasks.revoked', custom_revokes.request.id):
 raise Ignore()

	The worker now makes sure the request/task stacks aren’t modified
by the initial Task.__call__.

This would previously be a problem if a custom task class defined
__call__ and also called super().

	Because of problems the fast local optimization has been disabled,
and can only be enabled by setting the USE_FAST_LOCALS attribute.

	Worker: Now sets a default socket timeout of 5 seconds at shutdown
so that broken socket reads don’t hinder proper shutdown (Issue #975).

	More fixes related to late eventlet/gevent patching.

	Documentation for settings out of sync with reality:

	CELERY_TASK_PUBLISH_RETRY

Documented as disabled by default, but it was enabled by default
since 2.5 as stated by the 2.5 changelog.

	CELERY_TASK_PUBLISH_RETRY_POLICY

The default max_retries had been set to 100, but documented as being
3, and the interval_max was set to 1 but documented as 0.2.
The default setting are now set to 3 and 0.2 as it was originally
documented.

Fix contributed by Matt Long.

	Worker: Log messages when connection established and lost have been improved.

	The repr of a Crontab schedule value of ‘0’ should be ‘*’ (Issue #972).

	Revoked tasks are now removed from reserved/active state in the worker
(Issue #969)

Fix contributed by Alexey Zatelepin.

	gevent: Now supports hard time limits using gevent.Timeout.

	Documentation: Links to init-scripts now point to the 3.0 branch instead
of the development branch (master).

	Documentation: Fixed typo in signals user guide (Issue #986).

instance.app.queues -> instance.app.amqp.queues.

	Eventlet/gevent: The worker didn’t properly set the custom app
for new greenlets.

	Eventlet/gevent: Fixed a bug where the worker could not recover
from connection loss (Issue #959).

Also, because of a suspected bug in gevent the
BROKER_CONNECTION_TIMEOUT setting has been disabled
when using gevent

3.0.9

	release-date

	2012-08-31 06:00 p.m. BST

	release-by

	Ask Solem

	Important note for users of Django and the database scheduler!

Recently a timezone issue has been fixed for periodic tasks,
but erroneous timezones could have already been stored in the
database, so for the fix to work you need to reset
the last_run_at fields.

You can do this by executing the following command:

$ python manage.py shell
>>> from djcelery.models import PeriodicTask
>>> PeriodicTask.objects.update(last_run_at=None)

You also have to do this if you change the timezone or
CELERY_ENABLE_UTC setting.

	Note about the CELERY_ENABLE_UTC setting.

If you previously disabled this just to force periodic tasks to work with
your timezone, then you’re now encouraged to re-enable it.

	Now depends on Kombu 2.4.5 which fixes PyPy + Jython installation.

	Fixed bug with timezones when CELERY_ENABLE_UTC is disabled
(Issue #952).

	Fixed a typo in the celerybeat upgrade mechanism (Issue #951).

	Make sure the exc_info argument to logging is resolved (Issue #899).

	Fixed problem with Python 3.2 and thread join timeout overflow (Issue #796).

	A test case was occasionally broken for Python 2.5.

	Unit test suite now passes for PyPy 1.9.

	App instances now supports the with [https://docs.python.org/dev/reference/compound_stmts.html#with] statement.

This calls the new app.close() method at exit, which
cleans up after the app like closing pool connections.

Note that this is only necessary when dynamically creating apps,
for example “temporary” apps.

	Support for piping a subtask to a chain.

For example:

pipe = sometask.s() | othertask.s()
new_pipe = mytask.s() | pipe

Contributed by Steve Morin.

	Fixed problem with group results on non-pickle serializers.

Fix contributed by Steeve Morin.

3.0.8

	release-date

	2012-08-29 05:00 p.m. BST

	release-by

	Ask Solem

	Now depends on Kombu 2.4.4

	Fixed problem with amqplib [https://pypi.python.org/pypi/amqplib/] and receiving larger message payloads
(Issue #922).

The problem would manifest itself as either the worker hanging,
or occasionally a Framing error exception appearing.

Users of the new pyamqp:// transport must upgrade to
amqp [https://pypi.python.org/pypi/amqp/] 0.9.3.

	Beat: Fixed another timezone bug with interval and Crontab schedules
(Issue #943).

	Beat: The schedule file is now automatically cleared if the timezone
is changed.

The schedule is also cleared when you upgrade to 3.0.8 from an earlier
version, this to register the initial timezone info.

	Events: The worker-heartbeat event now include processed and active
count fields.

Contributed by Mher Movsisyan.

	Fixed error with error email and new task classes (Issue #931).

	BaseTask.__call__ is no longer optimized away if it has been monkey
patched.

	Fixed shutdown issue when using gevent (Issue #911 & Issue #936).

Fix contributed by Thomas Meson.

3.0.7

	release-date

	2012-08-24 05:00 p.m. BST

	release-by

	Ask Solem

	Fixes several problems with periodic tasks and timezones (Issue #937).

	Now depends on kombu 2.4.2

	Redis: Fixes a race condition crash

	Fixes an infinite loop that could happen when retrying establishing
the broker connection.

	Daemons now redirect standard file descriptors to /dev/null

Though by default the standard outs are also redirected
to the logger instead, but you can disable this by changing
the CELERY_REDIRECT_STDOUTS setting.

	Fixes possible problems when eventlet/gevent is patched too late.

	LoggingProxy no longer defines fileno() (Issue #928).

	Results are now ignored for the chord unlock task.

Fix contributed by Steeve Morin.

	Cassandra backend now works if result expiry is disabled.

Fix contributed by Steeve Morin.

	The traceback object is now passed to signal handlers instead
of the string representation.

Fix contributed by Adam DePue.

	Celery command: Extensions are now sorted by name.

	A regression caused the task-failed event to be sent
with the exception object instead of its string representation.

	The worker daemon would try to create the pid file before daemonizing
to catch errors, but this file wasn’t immediately released (Issue #923).

	Fixes Jython compatibility.

	billiard.forking_enable was called by all pools not just the
processes pool, which would result in a useless warning if the billiard
C extensions weren’t installed.

3.0.6

	release-date

	2012-08-17 11:00 p.mp.m. Ask Solem

	Now depends on kombu 2.4.0

	Now depends on billiard 2.7.3.12

	Redis: Celery now tries to restore messages whenever there are no messages
in the queue.

	Crontab schedules now properly respects CELERY_TIMEZONE setting.

It’s important to note that Crontab schedules uses UTC time by default
unless this setting is set.

Issue #904 and django-celery [https://pypi.python.org/pypi/django-celery/] #150.

	billiard.enable_forking is now only set by the processes pool.

	The transport is now properly shown by celery report
(Issue #913).

	The –app argument now works if the last part is a module name
(Issue #921).

	Fixed problem with unpickleable exceptions (billiard #12).

	Adds task_name attribute to EagerResult which is always
None (Issue #907).

	Old Task class in celery.task no longer accepts magic kwargs by
default (Issue #918).

A regression long ago disabled magic kwargs for these, and since
no one has complained about it we don’t have any incentive to fix it now.

	The inspect reserved control command didn’t work properly.

	Should now play better with tools for static analysis by explicitly
specifying dynamically created attributes in the celery and
celery.task modules.

	Terminating a task now results in
RevokedTaskError instead of a WorkerLostError.

	AsyncResult.revoke now accepts terminate and signal arguments.

	The task-revoked event now includes new fields: terminated,
signum, and expired.

	The argument to TaskRevokedError is now one
of the reasons revoked, expired or terminated.

	Old Task class does no longer use classmethod for push_request
and pop_request (Issue #912).

	GroupResult now supports the children attribute (Issue #916).

	AsyncResult.collect now respects the intermediate argument
(Issue #917).

	Fixes example task in documentation (Issue #902).

	Eventlet fixed so that the environment is patched as soon as possible.

	eventlet: Now warns if Celery related modules that depends on threads
are imported before eventlet is patched.

	Improved event and camera examples in the monitoring guide.

	Disables celery command setuptools entry-points if the command can’t be
loaded.

	Fixed broken dump_request example in the tasks guide.

3.0.5

	release-date

	2012-08-01 04:00 p.m. BST

	release-by

	Ask Solem

	Now depends on kombu 2.3.1 + billiard 2.7.3.11

	Fixed a bug with the -B option (cannot pickle thread.lock objects)
(Issue #894 + Issue #892, + django-celery [https://pypi.python.org/pypi/django-celery/] #154).

	The restart_pool control command now requires the
CELERYD_POOL_RESTARTS setting to be enabled

This change was necessary as the multiprocessing event that the restart
command depends on is responsible for creating many semaphores/file
descriptors, resulting in problems in some environments.

	chain.apply now passes args to the first task (Issue #889).

	Documented previously secret options to the django-celery [https://pypi.python.org/pypi/django-celery/] monitor
in the monitoring user guide (Issue #396).

	Old changelog are now organized in separate documents for each series,
see History.

3.0.4

	release-date

	2012-07-26 07:00 p.m. BST

	release-by

	Ask Solem

	Now depends on Kombu 2.3

	New experimental standalone Celery monitor: Flower

See Flower: Real-time Celery web-monitor to read more about it!

Contributed by Mher Movsisyan.

	Now supports AMQP heartbeats if using the new pyamqp:// transport.

	The amqp [https://pypi.python.org/pypi/amqp/] transport requires the amqp [https://pypi.python.org/pypi/amqp/] library to be installed:

$ pip install amqp

	Then you need to set the transport URL prefix to pyamqp://.

	The default heartbeat value is 10 seconds, but this can be changed using
the BROKER_HEARTBEAT setting:

BROKER_HEARTBEAT = 5.0

	If the broker heartbeat is set to 10 seconds, the heartbeats will be
monitored every 5 seconds (double the heartbeat rate).

See the Kombu 2.3 changelog [https://kombu.readthedocs.io/en/master/changelog.html#version-2-3-0] for more information.

	Now supports RabbitMQ Consumer Cancel Notifications, using the pyamqp://
transport.

This is essential when running RabbitMQ in a cluster.

See the Kombu 2.3 changelog [https://kombu.readthedocs.io/en/master/changelog.html#version-2-3-0] for more information.

	Delivery info is no longer passed directly through.

It was discovered that the SQS transport adds objects that can’t
be pickled to the delivery info mapping, so we had to go back
to using the white-list again.

Fixing this bug also means that the SQS transport is now working again.

	The semaphore wasn’t properly released when a task was revoked (Issue #877).

This could lead to tasks being swallowed and not released until a worker
restart.

Thanks to Hynek Schlawack for debugging the issue.

	Retrying a task now also forwards any linked tasks.

This means that if a task is part of a chain (or linked in some other
way) and that even if the task is retried, then the next task in the chain
will be executed when the retry succeeds.

	Chords: Now supports setting the interval and other keyword arguments
to the chord unlock task.

	The interval can now be set as part of the chord subtasks kwargs:

chord(header)(body, interval=10.0)

	In addition the chord unlock task now honors the Task.default_retry_delay
option, used when none is specified, which also means that the default
interval can also be changed using annotations:

CELERY_ANNOTATIONS = {
 'celery.chord_unlock': {
 'default_retry_delay': 10.0,
 }
}

	New app.add_defaults() method can add new default configuration
dictionaries to the applications configuration.

For example:

config = {'FOO': 10}

app.add_defaults(config)

is the same as app.conf.update(config) except that data won’t be
copied, and that it won’t be pickled when the worker spawns child
processes.

In addition the method accepts a callable:

def initialize_config():
 # insert heavy stuff that can't be done at import time here.

app.add_defaults(initialize_config)

which means the same as the above except that it won’t happen
until the Celery configuration is actually used.

As an example, Celery can lazily use the configuration of a Flask app:

flask_app = Flask()
app = Celery()
app.add_defaults(lambda: flask_app.config)

	Revoked tasks weren’t marked as revoked in the result backend (Issue #871).

Fix contributed by Hynek Schlawack.

	Event-loop now properly handles the case when the epoll poller
object has been closed (Issue #882).

	Fixed syntax error in funtests/test_leak.py

Fix contributed by Catalin Iacob.

	group/chunks: Now accepts empty task list (Issue #873).

	New method names:

	Celery.default_connection() ➠ connection_or_acquire().

	Celery.default_producer() ➠ producer_or_acquire().

The old names still work for backward compatibility.

3.0.3

	release-date

	2012-07-20 09:17 p.m. BST

	release-by

	Ask Solem

	amqplib [https://pypi.python.org/pypi/amqplib/] passes the channel object as part of the delivery_info
and it’s not pickleable, so we now remove it.

3.0.2

	release-date

	2012-07-20 04:00 p.m. BST

	release-by

	Ask Solem

	
	A bug caused the following task options to not take defaults from the
	configuration (Issue #867 + Issue #858)

The following settings were affected:

	CELERY_IGNORE_RESULT

	CELERYD_SEND_TASK_ERROR_EMAILS

	CELERY_TRACK_STARTED

	CElERY_STORE_ERRORS_EVEN_IF_IGNORED

Fix contributed by John Watson.

	Task Request: delivery_info is now passed through as-is (Issue #807).

	The ETA argument now supports datetime’s with a timezone set (Issue #855).

	The worker’s banner displayed the autoscale settings in the wrong order
(Issue #859).

	Extension commands are now loaded after concurrency is set up
so that they don’t interfere with things like eventlet patching.

	Fixed bug in the threaded pool (Issue #863)

	The task failure handler mixed up the fields in sys.exc_info() [https://docs.python.org/dev/library/sys.html#sys.exc_info].

Fix contributed by Rinat Shigapov.

	Fixed typos and wording in the docs.

Fix contributed by Paul McMillan

	New setting: CELERY_WORKER_DIRECT

If enabled each worker will consume from their own dedicated queue
which can be used to route tasks to specific workers.

	Fixed several edge case bugs in the add consumer remote control command.

	migrate: Can now filter and move tasks to specific
workers if CELERY_WORKER_DIRECT is enabled.

Among other improvements, the following functions have been added:

	move_direct(filterfun, **opts)

	move_direct_by_id(task_id, worker_hostname, **opts)

	move_direct_by_idmap({task_id: worker_hostname, ...}, **opts)

	move_direct_by_taskmap({task_name: worker_hostname, ...}, **opts)

	default_connection() now accepts a pool argument that
if set to false causes a new connection to be created instead of acquiring
one from the pool.

	New signal: celeryd_after_setup.

	Default loader now keeps lowercase attributes from the configuration module.

3.0.1

	release-date

	2012-07-10 06:00 p.m. BST

	release-by

	Ask Solem

	Now depends on kombu 2.2.5

	inspect now supports limit argument:

myapp.control.inspect(limit=1).ping()

	Beat: now works with timezone aware datetime’s.

	Task classes inheriting from celery import Task
mistakenly enabled accept_magic_kwargs.

	Fixed bug in inspect scheduled (Issue #829).

	Beat: Now resets the schedule to upgrade to UTC.

	The celery worker command now works with eventlet/gevent.

Previously it wouldn’t patch the environment early enough.

	The celery command now supports extension commands
using setuptools entry-points.

Libraries can add additional commands to the celery
command by adding an entry-point like:

setup(
 entry_points=[
 'celery.commands': [
 'foo = my.module:Command',
],
],
...)

The command must then support the interface of
celery.bin.base.Command.

	contrib.migrate: New utilities to move tasks from one queue to another.

	move_tasks()

	move_task_by_id()

	The task-sent event now contains exchange and routing_key
fields.

	Fixes bug with installing on Python 3.

Fix contributed by Jed Smith.

3.0.0 (Chiastic Slide)

	release-date

	2012-07-07 01:30 p.m. BST

	release-by

	Ask Solem

See What’s new in Celery 3.0 (Chiastic Slide).

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

What’s new in Celery 2.5

Celery aims to be a flexible and reliable, best-of-breed solution
to process vast amounts of messages in a distributed fashion, while
providing operations with the tools to maintain such a system.

Celery has a large and diverse community of users and contributors,
you should come join us on IRC
or our mailing-list.

To read more about Celery you should visit our website [http://celeryproject.org/].

While this version is backward compatible with previous versions
it’s important that you read the following section.

If you use Celery in combination with Django you must also
read the django-celery changelog <djcelery:version-2.5.0> and upgrade
to django-celery 2.5 [https://pypi.python.org/pypi/django-celery/].

This version is officially supported on CPython 2.5, 2.6, 2.7, 3.2 and 3.3,
as well as PyPy and Jython.

	Important Notes

	Broker connection pool now enabled by default

	Rabbit Result Backend: Exchange is no longer auto delete

	Solution for hanging workers (but must be manually enabled)

	Optimization

	Deprecation Time-line Changes

	Removals

	Deprecated modules

	News

	Timezone support

	New security serializer using cryptographic signing

	New CELERY_ANNOTATIONS setting

	current provides the currently executing task

	In Other News

	Fixes

Important Notes

Broker connection pool now enabled by default

The default limit is 10 connections, if you have many threads/green-threads
using connections at the same time you may want to tweak this limit
to avoid contention.

See the BROKER_POOL_LIMIT setting for more information.

Also note that publishing tasks will be retried by default, to change
this default or the default retry policy see
CELERY_TASK_PUBLISH_RETRY and
CELERY_TASK_PUBLISH_RETRY_POLICY.

Rabbit Result Backend: Exchange is no longer auto delete

The exchange used for results in the Rabbit (AMQP) result backend
used to have the auto_delete flag set, which could result in a
race condition leading to an annoying warning.

For RabbitMQ users

Old exchanges created with the auto_delete flag enabled has
to be removed.

The camqadm command can be used to delete the
previous exchange:

$ camqadm exchange.delete celeryresults

As an alternative to deleting the old exchange you can
configure a new name for the exchange:

CELERY_RESULT_EXCHANGE = 'celeryresults2'

But you have to make sure that all clients and workers
use this new setting, so they’re updated to use the same
exchange name.

Solution for hanging workers (but must be manually enabled)

The CELERYD_FORCE_EXECV setting has been added to solve
a problem with deadlocks that originate when threads and fork is mixed
together:

CELERYD_FORCE_EXECV = True

This setting is recommended for all users using the prefork pool,
but especially users also using time limits or a max tasks per child
setting.

	See Python Issue 6721 [http://bugs.python.org/issue6721#msg140215] to read more about this issue, and why
resorting to execv`() is the only safe solution.

Enabling this option will result in a slight performance penalty
when new child worker processes are started, and it will also increase
memory usage (but many platforms are optimized, so the impact may be
minimal). Considering that it ensures reliability when replacing
lost worker processes, it should be worth it.

	It’s already the default behavior on Windows.

	It will be the default behavior for all platforms in a future version.

Optimization

	The code path used when the worker executes a task has been heavily
optimized, meaning the worker is able to process a great deal
more tasks/second compared to previous versions. As an example the solo
pool can now process up to 15000 tasks/second on a 4 core MacBook Pro
when using the pylibrabbitmq [https://pypi.python.org/pypi/pylibrabbitmq/] transport, where it previously
could only do 5000 tasks/second.

	The task error tracebacks are now much shorter.

	Fixed a noticeable delay in task processing when rate limits are enabled.

Deprecation Time-line Changes

Removals

	The old TaskSet signature of (task_name, list_of_tasks)
can no longer be used (originally scheduled for removal in 2.4).
The deprecated .task_name and .task attributes has also been
removed.

	The functions celery.execute.delay_task, celery.execute.apply,
and celery.execute.apply_async has been removed (originally)
scheduled for removal in 2.3).

	The built-in ping task has been removed (originally scheduled
for removal in 2.3). Please use the ping broadcast command
instead.

	It’s no longer possible to import subtask and TaskSet
from celery.task.base, please import them from celery.task
instead (originally scheduled for removal in 2.4).

Deprecated modules

	The celery.decorators module has changed status
from pending deprecation to deprecated, and is scheduled for removal
in version 4.0. The celery.task module must be used instead.

News

Timezone support

Celery can now be configured to treat all incoming and outgoing dates
as UTC, and the local timezone can be configured.

This isn’t yet enabled by default, since enabling
time zone support means workers running versions pre-2.5
will be out of sync with upgraded workers.

To enable UTC you have to set CELERY_ENABLE_UTC:

CELERY_ENABLE_UTC = True

When UTC is enabled, dates and times in task messages will be
converted to UTC, and then converted back to the local timezone
when received by a worker.

You can change the local timezone using the CELERY_TIMEZONE
setting. Installing the pytz [https://pypi.python.org/pypi/pytz/] library is recommended when
using a custom timezone, to keep timezone definition up-to-date,
but it will fallback to a system definition of the timezone if available.

UTC will enabled by default in version 3.0.

Note

django-celery [https://pypi.python.org/pypi/django-celery/] will use the local timezone as specified by the
TIME_ZONE setting, it will also honor the new USE_TZ [https://docs.djangoproject.com/en/dev/topics/i18n/timezones/] setting
introduced in Django 1.4.

New security serializer using cryptographic signing

A new serializer has been added that signs and verifies the signature
of messages.

The name of the new serializer is auth, and needs additional
configuration to work (see Security).

See also

Security

Contributed by Mher Movsisyan.

New CELERY_ANNOTATIONS setting

This new setting enables the configuration to modify task classes
and their attributes.

The setting can be a dict, or a list of annotation objects that filter
for tasks and return a map of attributes to change.

As an example, this is an annotation to change the rate_limit attribute
for the tasks.add task:

CELERY_ANNOTATIONS = {'tasks.add': {'rate_limit': '10/s'}}

or change the same for all tasks:

CELERY_ANNOTATIONS = {'*': {'rate_limit': '10/s'}}

You can change methods too, for example the on_failure handler:

def my_on_failure(self, exc, task_id, args, kwargs, einfo):
 print('Oh no! Task failed: %r' % (exc,))

CELERY_ANNOTATIONS = {'*': {'on_failure': my_on_failure}}

If you need more flexibility then you can also create objects
that filter for tasks to annotate:

class MyAnnotate(object):

 def annotate(self, task):
 if task.name.startswith('tasks.'):
 return {'rate_limit': '10/s'}

CELERY_ANNOTATIONS = (MyAnnotate(), {other_annotations,})

current provides the currently executing task

The new celery.task.current proxy will always give the currently
executing task.

Example:

from celery.task import current, task

@task
def update_twitter_status(auth, message):
 twitter = Twitter(auth)
 try:
 twitter.update_status(message)
 except twitter.FailWhale, exc:
 # retry in 10 seconds.
 current.retry(countdown=10, exc=exc)

Previously you’d’ve to type update_twitter_status.retry(…)
here, which can be annoying for long task names.

Note

This won’t work if the task function is called directly (i.e.,
update_twitter_status(a, b)). For that to work apply must
be used: update_twitter_status.apply((a, b)).

In Other News

	Now depends on Kombu 2.1.0.

	Efficient Chord support for the Memcached backend (Issue #533)

This means Memcached joins Redis in the ability to do non-polling
chords.

Contributed by Dan McGee.

	Adds Chord support for the Rabbit result backend (amqp)

The Rabbit result backend can now use the fallback chord solution.

	Sending QUIT to celeryd will now cause it cold terminate.

That is, it won’t finish executing the tasks it’s currently
working on.

Contributed by Alec Clowes.

	New “detailed” mode for the Cassandra backend.

Allows to have a “detailed” mode for the Cassandra backend.
Basically the idea is to keep all states using Cassandra wide columns.
New states are then appended to the row as new columns, the last state
being the last column.

See the CASSANDRA_DETAILED_MODE setting.

Contributed by Steeve Morin.

	The Crontab parser now matches Vixie Cron behavior when parsing ranges
with steps (e.g., 1-59/2).

Contributed by Daniel Hepper.

	celerybeat can now be configured on the command-line like celeryd.

Additional configuration must be added at the end of the argument list
followed by --, for example:

$ celerybeat -l info -- celerybeat.max_loop_interval=10.0

	Now limits the number of frames in a traceback so that celeryd doesn’t
crash on maximum recursion limit exceeded exceptions (Issue #615).

The limit is set to the current recursion limit divided by 8 (which
is 125 by default).

To get or set the current recursion limit use
sys.getrecursionlimit() [https://docs.python.org/dev/library/sys.html#sys.getrecursionlimit] and sys.setrecursionlimit() [https://docs.python.org/dev/library/sys.html#sys.setrecursionlimit].

	More information is now preserved in the pickleable traceback.

This has been added so that Sentry can show more details.

Contributed by Sean O’Connor.

	CentOS init-script has been updated and should be more flexible.

Contributed by Andrew McFague.

	MongoDB result backend now supports forget().

Contributed by Andrew McFague

	task.retry() now re-raises the original exception keeping
the original stack trace.

Suggested by @ojii [https://github.com/ojii/].

	The –uid argument to daemons now uses initgroups() to set
groups to all the groups the user is a member of.

Contributed by Łukasz Oleś.

	celeryctl: Added shell command.

The shell will have the current_app (celery) and all tasks
automatically added to locals.

	celeryctl: Added migrate command.

The migrate command moves all tasks from one broker to another.
Note that this is experimental and you should have a backup
of the data before proceeding.

Examples:

$ celeryctl migrate redis://localhost amqp://localhost
$ celeryctl migrate amqp://localhost//v1 amqp://localhost//v2
$ python manage.py celeryctl migrate django:// redis://

	Routers can now override the exchange and routing_key used
to create missing queues (Issue #577).

By default this will always use the name of the queue,
but you can now have a router return exchange and routing_key keys
to set them.

This is useful when using routing classes which decides a destination
at run-time.

Contributed by Akira Matsuzaki.

	Redis result backend: Adds support for a max_connections parameter.

It’s now possible to configure the maximum number of
simultaneous connections in the Redis connection pool used for
results.

The default max connections setting can be configured using the
CELERY_REDIS_MAX_CONNECTIONS setting,
or it can be changed individually by RedisBackend(max_connections=int).

Contributed by Steeve Morin.

	Redis result backend: Adds the ability to wait for results without polling.

Contributed by Steeve Morin.

	MongoDB result backend: Now supports save and restore taskset.

Contributed by Julien Poissonnier.

	There’s a new Security guide in the documentation.

	The init-scripts have been updated, and many bugs fixed.

Contributed by Chris Streeter.

	User (tilde) is now expanded in command-line arguments.

	Can now configure CELERYCTL environment variable
in /etc/default/celeryd.

While not necessary for operation, celeryctl is used for the
celeryd status command, and the path to celeryctl must be
configured for that to work.

The daemonization cookbook contains examples.

Contributed by Jude Nagurney.

	The MongoDB result backend can now use Replica Sets.

Contributed by Ivan Metzlar.

	gevent: Now supports autoscaling (Issue #599).

Contributed by Mark Lavin.

	multiprocessing: Mediator thread is now always enabled,
even though rate limits are disabled, as the pool semaphore
is known to block the main thread, causing broadcast commands and
shutdown to depend on the semaphore being released.

Fixes

	Exceptions that are re-raised with a new exception object now keeps
the original stack trace.

	Windows: Fixed the no handlers found for multiprocessing warning.

	Windows: The celeryd program can now be used.

Previously Windows users had to launch celeryd using
python -m celery.bin.celeryd.

	Redis result backend: Now uses SETEX command to set result key,
and expiry atomically.

Suggested by @yaniv-aknin [https://github.com/yaniv-aknin/].

	celeryd: Fixed a problem where shutdown hanged when Control-c
was used to terminate.

	celeryd: No longer crashes when channel errors occur.

Fix contributed by Roger Hu.

	Fixed memory leak in the eventlet pool, caused by the
use of greenlet.getcurrent.

Fix contributed by Ignas Mikalajūnas.

	Cassandra backend: No longer uses pycassa.connect() which is
deprecated since pycassa [https://pypi.python.org/pypi/pycassa/] 1.4.

Fix contributed by Jeff Terrace.

	Fixed unicode decode errors that could occur while sending error emails.

Fix contributed by Seong Wun Mun.

	celery.bin programs now always defines __package__ as recommended
by PEP-366.

	send_task now emits a warning when used in combination with
CELERY_ALWAYS_EAGER (Issue #581).

Contributed by Mher Movsisyan.

	apply_async now forwards the original keyword arguments to apply
when CELERY_ALWAYS_EAGER is enabled.

	celeryev now tries to re-establish the connection if the connection
to the broker is lost (Issue #574).

	celeryev: Fixed a crash occurring if a task has no associated worker
information.

Fix contributed by Matt Williamson.

	The current date and time is now consistently taken from the current loaders
now method.

	Now shows helpful error message when given a configuration module ending in
.py that can’t be imported.

	celeryctl: The --expires and
--eta arguments to the apply command
can now be an ISO-8601 formatted string.

	celeryctl now exits with exit status EX_UNAVAILABLE (69) if no replies
have been received.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Change history for Celery 2.5

This document contains change notes for bugfix releases in the 2.5.x series,
please see What’s new in Celery 2.5 for an overview of what’s
new in Celery 2.5.

If you’re looking for versions prior to 2.5 you should visit our
History of releases.

	2.5.5

	2.5.3

	2.5.2

	News

	Fixes

	2.5.1

	Fixes

	2.5.0

2.5.5

	release-date

	2012-06-06 04:00 p.m. BST

	release-by

	Ask Solem

This is a dummy release performed for the following goals:

	Protect against force upgrading to Kombu 2.2.0

	Version parity with django-celery [https://pypi.python.org/pypi/django-celery/]

2.5.3

	release-date

	2012-04-16 07:00 p.m. BST

	release-by

	Ask Solem

	A bug causes messages to be sent with UTC time-stamps even though
CELERY_ENABLE_UTC wasn’t enabled (Issue #636).

	celerybeat: No longer crashes if an entry’s args is set to None
(Issue #657).

	Auto-reload didn’t work if a module’s __file__ attribute
was set to the modules .pyc file. (Issue #647).

	Fixes early 2.5 compatibility where __package__ doesn’t exist
(Issue #638).

2.5.2

	release-date

	2012-04-13 04:30 p.m. GMT

	release-by

	Ask Solem

News

	Now depends on Kombu 2.1.5.

	Django documentation has been moved to the main Celery docs.

See Django.

	New celeryd_init signal can be used to configure workers
by hostname.

	Signal.connect can now be used as a decorator.

Example:

from celery.signals import task_sent

@task_sent.connect
def on_task_sent(**kwargs):
 print('sent task: %r' % (kwargs,))

	Invalid task messages are now rejected instead of acked.

This means that they will be moved to the dead-letter queue
introduced in the latest RabbitMQ version (but must be enabled
manually, consult the RabbitMQ documentation).

	Internal logging calls has been cleaned up to work
better with tools like Sentry.

Contributed by David Cramer.

	New method subtask.clone() can be used to clone an existing
subtask with augmented arguments/options.

Example:

>>> s = add.subtask((5,))
>>> new = s.clone(args=(10,), countdown=5})
>>> new.args
(10, 5)

>>> new.options
{'countdown': 5}

	Chord callbacks are now triggered in eager mode.

Fixes

	Programs now verifies that the pidfile is actually written correctly
(Issue #641).

Hopefully this will crash the worker immediately if the system
is out of space to store the complete pidfile.

In addition, we now verify that existing pidfiles contain
a new line so that a partially written pidfile is detected as broken,
as before doing:

$ echo -n "1" > celeryd.pid

would cause the worker to think that an existing instance was already
running (init has pid 1 after all).

	Fixed 2.5 compatibility issue with use of print_exception.

Fix contributed by Martin Melin.

	Fixed 2.5 compatibility issue with imports.

Fix contributed by Iurii Kriachko.

	All programs now fix up __package__ when called as main.

This fixes compatibility with Python 2.5.

Fix contributed by Martin Melin.

	[celery control|inspect] can now be configured on the command-line.

Like with the worker it is now possible to configure Celery settings
on the command-line for celery control|inspect

$ celery inspect -- broker.pool_limit=30

	Version dependency for python-dateutil [https://pypi.python.org/pypi/python-dateutil/] fixed to be strict.

Fix contributed by Thomas Meson.

	Task.__call__ is now optimized away in the task tracer
rather than when the task class is created.

This fixes a bug where a custom __call__ may mysteriously disappear.

	Auto-reload’s inotify support has been improved.

Contributed by Mher Movsisyan.

	The Django broker documentation has been improved.

	Removed confusing warning at top of routing user guide.

2.5.1

	release-date

	2012-03-01 01:00 p.m. GMT

	release-by

	Ask Solem

Fixes

	Eventlet/Gevent: A small typo caused the worker to hang when eventlet/gevent
was used, this was because the environment wasn’t monkey patched
early enough.

	Eventlet/Gevent: Another small typo caused the mediator to be started
with eventlet/gevent, which would make the worker sometimes hang at shutdown.

	multiprocessing [https://docs.python.org/dev/library/multiprocessing.html#module-multiprocessing]: Fixed an error occurring if the pool was stopped
before it was properly started.

	Proxy objects now redirects __doc__ and __name__ so help(obj)
works.

	Internal timer (timer2) now logs exceptions instead of swallowing them
(Issue #626).

	celery shell: can now be started with
--eventlet or
--gevent options to apply their
monkey patches.

2.5.0

	release-date

	2012-02-24 04:00 p.m. GMT

	release-by

	Ask Solem

See What’s new in Celery 2.5.

Since the changelog has gained considerable size, we decided to
do things differently this time: by having separate “what’s new”
documents for major version changes.

Bugfix releases will still be found in the changelog.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Change history for Celery 2.4

	2.4.5

	2.4.4

	Security Fixes

	Fixes

	2.4.3

	2.4.2

	2.4.1

	2.4.0

	Important Notes

	News

2.4.5

	release-date

	2011-12-02 05:00 p.m. GMT

	release-by

	Ask Solem

	Periodic task interval schedules were accidentally rounded down,
resulting in some periodic tasks being executed early.

	Logging of humanized times in the beat log is now more detailed.

	New Brokers section in the Getting Started part of the Documentation

This replaces the old “Other queues” tutorial, and adds
documentation for MongoDB, Beanstalk and CouchDB.

2.4.4

	release-date

	2011-11-25 04:00 p.m. GMT

	release-by

	Ask Solem

Security Fixes

	[Security: CELERYSA-0001 [https://github.com/celery/celery/tree/master/docs/sec/CELERYSA-0001.txt]] Daemons would set effective id’s rather than
real id’s when the --uid/
--gid arguments to
celery multi, celeryd_detach,
celery beat and celery events were used.

This means privileges weren’t properly dropped, and that it would
be possible to regain supervisor privileges later.

Fixes

	Processes pool: Fixed rare deadlock at shutdown (Issue #523).

Fix contributed by Ionel Maries Christian.

	Webhook tasks issued the wrong HTTP POST headers (Issue #515).

The Content-Type header has been changed from
application/json ⇒ application/x-www-form-urlencoded,
and adds a proper Content-Length header.

Fix contributed by Mitar.

	Daemonization tutorial: Adds a configuration example using Django and
virtualenv together (Issue #505).

Contributed by Juan Ignacio Catalano.

	generic init-scripts now automatically creates log and pid file
directories (Issue #545).

Contributed by Chris Streeter.

2.4.3

	release-date

	2011-11-22 06:00 p.m. GMT

	release-by

	Ask Solem

	Fixes module import typo in celeryctl (Issue #538).

Fix contributed by Chris Streeter.

2.4.2

	release-date

	2011-11-14 12:00 p.m. GMT

	release-by

	Ask Solem

	Program module no longer uses relative imports so that it’s
possible to do python -m celery.bin.name.

2.4.1

	release-date

	2011-11-07 06:00 p.m. GMT

	release-by

	Ask Solem

	celeryctl inspect commands was missing output.

	processes pool: Decrease polling interval for less idle CPU usage.

	processes pool: MaybeEncodingError wasn’t wrapped in ExceptionInfo
(Issue #524).

	worker: would silence errors occurring after task consumer started.

	logging: Fixed a bug where unicode in stdout redirected log messages
couldn’t be written (Issue #522).

2.4.0

	release-date

	2011-11-04 04:00 p.m. GMT

	release-by

	Ask Solem

Important Notes

	Now supports Python 3.

	Fixed deadlock in worker process handling (Issue #496).

A deadlock could occur after spawning new child processes because
the logging library’s mutex wasn’t properly reset after fork.

The symptoms of this bug affecting would be that the worker simply
stops processing tasks, as none of the workers child processes
are functioning. There was a greater chance of this bug occurring
with maxtasksperchild or a time-limit enabled.

This is a workaround for http://bugs.python.org/issue6721#msg140215.

Be aware that while this fixes the logging library lock,
there could still be other locks initialized in the parent
process, introduced by custom code.

Fix contributed by Harm Verhagen.

	AMQP Result backend: Now expires results by default.

The default expiration value is now taken from the
CELERY_TASK_RESULT_EXPIRES setting.

The old CELERY_AMQP_TASK_RESULT_EXPIRES setting has been
deprecated and will be removed in version 4.0.

Note that this means that the result backend requires RabbitMQ 2.1.0 or
higher, and that you have to disable expiration if you’re running
with an older version. You can do so by disabling the
CELERY_TASK_RESULT_EXPIRES setting:

CELERY_TASK_RESULT_EXPIRES = None

	Eventlet: Fixed problem with shutdown (Issue #457).

	Broker transports can be now be specified using URLs

The broker can now be specified as a URL instead.
This URL must have the format:

transport://user:password@hostname:port/virtual_host

for example the default broker is written as:

amqp://guest:guest@localhost:5672//

The scheme is required, so that the host is identified
as a URL and not just a host name.
User, password, port and virtual_host are optional and
defaults to the particular transports default value.

Note

Note that the path component (virtual_host) always starts with a
forward-slash. This is necessary to distinguish between the virtual
host '' (empty) and '/', which are both acceptable virtual
host names.

A virtual host of '/' becomes:

amqp://guest:guest@localhost:5672//

and a virtual host of '' (empty) becomes:

amqp://guest:guest@localhost:5672/

So the leading slash in the path component is always required.

In addition the BROKER_URL setting has been added as an alias
to BROKER_HOST. Any broker setting specified in both the URL and in
the configuration will be ignored, if a setting isn’t provided in the URL
then the value from the configuration will be used as default.

Also, programs now support the --broker
option to specify a broker URL on the command-line:

$ celery worker -b redis://localhost

$ celery inspect -b amqp://guest:guest@localhost//e

The environment variable CELERY_BROKER_URL can also be used to
easily override the default broker used.

	The deprecated celery.loaders.setup_loader() function has been removed.

	The CELERY_TASK_ERROR_WHITELIST setting has been replaced
by a more flexible approach (Issue #447).

The error mail sending logic is now available as Task.ErrorMail,
with the implementation (for reference) in celery.utils.mail.

The error mail class can be sub-classed to gain complete control
of when error messages are sent, thus removing the need for a separate
white-list setting.

The CELERY_TASK_ERROR_WHITELIST setting has been deprecated,
and will be removed completely in version 4.0.

	Additional Deprecations

The following functions has been deprecated and is scheduled for removal in
version 4.0:

	Old function

	Alternative

	celery.loaders.current_loader

	celery.current_app.loader

	celery.loaders.load_settings

	celery.current_app.conf

	celery.execute.apply

	Task.apply

	celery.execute.apply_async

	Task.apply_async

	celery.execute.delay_task

	celery.execute.send_task

The following settings has been deprecated and is scheduled for removal
in version 4.0:

	Old setting

	Alternative

	CELERYD_LOG_LEVEL

	celery worker --loglevel=

	CELERYD_LOG_FILE

	celery worker --logfile=

	CELERYBEAT_LOG_LEVEL

	celery beat --loglevel=

	CELERYBEAT_LOG_FILE

	celery beat --logfile=

	CELERYMON_LOG_LEVEL

	celerymon --loglevel=

	CELERYMON_LOG_FILE

	celerymon --logfile=

News

	No longer depends on pyparsing [https://pypi.python.org/pypi/pyparsing/].

	Now depends on Kombu 1.4.3.

	CELERY_IMPORTS can now be a scalar value (Issue #485).

It’s too easy to forget to add the comma after the sole element of a
tuple, and this is something that often affects newcomers.

The docs should probably use a list in examples, as using a tuple
for this doesn’t even make sense. Nonetheless, there are many
tutorials out there using a tuple, and this change should be a help
to new users.

Suggested by @jsaxon-cars [https://github.com/jsaxon-cars/].

	Fixed a memory leak when using the thread pool (Issue #486).

Contributed by Kornelijus Survila.

	The statedb wasn’t saved at exit.

This has now been fixed and it should again remember previously
revoked tasks when a --statedb is enabled.

	Adds EMAIL_USE_TLS [https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-EMAIL_USE_TLS] to enable secure SMTP connections
(Issue #418).

Contributed by Stefan Kjartansson.

	Now handles missing fields in task messages as documented in the message
format documentation.

	Missing required field throws InvalidTaskError

	Missing args/kwargs is assumed empty.

Contributed by Chris Chamberlin.

	Fixed race condition in celery.events.state (celerymon/celeryev)
where task info would be removed while iterating over it (Issue #501).

	The Cache, Cassandra, MongoDB, Redis and Tyrant backends now respects
the CELERY_RESULT_SERIALIZER setting (Issue #435).

This means that only the database (Django/SQLAlchemy) backends
currently doesn’t support using custom serializers.

Contributed by Steeve Morin

	Logging calls no longer manually formats messages, but delegates
that to the logging system, so tools like Sentry can easier
work with the messages (Issue #445).

Contributed by Chris Adams.

	multi now supports a stop_verify command to wait for
processes to shutdown.

	Cache backend didn’t work if the cache key was unicode (Issue #504).

Fix contributed by Neil Chintomby.

	New setting CELERY_RESULT_DB_SHORT_LIVED_SESSIONS added,
which if enabled will disable the caching of SQLAlchemy sessions
(Issue #449).

Contributed by Leo Dirac.

	All result backends now implements __reduce__ so that they can
be pickled (Issue #441).

Fix contributed by Remy Noel

	multi didn’t work on Windows (Issue #472).

	New-style CELERY_REDIS_* settings now takes precedence over
the old REDIS_* configuration keys (Issue #508).

Fix contributed by Joshua Ginsberg

	Generic beat init-script no longer sets bash -e (Issue #510).

Fix contributed by Roger Hu.

	Documented that Chords don’t work well with redis-server versions
before 2.2.

Contributed by Dan McGee.

	The CELERYBEAT_MAX_LOOP_INTERVAL setting wasn’t respected.

	inspect.registered_tasks renamed to inspect.registered for naming
consistency.

The previous name is still available as an alias.

Contributed by Mher Movsisyan

	Worker logged the string representation of args and kwargs
without safe guards (Issue #480).

	RHEL init-script: Changed worker start-up priority.

The default start / stop priorities for MySQL on RHEL are:

chkconfig: - 64 36

Therefore, if Celery is using a database as a broker / message store, it
should be started after the database is up and running, otherwise errors
will ensue. This commit changes the priority in the init-script to:

chkconfig: - 85 15

which are the default recommended settings for 3-rd party applications
and assure that Celery will be started after the database service & shut
down before it terminates.

Contributed by Yury V. Zaytsev.

	KeyValueStoreBackend.get_many didn’t respect the timeout argument
(Issue #512).

	beat/events’s --workdir option didn’t chdir(2) before after
configuration was attempted (Issue #506).

	After deprecating 2.4 support we can now name modules correctly, since we
can take use of absolute imports.

Therefore the following internal modules have been renamed:

celery.concurrency.evlet -> celery.concurrency.eventlet
celery.concurrency.evg -> celery.concurrency.gevent

	AUTHORS file is now sorted alphabetically.

Also, as you may have noticed the contributors of new features/fixes are
now mentioned in the Changelog.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Change history for Celery 2.3

	2.3.4

	Security Fixes

	Fixes

	2.3.3

	2.3.2

	News

	Fixes

	2.3.1

	Fixes

	2.3.0

	Important Notes

	News

	Fixes

2.3.4

	release-date

	2011-11-25 04:00 p.m. GMT

	release-by

	Ask Solem

Security Fixes

	[Security: CELERYSA-0001 [https://github.com/celery/celery/tree/master/docs/sec/CELERYSA-0001.txt]] Daemons would set effective id’s rather than
real id’s when the --uid/
--gid arguments to celery multi,
celeryd_detach, celery beat and
celery events were used.

This means privileges weren’t properly dropped, and that it would
be possible to regain supervisor privileges later.

Fixes

	Backported fix for #455 from 2.4 to 2.3.

	StateDB wasn’t saved at shutdown.

	Fixes worker sometimes hanging when hard time limit exceeded.

2.3.3

	release-date

	2011-16-09 05:00 p.m. BST

	release-by

	Mher Movsisyan

	Monkey patching sys.stdout could result in the worker
crashing if the replacing object didn’t define isatty()
(Issue #477).

	CELERYD option in /etc/default/celeryd shouldn’t
be used with generic init-scripts.

2.3.2

	release-date

	2011-10-07 05:00 p.m. BST

	release-by

	Ask Solem

News

	Improved Contributing guide.

If you’d like to contribute to Celery you should read the
Contributing Gudie.

We’re looking for contributors at all skill levels, so don’t
hesitate!

	Now depends on Kombu 1.3.1

	Task.request now contains the current worker host name (Issue #460).

Available as task.request.hostname.

	
	It’s now easier for app subclasses to extend how they’re pickled.
	(see celery.app.AppPickler).

Fixes

	purge/discard_all wasn’t working correctly (Issue #455).

	The coloring of log messages didn’t handle non-ASCII data well
(Issue #427).

	[Windows] the multiprocessing pool tried to import os.kill
even though this isn’t available there (Issue #450).

	Fixes case where the worker could become unresponsive because of tasks
exceeding the hard time limit.

	The task-sent event was missing from the event reference.

	ResultSet.iterate now returns results as they finish (Issue #459).

This wasn’t the case previously, even though the documentation
states this was the expected behavior.

	Retries will no longer be performed when tasks are called directly
(using __call__).

Instead the exception passed to retry will be re-raised.

	Eventlet no longer crashes if autoscale is enabled.

growing and shrinking eventlet pools is still not supported.

	py24 target removed from tox.ini.

2.3.1

	release-date

	2011-08-07 08:00 p.m. BST

	release-by

	Ask Solem

Fixes

	The CELERY_AMQP_TASK_RESULT_EXPIRES setting didn’t work,
resulting in an AMQP related error about not being able to serialize
floats while trying to publish task states (Issue #446).

2.3.0

	release-date

	2011-08-05 12:00 p.m. BST

	tested

	CPython: 2.5, 2.6, 2.7; PyPy: 1.5; Jython: 2.5.2

	release-by

	Ask Solem

Important Notes

	Now requires Kombu 1.2.1

	Results are now disabled by default.

The AMQP backend wasn’t a good default because often the users were
not consuming the results, resulting in thousands of queues.

While the queues can be configured to expire if left unused, it wasn’t
possible to enable this by default because this was only available in
recent RabbitMQ versions (2.1.1+)

With this change enabling a result backend will be a conscious choice,
which will hopefully lead the user to read the documentation and be aware
of any common pitfalls with the particular backend.

The default backend is now a dummy backend
(celery.backends.base.DisabledBackend). Saving state is simply an
no-op, and AsyncResult.wait(), .result, .state, etc. will raise
a NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError] telling the user to configure the result backend.

For help choosing a backend please see Result Backends.

If you depend on the previous default which was the AMQP backend, then
you have to set this explicitly before upgrading:

CELERY_RESULT_BACKEND = 'amqp'

Note

For django-celery [https://pypi.python.org/pypi/django-celery/] users the default backend is
still database, and results are not disabled by default.

	The Debian init-scripts have been deprecated in favor of the generic-init.d
init-scripts.

In addition generic init-scripts for celerybeat and celeryev has
been added.

News

	Automatic connection pool support.

The pool is used by everything that requires a broker connection, for
example calling tasks, sending broadcast commands, retrieving results
with the AMQP result backend, and so on.

The pool is disabled by default, but you can enable it by configuring the
BROKER_POOL_LIMIT setting:

BROKER_POOL_LIMIT = 10

A limit of 10 means a maximum of 10 simultaneous connections can co-exist.
Only a single connection will ever be used in a single-thread
environment, but in a concurrent environment (threads, greenlets, etc., but
not processes) when the limit has been exceeded, any try to acquire a
connection will block the thread and wait for a connection to be released.
This is something to take into consideration when choosing a limit.

A limit of None or 0 means no limit, and connections will be
established and closed every time.

	Introducing Chords (taskset callbacks).

A chord is a task that only executes after all of the tasks in a taskset
has finished executing. It’s a fancy term for “taskset callbacks”
adopted from
Cω [http://research.microsoft.com/en-us/um/cambridge/projects/comega/]).

It works with all result backends, but the best implementation is
currently provided by the Redis result backend.

Here’s an example chord:

>>> chord(add.subtask((i, i))
... for i in xrange(100))(tsum.subtask()).get()
9900

Please read the Chords section in the user guide, if you
want to know more.

	Time limits can now be set for individual tasks.

To set the soft and hard time limits for a task use the time_limit
and soft_time_limit attributes:

import time

@task(time_limit=60, soft_time_limit=30)
def sleeptask(seconds):
 time.sleep(seconds)

If the attributes are not set, then the workers default time limits
will be used.

New in this version you can also change the time limits for a task
at runtime using the time_limit() remote control command:

>>> from celery.task import control
>>> control.time_limit('tasks.sleeptask',
... soft=60, hard=120, reply=True)
[{'worker1.example.com': {'ok': 'time limits set successfully'}}]

Only tasks that starts executing after the time limit change will be affected.

Note

Soft time limits will still not work on Windows or other platforms
that don’t have the SIGUSR1 signal.

	
	Redis backend configuration directive names changed to include the
	CELERY_ prefix.

	Old setting name

	Replace with

	REDIS_HOST

	CELERY_REDIS_HOST

	REDIS_PORT

	CELERY_REDIS_PORT

	REDIS_DB

	CELERY_REDIS_DB

	REDIS_PASSWORD

	CELERY_REDIS_PASSWORD

The old names are still supported but pending deprecation.

	PyPy: The default pool implementation used is now multiprocessing
if running on PyPy 1.5.

	multi: now supports “pass through” options.

Pass through options makes it easier to use Celery without a
configuration file, or just add last-minute options on the command
line.

Example use:

$ celery multi start 4 -c 2 -- broker.host=amqp.example.com \
 broker.vhost=/ \
 celery.disable_rate_limits=yes

	celerybeat: Now retries establishing the connection (Issue #419).

	celeryctl: New list bindings command.

Lists the current or all available bindings, depending on the
broker transport used.

	Heartbeat is now sent every 30 seconds (previously every 2 minutes).

	ResultSet.join_native() and iter_native() is now supported by
the Redis and Cache result backends.

This is an optimized version of join() using the underlying
backends ability to fetch multiple results at once.

	Can now use SSL when sending error e-mails by enabling the
EMAIL_USE_SSL [https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-EMAIL_USE_SSL] setting.

	events.default_dispatcher(): Context manager to easily obtain
an event dispatcher instance using the connection pool.

	Import errors in the configuration module won’t be silenced anymore.

	ResultSet.iterate: Now supports the timeout, propagate and
interval arguments.

	with_default_connection -> with default_connection

	TaskPool.apply_async: Keyword arguments callbacks and errbacks
has been renamed to callback and errback and take a single scalar
value instead of a list.

	No longer propagates errors occurring during process cleanup (Issue #365)

	Added TaskSetResult.delete(), which will delete a previously
saved taskset result.

	celerybeat now syncs every 3 minutes instead of only at
shutdown (Issue #382).

	Monitors now properly handles unknown events, so user-defined events
are displayed.

	Terminating a task on Windows now also terminates all of the tasks child
processes (Issue #384).

	worker: -I|--include option now always searches the current directory
to import the specified modules.

	Cassandra backend: Now expires results by using TTLs.

	Functional test suite in funtests is now actually working properly, and
passing tests.

Fixes

	celeryev was trying to create the pidfile twice.

	celery.contrib.batches: Fixed problem where tasks failed
silently (Issue #393).

	Fixed an issue where logging objects would give “<Unrepresentable”,
even though the objects were.

	CELERY_TASK_ERROR_WHITE_LIST is now properly initialized
in all loaders.

	celeryd_detach now passes through command line configuration.

	Remote control command add_consumer now does nothing if the
queue is already being consumed from.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Change history for Celery 2.2

	2.2.8

	Security Fixes

	2.2.7

	2.2.6

	Important Notes

	Fixes

	2.2.5

	Important Notes

	News

	Fixes

	2.2.4

	Fixes

	2.2.3

	Fixes

	2.2.2

	Fixes

	2.2.1

	Fixes

	2.2.0

	Important Notes

	News

	Fixes

	Experimental

2.2.8

	release-date

	2011-11-25 04:00 p.m. GMT

	release-by

	Ask Solem

Security Fixes

	[Security: CELERYSA-0001 [https://github.com/celery/celery/tree/master/docs/sec/CELERYSA-0001.txt]] Daemons would set effective id’s rather than
real id’s when the --uid/
--gid arguments to celery multi,
celeryd_detach, celery beat and
celery events were used.

This means privileges weren’t properly dropped, and that it would
be possible to regain supervisor privileges later.

2.2.7

	release-date

	2011-06-13 04:00 p.m. BST

	release-by

	Ask Solem

	New signals: after_setup_logger and
after_setup_task_logger

These signals can be used to augment logging configuration
after Celery has set up logging.

	Redis result backend now works with Redis 2.4.4.

	multi: The --gid option now works correctly.

	worker: Retry wrongfully used the repr of the traceback instead
of the string representation.

	App.config_from_object: Now loads module, not attribute of module.

	Fixed issue where logging of objects would give “<Unrepresentable: …>”

2.2.6

	release-date

	2011-04-15 04:00 p.m. CEST

	release-by

	Ask Solem

Important Notes

	Now depends on Kombu [https://pypi.python.org/pypi/Kombu/] 1.1.2.

	Dependency lists now explicitly specifies that we don’t want
python-dateutil [https://pypi.python.org/pypi/python-dateutil/] 2.x, as this version only supports Python 3.

If you have installed dateutil 2.0 by accident you should downgrade
to the 1.5.0 version:

$ pip install -U python-dateutil==1.5.0

or by easy_install:

$ easy_install -U python-dateutil==1.5.0

Fixes

	The new WatchedFileHandler broke Python 2.5 support (Issue #367).

	Task: Don’t use app.main if the task name is set explicitly.

	Sending emails didn’t work on Python 2.5, due to a bug in
the version detection code (Issue #378).

	Beat: Adds method ScheduleEntry._default_now

This method can be overridden to change the default value
of last_run_at.

	An error occurring in process cleanup could mask task errors.

We no longer propagate errors happening at process cleanup,
but log them instead. This way they won’t interfere with publishing
the task result (Issue #365).

	Defining tasks didn’t work properly when using the Django
shell_plus utility (Issue #366).

	
	AsyncResult.get didn’t accept the interval and propagate
	arguments.

	
	worker: Fixed a bug where the worker wouldn’t shutdown if a
	socket.error [https://docs.python.org/dev/library/socket.html#socket.error] was raised.

2.2.5

	release-date

	2011-03-28 06:00 p.m. CEST

	release-by

	Ask Solem

Important Notes

	Now depends on Kombu 1.0.7

News

	Our documentation is now hosted by Read The Docs
(http://docs.celeryproject.org), and all links have been changed to point to
the new URL.

	Logging: Now supports log rotation using external tools like logrotate.d [http://www.ducea.com/2006/06/06/rotating-linux-log-files-part-2-logrotate/]
(Issue #321)

This is accomplished by using the WatchedFileHandler, which re-opens
the file if it’s renamed or deleted.

	
	otherqueues tutorial now documents how to configure Redis/Database result
	backends.

	gevent: Now supports ETA tasks.

But gevent still needs CELERY_DISABLE_RATE_LIMITS=True to work.

	TaskSet User Guide: now contains TaskSet callback recipes.

	Eventlet: New signals:

	eventlet_pool_started

	eventlet_pool_preshutdown

	eventlet_pool_postshutdown

	eventlet_pool_apply

See celery.signals for more information.

	New BROKER_TRANSPORT_OPTIONS setting can be used to pass
additional arguments to a particular broker transport.

	worker: worker_pid is now part of the request info as returned by
broadcast commands.

	TaskSet.apply/Taskset.apply_async now accepts an optional taskset_id
argument.

	The taskset_id (if any) is now available in the Task request context.

	SQLAlchemy result backend: taskset_id and taskset_id columns now have a
unique constraint (tables need to recreated for this to take affect).

	Task user guide: Added section about choosing a result backend.

	Removed unused attribute AsyncResult.uuid.

Fixes

	multiprocessing.Pool: Fixes race condition when marking job with
WorkerLostError (Issue #268).

The process may have published a result before it was terminated,
but we have no reliable way to detect that this is the case.

So we have to wait for 10 seconds before marking the result with
WorkerLostError. This gives the result handler a chance to retrieve the
result.

	multiprocessing.Pool: Shutdown could hang if rate limits disabled.

There was a race condition when the MainThread was waiting for the pool
semaphore to be released. The ResultHandler now terminates after 5
seconds if there are unacked jobs, but no worker processes left to start
them (it needs to timeout because there could still be an ack+result
that we haven’t consumed from the result queue. It
is unlikely we’ll receive any after 5 seconds with no worker processes).

	celerybeat: Now creates pidfile even if the --detach option isn’t set.

	eventlet/gevent: The broadcast command consumer is now running in a separate
green-thread.

This ensures broadcast commands will take priority even if there are many
active tasks.

	Internal module celery.worker.controllers renamed to
celery.worker.mediator.

	worker: Threads now terminates the program by calling os._exit, as it
is the only way to ensure exit in the case of syntax errors, or other
unrecoverable errors.

	Fixed typo in maybe_timedelta (Issue #352).

	worker: Broadcast commands now logs with loglevel debug instead of warning.

	AMQP Result Backend: Now resets cached channel if the connection is lost.

	Polling results with the AMQP result backend wasn’t working properly.

	Rate limits: No longer sleeps if there are no tasks, but rather waits for
the task received condition (Performance improvement).

	ConfigurationView: iter(dict) should return keys, not items (Issue #362).

	celerybeat: PersistentScheduler now automatically removes a corrupted
schedule file (Issue #346).

	Programs that doesn’t support positional command-line arguments now provides
a user friendly error message.

	Programs no longer tries to load the configuration file when showing
--version (Issue #347).

	Autoscaler: The “all processes busy” log message is now severity debug
instead of error.

	worker: If the message body can’t be decoded, it’s now passed through
safe_str when logging.

This to ensure we don’t get additional decoding errors when trying to log
the failure.

	app.config_from_object/app.config_from_envvar now works for all
loaders.

	Now emits a user-friendly error message if the result backend name is
unknown (Issue #349).

	celery.contrib.batches: Now sets loglevel and logfile in the task
request so task.get_logger works with batch tasks (Issue #357).

	worker: An exception was raised if using the amqp transport and the prefetch
count value exceeded 65535 (Issue #359).

The prefetch count is incremented for every received task with an
ETA/countdown defined. The prefetch count is a short, so can only support
a maximum value of 65535. If the value exceeds the maximum value we now
disable the prefetch count, it’s re-enabled as soon as the value is below
the limit again.

	cursesmon: Fixed unbound local error (Issue #303).

	eventlet/gevent is now imported on demand so autodoc can import the modules
without having eventlet/gevent installed.

	worker: Ack callback now properly handles AttributeError.

	Task.after_return is now always called after the result has been
written.

	Cassandra Result Backend: Should now work with the latest pycassa
version.

	multiprocessing.Pool: No longer cares if the putlock semaphore is released
too many times (this can happen if one or more worker processes are
killed).

	SQLAlchemy Result Backend: Now returns accidentally removed date_done again
(Issue #325).

	Task.request context is now always initialized to ensure calling the task
function directly works even if it actively uses the request context.

	Exception occurring when iterating over the result from TaskSet.apply
fixed.

	eventlet: Now properly schedules tasks with an ETA in the past.

2.2.4

	release-date

	2011-02-19 00:00 AM CET

	release-by

	Ask Solem

Fixes

	worker: 2.2.3 broke error logging, resulting in tracebacks not being logged.

	AMQP result backend: Polling task states didn’t work properly if there were
more than one result message in the queue.

	TaskSet.apply_async() and TaskSet.apply() now supports an optional
taskset_id keyword argument (Issue #331).

	The current taskset id (if any) is now available in the task context as
request.taskset (Issue #329).

	SQLAlchemy result backend: date_done was no longer part of the results as it had
been accidentally removed. It’s now available again (Issue #325).

	SQLAlchemy result backend: Added unique constraint on Task.id and
TaskSet.taskset_id. Tables needs to be recreated for this to take effect.

	Fixed exception raised when iterating on the result of TaskSet.apply().

	Tasks user guide: Added section on choosing a result backend.

2.2.3

	release-date

	2011-02-12 04:00 p.m. CET

	release-by

	Ask Solem

Fixes

	Now depends on Kombu [https://pypi.python.org/pypi/Kombu/] 1.0.3

	Task.retry now supports a max_retries argument, used to change the
default value.

	multiprocessing.cpu_count may raise NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError] on
platforms where this isn’t supported (Issue #320).

	Coloring of log messages broke if the logged object wasn’t a string.

	Fixed several typos in the init-script documentation.

	A regression caused Task.exchange and Task.routing_key to no longer
have any effect. This is now fixed.

	Routing user guide: Fixes typo, routers in CELERY_ROUTES must be
instances, not classes.

	celeryev didn’t create pidfile even though the
--pidfile argument was set.

	Task logger format was no longer used (Issue #317).

The id and name of the task is now part of the log message again.

	A safe version of repr() is now used in strategic places to ensure
objects with a broken __repr__ doesn’t crash the worker, or otherwise
make errors hard to understand (Issue #298).

	Remote control command active_queues: didn’t account for queues added
at runtime.

In addition the dictionary replied by this command now has a different
structure: the exchange key is now a dictionary containing the
exchange declaration in full.

	The celery worker -Q option removed unused queue
declarations, so routing of tasks could fail.

Queues are no longer removed, but rather app.amqp.queues.consume_from()
is used as the list of queues to consume from.

This ensures all queues are available for routing purposes.

	celeryctl: Now supports the inspect active_queues command.

2.2.2

	release-date

	2011-02-03 04:00 p.m. CET

	release-by

	Ask Solem

Fixes

	celerybeat couldn’t read the schedule properly, so entries in
CELERYBEAT_SCHEDULE wouldn’t be scheduled.

	Task error log message now includes exc_info again.

	The eta argument can now be used with task.retry.

Previously it was overwritten by the countdown argument.

	celery multi/celeryd_detach: Now logs errors occurring when executing
the celery worker command.

	daemonizing tutorial: Fixed typo --time-limit 300 ->
--time-limit=300

	Colors in logging broke non-string objects in log messages.

	setup_task_logger no longer makes assumptions about magic task kwargs.

2.2.1

	release-date

	2011-02-02 04:00 p.m. CET

	release-by

	Ask Solem

Fixes

	Eventlet pool was leaking memory (Issue #308).

	Deprecated function celery.execute.delay_task was accidentally removed,
now available again.

	BasePool.on_terminate stub didn’t exist

	celeryd_detach: Adds readable error messages if user/group name
doesn’t exist.

	Smarter handling of unicode decode errors when logging errors.

2.2.0

	release-date

	2011-02-01 10:00 AM CET

	release-by

	Ask Solem

Important Notes

	Carrot has been replaced with Kombu [https://pypi.python.org/pypi/Kombu/]

Kombu is the next generation messaging library for Python,
fixing several flaws present in Carrot that was hard to fix
without breaking backwards compatibility.

Also it adds:

	First-class support for virtual transports; Redis, Django ORM,
SQLAlchemy, Beanstalk, MongoDB, CouchDB and in-memory.

	Consistent error handling with introspection,

	The ability to ensure that an operation is performed by gracefully
handling connection and channel errors,

	Message compression (zlib [https://docs.python.org/dev/library/zlib.html#module-zlib], bz2 [https://docs.python.org/dev/library/bz2.html#module-bz2], or custom compression schemes).

This means that ghettoq is no longer needed as the
functionality it provided is already available in Celery by default.
The virtual transports are also more feature complete with support
for exchanges (direct and topic). The Redis transport even supports
fanout exchanges so it’s able to perform worker remote control
commands.

	Magic keyword arguments pending deprecation.

The magic keyword arguments were responsible for many problems
and quirks: notably issues with tasks and decorators, and name
collisions in keyword arguments for the unaware.

It wasn’t easy to find a way to deprecate the magic keyword arguments,
but we think this is a solution that makes sense and it won’t
have any adverse effects for existing code.

The path to a magic keyword argument free world is:

	the celery.decorators module is deprecated and the decorators
can now be found in celery.task.

	The decorators in celery.task disables keyword arguments by
default

	All examples in the documentation have been changed to use
celery.task.

This means that the following will have magic keyword arguments
enabled (old style):

from celery.decorators import task

@task()
def add(x, y, **kwargs):
 print('In task %s' % kwargs['task_id'])
 return x + y

And this won’t use magic keyword arguments (new style):

from celery.task import task

@task()
def add(x, y):
 print('In task %s' % add.request.id)
 return x + y

In addition, tasks can choose not to accept magic keyword arguments by
setting the task.accept_magic_kwargs attribute.

Deprecation

Using the decorators in celery.decorators emits a
PendingDeprecationWarning [https://docs.python.org/dev/library/exceptions.html#PendingDeprecationWarning] with a helpful message urging
you to change your code, in version 2.4 this will be replaced with
a DeprecationWarning [https://docs.python.org/dev/library/exceptions.html#DeprecationWarning], and in version 4.0 the
celery.decorators module will be removed and no longer exist.

Similarly, the task.accept_magic_kwargs attribute will no
longer have any effect starting from version 4.0.

	The magic keyword arguments are now available as task.request

This is called the context. Using thread-local storage the
context contains state that’s related to the current request.

It’s mutable and you can add custom attributes that’ll only be seen
by the current task request.

The following context attributes are always available:

	Magic Keyword Argument

	Replace with

	kwargs[‘task_id’]

	self.request.id

	kwargs[‘delivery_info’]

	self.request.delivery_info

	kwargs[‘task_retries’]

	self.request.retries

	kwargs[‘logfile’]

	self.request.logfile

	kwargs[‘loglevel’]

	self.request.loglevel

	kwargs[‘task_is_eager’]

	self.request.is_eager

	NEW

	self.request.args

	NEW

	self.request.kwargs

In addition, the following methods now automatically uses the current
context, so you don’t have to pass kwargs manually anymore:

	task.retry

	task.get_logger

	task.update_state

	Eventlet [http://eventlet.net] support.

This is great news for I/O-bound tasks!

To change pool implementations you use the celery worker --pool
argument, or globally using the
CELERYD_POOL setting. This can be the full name of a class,
or one of the following aliases: processes, eventlet, gevent.

For more information please see the Concurrency with Eventlet section
in the User Guide.

Why not gevent?

For our first alternative concurrency implementation we’ve focused
on Eventlet [http://eventlet.net], but there’s also an experimental gevent [http://gevent.org] pool
available. This is missing some features, notably the ability to
schedule ETA tasks.

Hopefully the gevent [http://gevent.org] support will be feature complete by
version 2.3, but this depends on user demand (and contributions).

	Python 2.4 support deprecated!

We’re happy^H^H^H^H^Hsad to announce that this is the last version
to support Python 2.4.

You’re urged to make some noise if you’re currently stuck with
Python 2.4. Complain to your package maintainers, sysadmins and bosses:
tell them it’s time to move on!

Apart from wanting to take advantage of with [https://docs.python.org/dev/reference/compound_stmts.html#with] statements,
coroutines, conditional expressions and enhanced try [https://docs.python.org/dev/reference/compound_stmts.html#try] blocks,
the code base now contains so many 2.4 related hacks and workarounds
it’s no longer just a compromise, but a sacrifice.

If it really isn’t your choice, and you don’t have the option to upgrade
to a newer version of Python, you can just continue to use Celery 2.2.
Important fixes can be back ported for as long as there’s interest.

	worker: Now supports Autoscaling of child worker processes.

The --autoscale option can be used
to configure the minimum and maximum number of child worker processes:

--autoscale=AUTOSCALE
 Enable autoscaling by providing
 max_concurrency,min_concurrency. Example:
 --autoscale=10,3 (always keep 3 processes, but grow to
 10 if necessary).

	Remote Debugging of Tasks

celery.contrib.rdb is an extended version of pdb [https://docs.python.org/dev/library/pdb.html#module-pdb] that
enables remote debugging of processes that doesn’t have terminal
access.

Example usage:

 from celery.contrib import rdb
 from celery.task import task

 @task()
 def add(x, y):
 result = x + y
 # set breakpoint
 rdb.set_trace()
 return result

:func:`~celery.contrib.rdb.set_trace` sets a breakpoint at the current
location and creates a socket you can telnet into to remotely debug
your task.

The debugger may be started by multiple processes at the same time,
so rather than using a fixed port the debugger will search for an
available port, starting from the base port (6900 by default).
The base port can be changed using the environment variable
:envvar:`CELERY_RDB_PORT`.

By default the debugger will only be available from the local host,
to enable access from the outside you have to set the environment
variable :envvar:`CELERY_RDB_HOST`.

When the worker encounters your breakpoint it will log the following
information::

 [INFO/MainProcess] Received task:
 tasks.add[d7261c71-4962-47e5-b342-2448bedd20e8]
 [WARNING/PoolWorker-1] Remote Debugger:6900:
 Please telnet 127.0.0.1 6900. Type `exit` in session to continue.
 [2011-01-18 14:25:44,119: WARNING/PoolWorker-1] Remote Debugger:6900:
 Waiting for client...

If you telnet the port specified you'll be presented
with a ``pdb`` shell:

.. code-block:: console

 $ telnet localhost 6900
 Connected to localhost.
 Escape character is '^]'.
 > /opt/devel/demoapp/tasks.py(128)add()
 -> return result
 (Pdb)

Enter ``help`` to get a list of available commands,
It may be a good idea to read the `Python Debugger Manual`_ if
you have never used `pdb` before.

	Events are now transient and is using a topic exchange (instead of direct).

The CELERYD_EVENT_EXCHANGE, CELERYD_EVENT_ROUTING_KEY,
CELERYD_EVENT_EXCHANGE_TYPE settings are no longer in use.

This means events won’t be stored until there’s a consumer, and the
events will be gone as soon as the consumer stops. Also it means there
can be multiple monitors running at the same time.

The routing key of an event is the type of event (e.g., worker.started,
worker.heartbeat, task.succeeded, etc. This means a consumer can
filter on specific types, to only be alerted of the events it cares about.

Each consumer will create a unique queue, meaning it’s in effect a
broadcast exchange.

This opens up a lot of possibilities, for example the workers could listen
for worker events to know what workers are in the neighborhood, and even
restart workers when they go down (or use this information to optimize
tasks/autoscaling).

Note

The event exchange has been renamed from "celeryevent"
to "celeryev" so it doesn’t collide with older versions.

If you’d like to remove the old exchange you can do so
by executing the following command:

$ camqadm exchange.delete celeryevent

	The worker now starts without configuration, and configuration can be
specified directly on the command-line.

Configuration options must appear after the last argument, separated
by two dashes:

$ celery worker -l info -I tasks -- broker.host=localhost broker.vhost=/app

	Configuration is now an alias to the original configuration, so changes
to the original will reflect Celery at runtime.

	celery.conf has been deprecated, and modifying celery.conf.ALWAYS_EAGER
will no longer have any effect.

The default configuration is now available in the
celery.app.defaults module. The available configuration options
and their types can now be introspected.

	Remote control commands are now provided by kombu.pidbox, the generic
process mailbox.

	Internal module celery.worker.listener has been renamed to
celery.worker.consumer, and .CarrotListener is now .Consumer.

	Previously deprecated modules celery.models and
celery.management.commands have now been removed as per the deprecation
time-line.

	
	[Security: Low severity] Removed celery.task.RemoteExecuteTask and
	accompanying functions: dmap, dmap_async, and execute_remote.

Executing arbitrary code using pickle is a potential security issue if
someone gains unrestricted access to the message broker.

If you really need this functionality, then you’d’ve to add
this to your own project.

	[Security: Low severity] The stats command no longer transmits the
broker password.

One would’ve needed an authenticated broker connection to receive
this password in the first place, but sniffing the password at the
wire level would’ve been possible if using unencrypted communication.

News

	The internal module celery.task.builtins has been removed.

	The module celery.task.schedules is deprecated, and
celery.schedules should be used instead.

For example if you have:

from celery.task.schedules import crontab

You should replace that with:

from celery.schedules import crontab

The module needs to be renamed because it must be possible
to import schedules without importing the celery.task module.

	The following functions have been deprecated and is scheduled for
removal in version 2.3:

	celery.execute.apply_async

Use task.apply_async() instead.

	celery.execute.apply

Use task.apply() instead.

	celery.execute.delay_task

Use registry.tasks[name].delay() instead.

	Importing TaskSet from celery.task.base is now deprecated.

You should use:

>>> from celery.task import TaskSet

instead.

	New remote control commands:

	active_queues

Returns the queue declarations a worker is currently consuming from.

	Added the ability to retry publishing the task message in
the event of connection loss or failure.

This is disabled by default but can be enabled using the
CELERY_TASK_PUBLISH_RETRY setting, and tweaked by
the CELERY_TASK_PUBLISH_RETRY_POLICY setting.

In addition retry, and retry_policy keyword arguments have
been added to Task.apply_async.

Note

Using the retry argument to apply_async requires you to
handle the publisher/connection manually.

	Periodic Task classes (@periodic_task/PeriodicTask) will not be
deprecated as previously indicated in the source code.

But you’re encouraged to use the more flexible
CELERYBEAT_SCHEDULE setting.

	Built-in daemonization support of the worker using celery multi
is no longer experimental and is considered production quality.

See Generic init-scripts if you want to use the new generic init
scripts.

	Added support for message compression using the
CELERY_MESSAGE_COMPRESSION setting, or the compression argument
to apply_async. This can also be set using routers.

	
	worker: Now logs stack-trace of all threads when receiving the
	SIGUSR1 signal (doesn’t work on CPython 2.4, Windows or Jython).

Inspired by https://gist.github.com/737056

	Can now remotely terminate/kill the worker process currently processing
a task.

The revoke remote control command now supports a terminate argument
Default signal is TERM, but can be specified using the signal
argument. Signal can be the uppercase name of any signal defined
in the signal [https://docs.python.org/dev/library/signal.html#module-signal] module in the Python Standard Library.

Terminating a task also revokes it.

Example:

>>> from celery.task.control import revoke

>>> revoke(task_id, terminate=True)
>>> revoke(task_id, terminate=True, signal='KILL')
>>> revoke(task_id, terminate=True, signal='SIGKILL')

	TaskSetResult.join_native: Backend-optimized version of join().

If available, this version uses the backends ability to retrieve
multiple results at once, unlike join() which fetches the results
one by one.

So far only supported by the AMQP result backend. Support for Memcached
and Redis may be added later.

	Improved implementations of TaskSetResult.join and AsyncResult.wait.

An interval keyword argument have been added to both so the
polling interval can be specified (default interval is 0.5 seconds).

A propagate keyword argument have been added to result.wait(),
errors will be returned instead of raised if this is set to False.

Warning

You should decrease the polling interval when using the database
result backend, as frequent polling can result in high database load.

	The PID of the child worker process accepting a task is now sent as a field
with the task-started event.

	The following fields have been added to all events in the worker class:

	sw_ident: Name of worker software (e.g., "py-celery").

	sw_ver: Software version (e.g., 2.2.0).

	sw_sys: Operating System (e.g., Linux, Windows, Darwin).

	For better accuracy the start time reported by the multiprocessing worker
process is used when calculating task duration.

Previously the time reported by the accept callback was used.

	
	celerybeat: New built-in daemonization support using the –detach
	option.

	
	celeryev: New built-in daemonization support using the –detach
	option.

	TaskSet.apply_async: Now supports custom publishers by using the
publisher argument.

	Added CELERY_SEND_TASK_SENT_EVENT setting.

If enabled an event will be sent with every task, so monitors can
track tasks before the workers receive them.

	
	celerybeat: Now reuses the broker connection when calling
	scheduled tasks.

	The configuration module and loader to use can now be specified on
the command-line.

For example:

$ celery worker --config=celeryconfig.py --loader=myloader.Loader

	Added signals: beat_init and beat_embedded_init

	celery.signals.beat_init

Dispatched when celerybeat starts (either standalone or
embedded). Sender is the celery.beat.Service instance.

	celery.signals.beat_embedded_init

Dispatched in addition to the beat_init signal when
celerybeat is started as an embedded process. Sender
is the celery.beat.Service instance.

	Redis result backend: Removed deprecated settings REDIS_TIMEOUT and
REDIS_CONNECT_RETRY.

	CentOS init-script for celery worker now available in extra/centos.

	Now depends on pyparsing [https://pypi.python.org/pypi/pyparsing/] version 1.5.0 or higher.

There have been reported issues using Celery with pyparsing [https://pypi.python.org/pypi/pyparsing/] 1.4.x,
so please upgrade to the latest version.

	Lots of new unit tests written, now with a total coverage of 95%.

Fixes

	celeryev Curses Monitor: Improved resize handling and UI layout
(Issue #274 + Issue #276)

	AMQP Backend: Exceptions occurring while sending task results are now
propagated instead of silenced.

the worker will then show the full traceback of these errors in the log.

	AMQP Backend: No longer deletes the result queue after successful
poll, as this should be handled by the
CELERY_AMQP_TASK_RESULT_EXPIRES setting instead.

	AMQP Backend: Now ensures queues are declared before polling results.

	Windows: worker: Show error if running with -B option.

Running celerybeat embedded is known not to work on Windows, so
users are encouraged to run celerybeat as a separate service instead.

	Windows: Utilities no longer output ANSI color codes on Windows

	camqadm: Now properly handles Control-c by simply exiting instead
of showing confusing traceback.

	Windows: All tests are now passing on Windows.

	Remove bin/ directory, and scripts section from setup.py.

This means we now rely completely on setuptools entry-points.

Experimental

	Jython: worker now runs on Jython using the threaded pool.

All tests pass, but there may still be bugs lurking around the corners.

	PyPy: worker now runs on PyPy.

It runs without any pool, so to get parallel execution you must start
multiple instances (e.g., using multi).

Sadly an initial benchmark seems to show a 30% performance decrease on
pypy-1.4.1 + JIT. We would like to find out why this is, so stay tuned.

	PublisherPool: Experimental pool of task publishers and
connections to be used with the retry argument to apply_async.

The example code below will re-use connections and channels, and
retry sending of the task message if the connection is lost.

from celery import current_app

Global pool
pool = current_app().amqp.PublisherPool(limit=10)

def my_view(request):
 with pool.acquire() as publisher:
 add.apply_async((2, 2), publisher=publisher, retry=True)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Change history for Celery 2.1

	2.1.4

	Fixes

	Documentation

	2.1.3

	2.1.2

	Fixes

	2.1.1

	Fixes

	News

	2.1.0

	Important Notes

	News

	Fixes

	Experimental

	Documentation

2.1.4

	release-date

	2010-12-03 12:00 p.m. CEST

	release-by

	Ask Solem

Fixes

	Execution options to apply_async now takes precedence over options
returned by active routers. This was a regression introduced recently
(Issue #244).

	curses monitor: Long arguments are now truncated so curses
doesn’t crash with out of bounds errors (Issue #235).

	multi: Channel errors occurring while handling control commands no
longer crash the worker but are instead logged with severity error.

	SQLAlchemy database backend: Fixed a race condition occurring when
the client wrote the pending state. Just like the Django database backend,
it does no longer save the pending state (Issue #261 + Issue #262).

	Error email body now uses repr(exception) instead of str(exception),
as the latter could result in Unicode decode errors (Issue #245).

	Error email timeout value is now configurable by using the
EMAIL_TIMEOUT [https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-EMAIL_TIMEOUT] setting.

	celeryev: Now works on Windows (but the curses monitor won’t work without
having curses).

	Unit test output no longer emits non-standard characters.

	worker: The broadcast consumer is now closed if the connection is reset.

	worker: Now properly handles errors occurring while trying to acknowledge
the message.

	
	TaskRequest.on_failure now encodes traceback using the current file-system
	encoding (Issue #286).

	EagerResult can now be pickled (Issue #288).

Documentation

	Adding Contributing.

	Added Optimizing.

	Added Security section to the FAQ.

2.1.3

	release-date

	2010-11-09 05:00 p.m. CEST

	release-by

	Ask Solem

	Fixed deadlocks in timer2 which could lead to djcelerymon/celeryev -c
hanging.

	EventReceiver: now sends heartbeat request to find workers.

This means celeryev and friends finds workers immediately
at start-up.

	celeryev curses monitor: Set screen_delay to 10ms, so the screen
refreshes more often.

	Fixed pickling errors when pickling AsyncResult on older Python
versions.

	worker: prefetch count was decremented by ETA tasks even if there
were no active prefetch limits.

2.1.2

	release-data

	TBA

Fixes

	worker: Now sends the task-retried event for retried tasks.

	worker: Now honors ignore result for
WorkerLostError and timeout errors.

	celerybeat: Fixed UnboundLocalError [https://docs.python.org/dev/library/exceptions.html#UnboundLocalError] in celerybeat logging
when using logging setup signals.

	worker: All log messages now includes exc_info.

2.1.1

	release-date

	2010-10-14 02:00 p.m. CEST

	release-by

	Ask Solem

Fixes

	Now working on Windows again.

Removed dependency on the pwd [https://docs.python.org/dev/library/pwd.html#module-pwd]/grp [https://docs.python.org/dev/library/grp.html#module-grp] modules.

	snapshots: Fixed race condition leading to loss of events.

	worker: Reject tasks with an ETA that cannot be converted to a time stamp.

See issue #209

	concurrency.processes.pool: The semaphore was released twice for each task
(both at ACK and result ready).

This has been fixed, and it is now released only once per task.

	docs/configuration: Fixed typo CELERYD_TASK_SOFT_TIME_LIMIT ->
CELERYD_TASK_SOFT_TIME_LIMIT.

See issue #214

	control command dump_scheduled: was using old .info attribute

	
	multi: Fixed set changed size during iteration bug
	occurring in the restart command.

	worker: Accidentally tried to use additional command-line arguments.

This would lead to an error like:

got multiple values for keyword argument ‘concurrency’.

Additional command-line arguments are now ignored, and doesn’t
produce this error. However – we do reserve the right to use
positional arguments in the future, so please don’t depend on this
behavior.

	celerybeat: Now respects routers and task execution options again.

	celerybeat: Now reuses the publisher instead of the connection.

	Cache result backend: Using float [https://docs.python.org/dev/library/functions.html#float] as the expires argument
to cache.set is deprecated by the Memcached libraries,
so we now automatically cast to int [https://docs.python.org/dev/library/functions.html#int].

	unit tests: No longer emits logging and warnings in test output.

News

	Now depends on carrot version 0.10.7.

	Added CELERY_REDIRECT_STDOUTS, and
CELERYD_REDIRECT_STDOUTS_LEVEL settings.

CELERY_REDIRECT_STDOUTS is used by the worker and
beat. All output to stdout and stderr will be
redirected to the current logger if enabled.

CELERY_REDIRECT_STDOUTS_LEVEL decides the log level used and is
WARNING by default.

	Added CELERYBEAT_SCHEDULER setting.

This setting is used to define the default for the -S option to
celerybeat.

Example:

CELERYBEAT_SCHEDULER = 'djcelery.schedulers.DatabaseScheduler'

	Added Task.expires: Used to set default expiry time for tasks.

	New remote control commands: add_consumer and cancel_consumer.

	
add_consumer(queue, exchange, exchange_type, routing_key,

	
**options)

	Tells the worker to declare and consume from the specified
declaration.

	
cancel_consumer(queue_name)

	Tells the worker to stop consuming from queue (by queue name).

Commands also added to celeryctl and
inspect.

Example using celeryctl to start consuming from queue “queue”, in
exchange “exchange”, of type “direct” using binding key “key”:

$ celeryctl inspect add_consumer queue exchange direct key
$ celeryctl inspect cancel_consumer queue

See Management Command-line Utilities (inspect/control) for more information about the
celeryctl program.

Another example using inspect:

>>> from celery.task.control import inspect
>>> inspect.add_consumer(queue='queue', exchange='exchange',
... exchange_type='direct',
... routing_key='key',
... durable=False,
... auto_delete=True)

>>> inspect.cancel_consumer('queue')

	celerybeat: Now logs the traceback if a message can’t be sent.

	celerybeat: Now enables a default socket timeout of 30 seconds.

	README/introduction/homepage: Added link to Flask-Celery [https://github.com/ask/flask-celery].

2.1.0

	release-date

	2010-10-08 12:00 p.m. CEST

	release-by

	Ask Solem

Important Notes

	Celery is now following the versioning semantics defined by semver [http://semver.org].

This means we’re no longer allowed to use odd/even versioning semantics
By our previous versioning scheme this stable release should’ve
been version 2.2.

	Now depends on Carrot 0.10.7.

	No longer depends on SQLAlchemy, this needs to be installed separately
if the database result backend is used.

	django-celery [https://pypi.python.org/pypi/django-celery/] now comes with a monitor for the Django Admin
interface. This can also be used if you’re not a Django user.
(Update: Django-Admin monitor has been replaced with Flower, see the
Monitoring guide).

	If you get an error after upgrading saying:
AttributeError: ‘module’ object has no attribute ‘system’,

Then this is because the celery.platform module has been
renamed to celery.platforms to not collide with the built-in
platform [https://docs.python.org/dev/library/platform.html#module-platform] module.

You have to remove the old platform.py (and maybe
platform.pyc) file from your previous Celery installation.

To do this use python to find the location
of this module:

$ python
>>> import celery.platform
>>> celery.platform
<module 'celery.platform' from '/opt/devel/celery/celery/platform.pyc'>

Here the compiled module is in /opt/devel/celery/celery/,
to remove the offending files do:

$ rm -f /opt/devel/celery/celery/platform.py*

News

	Added support for expiration of AMQP results (requires RabbitMQ 2.1.0)

The new configuration option CELERY_AMQP_TASK_RESULT_EXPIRES
sets the expiry time in seconds (can be int or float):

CELERY_AMQP_TASK_RESULT_EXPIRES = 30 * 60 # 30 minutes.
CELERY_AMQP_TASK_RESULT_EXPIRES = 0.80 # 800 ms.

	celeryev: Event Snapshots

If enabled, the worker sends messages about what the worker is doing.
These messages are called “events”.
The events are used by real-time monitors to show what the
cluster is doing, but they’re not very useful for monitoring
over a longer period of time. Snapshots
lets you take “pictures” of the clusters state at regular intervals.
This can then be stored in a database to generate statistics
with, or even monitoring over longer time periods.

django-celery [https://pypi.python.org/pypi/django-celery/] now comes with a Celery monitor for the Django
Admin interface. To use this you need to run the django-celery [https://pypi.python.org/pypi/django-celery/]
snapshot camera, which stores snapshots to the database at configurable
intervals.

To use the Django admin monitor you need to do the following:

	Create the new database tables:

$ python manage.py syncdb

	Start the django-celery [https://pypi.python.org/pypi/django-celery/] snapshot camera:

$ python manage.py celerycam

	Open up the django admin to monitor your cluster.

The admin interface shows tasks, worker nodes, and even
lets you perform some actions, like revoking and rate limiting tasks,
and shutting down worker nodes.

There’s also a Debian init.d script for events available,
see Daemonization for more information.

New command-line arguments to celeryev:

	celery events --camera: Snapshot camera class to use.

	celery events --logfile: Log file

	celery events --loglevel: Log level

	celery events --maxrate: Shutter rate limit.

	celery events --freq: Shutter frequency

The --camera argument is the name
of a class used to take snapshots with. It must support the interface
defined by celery.events.snapshot.Polaroid.

Shutter frequency controls how often the camera thread wakes up,
while the rate limit controls how often it will actually take
a snapshot.
The rate limit can be an integer (snapshots/s), or a rate limit string
which has the same syntax as the task rate limit strings (“200/m”,
“10/s”, “1/h”, etc).

For the Django camera case, this rate limit can be used to control
how often the snapshots are written to the database, and the frequency
used to control how often the thread wakes up to check if there’s
anything new.

The rate limit is off by default, which means it will take a snapshot
for every --frequency seconds.

	broadcast(): Added callback argument, this can be
used to process replies immediately as they arrive.

	celeryctl: New command line utility to manage and inspect worker nodes,
apply tasks and inspect the results of tasks.

See also

The Management Command-line Utilities (inspect/control) section in the User Guide.

Some examples:

$ celeryctl apply tasks.add -a '[2, 2]' --countdown=10

$ celeryctl inspect active
$ celeryctl inspect registered_tasks
$ celeryctl inspect scheduled
$ celeryctl inspect --help
$ celeryctl apply --help

	Added the ability to set an expiry date and time for tasks.

Example:

>>> # Task expires after one minute from now.
>>> task.apply_async(args, kwargs, expires=60)
>>> # Also supports datetime
>>> task.apply_async(args, kwargs,
... expires=datetime.now() + timedelta(days=1)

When a worker receives a task that’s been expired it will be
marked as revoked (TaskRevokedError).

	Changed the way logging is configured.

We now configure the root logger instead of only configuring
our custom logger. In addition we don’t hijack
the multiprocessing logger anymore, but instead use a custom logger name
for different applications:

	Application

	Logger Name

	celeryd

	"celery"

	celerybeat

	"celery.beat"

	celeryev

	"celery.ev"

This means that the loglevel and logfile arguments will
affect all registered loggers (even those from third-party libraries).
Unless you configure the loggers manually as shown below, that is.

Users can choose to configure logging by subscribing to the
:signal:`~celery.signals.setup_logging` signal:

from logging.config import fileConfig
from celery import signals

@signals.setup_logging.connect
def setup_logging(**kwargs):
 fileConfig('logging.conf')

If there are no receivers for this signal, the logging subsystem
will be configured using the
--loglevel/
--logfile
arguments, this will be used for all defined loggers.

Remember that the worker also redirects stdout and stderr
to the Celery logger, if manually configure logging
you also need to redirect the standard outs manually:

 from logging.config import fileConfig
 from celery import log

def setup_logging(**kwargs):
 import logging
 fileConfig('logging.conf')
 stdouts = logging.getLogger('mystdoutslogger')
 log.redirect_stdouts_to_logger(stdouts, loglevel=logging.WARNING)

	worker Added command line option
--include:

A comma separated list of (task) modules to be imported.

Example:

$ celeryd -I app1.tasks,app2.tasks

	worker: now emits a warning if running as the root user (euid is 0).

	celery.messaging.establish_connection(): Ability to override defaults
used using keyword argument “defaults”.

	worker: Now uses multiprocessing.freeze_support() so that it should work
with py2exe, PyInstaller, cx_Freeze, etc.

	worker: Now includes more meta-data for the STARTED state: PID and
host name of the worker that started the task.

See issue #181

	subtask: Merge additional keyword arguments to subtask() into task keyword
arguments.

For example:

>>> s = subtask((1, 2), {'foo': 'bar'}, baz=1)
>>> s.args
(1, 2)
>>> s.kwargs
{'foo': 'bar', 'baz': 1}

See issue #182.

	worker: Now emits a warning if there’s already a worker node using the same
name running on the same virtual host.

	AMQP result backend: Sending of results are now retried if the connection
is down.

	
	AMQP result backend: result.get(): Wait for next state if state isn’t
	in READY_STATES.

	TaskSetResult now supports subscription.

>>> res = TaskSet(tasks).apply_async()
>>> res[0].get()

	Added Task.send_error_emails + Task.error_whitelist, so these can
be configured per task instead of just by the global setting.

	Added Task.store_errors_even_if_ignored, so it can be changed per Task,
not just by the global setting.

	The Crontab scheduler no longer wakes up every second, but implements
remaining_estimate (Optimization).

	
	worker: Store FAILURE result if the
	WorkerLostError exception occurs (worker process
disappeared).

	worker: Store FAILURE result if one of the *TimeLimitExceeded
exceptions occurs.

	Refactored the periodic task responsible for cleaning up results.

	
	The backend cleanup task is now only added to the schedule if
	CELERY_TASK_RESULT_EXPIRES is set.

	If the schedule already contains a periodic task named
“celery.backend_cleanup” it won’t change it, so the behavior of the
backend cleanup task can be easily changed.

	The task is now run every day at 4:00 AM, rather than every day since
the first time it was run (using Crontab schedule instead of
run_every)

	
	Renamed celery.task.builtins.DeleteExpiredTaskMetaTask
	-> celery.task.builtins.backend_cleanup

	The task itself has been renamed from “celery.delete_expired_task_meta”
to “celery.backend_cleanup”

See issue #134.

	Implemented AsyncResult.forget for SQLAlchemy/Memcached/Redis/Tokyo Tyrant
backends (forget and remove task result).

See issue #184.

	TaskSetResult.join:
Added ‘propagate=True’ argument.

When set to False exceptions occurring in subtasks will
not be re-raised.

	Added Task.update_state(task_id, state, meta)
as a shortcut to task.backend.store_result(task_id, meta, state).

The backend interface is “private” and the terminology outdated,
so better to move this to Task so it can be
used.

	timer2: Set self.running=False in
stop() so it won’t try to join again on
subsequent calls to stop().

	Log colors are now disabled by default on Windows.

	celery.platform renamed to celery.platforms, so it doesn’t
collide with the built-in platform [https://docs.python.org/dev/library/platform.html#module-platform] module.

	Exceptions occurring in Mediator+Pool callbacks are now caught and logged
instead of taking down the worker.

	Redis result backend: Now supports result expiration using the Redis
EXPIRE command.

	unit tests: Don’t leave threads running at tear down.

	worker: Task results shown in logs are now truncated to 46 chars.

	
	Task.__name__ is now an alias to self.__class__.__name__.
	This way tasks introspects more like regular functions.

	Task.retry: Now raises TypeError [https://docs.python.org/dev/library/exceptions.html#TypeError] if kwargs argument is empty.

See issue #164.

	timedelta_seconds: Use timedelta.total_seconds if running on Python 2.7

	TokenBucket [https://kombu.readthedocs.io/en/master/reference/kombu.utils.limits.html#kombu.utils.limits.TokenBucket]: Generic Token Bucket algorithm

	celery.events.state: Recording of cluster state can now
be paused and resumed, including support for buffering.

	
State.freeze(buffer=True)

	Pauses recording of the stream.

If buffer is true, events received while being frozen will be
buffered, and may be replayed later.

	
State.thaw(replay=True)

	Resumes recording of the stream.

If replay is true, then the recorded buffer will be applied.

	
State.freeze_while(fun)

	With a function to apply, freezes the stream before,
and replays the buffer after the function returns.

	EventReceiver.capture
Now supports a timeout keyword argument.

	worker: The mediator thread is now disabled if
CELERY_RATE_LIMITS is enabled, and tasks are directly sent to the
pool without going through the ready queue (Optimization).

Fixes

	Pool: Process timed out by TimeoutHandler must be joined by the Supervisor,
so don’t remove it from the internal process list.

See issue #192.

	TaskPublisher.delay_task now supports exchange argument, so exchange can be
overridden when sending tasks in bulk using the same publisher

See issue #187.

	the worker no longer marks tasks as revoked if CELERY_IGNORE_RESULT
is enabled.

See issue #207.

	AMQP Result backend: Fixed bug with result.get() if
CELERY_TRACK_STARTED enabled.

result.get() would stop consuming after receiving the
STARTED state.

	Fixed bug where new processes created by the pool supervisor becomes stuck
while reading from the task Queue.

See http://bugs.python.org/issue10037

	Fixed timing issue when declaring the remote control command reply queue

This issue could result in replies being lost, but have now been fixed.

	Backward compatible LoggerAdapter implementation: Now works for Python 2.4.

Also added support for several new methods:
fatal, makeRecord, _log, log, isEnabledFor,
addHandler, removeHandler.

Experimental

	multi: Added daemonization support.

multi can now be used to start, stop and restart worker nodes:

$ celeryd-multi start jerry elaine george kramer

This also creates PID files and log files (celeryd@jerry.pid,
…, celeryd@jerry.log. To specify a location for these files
use the –pidfile and –logfile arguments with the %n
format:

$ celeryd-multi start jerry elaine george kramer \
 --logfile=/var/log/celeryd@%n.log \
 --pidfile=/var/run/celeryd@%n.pid

Stopping:

$ celeryd-multi stop jerry elaine george kramer

Restarting. The nodes will be restarted one by one as the old ones
are shutdown:

$ celeryd-multi restart jerry elaine george kramer

Killing the nodes (WARNING: Will discard currently executing tasks):

$ celeryd-multi kill jerry elaine george kramer

See celeryd-multi help for help.

	multi: start command renamed to show.

celeryd-multi start will now actually start and detach worker nodes.
To just generate the commands you have to use celeryd-multi show.

	worker: Added –pidfile argument.

The worker will write its pid when it starts. The worker will
not be started if this file exists and the pid contained is still alive.

	Added generic init.d script using celeryd-multi

https://github.com/celery/celery/tree/master/extra/generic-init.d/celeryd

Documentation

	Added User guide section: Monitoring

	Added user guide section: Periodic Tasks

Moved from getting-started/periodic-tasks and updated.

	tutorials/external moved to new section: “community”.

	References has been added to all sections in the documentation.

This makes it easier to link between documents.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Change history for Celery 2.0

	2.0.3

	Fixes

	Documentation

	2.0.2

	2.0.1

	2.0.0

	Foreword

	Upgrading for Django-users

	Upgrading for others

	Database result backend

	Cache result backend

	Backward incompatible changes

	News

2.0.3

	release-date

	2010-08-27 12:00 p.m. CEST

	release-by

	Ask Solem

Fixes

	Worker: Properly handle connection errors happening while
closing consumers.

	Worker: Events are now buffered if the connection is down,
then sent when the connection is re-established.

	No longer depends on the mailer [https://pypi.python.org/pypi/mailer/] package.

This package had a name space collision with django-mailer,
so its functionality was replaced.

	Redis result backend: Documentation typos: Redis doesn’t have
database names, but database numbers. The default database is now 0.

	inspect:
registered_tasks was requesting an invalid command because of a typo.

See issue #170.

	CELERY_ROUTES: Values defined in the route should now have
precedence over values defined in CELERY_QUEUES when merging
the two.

With the follow settings:

CELERY_QUEUES = {'cpubound': {'exchange': 'cpubound',
 'routing_key': 'cpubound'}}

CELERY_ROUTES = {'tasks.add': {'queue': 'cpubound',
 'routing_key': 'tasks.add',
 'serializer': 'json'}}

The final routing options for tasks.add will become:

{'exchange': 'cpubound',
 'routing_key': 'tasks.add',
 'serializer': 'json'}

This wasn’t the case before: the values
in CELERY_QUEUES would take precedence.

	Worker crashed if the value of CELERY_TASK_ERROR_WHITELIST was
not an iterable

	apply(): Make sure kwargs[‘task_id’] is
always set.

	AsyncResult.traceback: Now returns None, instead of raising
KeyError [https://docs.python.org/dev/library/exceptions.html#KeyError] if traceback is missing.

	inspect: Replies didn’t work correctly
if no destination was specified.

	Can now store result/meta-data for custom states.

	Worker: A warning is now emitted if the sending of task error
emails fails.

	celeryev: Curses monitor no longer crashes if the terminal window
is resized.

See issue #160.

	Worker: On macOS it isn’t possible to run os.exec* in a process
that’s threaded.

This breaks the SIGHUP restart handler,
and is now disabled on macOS, emitting a warning instead.

See issue #152.

	celery.execute.trace: Properly handle raise(str),
which is still allowed in Python 2.4.

See issue #175.

	Using urllib2 in a periodic task on macOS crashed because
of the proxy auto detection used in macOS.

This is now fixed by using a workaround.
See issue #143.

	Debian init-scripts: Commands shouldn’t run in a sub shell

See issue #163.

	Debian init-scripts: Use the absolute path of celeryd program to allow stat

See issue #162.

Documentation

	getting-started/broker-installation: Fixed typo

set_permissions “” -> set_permissions “.*”.

	Tasks User Guide: Added section on database transactions.

See issue #169.

	Routing User Guide: Fixed typo “feed”: -> {“queue”: “feeds”}.

See issue #169.

	Documented the default values for the CELERYD_CONCURRENCY
and CELERYD_PREFETCH_MULTIPLIER settings.

	Tasks User Guide: Fixed typos in the subtask example

	celery.signals: Documented worker_process_init.

	Daemonization cookbook: Need to export DJANGO_SETTINGS_MODULE in
/etc/default/celeryd.

	Added some more FAQs from stack overflow

	Daemonization cookbook: Fixed typo CELERYD_LOGFILE/CELERYD_PIDFILE

to CELERYD_LOG_FILE / CELERYD_PID_FILE

Also added troubleshooting section for the init-scripts.

2.0.2

	release-date

	2010-07-22 11:31 a.m. CEST

	release-by

	Ask Solem

	Routes: When using the dict route syntax, the exchange for a task
could disappear making the task unroutable.

See issue #158.

	Test suite now passing on Python 2.4

	No longer have to type PYTHONPATH=. to use celeryconfig in the current
directory.

This is accomplished by the default loader ensuring that the current
directory is in sys.path when loading the config module.
sys.path is reset to its original state after loading.

Adding the current working directory to sys.path without the user
knowing may be a security issue, as this means someone can drop a Python module in the users
directory that executes arbitrary commands. This was the original reason
not to do this, but if done only when loading the config module, this
means that the behavior will only apply to the modules imported in the
config module, which I think is a good compromise (certainly better than
just explicitly setting PYTHONPATH=. anyway)

	Experimental Cassandra backend added.

	Worker: SIGHUP handler accidentally propagated to worker pool processes.

In combination with GitHub SHA@7a7c44e39344789f11b5346e9cc8340f5fe4846c [https://github.com/celery/celery/commit/7a7c44e39344789f11b5346e9cc8340f5fe4846c]
this would make each child process start a new worker instance when
the terminal window was closed :/

	Worker: Don’t install SIGHUP handler if running from a terminal.

This fixes the problem where the worker is launched in the background
when closing the terminal.

	Worker: Now joins threads at shutdown.

See issue #152.

	Test tear down: Don’t use atexit but nose’s teardown() functionality
instead.

See issue #154.

	Debian worker init-script: Stop now works correctly.

	Task logger: warn method added (synonym for warning)

	Can now define a white list of errors to send error emails for.

Example:

CELERY_TASK_ERROR_WHITELIST = ('myapp.MalformedInputError',)

See issue #153.

	Worker: Now handles overflow exceptions in time.mktime while parsing
the ETA field.

	LoggerWrapper: Try to detect loggers logging back to stderr/stdout making
an infinite loop.

	Added celery.task.control.inspect: Inspects a running worker.

Examples:

Inspect a single worker
>>> i = inspect('myworker.example.com')

Inspect several workers
>>> i = inspect(['myworker.example.com', 'myworker2.example.com'])

Inspect all workers consuming on this vhost.
>>> i = inspect()

Methods

Get currently executing tasks
>>> i.active()

Get currently reserved tasks
>>> i.reserved()

Get the current ETA schedule
>>> i.scheduled()

Worker statistics and info
>>> i.stats()

List of currently revoked tasks
>>> i.revoked()

List of registered tasks
>>> i.registered_tasks()

	Remote control commands dump_active/dump_reserved/dump_schedule
now replies with detailed task requests.

Containing the original arguments and fields of the task requested.

In addition the remote control command set_loglevel has been added,
this only changes the log level for the main process.

	Worker control command execution now catches errors and returns their
string representation in the reply.

	Functional test suite added

celery.tests.functional.case contains utilities to start
and stop an embedded worker process, for use in functional testing.

2.0.1

	release-date

	2010-07-09 03:02 p.m. CEST

	release-by

	Ask Solem

	multiprocessing.pool: Now handles encoding errors, so that pickling errors
doesn’t crash the worker processes.

	The remote control command replies wasn’t working with RabbitMQ 1.8.0’s
stricter equivalence checks.

If you’ve already hit this problem you may have to delete the
declaration:

$ camqadm exchange.delete celerycrq

or:

$ python manage.py camqadm exchange.delete celerycrq

	A bug sneaked in the ETA scheduler that made it only able to execute
one task per second(!)

The scheduler sleeps between iterations so it doesn’t consume too much CPU.
It keeps a list of the scheduled items sorted by time, at each iteration
it sleeps for the remaining time of the item with the nearest deadline.
If there are no ETA tasks it will sleep for a minimum amount of time, one
second by default.

A bug sneaked in here, making it sleep for one second for every task
that was scheduled. This has been fixed, so now it should move
tasks like hot knife through butter.

In addition a new setting has been added to control the minimum sleep
interval; CELERYD_ETA_SCHEDULER_PRECISION. A good
value for this would be a float between 0 and 1, depending
on the needed precision. A value of 0.8 means that when the ETA of a task
is met, it will take at most 0.8 seconds for the task to be moved to the
ready queue.

	Pool: Supervisor didn’t release the semaphore.

This would lead to a deadlock if all workers terminated prematurely.

	Added Python version trove classifiers: 2.4, 2.5, 2.6 and 2.7

	Tests now passing on Python 2.7.

	Task.__reduce__: Tasks created using the task decorator can now be pickled.

	setup.py: nose [https://pypi.python.org/pypi/nose/] added to tests_require.

	Pickle should now work with SQLAlchemy 0.5.x

	New homepage design by Jan Henrik Helmers: http://celeryproject.org

	New Sphinx theme by Armin Ronacher: http://docs.celeryproject.org/

	Fixed “pending_xref” errors shown in the HTML rendering of the
documentation. Apparently this was caused by new changes in Sphinx 1.0b2.

	Router classes in CELERY_ROUTES are now imported lazily.

Importing a router class in a module that also loads the Celery
environment would cause a circular dependency. This is solved
by importing it when needed after the environment is set up.

	CELERY_ROUTES was broken if set to a single dict.

This example in the docs should now work again:

CELERY_ROUTES = {'feed.tasks.import_feed': 'feeds'}

	CREATE_MISSING_QUEUES wasn’t honored by apply_async.

	New remote control command: stats

Dumps information about the worker, like pool process ids, and
total number of tasks executed by type.

Example reply:

[{'worker.local':
 'total': {'tasks.sleeptask': 6},
 'pool': {'timeouts': [None, None],
 'processes': [60376, 60377],
 'max-concurrency': 2,
 'max-tasks-per-child': None,
 'put-guarded-by-semaphore': True}}]

	New remote control command: dump_active

Gives a list of tasks currently being executed by the worker.
By default arguments are passed through repr in case there
are arguments that’s not JSON encodable. If you know
the arguments are JSON safe, you can pass the argument safe=True.

Example reply:

>>> broadcast('dump_active', arguments={'safe': False}, reply=True)
[{'worker.local': [
 {'args': '(1,)',
 'time_start': 1278580542.6300001,
 'name': 'tasks.sleeptask',
 'delivery_info': {
 'consumer_tag': '30',
 'routing_key': 'celery',
 'exchange': 'celery'},
 'hostname': 'casper.local',
 'acknowledged': True,
 'kwargs': '{}',
 'id': '802e93e9-e470-47ed-b913-06de8510aca2',
 }
]}]

	Added experimental support for persistent revokes.

Use the -S|–statedb argument to the worker to enable it:

$ celeryd --statedb=/var/run/celeryd

This will use the file: /var/run/celeryd.db,
as the shelve module automatically adds the .db suffix.

2.0.0

	release-date

	2010-07-02 02:30 p.m. CEST

	release-by

	Ask Solem

Foreword

Celery 2.0 contains backward incompatible changes, the most important
being that the Django dependency has been removed so Celery no longer
supports Django out of the box, but instead as an add-on package
called django-celery [https://pypi.python.org/pypi/django-celery/].

We’re very sorry for breaking backwards compatibility, but there’s
also many new and exciting features to make up for the time you lose
upgrading, so be sure to read the News section.

Quite a lot of potential users have been upset about the Django dependency,
so maybe this is a chance to get wider adoption by the Python community as
well.

Big thanks to all contributors, testers and users!

Upgrading for Django-users

Django integration has been moved to a separate package: django-celery [https://pypi.python.org/pypi/django-celery/].

	To upgrade you need to install the django-celery [https://pypi.python.org/pypi/django-celery/] module and change:

INSTALLED_APPS = 'celery'

to:

INSTALLED_APPS = 'djcelery'

	If you use mod_wsgi you need to add the following line to your .wsgi
file:

import os
os.environ['CELERY_LOADER'] = 'django'

	The following modules has been moved to django-celery [https://pypi.python.org/pypi/django-celery/]:

	Module name

	Replace with

	celery.models

	djcelery.models

	celery.managers

	djcelery.managers

	celery.views

	djcelery.views

	celery.urls

	djcelery.urls

	celery.management

	djcelery.management

	celery.loaders.djangoapp

	djcelery.loaders

	celery.backends.database

	djcelery.backends.database

	celery.backends.cache

	djcelery.backends.cache

Importing djcelery will automatically setup Celery to use Django loader.
loader. It does this by setting the CELERY_LOADER environment variable to
“django” (it won’t change it if a loader is already set).

When the Django loader is used, the “database” and “cache” result backend
aliases will point to the djcelery backends instead of the built-in backends,
and configuration will be read from the Django settings.

Upgrading for others

Database result backend

The database result backend is now using SQLAlchemy [http://www.sqlalchemy.org] instead of the
Django ORM, see Supported Databases [http://www.sqlalchemy.org/docs/core/engines.html#supported-databases] for a table of supported databases.

The DATABASE_* settings has been replaced by a single setting:
CELERY_RESULT_DBURI. The value here should be an
SQLAlchemy Connection String [http://www.sqlalchemy.org/docs/core/engines.html#database-urls], some examples include:

sqlite (filename)
CELERY_RESULT_DBURI = 'sqlite:///celerydb.sqlite'

mysql
CELERY_RESULT_DBURI = 'mysql://scott:tiger@localhost/foo'

postgresql
CELERY_RESULT_DBURI = 'postgresql://scott:tiger@localhost/mydatabase'

oracle
CELERY_RESULT_DBURI = 'oracle://scott:tiger@127.0.0.1:1521/sidname'

See SQLAlchemy Connection Strings [http://www.sqlalchemy.org/docs/core/engines.html#database-urls] for more information about connection
strings.

To specify additional SQLAlchemy database engine options you can use
the CELERY_RESULT_ENGINE_OPTIONS setting:

echo enables verbose logging from SQLAlchemy.
CELERY_RESULT_ENGINE_OPTIONS = {'echo': True}

Cache result backend

The cache result backend is no longer using the Django cache framework,
but it supports mostly the same configuration syntax:

CELERY_CACHE_BACKEND = 'memcached://A.example.com:11211;B.example.com'

To use the cache backend you must either have the pylibmc [https://pypi.python.org/pypi/pylibmc/] or
python-memcached [https://pypi.python.org/pypi/python-memcached/] library installed, of which the former is regarded
as the best choice.

The support backend types are memcached:// and memory://,
we haven’t felt the need to support any of the other backends
provided by Django.

Backward incompatible changes

	Default (python) loader now prints warning on missing celeryconfig.py
instead of raising ImportError [https://docs.python.org/dev/library/exceptions.html#ImportError].

The worker raises ImproperlyConfigured if the configuration
isn’t set up. This makes it possible to use –help etc., without having a
working configuration.

Also this makes it possible to use the client side of Celery without being
configured:

>>> from carrot.connection import BrokerConnection
>>> conn = BrokerConnection('localhost', 'guest', 'guest', '/')
>>> from celery.execute import send_task
>>> r = send_task('celery.ping', args=(), kwargs={}, connection=conn)
>>> from celery.backends.amqp import AMQPBackend
>>> r.backend = AMQPBackend(connection=conn)
>>> r.get()
'pong'

	The following deprecated settings has been removed (as scheduled by
the Celery Deprecation Time-line):

	Setting name

	Replace with

	CELERY_AMQP_CONSUMER_QUEUES

	CELERY_QUEUES

	CELERY_AMQP_EXCHANGE

	CELERY_DEFAULT_EXCHANGE

	CELERY_AMQP_EXCHANGE_TYPE

	CELERY_DEFAULT_EXCHANGE_TYPE

	CELERY_AMQP_CONSUMER_ROUTING_KEY

	CELERY_QUEUES

	CELERY_AMQP_PUBLISHER_ROUTING_KEY

	CELERY_DEFAULT_ROUTING_KEY

	The celery.task.rest module has been removed, use celery.task.http
instead (as scheduled by the Celery Deprecation Time-line).

	It’s no longer allowed to skip the class name in loader names.
(as scheduled by the Celery Deprecation Time-line):

Assuming the implicit Loader class name is no longer supported,
for example, if you use:

CELERY_LOADER = 'myapp.loaders'

You need to include the loader class name, like this:

CELERY_LOADER = 'myapp.loaders.Loader'

	CELERY_TASK_RESULT_EXPIRES now defaults to 1 day.

Previous default setting was to expire in 5 days.

	AMQP backend: Don’t use different values for auto_delete.

This bug became visible with RabbitMQ 1.8.0, which no longer
allows conflicting declarations for the auto_delete and durable settings.

If you’ve already used Celery with this backend chances are you
have to delete the previous declaration:

$ camqadm exchange.delete celeryresults

	Now uses pickle instead of cPickle on Python versions <= 2.5

cPickle is broken in Python <= 2.5.

It unsafely and incorrectly uses relative instead of absolute imports,
so for example:

exceptions.KeyError

becomes:

celery.exceptions.KeyError

Your best choice is to upgrade to Python 2.6,
as while the pure pickle version has worse performance,
it is the only safe option for older Python versions.

News

	celeryev: Curses Celery Monitor and Event Viewer.

This is a simple monitor allowing you to see what tasks are
executing in real-time and investigate tracebacks and results of ready
tasks. It also enables you to set new rate limits and revoke tasks.

Screenshot:

[image: ../_images/celeryevshotsm.jpg]

If you run celeryev with the -d switch it will act as an event
dumper, simply dumping the events it receives to standard out:

$ celeryev -d
-> celeryev: starting capture...
casper.local [2010-06-04 10:42:07.020000] heartbeat
casper.local [2010-06-04 10:42:14.750000] task received:
 tasks.add(61a68756-27f4-4879-b816-3cf815672b0e) args=[2, 2] kwargs={}
 eta=2010-06-04T10:42:16.669290, retries=0
casper.local [2010-06-04 10:42:17.230000] task started
 tasks.add(61a68756-27f4-4879-b816-3cf815672b0e) args=[2, 2] kwargs={}
casper.local [2010-06-04 10:42:17.960000] task succeeded:
 tasks.add(61a68756-27f4-4879-b816-3cf815672b0e)
 args=[2, 2] kwargs={} result=4, runtime=0.782663106918

The fields here are, in order: *sender hostname*, *timestamp*, *event type* and
additional event fields.

	AMQP result backend: Now supports .ready(), .successful(),
.result, .status, and even responds to changes in task state

	New user guides:

	Workers Guide

	Canvas: Designing Work-flows

	Routing Tasks

	Worker: Standard out/error is now being redirected to the log file.

	billiard [https://pypi.python.org/pypi/billiard/] has been moved back to the Celery repository.

	Module name

	celery equivalent

	billiard.pool

	celery.concurrency.processes.pool

	billiard.serialization

	celery.serialization

	billiard.utils.functional

	celery.utils.functional

The billiard [https://pypi.python.org/pypi/billiard/] distribution may be maintained, depending on interest.

	now depends on carrot [https://pypi.python.org/pypi/carrot/] >= 0.10.5

	now depends on pyparsing [https://pypi.python.org/pypi/pyparsing/]

	Worker: Added –purge as an alias to –discard.

	Worker: Control-c (SIGINT) once does warm shutdown,
hitting Control-c twice forces termination.

	Added support for using complex Crontab-expressions in periodic tasks. For
example, you can now use:

>>> crontab(minute='*/15')

or even:

>>> crontab(minute='*/30', hour='8-17,1-2', day_of_week='thu-fri')

See Periodic Tasks.

	Worker: Now waits for available pool processes before applying new
tasks to the pool.

This means it doesn’t have to wait for dozens of tasks to finish at shutdown
because it has applied prefetched tasks without having any pool
processes available to immediately accept them.

See issue #122.

	New built-in way to do task callbacks using
subtask.

See Canvas: Designing Work-flows for more information.

	TaskSets can now contain several types of tasks.

TaskSet has been refactored to use
a new syntax, please see Canvas: Designing Work-flows for more information.

The previous syntax is still supported, but will be deprecated in
version 1.4.

	TaskSet failed() result was incorrect.

See issue #132.

	Now creates different loggers per task class.

See issue #129.

	Missing queue definitions are now created automatically.

You can disable this using the CELERY_CREATE_MISSING_QUEUES
setting.

The missing queues are created with the following options:

CELERY_QUEUES[name] = {'exchange': name,
 'exchange_type': 'direct',
 'routing_key': 'name}

This feature is added for easily setting up routing using the -Q
option to the worker:

$ celeryd -Q video, image

See the new routing section of the User Guide for more information:
Routing Tasks.

	New Task option: Task.queue

If set, message options will be taken from the corresponding entry
in CELERY_QUEUES. exchange, exchange_type and routing_key
will be ignored

	Added support for task soft and hard time limits.

New settings added:

	CELERYD_TASK_TIME_LIMIT

Hard time limit. The worker processing the task will be killed and
replaced with a new one when this is exceeded.

	CELERYD_TASK_SOFT_TIME_LIMIT

Soft time limit. The SoftTimeLimitExceeded
exception will be raised when this is exceeded. The task can catch
this to, for example, clean up before the hard time limit comes.

New command-line arguments to celeryd added:
–time-limit and –soft-time-limit.

What’s left?

This won’t work on platforms not supporting signals (and specifically
the SIGUSR1 signal) yet. So an alternative the ability to disable
the feature all together on nonconforming platforms must be implemented.

Also when the hard time limit is exceeded, the task result should
be a TimeLimitExceeded exception.

	Test suite is now passing without a running broker, using the carrot
in-memory backend.

	Log output is now available in colors.

	Log level

	Color

	DEBUG

	Blue

	WARNING

	Yellow

	CRITICAL

	Magenta

	ERROR

	Red

This is only enabled when the log output is a tty.
You can explicitly enable/disable this feature using the
CELERYD_LOG_COLOR setting.

	Added support for task router classes (like the django multi-db routers)

	New setting: CELERY_ROUTES

This is a single, or a list of routers to traverse when
sending tasks. Dictionaries in this list converts to a
celery.routes.MapRoute instance.

Examples:

>>> CELERY_ROUTES = {'celery.ping': 'default',
 'mytasks.add': 'cpu-bound',
 'video.encode': {
 'queue': 'video',
 'exchange': 'media'
 'routing_key': 'media.video.encode'}}

>>> CELERY_ROUTES = ('myapp.tasks.Router',
 {'celery.ping': 'default'})

Where myapp.tasks.Router could be:

class Router(object):

 def route_for_task(self, task, args=None, kwargs=None):
 if task == 'celery.ping':
 return 'default'

route_for_task may return a string or a dict. A string then means
it’s a queue name in CELERY_QUEUES, a dict means it’s a custom route.

When sending tasks, the routers are consulted in order. The first
router that doesn’t return None is the route to use. The message options
is then merged with the found route settings, where the routers settings
have priority.

Example if apply_async() has these arguments:

>>> Task.apply_async(immediate=False, exchange='video',
... routing_key='video.compress')

and a router returns:

{'immediate': True,
 'exchange': 'urgent'}

the final message options will be:

>>> task.apply_async(
... immediate=True,
... exchange='urgent',
... routing_key='video.compress',
...)

(and any default message options defined in the
Task class)

	New Task handler called after the task returns:
after_return().

	
	ExceptionInfo now passed to
	on_retry()/
on_failure() as einfo keyword argument.

	Worker: Added CELERYD_MAX_TASKS_PER_CHILD /
celery worker --maxtasksperchild.

Defines the maximum number of tasks a pool worker can process before
the process is terminated and replaced by a new one.

	Revoked tasks now marked with state REVOKED, and result.get()
will now raise TaskRevokedError.

	celery.task.control.ping() now works as expected.

	apply(throw=True) / CELERY_EAGER_PROPAGATES_EXCEPTIONS:
Makes eager execution re-raise task errors.

	New signal: ~celery.signals.worker_process_init: Sent inside the
pool worker process at init.

	Worker: celery worker -Q option: Ability to specify list of queues
to use, disabling other configured queues.

For example, if CELERY_QUEUES defines four
queues: image, video, data and default, the following
command would make the worker only consume from the image and video
queues:

$ celeryd -Q image,video

	Worker: New return value for the revoke control command:

Now returns:

{'ok': 'task $id revoked'}

instead of True.

	Worker: Can now enable/disable events using remote control

Example usage:

>>> from celery.task.control import broadcast
>>> broadcast('enable_events')
>>> broadcast('disable_events')

	Removed top-level tests directory. Test config now in celery.tests.config

This means running the unit tests doesn’t require any special setup.
celery/tests/__init__ now configures the CELERY_CONFIG_MODULE
and CELERY_LOADER environment variables, so when nosetests
imports that, the unit test environment is all set up.

Before you run the tests you need to install the test requirements:

$ pip install -r requirements/test.txt

Running all tests:

$ nosetests

Specifying the tests to run:

$ nosetests celery.tests.test_task

Producing HTML coverage:

$ nosetests --with-coverage3

The coverage output is then located in celery/tests/cover/index.html.

	Worker: New option –version: Dump version info and exit.

	celeryd-multi: Tool for shell scripts
to start multiple workers.

Some examples:

	Advanced example with 10 workers:

	Three of the workers processes the images and video queue

	Two of the workers processes the data queue with loglevel DEBUG

	the rest processes the default’ queue.

$ celeryd-multi start 10 -l INFO -Q:1-3 images,video -Q:4,5:data -Q default -L:4,5 DEBUG

	Get commands to start 10 workers, with 3 processes each

$ celeryd-multi start 3 -c 3
celeryd -n celeryd1.myhost -c 3
celeryd -n celeryd2.myhost -c 3
celeryd -n celeryd3.myhost -c 3

	Start 3 named workers

$ celeryd-multi start image video data -c 3
celeryd -n image.myhost -c 3
celeryd -n video.myhost -c 3
celeryd -n data.myhost -c 3

	Specify custom hostname

$ celeryd-multi start 2 -n worker.example.com -c 3
celeryd -n celeryd1.worker.example.com -c 3
celeryd -n celeryd2.worker.example.com -c 3

Additional options are added to each celeryd,
but you can also modify the options for ranges of or single workers

	3 workers: Two with 3 processes, and one with 10 processes.

$ celeryd-multi start 3 -c 3 -c:1 10
celeryd -n celeryd1.myhost -c 10
celeryd -n celeryd2.myhost -c 3
celeryd -n celeryd3.myhost -c 3

	Can also specify options for named workers

$ celeryd-multi start image video data -c 3 -c:image 10
celeryd -n image.myhost -c 10
celeryd -n video.myhost -c 3
celeryd -n data.myhost -c 3

	Ranges and lists of workers in options is also allowed:
(-c:1-3 can also be written as -c:1,2,3)

$ celeryd-multi start 5 -c 3 -c:1-3 10
celeryd-multi -n celeryd1.myhost -c 10
celeryd-multi -n celeryd2.myhost -c 10
celeryd-multi -n celeryd3.myhost -c 10
celeryd-multi -n celeryd4.myhost -c 3
celeryd-multi -n celeryd5.myhost -c 3

	Lists also work with named workers:

$ celeryd-multi start foo bar baz xuzzy -c 3 -c:foo,bar,baz 10
celeryd-multi -n foo.myhost -c 10
celeryd-multi -n bar.myhost -c 10
celeryd-multi -n baz.myhost -c 10
celeryd-multi -n xuzzy.myhost -c 3

	The worker now calls the result backends process_cleanup method
after task execution instead of before.

	AMQP result backend now supports Pika.

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Change history for Celery 1.0

	1.0.6

	1.0.5

	Critical

	Changes

	1.0.4

	1.0.3

	Important notes

	News

	Remote control commands

	Fixes

	1.0.2

	1.0.1

	1.0.0

	Backward incompatible changes

	Deprecations

	News

	Changes

	Bugs

	Documentation

	0.8.4

	0.8.3

	0.8.2

	0.8.1

	Very important note

	Important changes

	Changes

	0.8.0

	Backward incompatible changes

	Important changes

	News

	0.6.0

	Important changes

	News

	0.4.1

	0.4.0

	0.3.20

	0.3.7

	0.3.3

	0.3.2

	0.3.1

	0.3.0

	0.2.0

	0.2.0-pre3

	0.2.0-pre2

	0.2.0-pre1

	0.1.15

	0.1.14

	0.1.13

	0.1.12

	0.1.11

	0.1.10

	0.1.8

	0.1.7

	0.1.6

	0.1.0

1.0.6

	release-date

	2010-06-30 09:57 a.m. CEST

	release-by

	Ask Solem

	RabbitMQ 1.8.0 has extended their exchange equivalence tests to
include auto_delete and durable. This broke the AMQP backend.

If you’ve already used the AMQP backend this means you have to
delete the previous definitions:

$ camqadm exchange.delete celeryresults

or:

$ python manage.py camqadm exchange.delete celeryresults

1.0.5

	release-date

	2010-06-01 02:36 p.m. CEST

	release-by

	Ask Solem

Critical

	INT/Control-c killed the pool, abruptly terminating the
currently executing tasks.

Fixed by making the pool worker processes ignore SIGINT.

	Shouldn’t close the consumers before the pool is terminated, just cancel
the consumers.

See issue #122.

	Now depends on billiard [https://pypi.python.org/pypi/billiard/] >= 0.3.1

	worker: Previously exceptions raised by worker components could stall
start-up, now it correctly logs the exceptions and shuts down.

	worker: Prefetch counts was set too late. QoS is now set as early as possible,
so the worker: can’t slurp in all the messages at start-up.

Changes

	celery.contrib.abortable: Abortable tasks.

Tasks that defines steps of execution, the task can then
be aborted after each step has completed.

	EventDispatcher: No longer creates AMQP channel
if events are disabled

	Added required RPM package names under [bdist_rpm] section, to support building RPMs
from the sources using setup.py.

	Running unit tests: NOSE_VERBOSE environment var now enables verbose output from Nose.

	celery.execute.apply(): Pass log file/log level arguments as task kwargs.

See issue #110.

	celery.execute.apply: Should return exception, not
ExceptionInfo on error.

See issue #111.

	Added new entries to the FAQs:

	Should I use retry or acks_late?

	Can I call a task by name?

1.0.4

	release-date

	2010-05-31 09:54 a.m. CEST

	release-by

	Ask Solem

	Changelog merged with 1.0.5 as the release was never announced.

1.0.3

	release-date

	2010-05-15 03:00 p.m. CEST

	release-by

	Ask Solem

Important notes

	Messages are now acknowledged just before the task function is executed.

This is the behavior we’ve wanted all along, but couldn’t have because of
limitations in the multiprocessing module.
The previous behavior wasn’t good, and the situation worsened with the
release of 1.0.1, so this change will definitely improve
reliability, performance and operations in general.

For more information please see http://bit.ly/9hom6T

	Database result backend: result now explicitly sets null=True as
django-picklefield version 0.1.5 changed the default behavior
right under our noses :(

See: http://bit.ly/d5OwMr

This means those who created their Celery tables (via syncdb or
celeryinit) with django-picklefield` [https://pypi.python.org/pypi/django-picklefield`/]
versions >= 0.1.5 has to alter their tables to
allow the result field to be NULL manually.

MySQL:

ALTER TABLE celery_taskmeta MODIFY result TEXT NULL

PostgreSQL:

ALTER TABLE celery_taskmeta ALTER COLUMN result DROP NOT NULL

	Removed Task.rate_limit_queue_type, as it wasn’t really useful
and made it harder to refactor some parts.

	Now depends on carrot >= 0.10.4

	Now depends on billiard >= 0.3.0

News

	AMQP backend: Added timeout support for result.get() /
result.wait().

	New task option: Task.acks_late (default: CELERY_ACKS_LATE)

Late ack means the task messages will be acknowledged after the task
has been executed, not just before, which is the default behavior.

Note

This means the tasks may be executed twice if the worker
crashes in mid-execution. Not acceptable for most
applications, but desirable for others.

	Added Crontab-like scheduling to periodic tasks.

Like a cronjob, you can specify units of time of when
you’d like the task to execute. While not a full implementation
of cron’s features, it should provide a fair degree of common scheduling
needs.

You can specify a minute (0-59), an hour (0-23), and/or a day of the
week (0-6 where 0 is Sunday, or by names:
sun, mon, tue, wed, thu, fri, sat).

Examples:

from celery.schedules import crontab
from celery.decorators import periodic_task

@periodic_task(run_every=crontab(hour=7, minute=30))
def every_morning():
 print('Runs every morning at 7:30a.m')

@periodic_task(run_every=crontab(hour=7, minute=30, day_of_week='mon'))
def every_monday_morning():
 print('Run every monday morning at 7:30a.m')

@periodic_task(run_every=crontab(minutes=30))
def every_hour():
 print('Runs every hour on the clock (e.g., 1:30, 2:30, 3:30 etc.).')

Note

This a late addition. While we have unit tests, due to the
nature of this feature we haven’t been able to completely test this
in practice, so consider this experimental.

	TaskPool.apply_async: Now supports the accept_callback argument.

	apply_async: Now raises ValueError [https://docs.python.org/dev/library/exceptions.html#ValueError] if task args isn’t a list,
or kwargs isn’t a tuple (Issue #95).

	Task.max_retries can now be None, which means it will retry forever.

	celerybeat: Now reuses the same connection when publishing large
sets of tasks.

	Modified the task locking example in the documentation to use
cache.add for atomic locking.

	Added experimental support for a started status on tasks.

If Task.track_started is enabled the task will report its status
as “started” when the task is executed by a worker.

The default value is False as the normal behavior is to not
report that level of granularity. Tasks are either pending, finished,
or waiting to be retried. Having a “started” status can be useful for
when there are long running tasks and there’s a need to report which
task is currently running.

The global default can be overridden by the CELERY_TRACK_STARTED
setting.

	User Guide: New section Tips and Best Practices.

Contributions welcome!

Remote control commands

	Remote control commands can now send replies back to the caller.

Existing commands has been improved to send replies, and the client
interface in celery.task.control has new keyword arguments: reply,
timeout and limit. Where reply means it will wait for replies,
timeout is the time in seconds to stop waiting for replies, and limit
is the maximum number of replies to get.

By default, it will wait for as many replies as possible for one second.

	rate_limit(task_name, destination=all, reply=False, timeout=1, limit=0)

Worker returns {‘ok’: message} on success,
or {‘failure’: message} on failure.

>>> from celery.task.control import rate_limit
>>> rate_limit('tasks.add', '10/s', reply=True)
[{'worker1': {'ok': 'new rate limit set successfully'}},
 {'worker2': {'ok': 'new rate limit set successfully'}}]

	ping(destination=all, reply=False, timeout=1, limit=0)

Worker returns the simple message “pong”.

>>> from celery.task.control import ping
>>> ping(reply=True)
[{'worker1': 'pong'},
 {'worker2': 'pong'},

	revoke(destination=all, reply=False, timeout=1, limit=0)

Worker simply returns True.

>>> from celery.task.control import revoke
>>> revoke('419e46eb-cf6a-4271-86a8-442b7124132c', reply=True)
[{'worker1': True},
 {'worker2'; True}]

	You can now add your own remote control commands!

Remote control commands are functions registered in the command
registry. Registering a command is done using
celery.worker.control.Panel.register():

from celery.task.control import Panel

@Panel.register
def reset_broker_connection(state, **kwargs):
 state.consumer.reset_connection()
 return {'ok': 'connection re-established'}

With this module imported in the worker, you can launch the command
using celery.task.control.broadcast:

>>> from celery.task.control import broadcast
>>> broadcast('reset_broker_connection', reply=True)
[{'worker1': {'ok': 'connection re-established'},
 {'worker2': {'ok': 'connection re-established'}}]

TIP You can choose the worker(s) to receive the command
by using the destination argument:

>>> broadcast('reset_broker_connection', destination=['worker1'])
[{'worker1': {'ok': 'connection re-established'}]

	New remote control command: dump_reserved

Dumps tasks reserved by the worker, waiting to be executed:

>>> from celery.task.control import broadcast
>>> broadcast('dump_reserved', reply=True)
[{'myworker1': [<TaskRequest>]}]

	New remote control command: dump_schedule

Dumps the workers currently registered ETA schedule.
These are tasks with an eta (or countdown) argument
waiting to be executed by the worker.

>>> from celery.task.control import broadcast
>>> broadcast('dump_schedule', reply=True)
[{'w1': []},
 {'w3': []},
 {'w2': ['0. 2010-05-12 11:06:00 pri0 <TaskRequest
 {name:'opalfeeds.tasks.refresh_feed_slice',
 id:'95b45760-4e73-4ce8-8eac-f100aa80273a',
 args:'(<Feeds freq_max:3600 freq_min:60
 start:2184.0 stop:3276.0>,)',
 kwargs:'{'page': 2}'}>']},
 {'w4': ['0. 2010-05-12 11:00:00 pri0 <TaskRequest
 {name:'opalfeeds.tasks.refresh_feed_slice',
 id:'c053480b-58fb-422f-ae68-8d30a464edfe',
 args:'(<Feeds freq_max:3600 freq_min:60
 start:1092.0 stop:2184.0>,)',
 kwargs:'{\'page\': 1}'}>',
 '1. 2010-05-12 11:12:00 pri0 <TaskRequest
 {name:'opalfeeds.tasks.refresh_feed_slice',
 id:'ab8bc59e-6cf8-44b8-88d0-f1af57789758',
 args:'(<Feeds freq_max:3600 freq_min:60
 start:3276.0 stop:4365>,)',
 kwargs:'{\'page\': 3}'}>']}]

Fixes

	Mediator thread no longer blocks for more than 1 second.

With rate limits enabled and when there was a lot of remaining time,
the mediator thread could block shutdown (and potentially block other
jobs from coming in).

	Remote rate limits wasn’t properly applied (Issue #98).

	Now handles exceptions with Unicode messages correctly in
TaskRequest.on_failure.

	Database backend: TaskMeta.result: default value should be None
not empty string.

1.0.2

	release-date

	2010-03-31 12:50 p.m. CET

	release-by

	Ask Solem

	Deprecated: CELERY_BACKEND, please use
CELERY_RESULT_BACKEND instead.

	We now use a custom logger in tasks. This logger supports task magic
keyword arguments in formats.

The default format for tasks (CELERYD_TASK_LOG_FORMAT) now
includes the id and the name of tasks so the origin of task log messages
can easily be traced.

	Example output::
	
	[2010-03-25 13:11:20,317: INFO/PoolWorker-1]
	[tasks.add(a6e1c5ad-60d9-42a0-8b24-9e39363125a4)] Hello from add

To revert to the previous behavior you can set:

CELERYD_TASK_LOG_FORMAT = """
 [%(asctime)s: %(levelname)s/%(processName)s] %(message)s
""".strip()

	Unit tests: Don’t disable the django test database tear down,
instead fixed the underlying issue which was caused by modifications
to the DATABASE_NAME setting (Issue #82).

	Django Loader: New config CELERY_DB_REUSE_MAX (max number of
tasks to reuse the same database connection)

The default is to use a new connection for every task.
We’d very much like to reuse the connection, but a safe number of
reuses isn’t known, and we don’t have any way to handle the errors
that might happen, which may even be database dependent.

See: http://bit.ly/94fwdd

	worker: The worker components are now configurable: CELERYD_POOL,
CELERYD_CONSUMER, CELERYD_MEDIATOR, and
CELERYD_ETA_SCHEDULER.

The default configuration is as follows:

CELERYD_POOL = 'celery.concurrency.processes.TaskPool'
CELERYD_MEDIATOR = 'celery.worker.controllers.Mediator'
CELERYD_ETA_SCHEDULER = 'celery.worker.controllers.ScheduleController'
CELERYD_CONSUMER = 'celery.worker.consumer.Consumer'

The CELERYD_POOL setting makes it easy to swap out the
multiprocessing pool with a threaded pool, or how about a
twisted/eventlet pool?

Consider the competition for the first pool plug-in started!

	Debian init-scripts: Use -a not && (Issue #82).

	Debian init-scripts: Now always preserves $CELERYD_OPTS from the
/etc/default/celeryd and /etc/default/celerybeat.

	celery.beat.Scheduler: Fixed a bug where the schedule wasn’t properly
flushed to disk if the schedule hadn’t been properly initialized.

	celerybeat: Now syncs the schedule to disk when receiving the SIGTERM
and SIGINT signals.

	Control commands: Make sure keywords arguments aren’t in Unicode.

	ETA scheduler: Was missing a logger object, so the scheduler crashed
when trying to log that a task had been revoked.

	management.commands.camqadm: Fixed typo camqpadm -> camqadm
(Issue #83).

	PeriodicTask.delta_resolution: wasn’t working for days and hours, now fixed
by rounding to the nearest day/hour.

	Fixed a potential infinite loop in BaseAsyncResult.__eq__, although
there’s no evidence that it has ever been triggered.

	worker: Now handles messages with encoding problems by acking them and
emitting an error message.

1.0.1

	release-date

	2010-02-24 07:05 p.m. CET

	release-by

	Ask Solem

	Tasks are now acknowledged early instead of late.

This is done because messages can only be acknowledged within the same
connection channel, so if the connection is lost we’d’ve to
re-fetch the message again to acknowledge it.

This might or might not affect you, but mostly those running tasks with a
really long execution time are affected, as all tasks that’s made it
all the way into the pool needs to be executed before the worker can
safely terminate (this is at most the number of pool workers, multiplied
by the CELERYD_PREFETCH_MULTIPLIER setting).

We multiply the prefetch count by default to increase the performance at
times with bursts of tasks with a short execution time. If this doesn’t
apply to your use case, you should be able to set the prefetch multiplier
to zero, without sacrificing performance.

Note

A patch to multiprocessing [https://docs.python.org/dev/library/multiprocessing.html#module-multiprocessing] is currently being
worked on, this patch would enable us to use a better solution, and is
scheduled for inclusion in the 2.0.0 release.

	The worker now shutdowns cleanly when receiving the SIGTERM signal.

	The worker now does a cold shutdown if the SIGINT signal
is received (Control-c),
this means it tries to terminate as soon as possible.

	Caching of results now moved to the base backend classes, so no need
to implement this functionality in the base classes.

	Caches are now also limited in size, so their memory usage doesn’t grow
out of control.

You can set the maximum number of results the cache
can hold using the CELERY_MAX_CACHED_RESULTS setting (the
default is five thousand results). In addition, you can re-fetch already
retrieved results using backend.reload_task_result +
backend.reload_taskset_result (that’s for those who want to send
results incrementally).

	The worker now works on Windows again.

Warning

If you’re using Celery with Django, you can’t use project.settings
as the settings module name, but the following should work:

$ python manage.py celeryd --settings=settings

	Execution: .messaging.TaskPublisher.send_task now
incorporates all the functionality apply_async previously did.

Like converting countdowns to ETA, so celery.execute.apply_async() is
now simply a convenient front-end to
celery.messaging.TaskPublisher.send_task(), using
the task classes default options.

Also celery.execute.send_task() has been
introduced, which can apply tasks using just the task name (useful
if the client doesn’t have the destination task in its task registry).

Example:

>>> from celery.execute import send_task
>>> result = send_task('celery.ping', args=[], kwargs={})
>>> result.get()
'pong'

	camqadm: This is a new utility for command-line access to the AMQP API.

Excellent for deleting queues/bindings/exchanges, experimentation and
testing:

$ camqadm
1> help

Gives an interactive shell, type help for a list of commands.

When using Django, use the management command instead:

$ python manage.py camqadm
1> help

	Redis result backend: To conform to recent Redis API changes, the following
settings has been deprecated:

	REDIS_TIMEOUT

	REDIS_CONNECT_RETRY

These will emit a DeprecationWarning if used.

A REDIS_PASSWORD setting has been added, so you can use the new
simple authentication mechanism in Redis.

	The redis result backend no longer calls SAVE when disconnecting,
as this is apparently better handled by Redis itself.

	If settings.DEBUG is on, the worker now warns about the possible
memory leak it can result in.

	The ETA scheduler now sleeps at most two seconds between iterations.

	The ETA scheduler now deletes any revoked tasks it might encounter.

As revokes aren’t yet persistent, this is done to make sure the task
is revoked even though, for example, it’s currently being hold because
its ETA is a week into the future.

	The task_id argument is now respected even if the task is executed
eagerly (either using apply, or CELERY_ALWAYS_EAGER).

	The internal queues are now cleared if the connection is reset.

	New magic keyword argument: delivery_info.

Used by retry() to resend the task to its original destination using the same
exchange/routing_key.

	Events: Fields wasn’t passed by .send() (fixes the UUID key errors
in celerymon)

	Added –schedule/-s option to the worker, so it is possible to
specify a custom schedule filename when using an embedded celerybeat
server (the -B/–beat) option.

	Better Python 2.4 compatibility. The test suite now passes.

	task decorators: Now preserve docstring as cls.__doc__, (was previously
copied to cls.run.__doc__)

	The testproj directory has been renamed to tests and we’re now using
nose + django-nose for test discovery, and unittest2 for test
cases.

	New pip requirements files available in requirements.

	TaskPublisher: Declarations are now done once (per process).

	Added Task.delivery_mode and the CELERY_DEFAULT_DELIVERY_MODE
setting.

These can be used to mark messages non-persistent (i.e., so they’re
lost if the broker is restarted).

	Now have our own ImproperlyConfigured exception, instead of using the
Django one.

	Improvements to the Debian init-scripts: Shows an error if the program is
not executable. Does not modify CELERYD when using django with
virtualenv.

1.0.0

	release-date

	2010-02-10 04:00 p.m. CET

	release-by

	Ask Solem

Backward incompatible changes

	Celery doesn’t support detaching anymore, so you have to use the tools
available on your platform, or something like supervisor [https://pypi.python.org/pypi/supervisor/] to make
celeryd/celerybeat/celerymon into background processes.

We’ve had too many problems with the worker daemonizing itself, so it was
decided it has to be removed. Example start-up scripts has been added to
the extra/ directory:

	Debian, Ubuntu, (start-stop-daemon)

extra/debian/init.d/celeryd
extra/debian/init.d/celerybeat

	macOS launchd

extra/mac/org.celeryq.celeryd.plist
extra/mac/org.celeryq.celerybeat.plist
extra/mac/org.celeryq.celerymon.plist

	Supervisor (http://supervisord.org)

extra/supervisord/supervisord.conf

In addition to –detach, the following program arguments has been
removed: –uid, –gid, –workdir, –chroot, –pidfile,
–umask. All good daemonization tools should support equivalent
functionality, so don’t worry.

Also the following configuration keys has been removed:
CELERYD_PID_FILE, CELERYBEAT_PID_FILE, CELERYMON_PID_FILE.

	Default worker loglevel is now WARN, to enable the previous log level
start the worker with –loglevel=INFO.

	Tasks are automatically registered.

This means you no longer have to register your tasks manually.
You don’t have to change your old code right away, as it doesn’t matter if
a task is registered twice.

If you don’t want your task to be automatically registered you can set
the abstract attribute

class MyTask(Task):
 abstract = True

By using abstract only tasks subclassing this task will be automatically
registered (this works like the Django ORM).

If you don’t want subclasses to be registered either, you can set the
autoregister attribute to False.

Incidentally, this change also fixes the problems with automatic name
assignment and relative imports. So you also don’t have to specify a task name
anymore if you use relative imports.

	You can no longer use regular functions as tasks.

This change was added
because it makes the internals a lot more clean and simple. However, you can
now turn functions into tasks by using the @task decorator:

from celery.decorators import task

@task()
def add(x, y):
 return x + y

See also

Tasks for more information about the task decorators.

	The periodic task system has been rewritten to a centralized solution.

This means the worker no longer schedules periodic tasks by default,
but a new daemon has been introduced: celerybeat.

To launch the periodic task scheduler you have to run celerybeat:

$ celerybeat

Make sure this is running on one server only, if you run it twice, all
periodic tasks will also be executed twice.

If you only have one worker server you can embed it into the worker like this:

$ celeryd --beat # Embed celerybeat in celeryd.

	The supervisor has been removed.

This means the -S and –supervised options to celeryd is
no longer supported. Please use something like http://supervisord.org
instead.

	TaskSet.join has been removed, use TaskSetResult.join instead.

	The task status “DONE” has been renamed to “SUCCESS”.

	AsyncResult.is_done has been removed, use AsyncResult.successful
instead.

	The worker no longer stores errors if Task.ignore_result is set, to
revert to the previous behavior set
CELERY_STORE_ERRORS_EVEN_IF_IGNORED to True.

	The statistics functionality has been removed in favor of events,
so the -S and –statistics` switches has been removed.

	The module celery.task.strategy has been removed.

	celery.discovery has been removed, and it’s autodiscover function is
now in celery.loaders.djangoapp. Reason: Internal API.

	The CELERY_LOADER environment variable now needs loader class name
in addition to module name,

For example, where you previously had: “celery.loaders.default”, you now
need “celery.loaders.default.Loader”, using the previous syntax will result
in a DeprecationWarning.

	Detecting the loader is now lazy, and so isn’t done when importing
celery.loaders.

To make this happen celery.loaders.settings has
been renamed to load_settings and is now a function returning the
settings object. celery.loaders.current_loader is now also
a function, returning the current loader.

So:

loader = current_loader

needs to be changed to:

loader = current_loader()

Deprecations

	The following configuration variables has been renamed and will be
deprecated in v2.0:

	CELERYD_DAEMON_LOG_FORMAT -> CELERYD_LOG_FORMAT

	CELERYD_DAEMON_LOG_LEVEL -> CELERYD_LOG_LEVEL

	CELERY_AMQP_CONNECTION_TIMEOUT -> CELERY_BROKER_CONNECTION_TIMEOUT

	CELERY_AMQP_CONNECTION_RETRY -> CELERY_BROKER_CONNECTION_RETRY

	CELERY_AMQP_CONNECTION_MAX_RETRIES -> CELERY_BROKER_CONNECTION_MAX_RETRIES

	SEND_CELERY_TASK_ERROR_EMAILS -> CELERY_SEND_TASK_ERROR_EMAILS

	The public API names in celery.conf has also changed to a consistent naming
scheme.

	We now support consuming from an arbitrary number of queues.

To do this we had to rename the configuration syntax. If you use any of
the custom AMQP routing options (queue/exchange/routing_key, etc.), you
should read the new FAQ entry: Can I send some tasks to only some servers?.

The previous syntax is deprecated and scheduled for removal in v2.0.

	TaskSet.run has been renamed to TaskSet.apply_async.

TaskSet.run has now been deprecated, and is scheduled for
removal in v2.0.

News

	Rate limiting support (per task type, or globally).

	New periodic task system.

	Automatic registration.

	New cool task decorator syntax.

	worker: now sends events if enabled with the -E argument.

Excellent for monitoring tools, one is already in the making
(https://github.com/celery/celerymon).

Current events include: worker-heartbeat,
task-[received/succeeded/failed/retried],
worker-online, worker-offline.

	You can now delete (revoke) tasks that’s already been applied.

	You can now set the hostname the worker identifies as using the –hostname
argument.

	Cache backend now respects the CELERY_TASK_RESULT_EXPIRES setting.

	Message format has been standardized and now uses ISO-8601 format
for dates instead of datetime.

	worker now responds to the SIGHUP signal by restarting itself.

	Periodic tasks are now scheduled on the clock.

That is, timedelta(hours=1) means every hour at :00 minutes, not every
hour from the server starts. To revert to the previous behavior you
can set PeriodicTask.relative = True.

	Now supports passing execute options to a TaskSets list of args.

Example:

>>> ts = TaskSet(add, [([2, 2], {}, {'countdown': 1}),
... ([4, 4], {}, {'countdown': 2}),
... ([8, 8], {}, {'countdown': 3})])
>>> ts.run()

	Got a 3x performance gain by setting the prefetch count to four times the
concurrency, (from an average task round-trip of 0.1s to 0.03s!).

A new setting has been added: CELERYD_PREFETCH_MULTIPLIER, which
is set to 4 by default.

	Improved support for webhook tasks.

celery.task.rest is now deprecated, replaced with the new and shiny
celery.task.http. With more reflective names, sensible interface,
and it’s possible to override the methods used to perform HTTP requests.

	The results of task sets are now cached by storing it in the result
backend.

Changes

	Now depends on carrot [https://pypi.python.org/pypi/carrot/] >= 0.8.1

	New dependencies: billiard [https://pypi.python.org/pypi/billiard/], python-dateutil [https://pypi.python.org/pypi/python-dateutil/],
django-picklefield [https://pypi.python.org/pypi/django-picklefield/].

	No longer depends on python-daemon

	The uuid distribution is added as a dependency when running Python 2.4.

	Now remembers the previously detected loader by keeping it in
the CELERY_LOADER environment variable.

This may help on windows where fork emulation is used.

	ETA no longer sends datetime objects, but uses ISO 8601 date format in a
string for better compatibility with other platforms.

	No longer sends error mails for retried tasks.

	Task can now override the backend used to store results.

	Refactored the ExecuteWrapper, apply and CELERY_ALWAYS_EAGER
now also executes the task callbacks and signals.

	Now using a proper scheduler for the tasks with an ETA.

This means waiting ETA tasks are sorted by time, so we don’t have
to poll the whole list all the time.

	Now also imports modules listed in CELERY_IMPORTS when running
with django (as documented).

	Log level for stdout/stderr changed from INFO to ERROR

	ImportErrors are now properly propagated when auto-discovering tasks.

	You can now use celery.messaging.establish_connection to establish a
connection to the broker.

	When running as a separate service the periodic task scheduler does some
smart moves to not poll too regularly.

If you need faster poll times you can lower the value
of CELERYBEAT_MAX_LOOP_INTERVAL.

	You can now change periodic task intervals at runtime, by making
run_every a property, or subclassing PeriodicTask.is_due.

	The worker now supports control commands enabled through the use of a
broadcast queue, you can remotely revoke tasks or set the rate limit for
a task type. See celery.task.control.

	The services now sets informative process names (as shown in ps
listings) if the setproctitle [https://pypi.python.org/pypi/setproctitle/] module is installed.

	NotRegistered now inherits from KeyError [https://docs.python.org/dev/library/exceptions.html#KeyError],
and TaskRegistry.__getitem__`+`pop raises NotRegistered instead

	You can set the loader via the CELERY_LOADER environment variable.

	You can now set CELERY_IGNORE_RESULT to ignore task results by
default (if enabled, tasks doesn’t save results or errors to the backend used).

	The worker now correctly handles malformed messages by throwing away and
acknowledging the message, instead of crashing.

Bugs

	Fixed a race condition that could happen while storing task results in the
database.

Documentation

	Reference now split into two sections; API reference and internal module
reference.

0.8.4

	release-date

	2010-02-05 01:52 p.m. CEST

	release-by

	Ask Solem

	Now emits a warning if the –detach argument is used.
–detach shouldn’t be used anymore, as it has several not easily fixed
bugs related to it. Instead, use something like start-stop-daemon,
supervisor [https://pypi.python.org/pypi/supervisor/] or launchd (macOS).

	Make sure logger class is process aware, even if running Python >= 2.6.

	Error emails are not sent anymore when the task is retried.

0.8.3

	release-date

	2009-12-22 09:43 a.m. CEST

	release-by

	Ask Solem

	Fixed a possible race condition that could happen when storing/querying
task results using the database backend.

	Now has console script entry points in the setup.py file, so tools like
zc.buildout [https://pypi.python.org/pypi/zc.buildout/] will correctly install the programs celeryd and
celeryinit.

0.8.2

	release-date

	2009-11-20 03:40 p.m. CEST

	release-by

	Ask Solem

	QOS Prefetch count wasn’t applied properly, as it was set for every message
received (which apparently behaves like, “receive one more”), instead of only
set when our wanted value changed.

0.8.1

	release-date

	2009-11-16 05:21 p.m. CEST

	release-by

	Ask Solem

Very important note

This release (with carrot 0.8.0) enables AMQP QoS (quality of service), which
means the workers will only receive as many messages as it can handle at a
time. As with any release, you should test this version upgrade on your
development servers before rolling it out to production!

Important changes

	If you’re using Python < 2.6 and you use the multiprocessing backport, then
multiprocessing version 2.6.2.1 is required.

	All AMQP_* settings has been renamed to BROKER_*, and in addition
AMQP_SERVER has been renamed to BROKER_HOST, so before where you had:

AMQP_SERVER = 'localhost'
AMQP_PORT = 5678
AMQP_USER = 'myuser'
AMQP_PASSWORD = 'mypassword'
AMQP_VHOST = 'celery'

You need to change that to:

BROKER_HOST = 'localhost'
BROKER_PORT = 5678
BROKER_USER = 'myuser'
BROKER_PASSWORD = 'mypassword'
BROKER_VHOST = 'celery'

	Custom carrot backends now need to include the backend class name, so before
where you had:

CARROT_BACKEND = 'mycustom.backend.module'

you need to change it to:

CARROT_BACKEND = 'mycustom.backend.module.Backend'

where Backend is the class name. This is probably “Backend”, as
that was the previously implied name.

	New version requirement for carrot: 0.8.0

Changes

	Incorporated the multiprocessing backport patch that fixes the
processName error.

	Ignore the result of PeriodicTask’s by default.

	Added a Redis result store backend

	Allow /etc/default/celeryd to define additional options
for the celeryd init-script.

	MongoDB periodic tasks issue when using different time than UTC fixed.

	Windows specific: Negate test for available os.fork
(thanks @miracle2k [https://github.com/miracle2k/]).

	Now tried to handle broken PID files.

	Added a Django test runner to contrib that sets
CELERY_ALWAYS_EAGER = True for testing with the database backend.

	Added a CELERY_CACHE_BACKEND setting for using something other
than the Django-global cache backend.

	Use custom implementation of functools.partial for Python 2.4 support
(Probably still problems with running on 2.4, but it will eventually be
supported)

	Prepare exception to pickle when saving RETRY status for all backends.

	SQLite no concurrency limit should only be effective if the database backend
is used.

0.8.0

	release-date

	2009-09-22 03:06 p.m. CEST

	release-by

	Ask Solem

Backward incompatible changes

	Add traceback to result value on failure.

Note

If you use the database backend you have to re-create the
database table celery_taskmeta.

Contact the Mailing list or IRC channel
for help doing this.

	Database tables are now only created if the database backend is used,
so if you change back to the database backend at some point,
be sure to initialize tables (django: syncdb, python: celeryinit).

Note

This is only applies if using Django version 1.1 or higher.

	Now depends on carrot version 0.6.0.

	Now depends on python-daemon 1.4.8

Important changes

	Celery can now be used in pure Python (outside of a Django project).

This means Celery is no longer Django specific.

For more information see the FAQ entry
Is Celery for Django only?.

	Celery now supports task retries.

See Retrying for more information.

	We now have an AMQP result store backend.

It uses messages to publish task return value and status. And it’s
incredibly fast!

See issue #6 for more info!

	AMQP QoS (prefetch count) implemented:

This to not receive more messages than we can handle.

	Now redirects stdout/stderr to the workers log file when detached

	
	Now uses inspect.getargspec to only pass default arguments
	the task supports.

	
	Add Task.on_success, .on_retry, .on_failure handlers
	
	See celery.task.base.Task.on_success(),
	celery.task.base.Task.on_retry(),
celery.task.base.Task.on_failure(),

	
	celery.utils.gen_unique_id: Workaround for
	http://bugs.python.org/issue4607

	
	You can now customize what happens at worker start, at process init, etc.,
	by creating your own loaders (see celery.loaders.default,
celery.loaders.djangoapp, celery.loaders).

	Support for multiple AMQP exchanges and queues.

This feature misses documentation and tests, so anyone interested
is encouraged to improve this situation.

	The worker now survives a restart of the AMQP server!

Automatically re-establish AMQP broker connection if it’s lost.

New settings:

	
	AMQP_CONNECTION_RETRY
	Set to True to enable connection retries.

	
	AMQP_CONNECTION_MAX_RETRIES.
	Maximum number of restarts before we give up. Default: 100.

News

	
	Fix an incompatibility between python-daemon and multiprocessing,
	which resulted in the [Errno 10] No child processes problem when
detaching.

	
	Fixed a possible DjangoUnicodeDecodeError being raised when saving pickled
	data to Django`s Memcached cache backend.

	Better Windows compatibility.

	
	New version of the pickled field (taken from
	http://www.djangosnippets.org/snippets/513/)

	
	New signals introduced: task_sent, task_prerun and
	task_postrun, see celery.signals for more information.

	
	TaskSetResult.join caused TypeError when timeout=None.
	Thanks Jerzy Kozera. Closes #31

	
	views.apply should return HttpResponse instance.
	Thanks to Jerzy Kozera. Closes #32

	
	PeriodicTask: Save conversion of run_every from int
	to timedelta to the class attribute instead of on the instance.

	
	Exceptions has been moved to celery.exceptions, but are still
	available in the previous module.

	
	Try to rollback transaction and retry saving result if an error happens
	while setting task status with the database backend.

	jail() refactored into celery.execute.ExecuteWrapper.

	views.apply now correctly sets mime-type to “application/json”

	views.task_status now returns exception if state is RETRY

	
	views.task_status now returns traceback if state is FAILURE
	or RETRY

	Documented default task arguments.

	Add a sensible __repr__ to ExceptionInfo for easier debugging

	
	Fix documentation typo .. import map -> .. import dmap.
	Thanks to @mikedizon [https://github.com/mikedizon/].

0.6.0

	release-date

	2009-08-07 06:54 a.m. CET

	release-by

	Ask Solem

Important changes

	
	Fixed a bug where tasks raising unpickleable exceptions crashed pool
	workers. So if you’ve had pool workers mysteriously disappearing, or
problems with the worker stopping working, this has been fixed in this
version.

	Fixed a race condition with periodic tasks.

	
	The task pool is now supervised, so if a pool worker crashes,
	goes away or stops responding, it is automatically replaced with
a new one.

	Task.name is now automatically generated out of class module+name, for
example “djangotwitter.tasks.UpdateStatusesTask”. Very convenient.
No idea why we didn’t do this before. Some documentation is updated to not
manually specify a task name.

News

	Tested with Django 1.1

	New Tutorial: Creating a click counter using Carrot and Celery

	
	Database entries for periodic tasks are now created at the workers
	start-up instead of for each check (which has been a forgotten TODO/XXX
in the code for a long time)

	
	New settings variable: CELERY_TASK_RESULT_EXPIRES
	Time (in seconds, or a datetime.timedelta object) for when after
stored task results are deleted. For the moment this only works for the
database backend.

	
	The worker now emits a debug log message for which periodic tasks
	has been launched.

	
	The periodic task table is now locked for reading while getting
	periodic task status (MySQL only so far, seeking patches for other
engines)

	
	A lot more debugging information is now available by turning on the
	DEBUG log level (–loglevel=DEBUG).

	Functions/methods with a timeout argument now works correctly.

	
	New: celery.strategy.even_time_distribution:
	With an iterator yielding task args, kwargs tuples, evenly distribute
the processing of its tasks throughout the time window available.

	Log message Unknown task ignored… now has log level ERROR

	
	Log message when task is received is now emitted for all tasks, even if
	the task has an ETA (estimated time of arrival). Also the log message now
includes the ETA for the task (if any).

	
	Acknowledgment now happens in the pool callback. Can’t do ack in the job
	target, as it’s not pickleable (can’t share AMQP connection, etc.).

	Added note about .delay hanging in README

	Tests now passing in Django 1.1

	Fixed discovery to make sure app is in INSTALLED_APPS

	
	Previously overridden pool behavior (process reap, wait until pool worker
	available, etc.) is now handled by multiprocessing.Pool itself.

	Convert statistics data to Unicode for use as kwargs. Thanks Lucy!

0.4.1

	release-date

	2009-07-02 01:42 p.m. CET

	release-by

	Ask Solem

	Fixed a bug with parsing the message options (mandatory,
routing_key, priority, immediate)

0.4.0

	release-date

	2009-07-01 07:29 p.m. CET

	release-by

	Ask Solem

	Adds eager execution. celery.execute.apply`|`Task.apply executes the
function blocking until the task is done, for API compatibility it
returns a celery.result.EagerResult instance. You can configure
Celery to always run tasks locally by setting the
CELERY_ALWAYS_EAGER setting to True.

	Now depends on anyjson.

	99% coverage using Python coverage 3.0.

0.3.20

	release-date

	2009-06-25 08:42 p.m. CET

	release-by

	Ask Solem

	New arguments to apply_async (the advanced version of
delay_task), countdown and eta;

>>> # Run 10 seconds into the future.
>>> res = apply_async(MyTask, countdown=10);

>>> # Run 1 day from now
>>> res = apply_async(MyTask,
... eta=datetime.now() + timedelta(days=1))

	Now unlinks stale PID files

	Lots of more tests.

	Now compatible with carrot >= 0.5.0.

	IMPORTANT The subtask_ids attribute on the TaskSetResult
instance has been removed. To get this information instead use:

>>> subtask_ids = [subtask.id for subtask in ts_res.subtasks]

	Taskset.run() now respects extra message options from the task class.

	Task: Add attribute ignore_result: Don’t store the status and
return value. This means you can’t use the
celery.result.AsyncResult to check if the task is
done, or get its return value. Only use if you need the performance
and is able live without these features. Any exceptions raised will
store the return value/status as usual.

	Task: Add attribute disable_error_emails to disable sending error
emails for that task.

	Should now work on Windows (although running in the background won’t
work, so using the –detach argument results in an exception
being raised).

	Added support for statistics for profiling and monitoring.
To start sending statistics start the worker with the
–statistics option. Then after a while you can dump the results
by running `python manage.py celerystats. See
celery.monitoring for more information.

	The Celery daemon can now be supervised (i.e., it is automatically
restarted if it crashes). To use this start the worker with the
–supervised` option (or alternatively -S).

	views.apply: View calling a task.

Example:

http://e.com/celery/apply/task_name/arg1/arg2//?kwarg1=a&kwarg2=b

Warning

Use with caution! Don’t expose this URL to the public
without first ensuring that your code is safe!

	Refactored celery.task. It’s now split into three modules:

	celery.task

Contains apply_async, delay_task, discard_all, and task
shortcuts, plus imports objects from celery.task.base and
celery.task.builtins

	celery.task.base

Contains task base classes: Task, PeriodicTask,
TaskSet, AsynchronousMapTask, ExecuteRemoteTask.

	celery.task.builtins

Built-in tasks: PingTask, DeleteExpiredTaskMetaTask.

0.3.7

	release-date

	2008-06-16 11:41 p.m. CET

	release-by

	Ask Solem

	IMPORTANT Now uses AMQP`s basic.consume instead of
basic.get. This means we’re no longer polling the broker for
new messages.

	IMPORTANT Default concurrency limit is now set to the number of CPUs
available on the system.

	IMPORTANT tasks.register: Renamed task_name argument to
name, so:

>>> tasks.register(func, task_name='mytask')

has to be replaced with:

>>> tasks.register(func, name='mytask')

	The daemon now correctly runs if the pidfile is stale.

	Now compatible with carrot 0.4.5

	Default AMQP connection timeout is now 4 seconds.

	AsyncResult.read() was always returning True.

	Only use README as long_description if the file exists so easy_install
doesn’t break.

	celery.view: JSON responses now properly set its mime-type.

	apply_async now has a connection keyword argument so you
can re-use the same AMQP connection if you want to execute
more than one task.

	Handle failures in task_status view such that it won’t throw 500s.

	Fixed typo AMQP_SERVER in documentation to AMQP_HOST.

	Worker exception emails sent to administrators now works properly.

	No longer depends on django, so installing celery won’t affect
the preferred Django version installed.

	Now works with PostgreSQL (psycopg2 [https://pypi.python.org/pypi/psycopg2/]) again by registering the
PickledObject field.

	Worker: Added –detach option as an alias to –daemon, and
it’s the term used in the documentation from now on.

	Make sure the pool and periodic task worker thread is terminated
properly at exit (so Control-c works again).

	Now depends on python-daemon.

	Removed dependency to simplejson

	Cache Backend: Re-establishes connection for every task process
if the Django cache backend is python-memcached [https://pypi.python.org/pypi/python-memcached/]/libmemcached [https://pypi.python.org/pypi/libmemcached/].

	Tyrant Backend: Now re-establishes the connection for every task
executed.

0.3.3

	release-date

	2009-06-08 01:07 p.m. CET

	release-by

	Ask Solem

	The PeriodicWorkController now sleeps for 1 second between checking
for periodic tasks to execute.

0.3.2

	release-date

	2009-06-08 01:07 p.m. CET

	release-by

	Ask Solem

	worker: Added option –discard: Discard (delete!) all waiting
messages in the queue.

	Worker: The –wakeup-after option wasn’t handled as a float.

0.3.1

	release-date

	2009-06-08 01:07 p.m. CET

	release-by

	Ask Solem

	The PeriodicTask worker is now running in its own thread instead
of blocking the TaskController loop.

	Default QUEUE_WAKEUP_AFTER has been lowered to 0.1 (was 0.3)

0.3.0

	release-date

	2009-06-08 12:41 p.m. CET

	release-by

	Ask Solem

Warning

This is a development version, for the stable release, please
see versions 0.2.x.

VERY IMPORTANT: Pickle is now the encoder used for serializing task
arguments, so be sure to flush your task queue before you upgrade.

	IMPORTANT TaskSet.run() now returns a celery.result.TaskSetResult
instance, which lets you inspect the status and return values of a
taskset as it was a single entity.

	IMPORTANT Celery now depends on carrot >= 0.4.1.

	The Celery daemon now sends task errors to the registered admin emails.
To turn off this feature, set SEND_CELERY_TASK_ERROR_EMAILS to
False in your settings.py. Thanks to Grégoire Cachet.

	You can now run the Celery daemon by using manage.py:

$ python manage.py celeryd

Thanks to Grégoire Cachet.

	Added support for message priorities, topic exchanges, custom routing
keys for tasks. This means we’ve introduced
celery.task.apply_async, a new way of executing tasks.

You can use celery.task.delay and celery.Task.delay like usual, but
if you want greater control over the message sent, you want
celery.task.apply_async and celery.Task.apply_async.

This also means the AMQP configuration has changed. Some settings has
been renamed, while others are new:

	CELERY_AMQP_EXCHANGE

	CELERY_AMQP_PUBLISHER_ROUTING_KEY

	CELERY_AMQP_CONSUMER_ROUTING_KEY

	CELERY_AMQP_CONSUMER_QUEUE

	CELERY_AMQP_EXCHANGE_TYPE

See the entry Can I send some tasks to only some servers? in the
FAQ for more information.

	Task errors are now logged using log level ERROR instead of INFO,
and stack-traces are dumped. Thanks to Grégoire Cachet.

	Make every new worker process re-establish it’s Django DB connection,
this solving the “MySQL connection died?” exceptions.
Thanks to Vitaly Babiy and Jirka Vejrazka.

	IMPORTANT Now using pickle to encode task arguments. This means you
now can pass complex Python objects to tasks as arguments.

	Removed dependency to yadayada.

	Added a FAQ, see docs/faq.rst.

	Now converts any Unicode keys in task kwargs to regular strings.
Thanks Vitaly Babiy.

	Renamed the TaskDaemon to WorkController.

	celery.datastructures.TaskProcessQueue is now renamed to
celery.pool.TaskPool.

	The pool algorithm has been refactored for greater performance and
stability.

0.2.0

	release-date

	2009-05-20 05:14 p.m. CET

	release-by

	Ask Solem

	Final release of 0.2.0

	Compatible with carrot version 0.4.0.

	Fixes some syntax errors related to fetching results
from the database backend.

0.2.0-pre3

	release-date

	2009-05-20 05:14 p.m. CET

	release-by

	Ask Solem

	Internal release. Improved handling of unpickleable exceptions,
get_result now tries to recreate something looking like the
original exception.

0.2.0-pre2

	release-date

	2009-05-20 01:56 p.m. CET

	release-by

	Ask Solem

	Now handles unpickleable exceptions (like the dynamically generated
subclasses of django.core.exception.MultipleObjectsReturned).

0.2.0-pre1

	release-date

	2009-05-20 12:33 p.m. CET

	release-by

	Ask Solem

	It’s getting quite stable, with a lot of new features, so bump
version to 0.2. This is a pre-release.

	celery.task.mark_as_read() and celery.task.mark_as_failure() has
been removed. Use celery.backends.default_backend.mark_as_read(),
and celery.backends.default_backend.mark_as_failure() instead.

0.1.15

	release-date

	2009-05-19 04:13 p.m. CET

	release-by

	Ask Solem

	The Celery daemon was leaking AMQP connections, this should be fixed,
if you have any problems with too many files open (like emfile
errors in rabbit.log, please contact us!

0.1.14

	release-date

	2009-05-19 01:08 p.m. CET

	release-by

	Ask Solem

	Fixed a syntax error in the TaskSet class (no such variable
TimeOutError).

0.1.13

	release-date

	2009-05-19 12:36 p.m. CET

	release-by

	Ask Solem

	Forgot to add yadayada to install requirements.

	Now deletes all expired task results, not just those marked as done.

	Able to load the Tokyo Tyrant backend class without django
configuration, can specify tyrant settings directly in the class
constructor.

	Improved API documentation

	Now using the Sphinx documentation system, you can build
the html documentation by doing:

$ cd docs
$ make html

and the result will be in docs/_build/html.

0.1.12

	release-date

	2009-05-18 04:38 p.m. CET

	release-by

	Ask Solem

	delay_task() etc. now returns celery.task.AsyncResult object,
which lets you check the result and any failure that might’ve
happened. It kind of works like the multiprocessing.AsyncResult
class returned by multiprocessing.Pool.map_async.

	Added dmap() and dmap_async(). This works like the
multiprocessing.Pool versions except they’re tasks
distributed to the Celery server. Example:

>>> from celery.task import dmap
>>> import operator
>>> dmap(operator.add, [[2, 2], [4, 4], [8, 8]])
>>> [4, 8, 16]

>>> from celery.task import dmap_async
>>> import operator
>>> result = dmap_async(operator.add, [[2, 2], [4, 4], [8, 8]])
>>> result.ready()
False
>>> time.sleep(1)
>>> result.ready()
True
>>> result.result
[4, 8, 16]

	Refactored the task meta-data cache and database backends, and added
a new backend for Tokyo Tyrant. You can set the backend in your django
settings file.

Example:

CELERY_RESULT_BACKEND = 'database'; # Uses the database
CELERY_RESULT_BACKEND = 'cache'; # Uses the django cache framework
CELERY_RESULT_BACKEND = 'tyrant'; # Uses Tokyo Tyrant
TT_HOST = 'localhost'; # Hostname for the Tokyo Tyrant server.
TT_PORT = 6657; # Port of the Tokyo Tyrant server.

0.1.11

	release-date

	2009-05-12 02:08 p.m. CET

	release-by

	Ask Solem

	The logging system was leaking file descriptors, resulting in
servers stopping with the EMFILES (too many open files) error (fixed).

0.1.10

	release-date

	2009-05-11 12:46 p.m. CET

	release-by

	Ask Solem

	Tasks now supports both positional arguments and keyword arguments.

	Requires carrot 0.3.8.

	The daemon now tries to reconnect if the connection is lost.

0.1.8

	release-date

	2009-05-07 12:27 p.m. CET

	release-by

	Ask Solem

	Better test coverage

	More documentation

	The worker doesn’t emit Queue is empty message if
settings.CELERYD_EMPTY_MSG_EMIT_EVERY is 0.

0.1.7

	release-date

	2009-04-30 01:50 p.m. CET

	release-by

	Ask Solem

	Added some unit tests

	Can now use the database for task meta-data (like if the task has
been executed or not). Set settings.CELERY_TASK_META

	Can now run python setup.py test to run the unit tests from
within the tests project.

	Can set the AMQP exchange/routing key/queue using
settings.CELERY_AMQP_EXCHANGE, settings.CELERY_AMQP_ROUTING_KEY,
and settings.CELERY_AMQP_CONSUMER_QUEUE.

0.1.6

	release-date

	2009-04-28 02:13 p.m. CET

	release-by

	Ask Solem

	Introducing TaskSet. A set of subtasks is executed and you can
find out how many, or if all them, are done (excellent for progress
bars and such)

	Now catches all exceptions when running Task.__call__, so the
daemon doesn’t die. This doesn’t happen for pure functions yet, only
Task classes.

	autodiscover() now works with zipped eggs.

	Worker: Now adds current working directory to sys.path for
convenience.

	The run_every attribute of PeriodicTask classes can now be a
datetime.timedelta() object.

	Worker: You can now set the DJANGO_PROJECT_DIR variable
for the worker and it will add that to sys.path for easy launching.

	Can now check if a task has been executed or not via HTTP.

	You can do this by including the Celery urls.py into your project,

>>> url(r'^celery/$', include('celery.urls'))

then visiting the following URL:

http://mysite/celery/$task_id/done/

this will return a JSON dictionary, for example:

{"task": {"id": "TASK_ID", "executed": true}}

	delay_task now returns string id, not uuid.UUID instance.

	Now has PeriodicTasks, to have cron like functionality.

	Project changed name from crunchy to celery. The details of
the name change request is in docs/name_change_request.txt.

0.1.0

	release-date

	2009-04-24 11:28 a.m. CET

	release-by

	Ask Solem

	Initial release

Sphinx started sucking by removing images from _static, so we need to add
them here into actual content to ensure they are included :-(

[image: ../_images/celery-banner.png]
[image: ../_images/celery-banner-small.png]

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

Glossary

	ack
	Short for acknowledged.

	acknowledged
	Workers acknowledge messages to signify that a message has been
handled. Failing to acknowledge a message
will cause the message to be redelivered. Exactly when a
transaction is considered a failure varies by transport. In AMQP the
transaction fails when the connection/channel is closed (or lost),
but in Redis/SQS the transaction times out after a configurable amount
of time (the visibility_timeout).

	apply
	Originally a synonym to call but used to signify
that a function is executed by the current process.

	billiard
	Fork of the Python multiprocessing library containing improvements
required by Celery.

	calling
	Sends a task message so that the task function is
executed by a worker.

	cipater
	Celery release 3.1 named after song by Autechre
(http://www.youtube.com/watch?v=OHsaqUr_33Y)

	context
	The context of a task contains information like the id of the task,
it’s arguments and what queue it was delivered to.
It can be accessed as the tasks request attribute.
See Task Request

	early ack
	Short for early acknowledgment

	early acknowledgment
	Task is acknowledged just-in-time before being executed,
meaning the task won’t be redelivered to another worker if the
machine loses power, or the worker instance is abruptly killed,
mid-execution.

Configured using task_acks_late.

	ETA
	“Estimated Time of Arrival”, in Celery and Google Task Queue, etc.,
used as the term for a delayed message that should not be processed
until the specified ETA time. See ETA and Countdown.

	executing
	Workers execute task requests.

	idempotent
	Idempotence is a mathematical property that describes a function that
can be called multiple times without changing the result.
Practically it means that a function can be repeated many times without
unintended effects, but not necessarily side-effect free in the pure
sense (compare to nullipotent).

Further reading: https://en.wikipedia.org/wiki/Idempotent

	kombu
	Python messaging library used by Celery to send and receive messages.

	late ack
	Short for late acknowledgment

	late acknowledgment
	Task is acknowledged after execution (both if successful, or
if the task is raising an error), which means the task will be
redelivered to another worker in the event of the machine losing
power, or the worker instance being killed mid-execution.

Configured using task_acks_late.

	nullipotent
	describes a function that’ll have the same effect, and give the same
result, even if called zero or multiple times (side-effect free).
A stronger version of idempotent.

	pidbox
	A process mailbox, used to implement remote control commands.

	prefetch count
	Maximum number of unacknowledged messages a consumer can hold and if
exceeded the transport shouldn’t deliver any more messages to that
consumer. See Prefetch Limits.

	prefetch multiplier
	The prefetch count is configured by using the
worker_prefetch_multiplier setting, which is multiplied
by the number of pool slots (threads/processes/greenthreads).

	reentrant
	describes a function that can be interrupted in the middle of
execution (e.g., by hardware interrupt or signal), and then safely
called again later. Reentrancy isn’t the same as
idempotence as the return value doesn’t have to
be the same given the same inputs, and a reentrant function may have
side effects as long as it can be interrupted; An idempotent function
is always reentrant, but the reverse may not be true.

	request
	Task messages are converted to requests within the worker.
The request information is also available as the task’s
context (the task.request attribute).

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 celery	
 Distributed processing

 	
 	
 celery._state	

 	
 	
 celery.app	

 	
 	
 celery.app.amqp	

 	
 	
 celery.app.annotations	

 	
 	
 celery.app.autoretry	

 	
 	
 celery.app.backends	

 	
 	
 celery.app.builtins	

 	
 	
 celery.app.control	

 	
 	
 celery.app.defaults	

 	
 	
 celery.app.events	

 	
 	
 celery.app.log	

 	
 	
 celery.app.registry	

 	
 	
 celery.app.routes	

 	
 	
 celery.app.task	

 	
 	
 celery.app.trace	

 	
 	
 celery.app.utils	

 	
 	
 celery.apps.beat	

 	
 	
 celery.apps.multi	

 	
 	
 celery.apps.worker	

 	
 	
 celery.backends	

 	
 	
 celery.backends.arangodb	

 	
 	
 celery.backends.asynchronous	

 	
 	
 celery.backends.azureblockblob	

 	
 	
 celery.backends.base	

 	
 	
 celery.backends.cache	

 	
 	
 celery.backends.cassandra	

 	
 	
 celery.backends.consul	

 	
 	
 celery.backends.cosmosdbsql	

 	
 	
 celery.backends.couchbase	

 	
 	
 celery.backends.couchdb	

 	
 	
 celery.backends.database	

 	
 	
 celery.backends.database.models	

 	
 	
 celery.backends.database.session	

 	
 	
 celery.backends.dynamodb	

 	
 	
 celery.backends.elasticsearch	

 	
 	
 celery.backends.filesystem	

 	
 	
 celery.backends.mongodb	

 	
 	
 celery.backends.redis	

 	
 	
 celery.backends.rpc	

 	
 	
 celery.backends.s3	

 	
 	
 celery.beat	

 	
 	
 celery.bin.amqp	

 	
 	
 celery.bin.base	

 	
 	
 celery.bin.beat	

 	
 	
 celery.bin.call	

 	
 	
 celery.bin.celery	

 	
 	
 celery.bin.control	

 	
 	
 celery.bin.events	

 	
 	
 celery.bin.graph	

 	
 	
 celery.bin.list	

 	
 	
 celery.bin.logtool	

 	
 	
 celery.bin.migrate	

 	
 	
 celery.bin.multi	

 	
 	
 celery.bin.purge	

 	
 	
 celery.bin.result	

 	
 	
 celery.bin.shell	

 	
 	
 celery.bin.upgrade	

 	
 	
 celery.bin.worker	

 	
 	
 celery.bootsteps	

 	
 	
 celery.concurrency	

 	
 	
 celery.concurrency.base	

 	
 	
 celery.concurrency.eventlet	

 	
 	
 celery.concurrency.gevent	

 	
 	
 celery.concurrency.prefork	

 	
 	
 celery.concurrency.solo	

 	
 	
 celery.concurrency.thread	

 	
 	
 celery.contrib.abortable	

 	
 	
 celery.contrib.migrate	

 	
 	
 celery.contrib.pytest	

 	
 	
 celery.contrib.rdb	

 	
 	
 celery.contrib.sphinx	

 	
 	
 celery.contrib.testing.app	

 	
 	
 celery.contrib.testing.manager	

 	
 	
 celery.contrib.testing.mocks	

 	
 	
 celery.contrib.testing.worker	

 	
 	
 celery.events	

 	
 	
 celery.events.cursesmon	

 	
 	
 celery.events.dispatcher	

 	
 	
 celery.events.dumper	

 	
 	
 celery.events.event	

 	
 	
 celery.events.receiver	

 	
 	
 celery.events.snapshot	

 	
 	
 celery.events.state	

 	
 	
 celery.exceptions	

 	
 	
 celery.loaders	

 	
 	
 celery.loaders.app	

 	
 	
 celery.loaders.base	

 	
 	
 celery.loaders.default	

 	
 	
 celery.platforms	

 	
 	
 celery.result	

 	
 	
 celery.schedules	

 	
 	
 celery.security	

 	
 	
 celery.security.certificate	

 	
 	
 celery.security.key	

 	
 	
 celery.security.serialization	

 	
 	
 celery.security.utils	

 	
 	
 celery.signals	

 	
 	
 celery.states	

 	
 	
 celery.utils	

 	
 	
 celery.utils.abstract	

 	
 	
 celery.utils.collections	

 	
 	
 celery.utils.debug	

 	
 	
 celery.utils.deprecated	

 	
 	
 celery.utils.dispatch	

 	
 	
 celery.utils.dispatch.signal	

 	
 	
 celery.utils.functional	

 	
 	
 celery.utils.graph	

 	
 	
 celery.utils.imports	

 	
 	
 celery.utils.iso8601	

 	
 	
 celery.utils.log	

 	
 	
 celery.utils.nodenames	

 	
 	
 celery.utils.objects	

 	
 	
 celery.utils.saferepr	

 	
 	
 celery.utils.serialization	

 	
 	
 celery.utils.sysinfo	

 	
 	
 celery.utils.term	

 	
 	
 celery.utils.text	

 	
 	
 celery.utils.threads	

 	
 	
 celery.utils.time	

 	
 	
 celery.utils.timer2	

 	
 	
 celery.worker	

 	
 	
 celery.worker.autoscale	

 	
 	
 celery.worker.components	

 	
 	
 celery.worker.consumer	

 	
 	
 celery.worker.consumer.agent	

 	
 	
 celery.worker.consumer.connection	

 	
 	
 celery.worker.consumer.consumer	

 	
 	
 celery.worker.consumer.control	

 	
 	
 celery.worker.consumer.events	

 	
 	
 celery.worker.consumer.gossip	

 	
 	
 celery.worker.consumer.heart	

 	
 	
 celery.worker.consumer.mingle	

 	
 	
 celery.worker.consumer.tasks	

 	
 	
 celery.worker.control	

 	
 	
 celery.worker.heartbeat	

 	
 	
 celery.worker.loops	

 	
 	
 celery.worker.pidbox	

 	
 	
 celery.worker.request	

 	
 	
 celery.worker.state	

 	
 	
 celery.worker.strategy	

 	
 	
 celery.worker.worker	

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

Symbols

 	
 	
 --ack-messages

 	celery-migrate command line option

 	
 --app <app>

 	celery command line option

 	
 --args <args>

 	celery-call command line option

 	
 --autoscale <autoscale>

 	celery-worker command line option

 	
 --beat

 	celery-worker command line option

 	
 --bpython

 	celery-shell command line option

 	
 --broker <broker>

 	celery command line option

 	
 --camera <camera>

 	celery-events command line option

 	
 --compat

 	celery-upgrade-settings command line option

 	
 --concurrency <concurrency>

 	celery-worker command line option

 	
 --config <config>

 	celery command line option

 	
 --countdown <countdown>

 	celery-call command line option

 	
 --destination <destination>

 	celery-control command line option

 	celery-inspect command line option

 	celery-status command line option

 	
 --detach

 	celery-beat command line option

 	celery-events command line option

 	celery-worker command line option

 	
 --discard

 	celery-worker command line option

 	
 --django

 	celery-upgrade-settings command line option

 	
 --dump

 	celery-events command line option

 	
 --eta <eta>

 	celery-call command line option

 	
 --eventlet

 	celery-shell command line option

 	
 --events

 	celery-worker command line option

 	
 --exchange <exchange>

 	celery-call command line option

 	
 --exclude-queues <exclude_queues>

 	celery-purge command line option

 	celery-worker command line option

 	
 --executable <executable>

 	celery-beat command line option

 	celery-events command line option

 	celery-worker command line option

 	
 --expires <expires>

 	celery-call command line option

 	
 --force

 	celery-purge command line option

 	
 --forever

 	celery-migrate command line option

 	
 --freq <frequency>

 	celery-events command line option

 	
 --frequency

 	celery-events command line option

 	
 --gevent

 	celery-shell command line option

 	
 --gid <gid>

 	celery-beat command line option

 	celery-events command line option

 	celery-worker command line option

 	
 --heartbeat-interval <heartbeat_interval>

 	celery-worker command line option

 	
 --hostname <hostname>

 	celery-worker command line option

 	
 --include <include>

 	celery-worker command line option

 	
 --ipython

 	celery-shell command line option

 	
 --json

 	celery-control command line option

 	celery-inspect command line option

 	celery-status command line option

 	
 --kwargs <kwargs>

 	celery-call command line option

 	
 --limit <limit>

 	celery-migrate command line option

 	
 --loader <loader>

 	celery command line option

 	
 --logfile <logfile>

 	celery-beat command line option

 	celery-events command line option

 	celery-worker command line option

 	
 --loglevel <loglevel>

 	celery-beat command line option

 	celery-events command line option

 	celery-worker command line option

 	
 --max-interval <max_interval>

 	celery-beat command line option

 	
 --max-memory-per-child <max_memory_per_child>

 	celery-worker command line option

 	
 --max-tasks-per-child <max_tasks_per_child>

 	celery-worker command line option

 	
 --maxrate <maxrate>

 	celery-events command line option

 	
 --no-backup

 	celery-upgrade-settings command line option

 	
 --no-color

 	celery command line option

 	
 --pidfile <pidfile>

 	celery-beat command line option

 	celery-events command line option

 	celery-worker command line option

 	
 --pool <pool>

 	celery-worker command line option

 	
 --prefetch-multiplier <prefetch multiplier>

 	celery-worker command line option

 	
 --purge

 	celery-worker command line option

 	
 --python

 	celery-shell command line option

 	
 --queue <queue>

 	celery-call command line option

 	
 --queues <queues>

 	celery-migrate command line option

 	celery-purge command line option

 	celery-worker command line option

 	
 --quiet

 	celery command line option

 	
 --result-backend <result_backend>

 	celery command line option

 	
 	
 --routing-key <routing_key>

 	celery-call command line option

 	
 --schedule <schedule>

 	celery-beat command line option

 	
 --schedule <schedule_filename>

 	celery-worker command line option

 	
 --schedule-filename

 	celery-worker command line option

 	
 --scheduler <scheduler>

 	celery-beat command line option

 	celery-worker command line option

 	
 --serializer <serializer>

 	celery-call command line option

 	
 --soft-time-limit <soft_time_limit>

 	celery-worker command line option

 	
 --statedb <statedb>

 	celery-worker command line option

 	
 --task <task>

 	celery-result command line option

 	
 --task-events

 	celery-worker command line option

 	
 --tasks <tasks>

 	celery-migrate command line option

 	
 --time-limit <time_limit>

 	celery-worker command line option

 	
 --timeout <timeout>

 	celery-control command line option

 	celery-inspect command line option

 	celery-migrate command line option

 	celery-status command line option

 	
 --traceback

 	celery-result command line option

 	
 --uid <uid>

 	celery-beat command line option, [1]

 	celery-events command line option, [1]

 	celery-worker command line option, [1]

 	
 --umask <umask>

 	celery-beat command line option

 	celery-events command line option

 	celery-worker command line option

 	
 --version

 	celery command line option

 	
 --without-gossip

 	celery-worker command line option

 	
 --without-heartbeat

 	celery-worker command line option

 	
 --without-mingle

 	celery-worker command line option

 	
 --without-tasks

 	celery-shell command line option

 	
 --workdir <workdir>

 	celery command line option

 	
 -A

 	celery command line option

 	
 -a

 	celery-call command line option

 	celery-migrate command line option

 	
 -B

 	celery-shell command line option

 	celery-worker command line option

 	
 -b

 	celery command line option

 	
 -C

 	celery command line option

 	
 -c

 	celery-events command line option

 	celery-worker command line option

 	
 -D

 	celery-worker command line option

 	
 -d

 	celery-control command line option

 	celery-events command line option, [1]

 	celery-inspect command line option

 	celery-status command line option

 	
 -E

 	celery-worker command line option

 	
 -F

 	celery-events command line option

 	celery-migrate command line option

 	
 -f

 	celery-beat command line option

 	celery-events command line option

 	celery-purge command line option

 	celery-worker command line option

 	
 -I

 	celery-shell command line option

 	celery-worker command line option

 	
 -j

 	celery-control command line option

 	celery-inspect command line option

 	celery-status command line option

 	
 -k

 	celery-call command line option

 	
 -l

 	celery-beat command line option

 	celery-events command line option

 	celery-worker command line option

 	
 -n

 	celery-migrate command line option

 	celery-worker command line option

 	
 -O <optimization>

 	celery-worker command line option

 	
 -P

 	celery-worker command line option

 	
 -Q

 	celery-migrate command line option

 	celery-purge command line option

 	celery-worker command line option

 	
 -q

 	celery command line option

 	
 -r

 	celery-events command line option

 	
 -S

 	celery-beat command line option

 	celery-worker command line option

 	
 -s

 	celery-beat command line option

 	celery-worker command line option

 	
 -T

 	celery-migrate command line option

 	celery-shell command line option

 	
 -t

 	celery-control command line option

 	celery-inspect command line option

 	celery-migrate command line option

 	celery-result command line option

 	celery-status command line option

 	
 -X

 	celery-purge command line option

 	celery-worker command line option

A

 	
 	abbr() (in module celery.utils.text)

 	abbrtask() (in module celery.utils.text)

 	abcast() (celery.app.control.Control.Mailbox method)

 	abort() (celery.contrib.abortable.AbortableAsyncResult method)

 	AbortableAsyncResult (class in celery.contrib.abortable)

 	AbortableTask (class in celery.contrib.abortable)

 	abstract (celery.app.task.Task attribute)

 	(celery.contrib.abortable.AbortableTask attribute)

 	accept (celery.app.control.Control.Mailbox attribute)

 	(celery.backends.rpc.RPCBackend.ResultConsumer.Consumer attribute)

 	
 accept_content

 	setting

 	ack

 	acknowledge() (celery.worker.request.Request method)

 	acknowledged

 	(celery.worker.request.Request attribute)

 	acks_late (celery.app.task.Task attribute)

 	(Task attribute)

 	acks_on_failure_or_timeout (celery.app.task.Task attribute)

 	acquire() (celery.platforms.Pidfile method)

 	
 ACTION

 	celery-control command line option

 	celery-inspect command line option

 	active (celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	active() (celery.app.control.Inspect method)

 	(celery.concurrency.base.BasePool property)

 	
 active_queues

 	control

 	active_queues() (celery.app.control.Inspect method)

 	active_requests (in module celery.worker.state)

 	add() (celery.app.amqp.Queues method)

 	(celery.beat.Scheduler method)

 	(celery.result.ResultSet method)

 	(celery.utils.collections.LimitedSet method)

 	(hub method)

 	add_accumulate_task() (in module celery.app.builtins)

 	add_arc() (celery.utils.graph.DependencyGraph method)

 	add_autoretry_behaviour() (in module celery.app.autoretry)

 	add_backend_cleanup_task() (in module celery.app.builtins)

 	add_cert() (celery.security.certificate.CertStore method)

 	add_chain_task() (in module celery.app.builtins)

 	add_chord_task() (in module celery.app.builtins)

 	add_chunk_task() (in module celery.app.builtins)

 	add_compat() (celery.app.amqp.Queues method)

 	
 add_consumer

 	control

 	add_consumer() (celery.app.control.Control method)

 	add_defaults() (celery.Celery method)

 	(celery.utils.collections.ChainMap method)

 	add_edge() (celery.utils.graph.DependencyGraph method)

 	add_group_task() (in module celery.app.builtins)

 	add_map_task() (in module celery.app.builtins)

 	add_pending_result() (celery.backends.asynchronous.AsyncBackendMixin method)

 	add_pending_results() (celery.backends.asynchronous.AsyncBackendMixin method)

 	add_periodic_task() (celery.Celery method)

 	add_queue() (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer method)

 	add_reader() (hub method)

 	add_starmap_task() (in module celery.app.builtins)

 	add_task_queue() (celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.consumer.Consumer method)

 	add_to_chord() (celery.app.task.Task method)

 	(celery.backends.redis.RedisBackend method)

 	add_unlock_chord_task() (in module celery.app.builtins)

 	add_writer() (hub method)

 	adjust() (celery.beat.Scheduler method)

 	adjust_timestamp() (in module celery.utils.time)

 	after_return()

 	(celery.app.task.Task method)

 	
 after_setup_logger

 	signal

 	
 after_setup_task_logger

 	signal

 	
 after_task_publish

 	signal

 	Agent (class in celery.worker.consumer)

 	(class in celery.worker.consumer.agent)

 	alert() (celery.events.cursesmon.CursesMonitor method)

 	alert_remote_control_reply() (celery.events.cursesmon.CursesMonitor method)

 	alias() (celery.bootsteps.Blueprint property)

 	(celery.bootsteps.Step property)

 	alive() (celery.apps.multi.Node method)

 	(celery.bin.multi.MultiTool.MultiParser.Node method)

 	(celery.events.state.State.Worker property)

 	(celery.events.state.Worker property)

 	alive_workers() (celery.events.state.State method)

 	
 ALL_STATES

 	state

 	already_setup (celery.app.log.Logging attribute)

 	AlreadyRegistered

 	alt (celery.app.defaults.Option attribute)

 	AlwaysEagerIgnored

 	amqp (celery.Celery attribute)

 	AMQP (class in celery.app.amqp)

 	annotate() (celery.app.annotations.MapAnnotation method)

 	annotate_any() (celery.app.annotations.MapAnnotation method)

 	anon_nodename() (in module celery.utils.nodenames)

 	app, [1]

 	(celery.app.control.Inspect attribute)

 	(celery.apps.beat.Beat attribute)

 	(celery.events.dispatcher.EventDispatcher attribute)

 	(celery.events.EventDispatcher attribute)

 	(celery.events.EventReceiver attribute)

 	(celery.events.receiver.EventReceiver attribute)

 	(celery.result.AsyncResult attribute)

 	(celery.schedules.crontab attribute)

 	(celery.worker.WorkController attribute)

 	(celery.worker.worker.WorkController attribute)

 	
 	App (class in celery.bin.celery)

 	app() (celery.result.ResultSet property)

 	(celery.utils.abstract.CallableSignature property)

 	(celery.worker.request.Request property)

 	app_or_default() (in module celery.app)

 	AppLoader (class in celery.loaders.app)

 	apply

 	apply() (celery.app.task.Task method)

 	(celery.bootsteps.Blueprint method)

 	(celery.utils.abstract.CallableTask method)

 	apply_async() (celery.app.task.Task method)

 	(celery.beat.Scheduler method)

 	(celery.concurrency.base.BasePool method)

 	(celery.utils.abstract.CallableTask method)

 	apply_chord() (celery.backends.redis.RedisBackend method)

 	apply_entry() (celery.beat.Scheduler method)

 	apply_eta_task()

 	(celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.consumer.Consumer method)

 	apply_target() (in module celery.concurrency.base)

 	appstr() (in module celery.app.utils)

 	
 arangodb_backend_settings

 	setting

 	ArangoDbBackend (class in celery.backends.arangodb)

 	args (celery.backends.database.models.TaskExtended attribute)

 	(celery.beat.ScheduleEntry attribute)

 	(celery.concurrency.base.BasePool.Timer.Entry attribute)

 	(celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	(celery.utils.timer2.Entry attribute)

 	(celery.utils.timer2.Timer.Entry attribute)

 	args() (celery.result.AsyncResult property)

 	(celery.utils.abstract.CallableSignature property)

 	(celery.worker.request.Request property)

 	argsrepr() (celery.worker.request.Request property)

 	argsrepr_maxsize (celery.app.amqp.AMQP attribute)

 	arguments (celery.backends.rpc.RPCBackend.Exchange attribute)

 	argv_with_executable (celery.apps.multi.Node attribute)

 	(celery.bin.multi.MultiTool.MultiParser.Node attribute)

 	as_dict() (celery.events.state.State.Task method)

 	(celery.events.state.Task method)

 	(celery.utils.collections.LimitedSet method)

 	as_list() (celery.result.AsyncResult method)

 	as_tuple() (celery.result.AsyncResult method)

 	(celery.result.GroupResult method)

 	as_uri() (celery.backends.base.DisabledBackend method)

 	(celery.backends.cache.CacheBackend method)

 	(celery.backends.cassandra.CassandraBackend method)

 	(celery.backends.mongodb.MongoBackend method)

 	(celery.backends.rpc.RPCBackend method)

 	assert_accepted() (celery.contrib.testing.manager.ManagerMixin method)

 	assert_received() (celery.contrib.testing.manager.ManagerMixin method)

 	assert_result_tasks_in_progress_or_completed() (celery.contrib.testing.manager.ManagerMixin method)

 	assert_task_state_from_result() (celery.contrib.testing.manager.ManagerMixin method)

 	assert_task_worker_state() (celery.contrib.testing.manager.ManagerMixin method)

 	AsyncBackendMixin (class in celery.backends.asynchronous)

 	AsyncResult (celery.Celery attribute)

 	(class in celery.result)

 	AsyncResult() (celery.app.task.Task method)

 	(celery.contrib.abortable.AbortableTask method)

 	AsyncResult.TimeoutError

 	asynloop() (in module celery.worker.loops)

 	ATTR (celery.utils.graph.DOT attribute)

 	attr() (celery.utils.graph.GraphFormatter method)

 	AttributeDict (class in celery.utils.collections)

 	AttributeDictMixin (class in celery.utils.collections)

 	attrs (celery.backends.rpc.RPCBackend.Exchange attribute)

 	attrs() (celery.utils.graph.GraphFormatter method)

 	ATTRSEP (celery.utils.graph.DOT attribute)

 	auto_declare (celery.backends.rpc.RPCBackend.Consumer attribute)

 	(celery.backends.rpc.RPCBackend.Producer attribute)

 	(celery.backends.rpc.RPCBackend.ResultConsumer.Consumer attribute)

 	
 AUTO_DELETE

 	celery-amqp-exchange.declare command line option

 	celery-amqp-queue.declare command line option

 	auto_delete (celery.backends.rpc.RPCBackend.Exchange attribute), [1]

 	autodiscover_tasks() (celery.Celery method)

 	(celery.loaders.base.BaseLoader method)

 	autodoc_skip_member_handler() (in module celery.contrib.sphinx)

 	autoregister (celery.app.task.Task attribute)

 	autoreloader

 	autoretry_for (Task attribute)

 	Autoscale (class in celery.bin.worker)

 	autoscale() (celery.app.control.Control method)

 	autoscaler

 	Autoscaler (class in celery.worker.autoscale)

 	available() (celery.utils.sysinfo.df property)

 	AWS_ACCESS_KEY_ID

 	aws_region (celery.backends.dynamodb.DynamoDBBackend attribute)

 	AWS_SECRET_ACCESS_KEY

 	
 azureblockblob_container_name

 	setting

 	
 azureblockblob_retry_increment_base

 	setting

 	
 azureblockblob_retry_initial_backoff_sec

 	setting

 	
 azureblockblob_retry_max_attempts

 	setting

 	AzureBlockBlobBackend (class in celery.backends.azureblockblob)

B

 	
 	backend (celery.Celery attribute)

 	(celery.result.AsyncResult attribute)

 	(Task attribute)

 	backend() (celery.app.task.Task property)

 	(celery.result.ResultSet property)

 	BackendError

 	BackendGetMetaError

 	BackendStoreError

 	background (celery.events.cursesmon.CursesMonitor attribute)

 	BacklogLimitExceeded

 	banner() (celery.apps.beat.Beat method)

 	BaseBackend (class in celery.backends.base)

 	BaseLoader (class in celery.loaders.base)

 	BasePool (class in celery.concurrency.base)

 	BasePool.Timer (class in celery.concurrency.base)

 	BasePool.Timer.Entry (class in celery.concurrency.base)

 	BaseResultConsumer (class in celery.backends.asynchronous)

 	Beat (celery.Celery attribute)

 	(class in celery.apps.beat)

 	(class in celery.worker.components)

 	Beat.Service (class in celery.apps.beat)

 	
 beat_embedded_init

 	signal

 	
 beat_init

 	signal

 	
 beat_max_loop_interval

 	setting

 	
 beat_schedule

 	setting

 	
 beat_schedule_filename

 	setting

 	
 beat_scheduler

 	setting

 	
 beat_sync_every

 	setting

 	
 before_task_publish

 	signal

 	bgThread (class in celery.utils.threads)

 	billiard

 	bind() (queue method)

 	bind_to() (celery.backends.rpc.RPCBackend.Exchange method)

 	(celery.utils.collections.ChainMap method)

 	binding() (celery.backends.rpc.RPCBackend property)

 	(celery.backends.rpc.RPCBackend.Exchange method)

 	black() (celery.utils.term.colored method)

 	blink() (celery.utils.term.colored method)

 	BlockingPool (celery.concurrency.prefork.TaskPool attribute)

 	blue() (celery.utils.term.colored method)

 	blueprint, [1]

 	(celery.worker.WorkController attribute)

 	(celery.worker.worker.WorkController attribute)

 	Blueprint (class in celery.bootsteps)

 	body() (celery.utils.threads.bgThread method)

 	(celery.worker.autoscale.Autoscaler method)

 	(celery.worker.request.Request property)

 	
 	body_can_be_buffer (celery.concurrency.base.BasePool attribute)

 	(celery.concurrency.solo.TaskPool attribute)

 	(celery.concurrency.thread.TaskPool attribute)

 	bold() (celery.utils.term.colored method)

 	bright() (celery.utils.term.colored method)

 	broadcast() (celery.app.control.Control method)

 	
 broker_connection_max_retries

 	setting

 	
 broker_connection_retry

 	setting

 	
 broker_connection_timeout

 	setting

 	
 broker_failover_strategy

 	setting

 	
 broker_heartbeat

 	setting

 	
 broker_heartbeat_checkrate

 	setting

 	
 broker_login_method

 	setting

 	
 broker_pool_limit

 	setting

 	
 broker_read_url

 	setting

 	broker_read_url() (celery.app.utils.Settings property)

 	
 broker_transport_options

 	setting

 	
 broker_url

 	setting

 	broker_url() (celery.app.utils.Settings property)

 	
 broker_use_ssl

 	setting

 	
 broker_write_url

 	setting

 	broker_write_url() (celery.app.utils.Settings property)

 	bucket (celery.backends.couchbase.CouchbaseBackend attribute)

 	bucket_for_task() (celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.consumer.Consumer method)

 	(consumer method)

 	Buffer (celery.utils.collections.BufferMap attribute)

 	BufferMap (class in celery.utils.collections)

 	BufferMap.Empty

 	bufmaxsize (celery.utils.collections.BufferMap attribute)

 	bugreport() (celery.Celery method)

 	(in module celery.app.utils)

 	build_graph() (celery.result.AsyncResult method)

 	build_tracer() (in module celery.app.trace)

 	builtin_fixups (celery.Celery attribute)

 	builtin_modules (celery.loaders.base.BaseLoader attribute)

 	Bunch (class in celery.utils.objects)

 	by_name() (in module celery.app.backends)

 	by_url() (in module celery.app.backends)

C

 	
 	C_FAKEFORK, [1], [2], [3], [4]

 	C_FORCE_ROOT, [1]

 	C_IMPDEBUG

 	
 cache_backend

 	setting

 	
 cache_backend_options

 	setting

 	CacheBackend (class in celery.backends.cache)

 	cached_property (class in celery.utils)

 	call() (celery.app.control.Control.Mailbox method)

 	call_after() (celery.concurrency.base.BasePool.Timer method)

 	(celery.utils.timer2.Timer method)

 	call_at() (celery.concurrency.base.BasePool.Timer method)

 	(celery.utils.timer2.Timer method)

 	call_command() (celery.bin.multi.MultiTool method)

 	call_repeatedly() (celery.concurrency.base.BasePool.Timer method)

 	(celery.utils.timer2.Timer method)

 	call_soon() (celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.consumer.Consumer method)

 	call_task() (celery.worker.consumer.Gossip method)

 	(celery.worker.consumer.gossip.Gossip method)

 	Callable() (in module celery.utils.deprecated)

 	CallableSignature (class in celery.utils.abstract)

 	CallableTask (class in celery.utils.abstract)

 	callbacks (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer attribute)

 	calling

 	can_cache_declaration (celery.backends.rpc.RPCBackend.Queue attribute)

 	can_cache_declaration() (celery.backends.rpc.RPCBackend.Exchange property)

 	can_document_member() (celery.contrib.sphinx.TaskDocumenter class method)

 	cancel() (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer method)

 	(celery.concurrency.base.BasePool.Timer method)

 	(celery.concurrency.base.BasePool.Timer.Entry method)

 	(celery.concurrency.eventlet.TaskPool.Timer method)

 	(celery.events.snapshot.Polaroid method)

 	(celery.utils.timer2.Entry method)

 	(celery.utils.timer2.Timer method)

 	(celery.utils.timer2.Timer.Entry method)

 	cancel_by_queue() (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer method)

 	
 cancel_consumer

 	control

 	cancel_consumer()

 	(celery.app.control.Control method)

 	cancel_for() (celery.backends.asynchronous.BaseResultConsumer method)

 	(celery.backends.redis.RedisBackend.ResultConsumer method)

 	(celery.backends.rpc.RPCBackend.ResultConsumer method)

 	cancel_task_queue() (celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.consumer.Consumer method)

 	(consumer method)

 	canceled (celery.concurrency.base.BasePool.Timer.Entry attribute)

 	(celery.utils.timer2.Entry attribute)

 	(celery.utils.timer2.Timer.Entry attribute)

 	cancelled() (celery.concurrency.base.BasePool.Timer.Entry property)

 	(celery.utils.timer2.Entry property)

 	(celery.utils.timer2.Timer.Entry property)

 	capacity() (celery.utils.sysinfo.df property)

 	capture() (celery.events.EventReceiver method)

 	(celery.events.receiver.EventReceiver method)

 	(celery.events.snapshot.Polaroid method)

 	
 cassandra_auth_kwargs

 	setting

 	
 cassandra_auth_provider

 	setting

 	
 cassandra_entry_ttl

 	setting

 	
 cassandra_keyspace

 	setting

 	
 cassandra_options

 	setting

 	
 cassandra_port

 	setting

 	
 cassandra_read_consistency

 	setting

 	
 cassandra_servers

 	setting

 	
 cassandra_table

 	setting

 	
 cassandra_write_consistency

 	setting

 	CassandraBackend (class in celery.backends.cassandra)

 	cast() (celery.app.control.Control.Mailbox method)

 	CDeprecationWarning

 	
 celery

 	module

 	Celery (class in celery)

 	
 celery command line option

 	--app <app>

 	--broker <broker>

 	--config <config>

 	--loader <loader>

 	--no-color

 	--quiet

 	--result-backend <result_backend>

 	--version

 	--workdir <workdir>

 	-A

 	-b

 	-C

 	-q

 	
 celery-amqp-basic.ack command line option

 	DELIVERY_TAG

 	
 celery-amqp-basic.get command line option

 	NO_ACK

 	QUEUE

 	
 celery-amqp-basic.publish command line option

 	EXCHANGE

 	IMMEDIATE

 	MANDATORY

 	MSG

 	ROUTING_KEY

 	
 celery-amqp-exchange.declare command line option

 	AUTO_DELETE

 	DURABLE

 	EXCHANGE

 	PASSIVE

 	TYPE

 	
 celery-amqp-exchange.delete command line option

 	EXCHANGE

 	IF_UNUSED

 	
 celery-amqp-queue.bind command line option

 	EXCHANGE

 	QUEUE

 	ROUTING_KEY

 	
 celery-amqp-queue.declare command line option

 	AUTO_DELETE

 	DURABLE

 	PASSIVE

 	QUEUE

 	
 celery-amqp-queue.delete command line option

 	IF_EMPTY

 	IF_UNUSED

 	QUEUE

 	
 celery-amqp-queue.purge command line option

 	QUEUE

 	
 celery-beat command line option

 	--detach

 	--executable <executable>

 	--gid <gid>

 	--logfile <logfile>

 	--loglevel <loglevel>

 	--max-interval <max_interval>

 	--pidfile <pidfile>

 	--schedule <schedule>

 	--scheduler <scheduler>

 	--uid <uid>, [1]

 	--umask <umask>

 	-f

 	-l

 	-s

 	-S

 	
 celery-call command line option

 	--args <args>

 	--countdown <countdown>

 	--eta <eta>

 	--exchange <exchange>

 	--expires <expires>

 	--kwargs <kwargs>

 	--queue <queue>

 	--routing-key <routing_key>

 	--serializer <serializer>

 	-a

 	-k

 	NAME

 	
 celery-control command line option

 	--destination <destination>

 	--json

 	--timeout <timeout>

 	-d

 	-j

 	-t

 	ACTION

 	
 celery-events command line option

 	--camera <camera>

 	--detach

 	--dump

 	--executable <executable>

 	--freq <frequency>

 	--frequency

 	--gid <gid>

 	--logfile <logfile>

 	--loglevel <loglevel>

 	--maxrate <maxrate>

 	--pidfile <pidfile>

 	--uid <uid>, [1]

 	--umask <umask>

 	-c

 	-d, [1]

 	-F

 	-f

 	-l

 	-r

 	
 celery-inspect command line option

 	--destination <destination>

 	--json

 	--timeout <timeout>

 	-d

 	-j

 	-t

 	ACTION

 	
 celery-logtool-debug command line option

 	FILES

 	
 celery-logtool-errors command line option

 	FILES

 	
 celery-logtool-incomplete command line option

 	FILES

 	
 celery-logtool-stats command line option

 	FILES

 	
 celery-logtool-traces command line option

 	FILES

 	
 celery-migrate command line option

 	--ack-messages

 	--forever

 	--limit <limit>

 	--queues <queues>

 	--tasks <tasks>

 	--timeout <timeout>

 	-a

 	-F

 	-n

 	-Q

 	-t

 	-T

 	DESTINATION

 	SOURCE

 	
 celery-purge command line option

 	--exclude-queues <exclude_queues>

 	--force

 	--queues <queues>

 	-f

 	-Q

 	-X

 	
 celery-result command line option

 	--task <task>

 	--traceback

 	-t

 	TASK_ID

 	
 celery-shell command line option

 	--bpython

 	--eventlet

 	--gevent

 	--ipython

 	--python

 	--without-tasks

 	-B

 	-I

 	-T

 	
 celery-status command line option

 	--destination <destination>

 	--json

 	--timeout <timeout>

 	-d

 	-j

 	-t

 	
 celery-upgrade-settings command line option

 	--compat

 	--django

 	--no-backup

 	FILENAME

 	
 celery-worker command line option

 	--autoscale <autoscale>

 	--beat

 	--concurrency <concurrency>

 	--detach

 	--discard

 	--events

 	--exclude-queues <exclude_queues>

 	--executable <executable>

 	--gid <gid>

 	--heartbeat-interval <heartbeat_interval>

 	--hostname <hostname>

 	--include <include>

 	--logfile <logfile>

 	--loglevel <loglevel>

 	--max-memory-per-child <max_memory_per_child>

 	--max-tasks-per-child <max_tasks_per_child>

 	--pidfile <pidfile>

 	--pool <pool>

 	--prefetch-multiplier <prefetch multiplier>

 	--purge

 	--queues <queues>

 	--schedule <schedule_filename>

 	--schedule-filename

 	--scheduler <scheduler>

 	--soft-time-limit <soft_time_limit>

 	--statedb <statedb>

 	--task-events

 	--time-limit <time_limit>

 	--uid <uid>, [1]

 	--umask <umask>

 	--without-gossip

 	--without-heartbeat

 	--without-mingle

 	-B

 	-c

 	-D

 	-E

 	-f

 	-I

 	-l

 	-n

 	-O <optimization>

 	-P

 	-Q

 	-S

 	-s

 	-X

 	
 celery._state

 	module

 	
 celery.app

 	module

 	
 celery.app.amqp

 	module

 	
 celery.app.annotations

 	module

 	
 celery.app.autoretry

 	module

 	
 celery.app.backends

 	module

 	
 celery.app.builtins

 	module

 	
 celery.app.control

 	module

 	
 celery.app.defaults

 	module

 	
 celery.app.events

 	module

 	
 celery.app.log

 	module

 	
 celery.app.registry

 	module

 	
 celery.app.routes

 	module

 	
 celery.app.task

 	module

 	
 celery.app.trace

 	module

 	
 celery.app.utils

 	module

 	
 celery.apps.beat

 	module

 	
 celery.apps.multi

 	module

 	
 celery.apps.worker

 	module

 	
 celery.backends

 	module

 	
 celery.backends.arangodb

 	module

 	
 celery.backends.asynchronous

 	module

 	
 celery.backends.azureblockblob

 	module

 	
 celery.backends.base

 	module

 	
 celery.backends.cache

 	module

 	
 celery.backends.cassandra

 	module

 	
 celery.backends.consul

 	module

 	
 celery.backends.cosmosdbsql

 	module

 	
 celery.backends.couchbase

 	module

 	
 celery.backends.couchdb

 	module

 	
 celery.backends.database

 	module

 	
 celery.backends.database.models

 	module

 	
 celery.backends.database.session

 	module

 	
 celery.backends.dynamodb

 	module

 	
 celery.backends.elasticsearch

 	module

 	
 celery.backends.filesystem

 	module

 	
 celery.backends.mongodb

 	module

 	
 celery.backends.redis

 	module

 	
 celery.backends.rpc

 	module

 	
 celery.backends.s3

 	module

 	
 celery.beat

 	module

 	
 celery.bin.amqp

 	module

 	
 celery.bin.base

 	module

 	
 celery.bin.beat

 	module

 	
 celery.bin.call

 	module

 	
 celery.bin.celery

 	module

 	
 celery.bin.control

 	module

 	
 celery.bin.events

 	module

 	
 celery.bin.graph

 	module

 	
 celery.bin.list

 	module

 	
 celery.bin.logtool

 	module

 	
 celery.bin.migrate

 	module

 	
 celery.bin.multi

 	module

 	
 celery.bin.purge

 	module

 	
 celery.bin.result

 	module

 	
 celery.bin.shell

 	module

 	
 celery.bin.upgrade

 	module

 	
 celery.bin.worker

 	module

 	
 celery.bootsteps

 	module

 	
 celery.concurrency

 	module

 	
 celery.concurrency.base

 	module

 	
 celery.concurrency.eventlet

 	module

 	
 celery.concurrency.gevent

 	module

 	
 celery.concurrency.prefork

 	module

 	
 	
 celery.concurrency.solo

 	module

 	
 celery.concurrency.thread

 	module

 	
 celery.contrib.abortable

 	module

 	
 celery.contrib.migrate

 	module

 	
 celery.contrib.pytest

 	module

 	
 celery.contrib.rdb

 	module

 	
 celery.contrib.sphinx

 	module

 	
 celery.contrib.testing.app

 	module

 	
 celery.contrib.testing.manager

 	module

 	
 celery.contrib.testing.mocks

 	module

 	
 celery.contrib.testing.worker

 	module

 	
 celery.events

 	module

 	
 celery.events.cursesmon

 	module

 	
 celery.events.dispatcher

 	module

 	
 celery.events.dumper

 	module

 	
 celery.events.event

 	module

 	
 celery.events.receiver

 	module

 	
 celery.events.snapshot

 	module

 	
 celery.events.state

 	module

 	
 celery.exceptions

 	module

 	
 celery.loaders

 	module

 	
 celery.loaders.app

 	module

 	
 celery.loaders.base

 	module

 	
 celery.loaders.default

 	module

 	Celery.on_after_configure (in module celery)

 	Celery.on_after_finalize (in module celery)

 	Celery.on_after_fork (in module celery)

 	Celery.on_configure (in module celery)

 	
 celery.platforms

 	module

 	
 celery.result

 	module

 	
 celery.schedules

 	module

 	
 celery.security

 	module

 	
 celery.security.certificate

 	module

 	
 celery.security.key

 	module

 	
 celery.security.serialization

 	module

 	
 celery.security.utils

 	module

 	
 celery.signals

 	module

 	
 celery.states

 	module

 	
 celery.utils

 	module

 	
 celery.utils.abstract

 	module

 	
 celery.utils.collections

 	module

 	
 celery.utils.debug

 	module

 	
 celery.utils.deprecated

 	module

 	
 celery.utils.dispatch

 	module

 	
 celery.utils.dispatch.signal

 	module

 	
 celery.utils.functional

 	module

 	
 celery.utils.graph

 	module

 	
 celery.utils.imports

 	module

 	
 celery.utils.iso8601

 	module

 	
 celery.utils.log

 	module

 	
 celery.utils.nodenames

 	module

 	
 celery.utils.objects

 	module

 	
 celery.utils.saferepr

 	module

 	
 celery.utils.serialization

 	module

 	
 celery.utils.sysinfo

 	module

 	
 celery.utils.term

 	module

 	
 celery.utils.text

 	module

 	
 celery.utils.threads

 	module

 	
 celery.utils.time

 	module

 	
 celery.utils.timer2

 	module

 	
 celery.worker

 	module

 	
 celery.worker.autoscale

 	module

 	
 celery.worker.components

 	module

 	
 celery.worker.consumer

 	module

 	
 celery.worker.consumer.agent

 	module

 	
 celery.worker.consumer.connection

 	module

 	
 celery.worker.consumer.consumer

 	module

 	
 celery.worker.consumer.control

 	module

 	
 celery.worker.consumer.events

 	module

 	
 celery.worker.consumer.gossip

 	module

 	
 celery.worker.consumer.heart

 	module

 	
 celery.worker.consumer.mingle

 	module

 	
 celery.worker.consumer.tasks

 	module

 	
 celery.worker.control

 	module

 	
 celery.worker.heartbeat

 	module

 	
 celery.worker.loops

 	module

 	
 celery.worker.pidbox

 	module

 	
 celery.worker.request

 	module

 	
 celery.worker.state

 	module

 	
 celery.worker.strategy

 	module

 	
 celery.worker.worker

 	module

 	celery_app() (in module celery.contrib.pytest)

 	CELERY_BENCH

 	CELERY_BROKER_URL

 	CELERY_CHDIR

 	celery_class_tasks() (in module celery.contrib.pytest)

 	celery_config() (in module celery.contrib.pytest)

 	CELERY_CONFIG_MODULE, [1], [2]

 	CELERY_CREATE_DIRS

 	celery_enable_logging() (in module celery.contrib.pytest)

 	celery_includes() (in module celery.contrib.pytest)

 	CELERY_LOADER, [1], [2], [3], [4], [5]

 	celery_parameters() (in module celery.contrib.pytest)

 	CELERY_RDB_HOST

 	CELERY_RDB_PORT

 	CELERY_RDBSIG

 	celery_session_app() (in module celery.contrib.pytest)

 	celery_session_worker() (in module celery.contrib.pytest)

 	CELERY_SU

 	CELERY_TRACE_APP, [1], [2]

 	celery_worker() (in module celery.contrib.pytest)

 	celery_worker_parameters() (in module celery.contrib.pytest)

 	celery_worker_pool() (in module celery.contrib.pytest)

 	CeleryBeat (class in celery.bin.worker)

 	CeleryCommand (class in celery.bin.base)

 	CELERYCTL

 	
 celeryd_after_setup

 	signal

 	
 celeryd_init

 	signal

 	CELERYD_SU_ARGS

 	CeleryDaemonCommand (class in celery.bin.base)

 	CeleryError

 	CeleryOption (class in celery.bin.base)

 	CeleryWarning

 	Certificate (class in celery.security.certificate)

 	CertStore (class in celery.security.certificate)

 	chain (class in celery)

 	ChainMap (class in celery.utils.collections)

 	changes (celery.utils.collections.ChainMap attribute)

 	channel (celery.backends.rpc.RPCBackend.Exchange attribute)

 	(celery.backends.rpc.RPCBackend.ResultConsumer.Consumer attribute)

 	channel() (celery.backends.rpc.RPCBackend.Producer property)

 	check_module() (celery.contrib.sphinx.TaskDocumenter method)

 	children() (celery.result.AsyncResult property)

 	(celery.result.GroupResult property)

 	chord (celery.worker.request.Request attribute)

 	(class in celery)

 	chord_size() (celery.utils.abstract.CallableSignature property)

 	ChordError

 	chunks() (celery.app.task.Task method)

 	(in module celery.utils)

 	(in module celery.utils.functional)

 	cipater

 	claim_steps() (celery.bootsteps.Blueprint method)

 	cleanup() (celery.backends.arangodb.ArangoDbBackend method)

 	(celery.backends.database.DatabaseBackend method)

 	(celery.backends.mongodb.MongoBackend method)

 	(celery.events.snapshot.Polaroid method)

 	(celery.utils.threads.LocalManager method)

 	cleanup_signal (celery.events.snapshot.Polaroid attribute)

 	clear() (celery.concurrency.base.BasePool.Timer method)

 	(celery.concurrency.eventlet.TaskPool.Timer method)

 	(celery.concurrency.gevent.TaskPool.Timer method)

 	(celery.events.state.State method)

 	(celery.result.ResultSet method)

 	(celery.utils.collections.ChainMap method)

 	(celery.utils.collections.ConfigurationView method)

 	(celery.utils.collections.LimitedSet method)

 	(celery.utils.timer2.Timer method)

 	clear_after (celery.events.snapshot.Polaroid attribute)

 	clear_tasks() (celery.events.state.State method)

 	CLIContext (class in celery.bin.base)

 	client (celery.backends.cache.CacheBackend attribute)

 	(celery.backends.consul.ConsulBackend attribute)

 	(celery.backends.redis.RedisBackend attribute)

 	(celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	client() (celery.backends.dynamodb.DynamoDBBackend property)

 	clock (celery.events.state.State.Task attribute)

 	(celery.events.state.State.Worker attribute)

 	(celery.events.state.Task attribute)

 	(celery.events.state.Worker attribute)

 	clock() (celery.app.control.Inspect method)

 	clone() (celery.utils.abstract.CallableSignature method)

 	CLOSE (celery.concurrency.base.BasePool attribute)

 	close() (celery.backends.rpc.RPCBackend.Producer method)

 	(celery.backends.rpc.RPCBackend.ResultConsumer.Consumer method)

 	(celery.beat.PersistentScheduler method)

 	(celery.beat.Scheduler method)

 	(celery.bootsteps.Blueprint method)

 	(celery.bootsteps.StartStopStep method)

 	(celery.Celery method)

 	(celery.concurrency.base.BasePool method)

 	(celery.events.dispatcher.EventDispatcher method)

 	(celery.events.EventDispatcher method)

 	(celery.platforms.DaemonContext method)

 	(celery.utils.log.LoggingProxy method)

 	(celery.worker.components.Pool method)

 	(celery.worker.state.Persistent method)

 	close_open_fds() (in module celery.platforms)

 	closed (celery.utils.log.LoggingProxy attribute)

 	Cluster (class in celery.apps.multi)

 	Cluster() (celery.bin.multi.MultiTool method)

 	cluster_from_argv() (celery.bin.multi.MultiTool method)

 	cmdline_config_parser() (celery.loaders.base.BaseLoader method)

 	collect() (celery.result.AsyncResult method)

 	collection (celery.backends.arangodb.ArangoDbBackend attribute)

 	(celery.backends.mongodb.MongoBackend attribute)

 	colored (class in celery.utils.term)

 	colored() (celery.app.log.Logging method)

 	ColorFormatter (class in celery.utils.log)

 	COLORS (celery.utils.log.ColorFormatter attribute)

 	colors (celery.utils.log.ColorFormatter attribute)

 	CommaSeparatedList (class in celery.bin.base)

 	compatible_transport() (celery.worker.consumer.Gossip method)

 	(celery.worker.consumer.gossip.Gossip method)

 	(celery.worker.consumer.Mingle method)

 	(celery.worker.consumer.mingle.Mingle method)

 	compatible_transports (celery.worker.consumer.Gossip attribute)

 	(celery.worker.consumer.gossip.Gossip attribute)

 	(celery.worker.consumer.Mingle attribute)

 	(celery.worker.consumer.mingle.Mingle attribute)

 	completed_count() (celery.result.ResultSet method)

 	compress() (celery.worker.state.Persistent method)

 	compression (celery.backends.rpc.RPCBackend.Producer attribute)

 	(Task attribute)

 	conditional (celery.bootsteps.Step attribute)

 	(celery.worker.autoscale.WorkerComponent attribute)

 	(celery.worker.components.Beat attribute)

 	(celery.worker.consumer.Agent attribute)

 	(celery.worker.consumer.agent.Agent attribute)

 	conf() (celery.app.control.Inspect method)

 	(celery.loaders.base.BaseLoader property)

 	config_from_envvar() (celery.Celery method)

 	config_from_object() (celery.Celery method)

 	(celery.loaders.base.BaseLoader method)

 	ConfigurationView (class in celery.utils.collections)

 	configure() (celery.backends.database.models.Task class method)

 	(celery.backends.database.models.TaskSet class method)

 	configured (celery.loaders.base.BaseLoader attribute)

 	connect() (celery.utils.dispatch.Signal method)

 	(celery.utils.dispatch.signal.Signal method)

 	(celery.utils.graph.DependencyGraph method)

 	(celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.consumer.Consumer method)

 	connect_on_app_finalize() (in module celery._state)

 	connect_with() (celery.bootsteps.Blueprint method)

 	connection

 	Connection (celery.app.amqp.AMQP attribute)

 	connection (celery.app.control.Control.Mailbox attribute)

 	(celery.beat.Scheduler attribute)

 	Connection (class in celery.worker.consumer)

 	(class in celery.worker.consumer.connection)

 	connection() (celery.backends.arangodb.ArangoDbBackend property)

 	(celery.backends.couchbase.CouchbaseBackend property)

 	(celery.backends.couchdb.CouchBackend property)

 	(celery.backends.rpc.RPCBackend.Producer property)

 	(celery.backends.rpc.RPCBackend.ResultConsumer.Consumer property)

 	(celery.Celery method)

 	(celery.events.EventReceiver property)

 	(celery.events.receiver.EventReceiver property)

 	connection_errors() (celery.worker.request.Request property)

 	connection_for_read() (celery.Celery method)

 	(celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.consumer.Consumer method)

 	connection_for_write() (celery.Celery method)

 	(celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.consumer.Consumer method)

 	connection_or_acquire() (celery.Celery method)

 	ConnectionPool() (celery.backends.redis.RedisBackend property)

 	consistency (celery.backends.consul.ConsulBackend attribute)

 	consul (celery.backends.consul.ConsulBackend attribute)

 	ConsulBackend (class in celery.backends.consul)

 	consume() (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer method)

 	consume_from() (celery.app.amqp.Queues property)

 	(celery.backends.asynchronous.BaseResultConsumer method)

 	(celery.backends.redis.RedisBackend.ResultConsumer method)

 	(celery.backends.rpc.RPCBackend.ResultConsumer method)

 	Consumer (celery.app.amqp.AMQP attribute)

 	consumer (celery.worker.pidbox.Pidbox attribute)

 	Consumer (class in celery.worker.components)

 	(class in celery.worker.consumer)

 	(class in celery.worker.consumer.consumer)

 	Consumer.Blueprint (class in celery.worker.consumer)

 	(class in celery.worker.consumer.consumer)

 	consumers (celery.bootsteps.ConsumerStep attribute)

 	ConsumerStep (class in celery.bootsteps)

 	consuming_from() (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer method)

 	container (celery.backends.couchdb.CouchBackend attribute)

 	content_encoding() (celery.worker.request.Request property)

 	content_type() (celery.worker.request.Request property)

 	context

 	Context (class in celery.app.task)

 	
 control

 	active_queues

 	add_consumer

 	cancel_consumer

 	disable_events

 	enable_events

 	ping

 	rate_limit

 	revoke

 	shutdown

 	control (celery.Celery attribute)

 	Control (class in celery.app.control)

 	(class in celery.worker.consumer)

 	(class in celery.worker.consumer.control)

 	Control.Mailbox (class in celery.app.control)

 	
 control_exchange

 	setting

 	
 control_queue_expires

 	setting

 	
 control_queue_ttl

 	setting

 	controller

 	convert() (celery.bin.base.CommaSeparatedList method)

 	(celery.bin.base.ISO8601DateTime method)

 	(celery.bin.base.ISO8601DateTimeOrFloat method)

 	(celery.bin.base.Json method)

 	(celery.bin.base.LogLevel method)

 	(celery.bin.celery.App method)

 	(celery.bin.worker.Autoscale method)

 	(celery.bin.worker.CeleryBeat method)

 	(celery.bin.worker.Hostname method)

 	(celery.bin.worker.WorkersPool method)

 	copy() (celery.utils.collections.ChainMap method)

 	correlation_id() (celery.worker.request.Request property)

 	
 cosmosdbsql_collection_name

 	setting

 	
 cosmosdbsql_consistency_level

 	setting

 	
 cosmosdbsql_database_name

 	setting

 	
 cosmosdbsql_max_retry_attempts

 	setting

 	
 cosmosdbsql_max_retry_wait_time

 	setting

 	CosmosDBSQLBackend (class in celery.backends.cosmosdbsql)

 	CouchBackend (class in celery.backends.couchdb)

 	
 couchbase_backend_settings

 	setting

 	CouchbaseBackend (class in celery.backends.couchbase)

 	count (celery.contrib.migrate.State attribute)

 	CPendingDeprecationWarning

 	create() (celery.bootsteps.Step method)

 	(celery.worker.autoscale.WorkerComponent method)

 	(celery.worker.components.Beat method)

 	(celery.worker.components.Consumer method)

 	(celery.worker.components.Hub method)

 	(celery.worker.components.Pool method)

 	(celery.worker.components.StateDB method)

 	(celery.worker.components.Timer method)

 	(celery.worker.consumer.Agent method)

 	(celery.worker.consumer.agent.Agent method)

 	create_exception_cls() (in module celery.utils.serialization)

 	create_pidlock() (in module celery.platforms)

 	create_session() (celery.backends.database.session.SessionManager method)

 	create_task_handler() (celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.consumer.Consumer method)

 	create_task_message (celery.app.amqp.AMQP attribute)

 	crontab (class in celery.schedules)

 	crontab_parser (class in celery.schedules)

 	crontab_parser.ParseException

 	current_app (in module celery)

 	(in module celery._state)

 	current_task (celery.Celery attribute)

 	(in module celery)

 	(in module celery._state)

 	current_worker_task (celery.Celery attribute)

 	CursesMonitor (class in celery.events.cursesmon)

 	cwd_in_path() (in module celery.utils.imports)

 	cyan() (celery.utils.term.colored method)

 	CycleError

D

 	
 	DaemonContext (class in celery.platforms)

 	data (celery.worker.control.Panel attribute)

 	data() (celery.apps.multi.Cluster property)

 	database (celery.backends.arangodb.ArangoDbBackend attribute)

 	(celery.backends.mongodb.MongoBackend attribute)

 	
 database_engine_options

 	setting

 	database_name (celery.backends.mongodb.MongoBackend attribute)

 	
 database_short_lived_sessions

 	setting

 	
 database_table_names

 	setting

 	
 database_table_schemas

 	setting

 	DatabaseBackend (class in celery.backends.database)

 	date_done (celery.backends.database.models.Task attribute)

 	(celery.backends.database.models.TaskExtended attribute)

 	(celery.backends.database.models.TaskSet attribute)

 	date_done() (celery.result.AsyncResult property)

 	day_of_month (celery.schedules.crontab attribute)

 	day_of_week (celery.schedules.crontab attribute)

 	db (celery.worker.state.Persistent attribute)

 	db() (celery.backends.arangodb.ArangoDbBackend property)

 	debugger() (in module celery.contrib.rdb)

 	declare() (celery.backends.rpc.RPCBackend.Exchange method)

 	(celery.backends.rpc.RPCBackend.Producer method)

 	(celery.backends.rpc.RPCBackend.ResultConsumer.Consumer method)

 	(queue method)

 	decode() (celery.backends.elasticsearch.ElasticsearchBackend method)

 	(celery.backends.mongodb.MongoBackend method)

 	decompress() (celery.worker.state.Persistent method)

 	dedent() (in module celery.utils.text)

 	dedent_initial() (in module celery.utils.text)

 	default() (in module celery.worker.strategy)

 	default_app (in module celery.app)

 	default_dispatcher() (celery.app.events.Events method)

 	default_exchange (celery.app.amqp.AMQP attribute)

 	default_modules (celery.loaders.base.BaseLoader attribute)

 	default_nodename() (in module celery.utils.nodenames)

 	default_now() (celery.beat.ScheduleEntry method)

 	default_queue (celery.app.amqp.AMQP attribute)

 	default_retry_delay (celery.app.task.Task attribute)

 	(Task attribute)

 	default_socket_timeout() (in module celery.utils.threads)

 	default_steps (celery.bootsteps.Blueprint attribute)

 	(celery.worker.consumer.Consumer.Blueprint attribute)

 	(celery.worker.consumer.consumer.Consumer.Blueprint attribute)

 	(celery.worker.WorkController.Blueprint attribute)

 	(celery.worker.worker.WorkController.Blueprint attribute)

 	DEFAULT_TEST_CONFIG (in module celery.contrib.testing.app)

 	defaults (celery.utils.collections.ChainMap attribute)

 	delay() (celery.app.task.Task method)

 	(celery.utils.abstract.CallableTask method)

 	delete() (celery.backends.arangodb.ArangoDbBackend method)

 	(celery.backends.azureblockblob.AzureBlockBlobBackend method)

 	(celery.backends.cache.CacheBackend method)

 	(celery.backends.consul.ConsulBackend method)

 	(celery.backends.cosmosdbsql.CosmosDBSQLBackend method)

 	(celery.backends.couchbase.CouchbaseBackend method)

 	(celery.backends.couchdb.CouchBackend method)

 	(celery.backends.dynamodb.DynamoDBBackend method)

 	(celery.backends.elasticsearch.ElasticsearchBackend method)

 	(celery.backends.filesystem.FilesystemBackend method)

 	(celery.backends.redis.RedisBackend method)

 	(celery.backends.rpc.RPCBackend.Exchange method)

 	(celery.backends.s3.S3Backend method)

 	(celery.result.GroupResult method)

 	(exchange method)

 	(queue method)

 	
 	delete_group() (celery.backends.rpc.RPCBackend method)

 	deleter() (celery.utils.cached_property method)

 	delivery_info() (celery.worker.request.Request property)

 	delivery_mode (celery.backends.rpc.RPCBackend.Exchange attribute), [1]

 	
 DELIVERY_TAG

 	celery-amqp-basic.ack command line option

 	delta_resolution() (in module celery.utils.time)

 	DependencyGraph (class in celery.utils.graph)

 	depends_on_current_app() (in module celery.contrib.pytest)

 	deprecate_by (celery.app.defaults.Option attribute)

 	deselect() (celery.app.amqp.Queues method)

 	deserialize() (celery.security.serialization.SecureSerializer method)

 	
 DESTINATION

 	celery-migrate command line option

 	destination_for() (celery.backends.rpc.RPCBackend method)

 	detach() (in module celery.bin.worker)

 	detached() (in module celery.platforms)

 	df (class in celery.utils.sysinfo)

 	DictAttribute (class in celery.utils.collections)

 	dictfilter() (in module celery.utils.functional)

 	did_start_ok() (celery.concurrency.base.BasePool method)

 	(celery.concurrency.prefork.TaskPool method)

 	DIRS (celery.utils.graph.DOT attribute)

 	disable() (celery.events.dispatcher.EventDispatcher method)

 	(celery.events.EventDispatcher method)

 	
 disable_events

 	control

 	disable_events() (celery.app.control.Control method)

 	disable_trace() (in module celery.app)

 	DISABLED_TRANSPORTS (celery.events.dispatcher.EventDispatcher attribute)

 	(celery.events.EventDispatcher attribute)

 	DisabledBackend (class in celery.backends.base)

 	discard() (celery.result.ResultSet method)

 	(celery.utils.collections.LimitedSet method)

 	discard_all() (celery.app.control.Control method)

 	disconnect() (celery.utils.dispatch.Signal method)

 	(celery.utils.dispatch.signal.Signal method)

 	Dispatcher (celery.app.events.Events attribute)

 	dispatcher_cls (celery.app.events.Events attribute)

 	display_height() (celery.events.cursesmon.CursesMonitor property)

 	display_task_row() (celery.events.cursesmon.CursesMonitor method)

 	display_width() (celery.events.cursesmon.CursesMonitor property)

 	DJANGO_SETTINGS_MODULE, [1], [2], [3], [4]

 	doc_type (celery.backends.elasticsearch.ElasticsearchBackend attribute)

 	document_members() (celery.contrib.sphinx.TaskDocumenter method)

 	DOT (class in celery.utils.graph)

 	DOWN (celery.bin.multi.MultiTool attribute)

 	drain_events() (celery.backends.asynchronous.BaseResultConsumer method)

 	(celery.backends.redis.RedisBackend.ResultConsumer method)

 	(celery.backends.rpc.RPCBackend.ResultConsumer method)

 	drain_events_until() (celery.backends.asynchronous.BaseResultConsumer method)

 	(celery.backends.asynchronous.Drainer method)

 	Drainer (class in celery.backends.asynchronous)

 	draw() (celery.events.cursesmon.CursesMonitor method)

 	draw_edge() (celery.utils.graph.GraphFormatter method)

 	draw_node() (celery.utils.graph.GraphFormatter method)

 	dst() (celery.utils.time.LocalTimezone method)

 	dump_body() (in module celery.worker.consumer.consumer)

 	Dumper (class in celery.events.dumper)

 	DuplicateNodenameWarning

 	
 DURABLE

 	celery-amqp-exchange.declare command line option

 	celery-amqp-queue.declare command line option

 	durable (celery.backends.rpc.RPCBackend.Exchange attribute), [1]

 	DynamoDBBackend (class in celery.backends.dynamodb)

E

 	
 	EagerResult (class in celery.result)

 	early ack

 	early acknowledgment

 	echo() (celery.bin.base.CLIContext method)

 	EDGE (celery.utils.graph.DOT attribute)

 	edge() (celery.utils.graph.GraphFormatter method)

 	edge_scheme (celery.utils.graph.GraphFormatter attribute)

 	edges() (celery.utils.graph.DependencyGraph method)

 	editable_fields_equal() (celery.beat.ScheduleEntry method)

 	
 elasticsearch_max_retries

 	setting

 	
 elasticsearch_retry_on_timeout

 	setting

 	
 elasticsearch_save_meta_as_text

 	setting

 	
 elasticsearch_timeout

 	setting

 	ElasticsearchBackend (class in celery.backends.elasticsearch)

 	election() (celery.app.control.Control method)

 	(celery.worker.consumer.Gossip method)

 	(celery.worker.consumer.gossip.Gossip method)

 	embed() (celery.utils.term.colored method)

 	EmbeddedService() (in module celery.beat)

 	emit_banner() (celery.apps.worker.Worker method)

 	empty() (celery.concurrency.base.BasePool.Timer method)

 	(celery.utils.timer2.Timer method)

 	enable() (celery.events.dispatcher.EventDispatcher method)

 	(celery.events.EventDispatcher method)

 	
 enable_events

 	control

 	enable_events() (celery.app.control.Control method)

 	enable_trace() (in module celery.app)

 	
 enable_utc

 	setting

 	enabled (celery.bootsteps.Step attribute)

 	encode() (celery.backends.elasticsearch.ElasticsearchBackend method)

 	(celery.backends.mongodb.MongoBackend method)

 	endpoint_url (celery.backends.dynamodb.DynamoDBBackend attribute)

 	ensure() (celery.backends.redis.RedisBackend method)

 	ensure_chords_allowed() (celery.backends.base.DisabledBackend method)

 	(celery.backends.rpc.RPCBackend method)

 	ensure_connected() (celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.consumer.Consumer method)

 	ensure_newlines() (in module celery.utils.text)

 	ensure_not_for_a_while() (celery.contrib.testing.manager.ManagerMixin method)

 	ensure_sep() (in module celery.utils.text)

 	ensure_started() (celery.concurrency.base.BasePool.Timer method)

 	(celery.contrib.testing.worker.TestWorkController method)

 	(celery.utils.timer2.Timer method)

 	enter() (celery.concurrency.base.BasePool.Timer method)

 	(celery.utils.timer2.Timer method)

 	enter_after() (celery.concurrency.base.BasePool.Timer method)

 	(celery.utils.timer2.Timer method)

 	Entry (celery.beat.Scheduler attribute)

 	(class in celery.utils.timer2)

 	
 environment variable

 	AWS_ACCESS_KEY_ID

 	AWS_SECRET_ACCESS_KEY

 	C_FAKEFORK, [1], [2], [3], [4]

 	C_FORCE_ROOT, [1]

 	C_IMPDEBUG

 	CELERY_BENCH

 	CELERY_BROKER_URL

 	CELERY_CHDIR

 	CELERY_CONFIG_MODULE, [1], [2]

 	CELERY_CREATE_DIRS

 	CELERY_LOADER, [1], [2], [3], [4], [5]

 	CELERY_RDB_HOST, [1]

 	CELERY_RDB_PORT, [1]

 	CELERY_RDBSIG

 	CELERY_SU

 	CELERY_TRACE_APP, [1], [2]

 	CELERYCTL

 	CELERYD_SU_ARGS

 	DJANGO_SETTINGS_MODULE, [1], [2], [3], [4]

 	MP_LOG, [1]

 	NOSE_VERBOSE

 	USE_FAST_LOCALS

 	errbacks (celery.worker.request.Request attribute)

 	ERROR (celery.bin.base.CLIContext attribute)

 	error() (celery.bin.base.CLIContext method)

 	es_max_retries (celery.backends.elasticsearch.ElasticsearchBackend attribute)

 	es_retry_on_timeout (celery.backends.elasticsearch.ElasticsearchBackend attribute)

 	es_timeout (celery.backends.elasticsearch.ElasticsearchBackend attribute)

 	ETA

 	eta (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	eta() (celery.worker.request.Request property)

 	evaluate() (celery.utils.functional.lazy method)

 	(celery.utils.functional.mlazy method)

 	evaluated (celery.utils.functional.mlazy attribute)

 	evcam() (in module celery.events.snapshot)

 	evdump() (in module celery.events.dumper)

 	
 event

 	task-failed

 	task-received

 	task-rejected

 	task-retried

 	task-revoked

 	task-sent

 	task-started

 	task-succeeded

 	worker-heartbeat

 	worker-offline

 	worker-online

 	
 	event (celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	event() (celery.events.state.State method)

 	(celery.events.state.State.Task method)

 	(celery.events.state.Task method)

 	Event() (in module celery.events)

 	(in module celery.events.event)

 	event_count (celery.events.state.State attribute)

 	event_dispatcher

 	
 event_exchange

 	setting

 	event_exchange (in module celery.events.event)

 	event_from_message() (celery.events.EventReceiver method)

 	(celery.events.receiver.EventReceiver method)

 	
 event_queue_expires

 	setting

 	
 event_queue_prefix

 	setting

 	
 event_queue_ttl

 	setting

 	
 event_serializer

 	setting

 	EventDispatcher (class in celery.events)

 	(class in celery.events.dispatcher)

 	eventer() (celery.worker.request.Request property)

 	
 eventlet_pool_apply

 	signal

 	
 eventlet_pool_postshutdown

 	signal

 	
 eventlet_pool_preshutdown

 	signal

 	
 eventlet_pool_started

 	signal

 	EventReceiver (class in celery.events)

 	(class in celery.events.receiver)

 	events (celery.Celery attribute)

 	Events (class in celery.app.events)

 	(class in celery.worker.consumer)

 	(class in celery.worker.consumer.events)

 	evict() (celery.utils.collections.Evictable method)

 	Evictable (class in celery.utils.collections)

 	Evictable.Empty

 	Evloop (class in celery.worker.consumer.consumer)

 	evtop() (in module celery.events.cursesmon)

 	exc (celery.exceptions.Retry attribute)

 	exc_args (celery.utils.serialization.UnpickleableExceptionWrapper attribute)

 	exc_cls_name (celery.utils.serialization.UnpickleableExceptionWrapper attribute)

 	exc_module (celery.utils.serialization.UnpickleableExceptionWrapper attribute)

 	exception (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	exception_safe_to_retry() (celery.backends.elasticsearch.ElasticsearchBackend method)

 	
 EXCEPTION_STATES

 	state

 	
 EXCHANGE

 	celery-amqp-basic.publish command line option

 	celery-amqp-exchange.declare command line option

 	celery-amqp-exchange.delete command line option

 	celery-amqp-queue.bind command line option

 	exchange (celery.app.control.Control.Mailbox attribute)

 	(celery.backends.rpc.RPCBackend.Producer attribute)

 	(celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	exchange_fmt (celery.app.control.Control.Mailbox attribute)

 	executable (celery.apps.multi.Node attribute)

 	(celery.bin.multi.MultiTool.MultiParser.Node attribute)

 	execute() (celery.worker.request.Request method)

 	execute_from_commandline() (celery.bin.multi.MultiTool method)

 	execute_using_pool() (celery.worker.request.Request method)

 	executing

 	exit_after() (celery.concurrency.base.BasePool.Timer method)

 	(celery.utils.timer2.Timer method)

 	exitcode (celery.worker.WorkController attribute)

 	(celery.worker.worker.WorkController attribute)

 	expand() (celery.bin.multi.MultiTool method)

 	expand_destination() (celery.app.routes.Router method)

 	expire() (celery.backends.cache.CacheBackend method)

 	(celery.backends.redis.RedisBackend method)

 	expire_window (celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	expires (celery.app.task.Task attribute)

 	(celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	expires() (celery.worker.request.Request property)

 	expires_delta (celery.backends.arangodb.ArangoDbBackend attribute)

 	(celery.backends.mongodb.MongoBackend attribute)

 	extend() (celery.utils.collections.BufferMap method)

 	(celery.utils.collections.Messagebuffer method)

 	extend_buffer() (celery.events.dispatcher.EventDispatcher method)

 	(celery.events.EventDispatcher method)

 	extended_result() (celery.backends.database.DatabaseBackend property)

 	extra_info() (celery.apps.worker.Worker method)

F

 	
 	FAILED (celery.bin.multi.MultiTool attribute)

 	failed (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	failed() (celery.result.AsyncResult method)

 	(celery.result.ResultSet method)

 	
 FAILURE

 	state

 	FAILURE (in module celery.states)

 	FallbackContext (class in celery.utils.objects)

 	fd_by_path() (in module celery.platforms)

 	ffwd (class in celery.utils.time)

 	
 FILENAME

 	celery-upgrade-settings command line option

 	
 FILES

 	celery-logtool-debug command line option

 	celery-logtool-errors command line option

 	celery-logtool-incomplete command line option

 	celery-logtool-stats command line option

 	celery-logtool-traces command line option

 	FilesystemBackend (class in celery.backends.filesystem)

 	fill_paragraphs() (in module celery.utils.text)

 	filter_hidden_settings() (in module celery.app.utils)

 	filter_types() (celery.app.registry.TaskRegistry method)

 	filtered (celery.contrib.migrate.State attribute)

 	finalize() (celery.app.utils.Settings method)

 	(celery.Celery method)

 	find() (celery.apps.multi.Cluster method)

 	(in module celery.app.defaults)

 	find_app() (in module celery.app.utils)

 	find_module() (celery.loaders.base.BaseLoader method)

 	(in module celery.utils.imports)

 	find_option() (celery.app.utils.Settings method)

 	find_pickleable_exception() (in module celery.utils.serialization)

 	find_position() (celery.events.cursesmon.CursesMonitor method)

 	find_value_for_key() (celery.app.utils.Settings method)

 	first() (celery.utils.collections.ConfigurationView method)

 	(in module celery.utils.functional)

 	firstmethod() (in module celery.utils.functional)

 	FixupWarning

 	
 	flatten() (in module celery.app.defaults)

 	flatten_reply() (in module celery.app.control)

 	flow() (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer method)

 	flush() (celery.concurrency.base.BasePool method)

 	(celery.events.dispatcher.EventDispatcher method)

 	(celery.events.EventDispatcher method)

 	(celery.utils.log.LoggingProxy method)

 	flush_routes() (celery.app.amqp.AMQP method)

 	FMT() (celery.utils.graph.GraphFormatter method)

 	force_mapping() (in module celery.utils.collections)

 	foreground (celery.events.cursesmon.CursesMonitor attribute)

 	forget() (celery.backends.redis.RedisBackend method)

 	(celery.result.AsyncResult method)

 	(celery.result.EagerResult method)

 	(celery.result.ResultSet method)

 	format() (celery.app.amqp.Queues method)

 	(celery.app.log.TaskFormatter method)

 	(celery.utils.graph.DependencyGraph method)

 	(celery.utils.log.ColorFormatter method)

 	format_args() (celery.contrib.sphinx.TaskDocumenter method)

 	format_options() (celery.bin.base.CeleryCommand method)

 	format_row() (celery.events.cursesmon.CursesMonitor method)

 	format_task_event() (celery.events.dumper.Dumper method)

 	formatException() (celery.utils.log.ColorFormatter method)

 	freeze() (celery.utils.abstract.CallableSignature method)

 	(State method)

 	freeze_while() (celery.events.state.State method)

 	(State method)

 	freq (celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	from_exception() (celery.utils.serialization.UnpickleableExceptionWrapper class method)

 	from_kwargs() (celery.apps.multi.Node class method)

 	(celery.bin.multi.MultiTool.MultiParser.Node class method)

 	fromkeys() (celery.utils.collections.ChainMap class method)

 	fromutc() (celery.utils.time.LocalTimezone method)

 	FSCertStore (class in celery.security.certificate)

 	fun (celery.concurrency.base.BasePool.Timer.Entry attribute)

 	(celery.utils.timer2.Entry attribute)

 	(celery.utils.timer2.Timer.Entry attribute)

 	fun_accepts_kwargs() (in module celery.utils.functional)

G

 	
 	gen_task_name() (celery.Celery method)

 	(in module celery.utils), [1]

 	(in module celery.utils.imports)

 	gen_unique_id() (in module celery.utils)

 	get() (celery.backends.arangodb.ArangoDbBackend method)

 	(celery.backends.azureblockblob.AzureBlockBlobBackend method)

 	(celery.backends.cache.CacheBackend method)

 	(celery.backends.consul.ConsulBackend method)

 	(celery.backends.cosmosdbsql.CosmosDBSQLBackend method)

 	(celery.backends.couchbase.CouchbaseBackend method)

 	(celery.backends.couchdb.CouchBackend method)

 	(celery.backends.dynamodb.DynamoDBBackend method)

 	(celery.backends.elasticsearch.ElasticsearchBackend method)

 	(celery.backends.filesystem.FilesystemBackend method)

 	(celery.backends.redis.RedisBackend method)

 	(celery.backends.s3.S3Backend method)

 	(celery.bin.multi.MultiTool method)

 	(celery.result.AsyncResult method)

 	(celery.result.EagerResult method)

 	(celery.result.ResultSet method)

 	(celery.utils.collections.ChainMap method)

 	(celery.utils.collections.ConfigurationView method)

 	(celery.utils.collections.DictAttribute method)

 	get_by_parts() (celery.app.utils.Settings method)

 	get_cls_by_name() (in module celery.utils)

 	get_consumers() (celery.bootsteps.ConsumerStep method)

 	(celery.events.EventReceiver method)

 	(celery.events.receiver.EventReceiver method)

 	(celery.worker.consumer.Gossip method)

 	(celery.worker.consumer.gossip.Gossip method)

 	get_current_app() (in module celery._state)

 	get_current_task() (in module celery._state)

 	get_current_worker_task() (in module celery._state)

 	get_default() (celery.bin.base.CeleryOption method)

 	get_default_logger() (celery.app.log.Logging method)

 	get_digest_algorithm() (in module celery.security.utils)

 	get_engine() (celery.backends.database.session.SessionManager method)

 	get_errno_name() (in module celery.platforms)

 	get_exchange() (in module celery.events)

 	(in module celery.events.event)

 	get_exponential_backoff_interval() (in module celery.utils.time)

 	get_fdmax() (in module celery.platforms)

 	get_full_cls_name() (in module celery.utils)

 	get_id() (celery.security.certificate.Certificate method)

 	get_ident() (celery.utils.threads.LocalManager method)

 	(in module celery.utils.threads)

 	get_implementation() (in module celery.concurrency)

 	get_issuer() (celery.security.certificate.Certificate method)

 	get_leaf() (celery.result.AsyncResult method)

 	get_loader_cls() (in module celery.loaders)

 	
 	get_logger() (in module celery.utils.log)

 	get_many() (celery.backends.base.DisabledBackend method)

 	get_multiprocessing_logger() (in module celery.utils.log)

 	get_or_create_task() (celery.events.state.State method)

 	get_or_create_worker() (celery.events.state.State method)

 	get_pickleable_etype() (in module celery.utils.serialization)

 	get_pickleable_exception() (in module celery.utils.serialization)

 	get_pickled_exception() (in module celery.utils.serialization)

 	get_pubkey() (celery.security.certificate.Certificate method)

 	get_queue() (celery.app.control.Control.Mailbox method)

 	get_reply_queue() (celery.app.control.Control.Mailbox method)

 	get_result() (celery.backends.base.DisabledBackend method)

 	get_schedule() (celery.beat.PersistentScheduler method)

 	(celery.beat.Scheduler method)

 	get_scheduler() (celery.apps.beat.Beat.Service method)

 	(celery.beat.Service method)

 	get_serial_number() (celery.security.certificate.Certificate method)

 	get_signature_prefix() (celery.contrib.sphinx.TaskDirective method)

 	get_state() (celery.backends.base.DisabledBackend method)

 	get_status() (celery.backends.base.DisabledBackend method)

 	get_task_logger() (in module celery.utils.log)

 	get_task_meta() (celery.backends.rpc.RPCBackend method)

 	get_task_meta_for() (celery.backends.base.DisabledBackend method)

 	get_traceback() (celery.backends.base.DisabledBackend method)

 	gethostname() (in module celery.utils.nodenames)

 	getitem_property (class in celery.utils.objects)

 	getopt() (celery.apps.multi.Node method)

 	(celery.bin.multi.MultiTool.MultiParser.Node method)

 	getpids() (celery.apps.multi.Cluster method)

 	gossip

 	Gossip (class in celery.worker.consumer)

 	(class in celery.worker.consumer.gossip)

 	gPidbox (class in celery.worker.pidbox)

 	graph (celery.result.AsyncResult attribute)

 	graph_scheme (celery.utils.graph.GraphFormatter attribute)

 	GraphFormatter (celery.bootsteps.Blueprint attribute)

 	(class in celery.utils.graph)

 	green() (celery.utils.term.colored method)

 	greet (celery.events.cursesmon.CursesMonitor attribute)

 	group (celery.worker.request.Request attribute)

 	(class in celery)

 	group_collection (celery.backends.mongodb.MongoBackend attribute)

 	group_from() (in module celery.events)

 	(in module celery.events.event)

 	group_index (celery.worker.request.Request attribute)

 	groupmeta_collection (celery.backends.mongodb.MongoBackend attribute)

 	GroupResult (celery.Celery attribute)

 	(class in celery.result)

 	grow() (celery.concurrency.eventlet.TaskPool method)

 	(celery.concurrency.gevent.TaskPool method)

H

 	
 	handle_error_state() (celery.app.trace.TraceInfo method)

 	handle_failure() (celery.app.trace.TraceInfo method)

 	handle_ignore() (celery.app.trace.TraceInfo method)

 	handle_keypress() (celery.events.cursesmon.CursesMonitor method)

 	handle_process_exit() (celery.apps.multi.Node method)

 	(celery.bin.multi.MultiTool.MultiParser.Node method)

 	handle_reject() (celery.app.trace.TraceInfo method)

 	handle_retry() (celery.app.trace.TraceInfo method)

 	has_expired() (celery.security.certificate.Certificate method)

 	has_listeners() (celery.utils.dispatch.Signal method)

 	(celery.utils.dispatch.signal.Signal method)

 	HEAD (celery.utils.graph.DOT attribute)

 	head() (celery.utils.graph.GraphFormatter method)

 	head_from_fun() (in module celery.utils.functional)

 	heap_multiplier (celery.events.state.State attribute)

 	heart

 	Heart (class in celery.worker.consumer)

 	(class in celery.worker.consumer.heart)

 	(class in celery.worker.heartbeat)

 	heartbeat() (celery.app.control.Control method)

 	heartbeat_expires() (celery.events.state.State.Worker property)

 	(celery.events.state.Worker property)

 	(in module celery.events.state)

 	heartbeat_max (celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	
 heartbeat_sent

 	signal

 	
 	heartbeats (celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	hello() (celery.app.control.Inspect method)

 	help (celery.events.cursesmon.CursesMonitor attribute)

 	help() (celery.bin.multi.MultiTool method)

 	help_title (celery.events.cursesmon.CursesMonitor attribute)

 	host (celery.backends.arangodb.ArangoDbBackend attribute)

 	(celery.backends.couchbase.CouchbaseBackend attribute)

 	(celery.backends.couchdb.CouchBackend attribute)

 	(celery.backends.elasticsearch.ElasticsearchBackend attribute)

 	(celery.backends.mongodb.MongoBackend attribute)

 	host_format() (in module celery.utils.nodenames)

 	hostname, [1]

 	(celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	Hostname (class in celery.bin.worker)

 	hostname() (celery.worker.request.Request property)

 	hour (celery.schedules.crontab attribute)

 	http_protocol (celery.backends.arangodb.ArangoDbBackend attribute)

 	hub, [1]

 	Hub (class in celery.worker.components)

 	human_seconds() (celery.schedules.schedule property)

 	human_state() (celery.bootsteps.Blueprint method)

 	humaninfo() (celery.worker.request.Request method)

 	humanize() (celery.app.utils.Settings method)

 	(celery.exceptions.Retry method)

 	humanize_seconds() (in module celery.utils.time)

I

 	
 	iblue() (celery.utils.term.colored method)

 	icyan() (celery.utils.term.colored method)

 	id (celery.backends.database.models.Task attribute)

 	(celery.backends.database.models.TaskExtended attribute)

 	(celery.backends.database.models.TaskSet attribute)

 	(celery.result.AsyncResult attribute)

 	(celery.result.GroupResult attribute)

 	(celery.worker.request.Request attribute)

 	id() (celery.events.state.State.Task property)

 	(celery.events.state.State.Worker property)

 	(celery.events.state.Task property)

 	(celery.events.state.Worker property)

 	(celery.utils.abstract.CallableSignature property)

 	idempotent

 	
 IF_EMPTY

 	celery-amqp-queue.delete command line option

 	
 IF_UNUSED

 	celery-amqp-exchange.delete command line option

 	celery-amqp-queue.delete command line option

 	Ignore

 	ignore_errno() (in module celery.platforms)

 	ignore_result (celery.app.task.Task attribute)

 	(Task attribute)

 	ignored() (celery.result.AsyncResult property)

 	igreen() (celery.utils.term.colored method)

 	imagenta() (celery.utils.term.colored method)

 	
 IMMEDIATE

 	celery-amqp-basic.publish command line option

 	immutable() (celery.utils.abstract.CallableSignature property)

 	implements_incr (celery.backends.cache.CacheBackend attribute)

 	import_default_modules() (celery.loaders.base.BaseLoader method)

 	import_from_cwd() (celery.loaders.base.BaseLoader method)

 	(in module celery.utils)

 	(in module celery.utils.imports)

 	import_module() (celery.loaders.base.BaseLoader method)

 	
 import_modules

 	signal

 	import_task_module() (celery.loaders.base.BaseLoader method)

 	
 imports

 	setting

 	ImproperlyConfigured

 	in_sighandler() (in module celery.utils.log)

 	
 include

 	setting

 	include() (celery.bootsteps.StartStopStep method)

 	(celery.bootsteps.Step method)

 	include_if() (celery.bootsteps.Step method)

 	(celery.worker.components.Hub method)

 	(celery.worker.consumer.Control method)

 	(celery.worker.consumer.control.Control method)

 	IncompleteStream

 	incr() (celery.backends.cache.CacheBackend method)

 	(celery.backends.redis.RedisBackend method)

 	(celery.utils.functional.LRUCache method)

 	indent() (in module celery.utils.text)

 	index (celery.backends.elasticsearch.ElasticsearchBackend attribute)

 	info() (celery.beat.PersistentScheduler property)

 	(celery.beat.Scheduler property)

 	(celery.bootsteps.Blueprint method)

 	(celery.bootsteps.Step method)

 	(celery.concurrency.base.BasePool property)

 	(celery.events.state.State.Task method)

 	(celery.events.state.Task method)

 	(celery.result.AsyncResult property)

 	(celery.worker.autoscale.Autoscaler method)

 	(celery.worker.autoscale.WorkerComponent method)

 	(celery.worker.components.Pool method)

 	(celery.worker.consumer.Connection method)

 	(celery.worker.consumer.connection.Connection method)

 	(celery.worker.consumer.Tasks method)

 	(celery.worker.consumer.tasks.Tasks method)

 	(celery.worker.request.Request method)

 	(celery.worker.WorkController method)

 	(celery.worker.worker.WorkController method)

 	
 	info_str (celery.events.cursesmon.CursesMonitor attribute)

 	init_callback (celery.worker.consumer.Consumer attribute)

 	(celery.worker.consumer.consumer.Consumer attribute)

 	init_loader() (celery.apps.beat.Beat method)

 	init_screen() (celery.events.cursesmon.CursesMonitor method)

 	init_worker() (celery.loaders.base.BaseLoader method)

 	init_worker_process() (celery.loaders.base.BaseLoader method)

 	initgroups() (in module celery.platforms)

 	inspect (celery.app.control.Control attribute)

 	Inspect (class in celery.app.control)

 	inspect() (celery.contrib.testing.manager.ManagerMixin method)

 	install() (celery.events.snapshot.Polaroid method)

 	install_default_entries() (celery.beat.Scheduler method)

 	install_platform_tweaks() (celery.apps.worker.Worker method)

 	install_sync_handler() (celery.apps.beat.Beat method)

 	instantiate() (celery.bootsteps.Step method)

 	(in module celery.utils)

 	(in module celery.utils.imports)

 	InvalidTaskError

 	ired() (celery.utils.term.colored method)

 	is_aborted() (celery.contrib.abortable.AbortableAsyncResult method)

 	(celery.contrib.abortable.AbortableTask method)

 	is_accepted() (celery.contrib.testing.manager.ManagerMixin method)

 	is_async() (celery.backends.asynchronous.AsyncBackendMixin property)

 	is_due() (celery.beat.ScheduleEntry method)

 	(celery.beat.Scheduler method)

 	(celery.schedules.crontab method)

 	(celery.schedules.schedule method)

 	(celery.schedules.solar method)

 	is_green (celery.concurrency.base.BasePool attribute)

 	(celery.concurrency.eventlet.TaskPool attribute)

 	(celery.concurrency.gevent.TaskPool attribute)

 	is_list() (in module celery.utils.functional)

 	is_locked() (celery.platforms.Pidfile method)

 	is_naive() (in module celery.utils.time)

 	is_received() (celery.contrib.testing.manager.ManagerMixin method)

 	is_result_task_in_progress() (celery.contrib.testing.manager.ManagerMixin static method)

 	isatty() (celery.utils.log.LoggingProxy method)

 	(in module celery.platforms)

 	ISO8601DateTime (class in celery.bin.base)

 	ISO8601DateTimeOrFloat (class in celery.bin.base)

 	items() (celery.utils.collections.ChainMap method)

 	(celery.utils.collections.DictAttribute method)

 	(celery.utils.functional.LRUCache method)

 	(celery.utils.graph.DependencyGraph method)

 	iter_native() (celery.backends.asynchronous.AsyncBackendMixin method)

 	(celery.result.ResultSet method)

 	itercapture() (celery.events.EventReceiver method)

 	(celery.events.receiver.EventReceiver method)

 	itercerts() (celery.security.certificate.CertStore method)

 	iterdeps() (celery.result.AsyncResult method)

 	iteritems() (celery.utils.collections.ChainMap method)

 	(celery.utils.collections.DictAttribute method)

 	(celery.utils.functional.LRUCache method)

 	(celery.utils.graph.DependencyGraph method)

 	iterkeys() (celery.utils.collections.ChainMap method)

 	(celery.utils.collections.DictAttribute method)

 	(celery.utils.functional.LRUCache method)

 	itertasks() (celery.events.state.State method)

 	itervalues() (celery.utils.collections.ChainMap method)

 	(celery.utils.collections.DictAttribute method)

 	(celery.utils.functional.LRUCache method)

 	iwhite() (celery.utils.term.colored method)

 	iyellow() (celery.utils.term.colored method)

J

 	
 	join() (celery.bootsteps.Blueprint method)

 	(celery.contrib.testing.manager.ManagerMixin method)

 	(celery.result.ResultSet method)

 	(in module celery.utils.text)

 	
 	join_native() (celery.result.ResultSet method)

 	Json (class in celery.bin.base)

K

 	
 	key_t (celery.backends.arangodb.ArangoDbBackend attribute)

 	(celery.backends.couchbase.CouchbaseBackend attribute)

 	(celery.utils.collections.ChainMap attribute)

 	keyalias (celery.events.cursesmon.CursesMonitor attribute)

 	keymap (celery.events.cursesmon.CursesMonitor attribute)

 	keys() (celery.utils.collections.ChainMap method)

 	(celery.utils.collections.DictAttribute method)

 	(celery.utils.functional.LRUCache method)

 	KeyValueStoreBackend (class in celery.backends.base)

 	kill() (celery.apps.multi.Cluster method)

 	(celery.bin.multi.MultiTool method)

 	known_suffixes (celery.beat.PersistentScheduler attribute)

 	
 	kombu

 	kwargs (celery.backends.database.models.TaskExtended attribute)

 	(celery.beat.ScheduleEntry attribute)

 	(celery.concurrency.base.BasePool.Timer.Entry attribute)

 	(celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	(celery.utils.timer2.Entry attribute)

 	(celery.utils.timer2.Timer.Entry attribute)

 	kwargs() (celery.result.AsyncResult property)

 	(celery.utils.abstract.CallableSignature property)

 	(celery.worker.request.Request property)

 	kwargsrepr() (celery.worker.request.Request property)

 	kwargsrepr_maxsize (celery.app.amqp.AMQP attribute)

L

 	
 	label (celery.bootsteps.Step attribute)

 	(celery.worker.autoscale.WorkerComponent attribute)

 	(celery.worker.components.Beat attribute)

 	(celery.worker.consumer.consumer.Evloop attribute)

 	(celery.worker.consumer.Gossip attribute)

 	(celery.worker.consumer.gossip.Gossip attribute)

 	(celery.worker.consumer.Mingle attribute)

 	(celery.worker.consumer.mingle.Mingle attribute)

 	label() (celery.utils.graph.GraphFormatter method)

 	last (celery.bootsteps.Step attribute)

 	(celery.worker.components.Consumer attribute)

 	(celery.worker.consumer.consumer.Evloop attribute)

 	last_run_at (celery.beat.ScheduleEntry attribute)

 	late ack

 	late acknowledgment

 	lazy (class in celery.utils.functional)

 	limit() (celery.events.cursesmon.CursesMonitor property)

 	LimitedSet (class in celery.utils.collections)

 	link() (celery.utils.abstract.CallableSignature method)

 	link_error() (celery.utils.abstract.CallableSignature method)

 	load_average() (in module celery.utils.sysinfo)

 	load_step() (celery.bootsteps.Blueprint method)

 	loadavg (celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	
 	loader (celery.Celery attribute)

 	Loader (class in celery.loaders.default)

 	Local (class in celery.utils.threads)

 	localize() (in module celery.utils.time)

 	LocalManager (class in celery.utils.threads)

 	LocalStack (in module celery.utils.threads)

 	LocalTimezone (class in celery.utils.time)

 	LockFailed

 	log (celery.Celery attribute)

 	logfile (celery.apps.multi.Node attribute)

 	(celery.bin.multi.MultiTool.MultiParser.Node attribute)

 	logger (celery.beat.Scheduler attribute)

 	Logging (class in celery.app.log)

 	LoggingProxy (class in celery.utils.log)

 	loglevel (celery.utils.log.LoggingProxy attribute)

 	LogLevel (class in celery.bin.base)

 	lookup_route() (celery.app.routes.Router method)

 	loop() (celery.worker.pidbox.gPidbox method)

 	loop_args() (celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.consumer.Consumer method)

 	lpmerge() (in module celery.utils.collections)

 	LRUCache (class in celery.utils.functional)

M

 	
 	macOS_proxy_detection_workaround() (celery.apps.worker.Worker method)

 	magenta() (celery.utils.term.colored method)

 	main() (in module celery.bin.celery)

 	maintain_pool() (celery.concurrency.base.BasePool method)

 	make_aware() (in module celery.utils.time)

 	Manager (class in celery.contrib.testing.manager)

 	ManagerMixin (class in celery.contrib.testing.manager)

 	
 MANDATORY

 	celery-amqp-basic.publish command line option

 	map() (celery.app.task.Task method)

 	MapAnnotation (class in celery.app.annotations)

 	MapRoute (class in celery.app.routes)

 	maps (celery.utils.collections.ChainMap attribute)

 	mattrgetter() (in module celery.utils.functional)

 	max_connections (celery.backends.redis.RedisBackend attribute)

 	max_heap_percent_overload (celery.utils.collections.LimitedSet attribute)

 	max_interval (celery.beat.Scheduler attribute)

 	max_pool_size (celery.backends.mongodb.MongoBackend attribute)

 	max_retries (celery.app.task.Task attribute)

 	(Task attribute)

 	MaxRetriesExceededError

 	maxsize (celery.utils.collections.BufferMap attribute)

 	maybe() (in module celery.utils.functional)

 	maybe_declare() (celery.backends.rpc.RPCBackend.Producer method)

 	maybe_drop_privileges() (in module celery.platforms)

 	maybe_evaluate() (in module celery.utils.functional)

 	maybe_expire() (celery.worker.request.Request method)

 	maybe_iso8601() (in module celery.utils.time)

 	maybe_list() (in module celery.utils.functional)

 	maybe_make_aware() (in module celery.utils.time)

 	maybe_reraise() (celery.result.AsyncResult method)

 	(celery.result.ResultSet method)

 	maybe_scale() (celery.worker.autoscale.Autoscaler method)

 	maybe_schedule() (in module celery.schedules)

 	maybe_shutdown() (in module celery.worker.state)

 	maybe_throw() (celery.result.AsyncResult method)

 	(celery.result.ResultSet method)

 	maybe_timedelta() (in module celery.utils.time)

 	maybe_warn_deprecated_settings() (celery.app.utils.Settings method)

 	mem_rss() (in module celery.utils.debug)

 	memdump() (celery.app.control.Inspect method)

 	(in module celery.utils.debug)

 	memoize() (in module celery.utils)

 	(in module celery.utils.functional)

 	memsample() (celery.app.control.Inspect method)

 	merge() (celery.worker.state.Persistent method)

 	merge_inplace() (celery.beat.Scheduler method)

 	merge_rules (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	message (celery.exceptions.Retry attribute)

 	Message() (celery.backends.rpc.RPCBackend.Exchange method)

 	message() (celery.worker.request.Request property)

 	Messagebuffer (class in celery.utils.collections)

 	Messagebuffer.Empty

 	meta (celery.worker.control.Panel attribute)

 	mget() (celery.backends.arangodb.ArangoDbBackend method)

 	(celery.backends.azureblockblob.AzureBlockBlobBackend method)

 	(celery.backends.cache.CacheBackend method)

 	(celery.backends.consul.ConsulBackend method)

 	(celery.backends.cosmosdbsql.CosmosDBSQLBackend method)

 	(celery.backends.couchbase.CouchbaseBackend method)

 	(celery.backends.couchdb.CouchBackend method)

 	(celery.backends.dynamodb.DynamoDBBackend method)

 	(celery.backends.elasticsearch.ElasticsearchBackend method)

 	(celery.backends.filesystem.FilesystemBackend method)

 	(celery.backends.redis.RedisBackend method)

 	migrate_task() (in module celery.contrib.migrate)

 	migrate_tasks() (in module celery.contrib.migrate)

 	Mingle (class in celery.worker.consumer)

 	(class in celery.worker.consumer.mingle)

 	minute (celery.schedules.crontab attribute)

 	missing_results() (celery.contrib.testing.manager.ManagerMixin method)

 	mlazy (class in celery.utils.functional)

 	mlevel() (in module celery.utils.log)

 	mode (celery.utils.log.LoggingProxy attribute)

 	
 module

 	celery

 	celery._state

 	celery.app

 	celery.app.amqp

 	celery.app.annotations

 	celery.app.autoretry

 	celery.app.backends

 	celery.app.builtins

 	celery.app.control

 	celery.app.defaults

 	celery.app.events

 	celery.app.log

 	celery.app.registry

 	celery.app.routes

 	celery.app.task

 	celery.app.trace

 	celery.app.utils

 	celery.apps.beat

 	celery.apps.multi

 	celery.apps.worker

 	celery.backends

 	celery.backends.arangodb

 	celery.backends.asynchronous

 	celery.backends.azureblockblob

 	celery.backends.base

 	celery.backends.cache

 	celery.backends.cassandra

 	celery.backends.consul

 	celery.backends.cosmosdbsql

 	celery.backends.couchbase

 	celery.backends.couchdb

 	celery.backends.database

 	celery.backends.database.models

 	celery.backends.database.session

 	celery.backends.dynamodb

 	celery.backends.elasticsearch

 	celery.backends.filesystem

 	celery.backends.mongodb

 	celery.backends.redis

 	celery.backends.rpc

 	celery.backends.s3

 	celery.beat

 	celery.bin.amqp

 	celery.bin.base

 	celery.bin.beat

 	celery.bin.call

 	celery.bin.celery

 	celery.bin.control

 	celery.bin.events

 	celery.bin.graph

 	celery.bin.list

 	celery.bin.logtool

 	celery.bin.migrate

 	celery.bin.multi

 	celery.bin.purge

 	celery.bin.result

 	celery.bin.shell

 	celery.bin.upgrade

 	celery.bin.worker

 	celery.bootsteps

 	celery.concurrency

 	celery.concurrency.base

 	celery.concurrency.eventlet

 	celery.concurrency.gevent

 	celery.concurrency.prefork

 	celery.concurrency.solo

 	celery.concurrency.thread

 	celery.contrib.abortable

 	celery.contrib.migrate

 	celery.contrib.pytest

 	celery.contrib.rdb

 	celery.contrib.sphinx

 	celery.contrib.testing.app

 	celery.contrib.testing.manager

 	celery.contrib.testing.mocks

 	celery.contrib.testing.worker

 	celery.events

 	celery.events.cursesmon

 	celery.events.dispatcher

 	celery.events.dumper

 	celery.events.event

 	celery.events.receiver

 	celery.events.snapshot

 	celery.events.state

 	celery.exceptions

 	celery.loaders

 	celery.loaders.app

 	celery.loaders.base

 	celery.loaders.default

 	celery.platforms

 	celery.result

 	celery.schedules

 	celery.security

 	celery.security.certificate

 	celery.security.key

 	celery.security.serialization

 	celery.security.utils

 	celery.signals

 	celery.states

 	celery.utils

 	celery.utils.abstract

 	celery.utils.collections

 	celery.utils.debug

 	celery.utils.deprecated

 	celery.utils.dispatch

 	celery.utils.dispatch.signal

 	celery.utils.functional

 	celery.utils.graph

 	celery.utils.imports

 	celery.utils.iso8601

 	celery.utils.log

 	celery.utils.nodenames

 	celery.utils.objects

 	celery.utils.saferepr

 	celery.utils.serialization

 	celery.utils.sysinfo

 	celery.utils.term

 	celery.utils.text

 	celery.utils.threads

 	celery.utils.time

 	celery.utils.timer2

 	celery.worker

 	celery.worker.autoscale

 	celery.worker.components

 	celery.worker.consumer

 	celery.worker.consumer.agent

 	celery.worker.consumer.connection

 	celery.worker.consumer.consumer

 	celery.worker.consumer.control

 	celery.worker.consumer.events

 	celery.worker.consumer.gossip

 	celery.worker.consumer.heart

 	celery.worker.consumer.mingle

 	celery.worker.consumer.tasks

 	celery.worker.control

 	celery.worker.heartbeat

 	celery.worker.loops

 	celery.worker.pidbox

 	celery.worker.request

 	celery.worker.state

 	celery.worker.strategy

 	celery.worker.worker

 	
 	module_file() (in module celery.utils.imports)

 	mongo_host (celery.backends.mongodb.MongoBackend attribute)

 	MongoBackend (class in celery.backends.mongodb)

 	
 mongodb_backend_settings

 	setting

 	month_of_year (celery.schedules.crontab attribute)

 	move() (in module celery.contrib.migrate)

 	move_by_idmap() (in module celery.contrib.migrate)

 	move_by_taskmap() (in module celery.contrib.migrate)

 	move_direct() (in module celery.contrib.migrate)

 	move_direct_by_id() (in module celery.contrib.migrate)

 	move_selection() (celery.events.cursesmon.CursesMonitor method)

 	move_selection_down() (celery.events.cursesmon.CursesMonitor method)

 	move_selection_up() (celery.events.cursesmon.CursesMonitor method)

 	move_task_by_id() (in module celery.contrib.migrate)

 	MP_LOG, [1]

 	mro_lookup() (in module celery.utils.objects)

 	
 MSG

 	celery-amqp-basic.publish command line option

 	multi_call() (celery.app.control.Control.Mailbox method)

 	MultiTool (class in celery.bin.multi)

 	MultiTool.MultiParser (class in celery.bin.multi)

 	MultiTool.MultiParser.Node (class in celery.bin.multi)

N

 	
 	
 NAME

 	celery-call command line option

 	name (celery.app.task.Task attribute)

 	(celery.backends.database.models.TaskExtended attribute)

 	(celery.backends.rpc.RPCBackend.Exchange attribute), [1]

 	(celery.beat.ScheduleEntry attribute)

 	(celery.bin.base.CommaSeparatedList attribute)

 	(celery.bin.base.ISO8601DateTime attribute)

 	(celery.bin.base.ISO8601DateTimeOrFloat attribute)

 	(celery.bin.base.Json attribute)

 	(celery.bin.celery.App attribute)

 	(celery.bin.worker.Autoscale attribute)

 	(celery.bin.worker.CeleryBeat attribute)

 	(celery.bin.worker.Hostname attribute)

 	(celery.bin.worker.WorkersPool attribute)

 	(celery.bootsteps.Blueprint attribute)

 	(celery.bootsteps.ConsumerStep attribute)

 	(celery.bootsteps.StartStopStep attribute)

 	(celery.bootsteps.Step attribute)

 	(celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	(celery.utils.log.LoggingProxy attribute)

 	(celery.worker.autoscale.WorkerComponent attribute)

 	(celery.worker.components.Beat attribute)

 	(celery.worker.components.Consumer attribute)

 	(celery.worker.components.Hub attribute)

 	(celery.worker.components.Pool attribute)

 	(celery.worker.components.StateDB attribute)

 	(celery.worker.components.Timer attribute)

 	(celery.worker.consumer.Agent attribute)

 	(celery.worker.consumer.agent.Agent attribute)

 	(celery.worker.consumer.Connection attribute)

 	(celery.worker.consumer.connection.Connection attribute)

 	(celery.worker.consumer.Consumer.Blueprint attribute)

 	(celery.worker.consumer.consumer.Consumer.Blueprint attribute)

 	(celery.worker.consumer.consumer.Evloop attribute)

 	(celery.worker.consumer.Control attribute)

 	(celery.worker.consumer.control.Control attribute)

 	(celery.worker.consumer.Events attribute)

 	(celery.worker.consumer.events.Events attribute)

 	(celery.worker.consumer.Gossip attribute)

 	(celery.worker.consumer.gossip.Gossip attribute)

 	(celery.worker.consumer.Heart attribute)

 	(celery.worker.consumer.heart.Heart attribute)

 	(celery.worker.consumer.Mingle attribute)

 	(celery.worker.consumer.mingle.Mingle attribute)

 	(celery.worker.consumer.Tasks attribute)

 	(celery.worker.consumer.tasks.Tasks attribute)

 	(celery.worker.request.Request attribute)

 	(celery.worker.WorkController.Blueprint attribute)

 	(celery.worker.worker.WorkController.Blueprint attribute)

 	(Task attribute)

 	
 	name() (celery.result.AsyncResult property)

 	(celery.utils.abstract.CallableSignature property)

 	names() (celery.bin.multi.MultiTool method)

 	namespace (celery.app.control.Control.Mailbox attribute)

 	nap() (celery.events.cursesmon.CursesMonitor method)

 	new_missing() (celery.app.amqp.Queues method)

 	next() (celery.beat.ScheduleEntry method)

 	(celery.concurrency.base.BasePool.Timer method)

 	(celery.utils.timer2.Timer method)

 	
 NO_ACK

 	celery-amqp-basic.get command line option

 	no_ack (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer attribute)

 	no_color() (celery.utils.term.colored method)

 	no_declare (celery.backends.rpc.RPCBackend.Exchange attribute), [1]

 	NODE (celery.utils.graph.DOT attribute)

 	Node (class in celery.apps.multi)

 	Node() (celery.app.control.Control.Mailbox method)

 	node() (celery.utils.graph.GraphFormatter method)

 	(celery.utils.term.colored method)

 	node_cls (celery.app.control.Control.Mailbox attribute)

 	node_format() (in module celery.utils.nodenames)

 	node_scheme (celery.utils.graph.GraphFormatter attribute)

 	nodename() (in module celery.utils)

 	(in module celery.utils.nodenames)

 	nodesplit() (in module celery.utils)

 	(in module celery.utils.nodenames)

 	noop() (in module celery.utils)

 	(in module celery.utils.functional)

 	NOSE_VERBOSE

 	NotAPackage

 	NotConfigured

 	NotRegistered

 	now() (celery.Celery method)

 	(celery.loaders.base.BaseLoader method)

 	nowfun (celery.schedules.crontab attribute)

 	nullipotent

 	num_processes() (celery.concurrency.base.BasePool property)

 	(celery.concurrency.gevent.TaskPool property)

 	(celery.concurrency.prefork.TaskPool property)

O

 	
 	obj (celery.bootsteps.StartStopStep attribute)

 	(celery.utils.collections.DictAttribute attribute)

 	objgraph() (celery.app.control.Inspect method)

 	oid (celery.app.control.Control.Mailbox attribute)

 	(celery.backends.rpc.RPCBackend attribute)

 	(celery.Celery attribute)

 	OK (celery.bin.base.CLIContext attribute)

 	(celery.bin.multi.MultiTool attribute)

 	old (celery.app.defaults.Option attribute)

 	on_accepted() (celery.worker.request.Request method)

 	on_ack() (celery.worker.request.Request property)

 	on_after_fork() (celery.backends.asynchronous.BaseResultConsumer method)

 	(celery.backends.redis.RedisBackend.ResultConsumer method)

 	(celery.backends.rpc.RPCBackend.ResultConsumer method)

 	on_after_init() (celery.apps.worker.Worker method)

 	(celery.worker.WorkController method)

 	(celery.worker.worker.WorkController method)

 	on_apply() (celery.concurrency.base.BasePool method)

 	(celery.concurrency.eventlet.TaskPool method)

 	(celery.concurrency.gevent.TaskPool method)

 	(celery.concurrency.thread.TaskPool method)

 	on_before_init() (celery.apps.worker.Worker method)

 	(celery.worker.WorkController method)

 	(celery.worker.worker.WorkController method)

 	on_bound() (celery.app.task.Task class method)

 	on_child_failure() (celery.bin.multi.MultiTool method)

 	on_child_signalled() (celery.bin.multi.MultiTool method)

 	on_child_spawn() (celery.bin.multi.MultiTool method)

 	on_chord_part_return() (celery.backends.redis.RedisBackend method)

 	on_cleanup() (celery.events.snapshot.Polaroid method)

 	on_clock_event() (celery.worker.consumer.Mingle method)

 	(celery.worker.consumer.mingle.Mingle method)

 	on_close() (celery.concurrency.base.BasePool method)

 	(celery.concurrency.prefork.TaskPool method)

 	(celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.consumer.Consumer method)

 	(celery.worker.WorkController method)

 	(celery.worker.worker.WorkController method)

 	on_connection_error() (celery.backends.redis.RedisBackend method)

 	on_connection_error_after_connected() (celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.consumer.Consumer method)

 	on_connection_error_before_connected() (celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.consumer.Consumer method)

 	on_consume_ready() (celery.events.EventReceiver method)

 	(celery.events.receiver.EventReceiver method)

 	on_consumer_ready() (celery.apps.worker.Worker method)

 	(celery.contrib.testing.worker.TestWorkController method)

 	(celery.worker.WorkController method)

 	(celery.worker.worker.WorkController method)

 	on_crash() (celery.utils.threads.bgThread method)

 	on_decode_error (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer attribute)

 	on_decode_error() (celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.consumer.Consumer method)

 	on_disabled (celery.events.dispatcher.EventDispatcher attribute)

 	(celery.events.EventDispatcher attribute)

 	on_elect() (celery.worker.consumer.Gossip method)

 	(celery.worker.consumer.gossip.Gossip method)

 	on_elect_ack() (celery.worker.consumer.Gossip method)

 	(celery.worker.consumer.gossip.Gossip method)

 	on_enabled (celery.events.dispatcher.EventDispatcher attribute)

 	(celery.events.EventDispatcher attribute)

 	on_event() (celery.events.dumper.Dumper method)

 	on_failure()

 	(celery.app.task.Task method)

 	(celery.worker.request.Request method)

 	on_hard_timeout() (celery.concurrency.base.BasePool method)

 	on_init() (celery.Celery method)

 	on_init_blueprint() (celery.apps.worker.Worker method)

 	(celery.worker.WorkController method)

 	(celery.worker.worker.WorkController method)

 	on_invalid_task() (celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.consumer.Consumer method)

 	on_message (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer attribute)

 	on_message() (celery.worker.consumer.Gossip method)

 	(celery.worker.consumer.gossip.Gossip method)

 	(celery.worker.pidbox.Pidbox method)

 	on_node_down() (celery.bin.multi.MultiTool method)

 	on_node_join() (celery.worker.consumer.Gossip method)

 	(celery.worker.consumer.gossip.Gossip method)

 	on_node_leave() (celery.worker.consumer.Gossip method)

 	(celery.worker.consumer.gossip.Gossip method)

 	on_node_lost() (celery.worker.consumer.Gossip method)

 	(celery.worker.consumer.gossip.Gossip method)

 	on_node_reply() (celery.worker.consumer.Mingle method)

 	(celery.worker.consumer.mingle.Mingle method)

 	
 	on_node_restart() (celery.bin.multi.MultiTool method)

 	on_node_shutdown_ok() (celery.bin.multi.MultiTool method)

 	on_node_signal() (celery.bin.multi.MultiTool method)

 	on_node_signal_dead() (celery.bin.multi.MultiTool method)

 	on_node_start() (celery.bin.multi.MultiTool method)

 	on_node_status() (celery.bin.multi.MultiTool method)

 	on_out_of_band_result() (celery.backends.asynchronous.BaseResultConsumer method)

 	(celery.backends.rpc.RPCBackend method)

 	on_process_cleanup() (celery.loaders.base.BaseLoader method)

 	on_ready() (celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.consumer.Consumer method)

 	on_reject() (celery.worker.request.Request property)

 	on_reply_declare() (celery.backends.rpc.RPCBackend method)

 	on_result_fulfilled() (celery.backends.asynchronous.AsyncBackendMixin method)

 	(celery.backends.rpc.RPCBackend method)

 	on_retry()

 	(celery.app.task.Task method)

 	(celery.worker.request.Request method)

 	on_return (celery.backends.rpc.RPCBackend.Producer attribute)

 	on_revoked_received() (celery.worker.consumer.Mingle method)

 	(celery.worker.consumer.mingle.Mingle method)

 	on_send_event_buffered() (celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.consumer.Consumer method)

 	on_send_signal() (celery.bin.multi.MultiTool method)

 	on_shutter() (celery.events.snapshot.Polaroid method)

 	on_soft_timeout() (celery.concurrency.base.BasePool method)

 	on_start() (celery.apps.worker.Worker method)

 	(celery.concurrency.base.BasePool method)

 	(celery.concurrency.eventlet.TaskPool method)

 	(celery.concurrency.gevent.TaskPool method)

 	(celery.concurrency.prefork.TaskPool method)

 	(celery.worker.WorkController method)

 	(celery.worker.worker.WorkController method)

 	on_state_change() (celery.backends.asynchronous.BaseResultConsumer method)

 	(celery.backends.redis.RedisBackend.ResultConsumer method)

 	on_still_waiting_end() (celery.bin.multi.MultiTool method)

 	on_still_waiting_for() (celery.bin.multi.MultiTool method)

 	on_still_waiting_progress() (celery.bin.multi.MultiTool method)

 	on_stop() (celery.concurrency.base.BasePool method)

 	(celery.concurrency.eventlet.TaskPool method)

 	(celery.concurrency.gevent.TaskPool method)

 	(celery.concurrency.prefork.TaskPool method)

 	(celery.concurrency.thread.TaskPool method)

 	(celery.worker.pidbox.gPidbox method)

 	(celery.worker.pidbox.Pidbox method)

 	on_stopped() (celery.worker.WorkController method)

 	(celery.worker.worker.WorkController method)

 	on_stopping_preamble() (celery.bin.multi.MultiTool method)

 	on_success()

 	(celery.app.task.Task method)

 	(celery.worker.request.Request method)

 	on_task_call() (celery.backends.redis.RedisBackend method)

 	(celery.backends.rpc.RPCBackend method)

 	on_task_init() (celery.loaders.base.BaseLoader method)

 	on_terminate() (celery.concurrency.base.BasePool method)

 	(celery.concurrency.prefork.TaskPool method)

 	on_tick (celery.concurrency.base.BasePool.Timer attribute)

 	(celery.utils.timer2.Timer attribute)

 	on_timeout() (celery.worker.request.Request method)

 	on_timer_error() (celery.worker.components.Timer method)

 	on_timer_tick() (celery.worker.components.Timer method)

 	on_unknown_message() (celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.consumer.Consumer method)

 	on_unknown_task() (celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.consumer.Consumer method)

 	on_wait_for_pending() (celery.backends.asynchronous.BaseResultConsumer method)

 	(celery.backends.redis.RedisBackend.ResultConsumer method)

 	on_worker_init() (celery.loaders.base.BaseLoader method)

 	on_worker_process_init() (celery.loaders.base.BaseLoader method)

 	on_worker_shutdown() (celery.loaders.base.BaseLoader method)

 	online_str (celery.events.cursesmon.CursesMonitor attribute)

 	open() (celery.platforms.DaemonContext method)

 	(celery.worker.state.Persistent method)

 	OperationalError

 	Option (class in celery.app.defaults)

 	OptionParser (celery.bin.multi.MultiTool attribute)

 	options (celery.backends.mongodb.MongoBackend attribute)

 	(celery.beat.ScheduleEntry attribute)

 	options() (celery.utils.abstract.CallableSignature property)

 	OrderedDict (class in celery.utils.collections)

 	origin() (celery.events.state.State.Task property)

 	(celery.events.state.Task property)

 	override_backends (celery.loaders.base.BaseLoader attribute)

P

 	
 	padlist() (in module celery.utils.functional)

 	Panel (class in celery.worker.control)

 	parent (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	(celery.result.ResultBase attribute)

 	parent_id (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	parent_id() (celery.worker.request.Request property)

 	parse() (celery.bin.multi.MultiTool.MultiParser method)

 	(celery.schedules.crontab_parser method)

 	parse_gid() (in module celery.platforms)

 	parse_iso8601() (in module celery.utils.iso8601)

 	parse_uid() (in module celery.platforms)

 	ParseException

 	
 PASSIVE

 	celery-amqp-exchange.declare command line option

 	celery-amqp-queue.declare command line option

 	passive (celery.backends.rpc.RPCBackend.Exchange attribute)

 	password (celery.backends.arangodb.ArangoDbBackend attribute)

 	(celery.backends.couchbase.CouchbaseBackend attribute)

 	(celery.backends.couchdb.CouchBackend attribute)

 	(celery.backends.elasticsearch.ElasticsearchBackend attribute)

 	(celery.backends.mongodb.MongoBackend attribute)

 	patch_all() (celery.worker.consumer.consumer.Evloop method)

 	path (celery.backends.consul.ConsulBackend attribute)

 	(celery.platforms.Pidfile attribute)

 	
 PENDING

 	state

 	PENDING (in module celery.states)

 	perform_pending_operations() (celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.consumer.Consumer method)

 	periodic() (celery.app.registry.TaskRegistry method)

 	(celery.worker.consumer.Gossip method)

 	(celery.worker.consumer.gossip.Gossip method)

 	persistence (celery.beat.PersistentScheduler attribute)

 	persistent (celery.backends.rpc.RPCBackend attribute)

 	Persistent (class in celery.worker.state)

 	PERSISTENT_DELIVERY_MODE (celery.backends.rpc.RPCBackend.Exchange attribute)

 	PersistentScheduler (class in celery.beat)

 	pid (celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	pid() (celery.apps.multi.Node property)

 	(celery.bin.multi.MultiTool.MultiParser.Node property)

 	pidbox

 	Pidbox (class in celery.worker.pidbox)

 	pidfile (celery.apps.multi.Node attribute)

 	(celery.bin.multi.MultiTool.MultiParser.Node attribute)

 	Pidfile (class in celery.platforms)

 	pidlock (celery.worker.WorkController attribute)

 	(celery.worker.worker.WorkController attribute)

 	
 ping

 	control

 	ping() (celery.app.control.Control method)

 	(celery.app.control.Inspect method)

 	pluralize() (in module celery.utils.text)

 	Polaroid (class in celery.events.snapshot)

 	poll() (celery.backends.rpc.RPCBackend method)

 	pool, [1]

 	(celery.Celery attribute)

 	Pool (celery.concurrency.prefork.TaskPool attribute)

 	pool (celery.worker.consumer.Consumer attribute)

 	(celery.worker.consumer.consumer.Consumer attribute)

 	(celery.worker.WorkController attribute)

 	(celery.worker.worker.WorkController attribute)

 	Pool (class in celery.worker.components)

 	pool_grow() (celery.app.control.Control method)

 	
 	pool_restart() (celery.app.control.Control method)

 	pool_shrink() (celery.app.control.Control method)

 	pop() (celery.utils.collections.ChainMap method)

 	(celery.utils.collections.LimitedSet method)

 	pop_value() (celery.utils.collections.LimitedSet method)

 	popitem() (celery.utils.functional.LRUCache method)

 	populate_heap() (celery.beat.Scheduler method)

 	port (celery.backends.arangodb.ArangoDbBackend attribute)

 	(celery.backends.couchbase.CouchbaseBackend attribute)

 	(celery.backends.couchdb.CouchBackend attribute)

 	(celery.backends.elasticsearch.ElasticsearchBackend attribute)

 	(celery.backends.mongodb.MongoBackend attribute)

 	precedence() (in module celery.states)

 	prefetch count

 	prefetch multiplier

 	prefetch_count (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer attribute)

 	prepare() (in module celery.app.annotations)

 	(in module celery.app.routes)

 	prepare_args() (celery.worker.WorkController method)

 	(celery.worker.worker.WorkController method)

 	prepare_argv() (celery.apps.multi.Node method)

 	(celery.bin.multi.MultiTool.MultiParser.Node method)

 	prepare_config() (celery.Celery method)

 	prepare_models() (celery.backends.database.session.SessionManager method)

 	pretty() (celery.bin.base.CLIContext method)

 	(in module celery.utils.text)

 	pretty_dict_ok_error() (celery.bin.base.CLIContext method)

 	pretty_list() (celery.bin.base.CLIContext method)

 	priority (celery.app.task.Task attribute)

 	PrivateKey (class in celery.security.key)

 	process() (celery.events.EventReceiver method)

 	(celery.events.receiver.EventReceiver method)

 	process_destructor() (in module celery.concurrency.prefork)

 	process_initializer() (in module celery.concurrency.prefork)

 	processed (celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	processes() (celery.worker.autoscale.Autoscaler property)

 	Producer (celery.app.amqp.AMQP attribute)

 	producer (celery.beat.Scheduler attribute)

 	producer_or_acquire() (celery.app.control.Control.Mailbox method)

 	(celery.Celery method)

 	producer_pool (celery.app.amqp.AMQP attribute)

 	(celery.app.control.Control.Mailbox attribute)

 	(celery.Celery attribute)

 	
 PROPAGATE_STATES

 	state

 	Property() (in module celery.utils.deprecated)

 	protocol (celery.worker.state.Persistent attribute)

 	ps() (in module celery.utils.debug)

 	publish() (celery.backends.rpc.RPCBackend.Exchange method)

 	(celery.backends.rpc.RPCBackend.Producer method)

 	(celery.events.dispatcher.EventDispatcher method)

 	(celery.events.EventDispatcher method)

 	publisher() (celery.events.dispatcher.EventDispatcher property)

 	(celery.events.EventDispatcher property)

 	purge() (celery.app.control.Control method)

 	(celery.backends.rpc.RPCBackend.ResultConsumer.Consumer method)

 	(celery.utils.collections.LimitedSet method)

 	purge_messages() (celery.apps.worker.Worker method)

 	put() (celery.utils.collections.BufferMap method)

 	(celery.utils.collections.Messagebuffer method)

 	pyimplementation() (in module celery.platforms)

 	pytest_configure() (in module celery.contrib.pytest)

 	
 Python Enhancement Proposals

 	PEP 257

 	PEP 8, [1], [2]

Q

 	
 	qos

 	qos() (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer method)

 	qty() (celery.worker.autoscale.Autoscaler property)

 	qualname() (in module celery.utils.imports)

 	query_router() (celery.app.routes.Router method)

 	query_task() (celery.app.control.Inspect method)

 	query_task_states() (celery.contrib.testing.manager.ManagerMixin method)

 	query_tasks() (celery.contrib.testing.manager.ManagerMixin method)

 	
 QUEUE

 	celery-amqp-basic.get command line option

 	celery-amqp-queue.bind command line option

 	celery-amqp-queue.declare command line option

 	celery-amqp-queue.delete command line option

 	celery-amqp-queue.purge command line option

 	
 	queue (celery.backends.database.models.TaskExtended attribute)

 	queue() (celery.concurrency.base.BasePool.Timer property)

 	(celery.concurrency.eventlet.TaskPool.Timer property)

 	(celery.concurrency.gevent.TaskPool.Timer property)

 	(celery.result.AsyncResult property)

 	(celery.utils.timer2.Timer property)

 	QueueNotFound

 	queues (celery.app.amqp.AMQP attribute)

 	Queues (class in celery.app.amqp)

 	Queues() (celery.app.amqp.AMQP method)

 	queues() (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer property)

 	quiet (celery.backends.couchbase.CouchbaseBackend attribute)

R

 	
 	rate() (in module celery.utils.time)

 	
 rate_limit

 	control

 	rate_limit (celery.app.task.Task attribute)

 	(Task attribute)

 	rate_limit() (celery.app.control.Control method)

 	Rdb (class in celery.contrib.rdb)

 	read_capacity_units (celery.backends.dynamodb.DynamoDBBackend attribute)

 	read_configuration() (celery.loaders.base.BaseLoader method)

 	(celery.loaders.default.Loader method)

 	read_pid() (celery.platforms.Pidfile method)

 	readline() (celery.events.cursesmon.CursesMonitor method)

 	ready() (celery.events.state.State.Task property)

 	(celery.events.state.Task property)

 	(celery.result.AsyncResult method)

 	(celery.result.EagerResult method)

 	(celery.result.ResultSet method)

 	
 READY_STATES

 	state

 	rebuild_taskheap() (celery.events.state.State method)

 	receive() (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer method)

 	received (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	RECEIVED (in module celery.states)

 	Receiver (celery.app.events.Events attribute)

 	receiver_cls (celery.app.events.Events attribute)

 	receivers (celery.utils.dispatch.Signal attribute)

 	(celery.utils.dispatch.signal.Signal attribute)

 	reconnect_on_error() (celery.backends.redis.RedisBackend.ResultConsumer method)

 	recover() (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer method)

 	red() (celery.utils.term.colored method)

 	redirect_stdouts() (celery.app.log.Logging method)

 	redirect_stdouts_to_logger() (celery.app.log.Logging method)

 	redirect_to_null() (celery.platforms.DaemonContext method)

 	redis (celery.backends.redis.RedisBackend attribute)

 	
 redis_backend_use_ssl

 	setting

 	
 redis_max_connections

 	setting

 	
 redis_retry_on_timeout

 	setting

 	
 redis_socket_connect_timeout

 	setting

 	
 redis_socket_keepalive

 	setting

 	
 redis_socket_timeout

 	setting

 	RedisBackend (class in celery.backends.redis)

 	RedisBackend.ResultConsumer (class in celery.backends.redis)

 	reentrant

 	regen() (in module celery.utils.functional)

 	register() (celery.app.registry.TaskRegistry method)

 	(celery.worker.control.Panel class method)

 	register_auth() (in module celery.security.serialization)

 	register_callback() (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer method)

 	register_drainer() (in module celery.backends.asynchronous)

 	register_timer() (celery.worker.consumer.Gossip method)

 	(celery.worker.consumer.gossip.Gossip method)

 	register_with_event_loop() (celery.concurrency.base.BasePool method)

 	(celery.concurrency.prefork.TaskPool method)

 	(celery.worker.autoscale.WorkerComponent method)

 	(celery.worker.components.Pool method)

 	(celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.consumer.Consumer method)

 	(celery.worker.WorkController method)

 	(celery.worker.worker.WorkController method)

 	registered() (celery.app.control.Inspect method)

 	registered_tasks() (celery.app.control.Inspect method)

 	regular() (celery.app.registry.TaskRegistry method)

 	Reject

 	reject() (celery.worker.request.Request method)

 	reject_on_worker_lost (celery.app.task.Task attribute)

 	rejected (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	relative (celery.schedules.schedule attribute)

 	release() (celery.backends.rpc.RPCBackend.Producer method)

 	(celery.platforms.Pidfile method)

 	reload() (celery.worker.WorkController method)

 	(celery.worker.worker.WorkController method)

 	reload_from_cwd() (in module celery.utils.imports)

 	reload_group_result() (celery.backends.rpc.RPCBackend method)

 	reload_task_result() (celery.backends.rpc.RPCBackend method)

 	remaining() (in module celery.utils.time)

 	remaining_delta() (celery.schedules.crontab method)

 	remaining_estimate() (celery.schedules.crontab method)

 	(celery.schedules.schedule method)

 	(celery.schedules.solar method)

 	remark() (celery.contrib.testing.manager.ManagerMixin method)

 	remove() (celery.platforms.Pidfile method)

 	(celery.result.ResultSet method)

 	(hub method)

 	remove_by (celery.app.defaults.Option attribute)

 	remove_if_stale() (celery.platforms.Pidfile method)

 	remove_pending_result() (celery.backends.asynchronous.AsyncBackendMixin method)

 	replace() (celery.app.task.Task method)

 	reply_exchange (celery.app.control.Control.Mailbox attribute)

 	reply_exchange_fmt (celery.app.control.Control.Mailbox attribute)

 	reply_queue (celery.app.control.Control.Mailbox attribute)

 	reply_to() (celery.worker.request.Request property)

 	report() (celery.app.control.Inspect method)

 	repr_node() (celery.utils.graph.DependencyGraph method)

 	reprstream() (in module celery.utils.saferepr)

 	republish() (in module celery.contrib.migrate)

 	request

 	Request (celery.app.task.Task attribute)

 	(class in celery.worker.request)

 	request (Task attribute)

 	request() (celery.app.task.Task property)

 	request_dict() (celery.worker.request.Request property)

 	request_stack (celery.app.task.Task attribute)

 	requires (celery.bootsteps.ConsumerStep attribute)

 	(celery.bootsteps.Step attribute)

 	(celery.worker.autoscale.WorkerComponent attribute)

 	(celery.worker.components.Hub attribute)

 	(celery.worker.components.Pool attribute)

 	(celery.worker.consumer.Agent attribute)

 	(celery.worker.consumer.agent.Agent attribute)

 	(celery.worker.consumer.Control attribute)

 	(celery.worker.consumer.control.Control attribute)

 	(celery.worker.consumer.Events attribute)

 	(celery.worker.consumer.events.Events attribute)

 	(celery.worker.consumer.Gossip attribute)

 	(celery.worker.consumer.gossip.Gossip attribute)

 	(celery.worker.consumer.Heart attribute)

 	(celery.worker.consumer.heart.Heart attribute)

 	(celery.worker.consumer.Mingle attribute)

 	(celery.worker.consumer.mingle.Mingle attribute)

 	(celery.worker.consumer.Tasks attribute)

 	(celery.worker.consumer.tasks.Tasks attribute)

 	reraise() (in module celery.exceptions)

 	reraise_errors() (in module celery.security.utils)

 	reserve() (celery.beat.Scheduler method)

 	reserved() (celery.app.control.Inspect method)

 	reserved_options (celery.bin.multi.MultiTool attribute)

 	reserved_requests (in module celery.worker.state)

 	reset() (celery.utils.term.colored method)

 	(celery.worker.pidbox.gPidbox method)

 	(celery.worker.pidbox.Pidbox method)

 	
 	reset_multiprocessing_logger() (in module celery.utils.log)

 	reset_rate_limits() (celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.consumer.Consumer method)

 	(consumer method)

 	reset_worker_optimizations() (in module celery.app.trace)

 	resetscreen() (celery.events.cursesmon.CursesMonitor method)

 	resolve_all() (in module celery.app.annotations)

 	restart() (celery.apps.multi.Cluster method)

 	(celery.bin.multi.MultiTool method)

 	(celery.bootsteps.Blueprint method)

 	(celery.concurrency.base.BasePool method)

 	(celery.concurrency.prefork.TaskPool method)

 	restart_count (celery.worker.consumer.Consumer attribute)

 	(celery.worker.consumer.consumer.Consumer attribute)

 	restore() (celery.result.GroupResult class method)

 	(celery.utils.serialization.UnpickleableExceptionWrapper method)

 	restore_group() (celery.backends.rpc.RPCBackend method)

 	result (celery.backends.database.models.Task attribute)

 	(celery.backends.database.models.TaskExtended attribute)

 	(celery.backends.database.models.TaskSet attribute)

 	(celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	result() (celery.result.AsyncResult property)

 	(celery.result.EagerResult property)

 	
 result_accept_content

 	setting

 	
 result_backend

 	setting

 	result_backend() (celery.app.utils.Settings property)

 	
 result_backend_always_retry

 	setting

 	
 result_backend_base_sleep_between_retries_ms

 	setting

 	
 result_backend_max_retries

 	setting

 	
 result_backend_max_sleep_between_retries_ms

 	setting

 	
 result_backend_transport_options

 	setting

 	
 result_cache_max

 	setting

 	
 result_chord_join_timeout

 	setting

 	
 result_chord_retry_interval

 	setting

 	
 result_compression

 	setting

 	
 result_expires

 	setting

 	
 result_extended

 	setting

 	result_from_tuple() (in module celery.result)

 	
 result_persistent

 	setting

 	
 result_serializer

 	setting

 	ResultBase (class in celery.result)

 	resultrepr_maxsize (celery.app.task.Task attribute)

 	results (celery.result.GroupResult attribute)

 	(celery.result.ResultSet attribute)

 	ResultSession() (celery.backends.database.DatabaseBackend method)

 	ResultSet (class in celery.result)

 	retried (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	retries (celery.backends.database.models.TaskExtended attribute)

 	(celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	retries() (celery.result.AsyncResult property)

 	
 RETRY

 	state

 	Retry

 	RETRY (in module celery.states)

 	retry() (celery.app.task.Task method)

 	retry_backoff (Task attribute)

 	retry_backoff_max (Task attribute)

 	retry_jitter (Task attribute)

 	retry_kwargs (Task attribute)

 	retry_over_time() (celery.contrib.testing.manager.ManagerMixin method)

 	retry_policy (celery.backends.redis.RedisBackend attribute)

 	(celery.backends.rpc.RPCBackend attribute)

 	retval (celery.app.trace.TraceInfo attribute)

 	reverse() (celery.utils.term.colored method)

 	revive() (celery.backends.rpc.RPCBackend method)

 	(celery.backends.rpc.RPCBackend.Producer method)

 	(celery.backends.rpc.RPCBackend.ResultConsumer.Consumer method)

 	
 revoke

 	control

 	revoke() (celery.app.control.Control method)

 	(celery.result.AsyncResult method)

 	(celery.result.EagerResult method)

 	(celery.result.ResultSet method)

 	revoke_selection() (celery.events.cursesmon.CursesMonitor method)

 	
 REVOKED

 	state

 	revoked (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	REVOKED (in module celery.states)

 	revoked (in module celery.worker.state)

 	revoked() (celery.app.control.Inspect method)

 	(celery.worker.request.Request method)

 	root (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	root_id (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	root_id() (celery.worker.request.Request property)

 	route() (celery.app.routes.Router method)

 	router (celery.app.amqp.AMQP attribute)

 	Router (class in celery.app.routes)

 	Router() (celery.app.amqp.AMQP method)

 	routes (celery.app.amqp.AMQP attribute)

 	
 ROUTING_KEY

 	celery-amqp-basic.publish command line option

 	celery-amqp-queue.bind command line option

 	routing_key (celery.backends.rpc.RPCBackend.Producer attribute)

 	(celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	RPCBackend (class in celery.backends.rpc)

 	RPCBackend.BacklogLimitExceeded

 	RPCBackend.Consumer (class in celery.backends.rpc)

 	RPCBackend.Exchange (class in celery.backends.rpc)

 	RPCBackend.Producer (class in celery.backends.rpc)

 	RPCBackend.Queue (class in celery.backends.rpc)

 	RPCBackend.ResultConsumer (class in celery.backends.rpc)

 	RPCBackend.ResultConsumer.Consumer (class in celery.backends.rpc)

 	RPCBackend.ResultConsumer.Consumer.ContentDisallowed

 	RUN (celery.concurrency.base.BasePool attribute)

 	run() (celery.app.task.Task method)

 	(celery.apps.beat.Beat method)

 	(celery.concurrency.base.BasePool.Timer method)

 	(celery.utils.threads.bgThread method)

 	(celery.utils.timer2.Timer method)

 	running (celery.concurrency.base.BasePool.Timer attribute)

 	(celery.utils.timer2.Timer attribute)

 	runtime (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	rusage() (celery.worker.WorkController method)

 	(celery.worker.worker.WorkController method)

S

 	
 	s() (celery.app.task.Task method)

 	
 s3_access_key_id

 	setting

 	
 s3_base_path

 	setting

 	
 s3_bucket

 	setting

 	
 s3_endpoint_url

 	setting

 	
 s3_region

 	setting

 	
 s3_secret_access_key

 	setting

 	S3Backend (class in celery.backends.s3)

 	safe_add_str() (celery.events.cursesmon.CursesMonitor method)

 	saferepr() (in module celery.utils.saferepr)

 	sample() (in module celery.utils.debug)

 	sample_mem() (in module celery.utils.debug)

 	save() (celery.result.GroupResult method)

 	(celery.worker.state.Persistent method)

 	save_group() (celery.backends.rpc.RPCBackend method)

 	say() (celery.events.dumper.Dumper method)

 	say_chat() (celery.bin.base.CLIContext method)

 	scale_down() (celery.worker.autoscale.Autoscaler method)

 	scale_up() (celery.worker.autoscale.Autoscaler method)

 	schedule (celery.beat.ScheduleEntry attribute)

 	Schedule (celery.concurrency.base.BasePool.Timer attribute)

 	(celery.utils.timer2.Timer attribute)

 	schedule (class in celery.schedules)

 	Schedule (in module celery.utils.timer2)

 	schedule() (celery.beat.PersistentScheduler property)

 	(celery.beat.Scheduler property)

 	scheduled() (celery.app.control.Inspect method)

 	ScheduleEntry (class in celery.beat)

 	scheduler (celery.apps.beat.Beat.Service attribute)

 	(celery.beat.Service attribute)

 	Scheduler (class in celery.beat)

 	scheduler_cls (celery.apps.beat.Beat.Service attribute)

 	(celery.beat.Service attribute)

 	schedules_equal() (celery.beat.Scheduler method)

 	SchedulingError

 	scheme (celery.backends.couchdb.CouchBackend attribute)

 	(celery.backends.elasticsearch.ElasticsearchBackend attribute)

 	(celery.utils.graph.GraphFormatter attribute)

 	screen_delay (celery.events.cursesmon.CursesMonitor attribute)

 	screen_height() (celery.events.cursesmon.CursesMonitor property)

 	screen_width() (celery.events.cursesmon.CursesMonitor property)

 	secho() (celery.bin.base.CLIContext method)

 	seconds() (celery.schedules.schedule property)

 	SecureSerializer (class in celery.security.serialization)

 	
 security_cert_store

 	setting

 	
 security_certificate

 	setting

 	
 security_digest

 	setting

 	
 security_key

 	setting

 	SecurityError

 	select() (celery.app.amqp.Queues method)

 	select_add() (celery.app.amqp.Queues method)

 	select_queues() (celery.Celery method)

 	selected_position (celery.events.cursesmon.CursesMonitor attribute)

 	selected_str (celery.events.cursesmon.CursesMonitor attribute)

 	selected_task (celery.events.cursesmon.CursesMonitor attribute)

 	selection_info() (celery.events.cursesmon.CursesMonitor method)

 	selection_rate_limit() (celery.events.cursesmon.CursesMonitor method)

 	selection_result() (celery.events.cursesmon.CursesMonitor method)

 	selection_traceback() (celery.events.cursesmon.CursesMonitor method)

 	semaphore (celery.worker.WorkController attribute)

 	(celery.worker.worker.WorkController attribute)

 	send() (celery.apps.multi.Node method)

 	(celery.bin.multi.MultiTool.MultiParser.Node method)

 	(celery.events.dispatcher.EventDispatcher method)

 	(celery.events.EventDispatcher method)

 	(celery.utils.dispatch.Signal method)

 	(celery.utils.dispatch.signal.Signal method)

 	send_all() (celery.apps.multi.Cluster method)

 	(celery.bootsteps.Blueprint method)

 	send_event() (celery.app.task.Task method)

 	(celery.worker.request.Request method)

 	send_events (celery.app.task.Task attribute)

 	send_hello() (celery.worker.consumer.Mingle method)

 	(celery.worker.consumer.mingle.Mingle method)

 	send_robust() (celery.utils.dispatch.Signal method)

 	(celery.utils.dispatch.signal.Signal method)

 	send_task() (celery.beat.Scheduler method)

 	(celery.Celery method)

 	send_task_message (celery.app.amqp.AMQP attribute)

 	sent (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	Sentinel

 	sentinel (celery.backends.redis.SentinelBackend attribute)

 	SentinelBackend (class in celery.backends.redis)

 	serialize() (celery.security.serialization.SecureSerializer method)

 	serializer (celery.app.control.Control.Mailbox attribute)

 	(celery.app.task.Task attribute)

 	(celery.backends.rpc.RPCBackend.Producer attribute)

 	(Task attribute)

 	server() (celery.backends.elasticsearch.ElasticsearchBackend property)

 	servers (celery.backends.cache.CacheBackend attribute)

 	(celery.backends.cassandra.CassandraBackend attribute)

 	Service (class in celery.beat)

 	session_factory() (celery.backends.database.session.SessionManager method)

 	SessionManager (class in celery.backends.database.session)

 	set() (celery.backends.arangodb.ArangoDbBackend method)

 	(celery.backends.azureblockblob.AzureBlockBlobBackend method)

 	(celery.backends.cache.CacheBackend method)

 	(celery.backends.consul.ConsulBackend method)

 	(celery.backends.cosmosdbsql.CosmosDBSQLBackend method)

 	(celery.backends.couchbase.CouchbaseBackend method)

 	(celery.backends.couchdb.CouchBackend method)

 	(celery.backends.dynamodb.DynamoDBBackend method)

 	(celery.backends.elasticsearch.ElasticsearchBackend method)

 	(celery.backends.filesystem.FilesystemBackend method)

 	(celery.backends.redis.RedisBackend method)

 	(celery.backends.s3.S3Backend method)

 	(celery.utils.abstract.CallableSignature method)

 	set_current() (celery.Celery method)

 	set_default() (celery.Celery method)

 	set_default_app() (in module celery._state)

 	set_in_sighandler() (in module celery.utils.log)

 	set_mp_process_title() (in module celery.platforms)

 	set_process_status() (celery.apps.worker.Worker method)

 	set_process_title() (celery.apps.beat.Beat method)

 	(in module celery.platforms)

 	set_schedule() (celery.beat.PersistentScheduler method)

 	(celery.beat.Scheduler method)

 	set_trace() (in module celery.contrib.rdb)

 	set_trap() (in module celery.contrib.testing.app)

 	setdefault() (celery.utils.collections.ChainMap method)

 	(celery.utils.collections.DictAttribute method)

 	setgid() (in module celery.platforms)

 	setgroups() (in module celery.platforms)

 	setter() (celery.utils.cached_property method)

 	
 setting

 	accept_content

 	arangodb_backend_settings

 	azureblockblob_container_name

 	azureblockblob_retry_increment_base

 	azureblockblob_retry_initial_backoff_sec

 	azureblockblob_retry_max_attempts

 	beat_max_loop_interval

 	beat_schedule

 	beat_schedule_filename

 	beat_scheduler

 	beat_sync_every

 	broker_connection_max_retries

 	broker_connection_retry

 	broker_connection_timeout

 	broker_failover_strategy

 	broker_heartbeat

 	broker_heartbeat_checkrate

 	broker_login_method

 	broker_pool_limit

 	broker_read_url

 	broker_transport_options

 	broker_url

 	broker_use_ssl

 	broker_write_url

 	cache_backend

 	cache_backend_options

 	cassandra_auth_kwargs

 	cassandra_auth_provider

 	cassandra_entry_ttl

 	cassandra_keyspace

 	cassandra_options

 	cassandra_port

 	cassandra_read_consistency

 	cassandra_servers

 	cassandra_table

 	cassandra_write_consistency

 	control_exchange

 	control_queue_expires

 	control_queue_ttl

 	cosmosdbsql_collection_name

 	cosmosdbsql_consistency_level

 	cosmosdbsql_database_name

 	cosmosdbsql_max_retry_attempts

 	cosmosdbsql_max_retry_wait_time

 	couchbase_backend_settings

 	database_engine_options

 	database_short_lived_sessions

 	database_table_names

 	database_table_schemas

 	elasticsearch_max_retries

 	elasticsearch_retry_on_timeout

 	elasticsearch_save_meta_as_text

 	elasticsearch_timeout

 	enable_utc

 	event_exchange

 	event_queue_expires

 	event_queue_prefix

 	event_queue_ttl

 	event_serializer

 	imports

 	include

 	mongodb_backend_settings

 	redis_backend_use_ssl

 	redis_max_connections

 	redis_retry_on_timeout

 	redis_socket_connect_timeout

 	redis_socket_keepalive

 	redis_socket_timeout

 	result_accept_content

 	result_backend

 	result_backend_always_retry

 	result_backend_base_sleep_between_retries_ms

 	result_backend_max_retries

 	result_backend_max_sleep_between_retries_ms

 	result_backend_transport_options

 	result_cache_max

 	result_chord_join_timeout

 	result_chord_retry_interval

 	result_compression

 	result_expires

 	result_extended

 	result_persistent

 	result_serializer

 	s3_access_key_id

 	s3_base_path

 	s3_bucket

 	s3_endpoint_url

 	s3_region

 	s3_secret_access_key

 	security_cert_store

 	security_certificate

 	security_digest

 	security_key

 	task_acks_late

 	task_acks_on_failure_or_timeout

 	task_always_eager

 	task_annotations

 	task_compression

 	task_create_missing_queues

 	task_default_delivery_mode

 	task_default_exchange

 	task_default_exchange_type

 	task_default_priority

 	task_default_queue

 	task_default_rate_limit

 	task_default_routing_key

 	task_eager_propagates

 	task_ignore_result

 	task_inherit_parent_priority

 	task_protocol

 	task_publish_retry

 	task_publish_retry_policy

 	task_queue_ha_policy

 	task_queue_max_priority

 	task_queues

 	task_reject_on_worker_lost

 	task_remote_tracebacks

 	task_routes

 	task_send_sent_event

 	task_serializer

 	task_soft_time_limit

 	task_store_errors_even_if_ignored

 	task_time_limit

 	task_track_started

 	timezone

 	worker_autoscaler

 	worker_concurrency

 	worker_consumer

 	worker_direct

 	worker_disable_rate_limits

 	worker_enable_remote_control

 	worker_hijack_root_logger

 	worker_log_color

 	worker_log_format

 	worker_lost_wait

 	worker_max_memory_per_child

 	worker_max_tasks_per_child

 	worker_pool

 	worker_pool_restarts

 	worker_prefetch_multiplier

 	worker_proc_alive_timeout

 	worker_redirect_stdouts

 	worker_redirect_stdouts_level

 	worker_send_task_events

 	worker_state_db

 	worker_task_log_format

 	worker_timer

 	worker_timer_precision

 	Settings (class in celery.app.utils)

 	setuid() (in module celery.platforms)

 	setup() (celery.app.log.Logging method)

 	(in module celery.contrib.sphinx)

 	setup_app_for_worker() (in module celery.contrib.testing.worker)

 	
 	setup_default_app() (in module celery.contrib.testing.app)

 	setup_defaults() (celery.worker.WorkController method)

 	(celery.worker.worker.WorkController method)

 	setup_handlers() (celery.app.log.Logging method)

 	setup_includes() (celery.worker.WorkController method)

 	(celery.worker.worker.WorkController method)

 	setup_instance() (celery.worker.WorkController method)

 	(celery.worker.worker.WorkController method)

 	
 setup_logging

 	signal

 	setup_logging() (celery.apps.beat.Beat method)

 	(celery.apps.worker.Worker method)

 	setup_logging_subsystem() (celery.app.log.Logging method)

 	setup_queues() (celery.worker.WorkController method)

 	(celery.worker.worker.WorkController method)

 	setup_schedule() (celery.beat.PersistentScheduler method)

 	(celery.beat.Scheduler method)

 	setup_security() (celery.Celery method)

 	(in module celery.security)

 	setup_settings() (celery.loaders.default.Loader method)

 	setup_task_loggers() (celery.app.log.Logging method)

 	setup_worker_optimizations() (in module celery.app.trace)

 	shadow_name() (celery.app.task.Task method)

 	should_sync() (celery.beat.Scheduler method)

 	should_use_eventloop() (celery.worker.WorkController method)

 	(celery.worker.worker.WorkController method)

 	show() (celery.bin.multi.MultiTool method)

 	shrink() (celery.concurrency.eventlet.TaskPool method)

 	(celery.concurrency.gevent.TaskPool method)

 	
 shutdown

 	control

 	shutdown() (celery.app.control.Control method)

 	(celery.bootsteps.ConsumerStep method)

 	(celery.worker.consumer.Connection method)

 	(celery.worker.consumer.connection.Connection method)

 	(celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.Consumer.Blueprint method)

 	(celery.worker.consumer.consumer.Consumer method)

 	(celery.worker.consumer.consumer.Consumer.Blueprint method)

 	(celery.worker.consumer.Events method)

 	(celery.worker.consumer.events.Events method)

 	(celery.worker.consumer.Heart method)

 	(celery.worker.consumer.heart.Heart method)

 	(celery.worker.consumer.Tasks method)

 	(celery.worker.consumer.tasks.Tasks method)

 	(celery.worker.pidbox.Pidbox method)

 	shutdown_nodes() (celery.apps.multi.Cluster method)

 	shutdown_worker() (celery.loaders.base.BaseLoader method)

 	shutter() (celery.events.snapshot.Polaroid method)

 	shutter_signal (celery.events.snapshot.Polaroid attribute)

 	si() (celery.app.task.Task method)

 	sign() (celery.security.key.PrivateKey method)

 	
 signal

 	after_setup_logger

 	after_setup_task_logger

 	after_task_publish

 	beat_embedded_init

 	beat_init

 	before_task_publish

 	celeryd_after_setup

 	celeryd_init

 	eventlet_pool_apply

 	eventlet_pool_postshutdown

 	eventlet_pool_preshutdown

 	eventlet_pool_started

 	heartbeat_sent

 	import_modules

 	setup_logging

 	task_failure

 	task_internal_error

 	task_postrun

 	task_prerun

 	task_received

 	task_rejected

 	task_retry

 	task_revoked

 	task_sent

 	task_success

 	task_unknown

 	user_preload_options

 	worker_init

 	worker_process_init

 	worker_process_shutdown

 	worker_ready

 	worker_shutdown

 	worker_shutting_down

 	Signal (class in celery.utils.dispatch)

 	(class in celery.utils.dispatch.signal)

 	signal_consumer_close() (celery.worker.WorkController method)

 	(celery.worker.worker.WorkController method)

 	signal_name() (in module celery.platforms)

 	signal_safe (celery.concurrency.base.BasePool attribute)

 	(celery.concurrency.eventlet.TaskPool attribute)

 	(celery.concurrency.gevent.TaskPool attribute)

 	(celery.concurrency.thread.TaskPool attribute)

 	Signature (class in celery)

 	signature() (celery.app.task.Task method)

 	(celery.Celery method)

 	(in module celery)

 	simple_format() (in module celery.utils.text)

 	soft_time_limit (celery.app.task.Task attribute)

 	(Task attribute)

 	SoftTimeLimitExceeded

 	SOFTWARE_INFO (in module celery.worker.state)

 	solar (class in celery.schedules)

 	
 SOURCE

 	celery-migrate command line option

 	starmap() (celery.app.task.Task method)

 	start() (celery.apps.beat.Beat.Service method)

 	(celery.apps.multi.Cluster method)

 	(celery.apps.multi.Node method)

 	(celery.backends.asynchronous.BaseResultConsumer method)

 	(celery.backends.asynchronous.Drainer method)

 	(celery.backends.redis.RedisBackend.ResultConsumer method)

 	(celery.backends.rpc.RPCBackend.ResultConsumer method)

 	(celery.beat.Service method)

 	(celery.bin.multi.MultiTool method)

 	(celery.bin.multi.MultiTool.MultiParser.Node method)

 	(celery.bootsteps.Blueprint method)

 	(celery.bootsteps.ConsumerStep method)

 	(celery.bootsteps.StartStopStep method)

 	(celery.concurrency.base.BasePool method)

 	(celery.worker.components.Hub method)

 	(celery.worker.consumer.Connection method)

 	(celery.worker.consumer.connection.Connection method)

 	(celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.consumer.Consumer method)

 	(celery.worker.consumer.consumer.Evloop method)

 	(celery.worker.consumer.Events method)

 	(celery.worker.consumer.events.Events method)

 	(celery.worker.consumer.Gossip method)

 	(celery.worker.consumer.gossip.Gossip method)

 	(celery.worker.consumer.Heart method)

 	(celery.worker.consumer.heart.Heart method)

 	(celery.worker.consumer.Mingle method)

 	(celery.worker.consumer.mingle.Mingle method)

 	(celery.worker.consumer.Tasks method)

 	(celery.worker.consumer.tasks.Tasks method)

 	(celery.worker.heartbeat.Heart method)

 	(celery.worker.pidbox.gPidbox method)

 	(celery.worker.pidbox.Pidbox method)

 	(celery.worker.WorkController method)

 	(celery.worker.worker.WorkController method)

 	start_filter() (in module celery.contrib.migrate)

 	start_node() (celery.apps.multi.Cluster method)

 	start_scheduler() (celery.apps.beat.Beat method)

 	start_worker() (in module celery.contrib.testing.worker)

 	
 STARTED

 	state

 	started (celery.bootsteps.Blueprint attribute)

 	(celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	STARTED (in module celery.states)

 	StartStopStep (class in celery.bootsteps)

 	startup_info() (celery.apps.beat.Beat method)

 	(celery.apps.worker.Worker method)

 	stat (celery.utils.sysinfo.df attribute)

 	
 state

 	ALL_STATES

 	EXCEPTION_STATES

 	FAILURE

 	PENDING

 	PROPAGATE_STATES

 	READY_STATES

 	RETRY

 	REVOKED

 	STARTED

 	SUCCESS

 	UNREADY_STATES

 	State (celery.app.events.Events attribute)

 	state (celery.app.trace.TraceInfo attribute)

 	(celery.bootsteps.Blueprint attribute)

 	(celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	State (class in celery.contrib.migrate)

 	(class in celery.events.state)

 	state (class in celery.states)

 	state() (celery.result.AsyncResult property)

 	(celery.result.EagerResult property)

 	(celery.worker.WorkController property)

 	(celery.worker.worker.WorkController property)

 	State.Task (class in celery.events.state)

 	State.Worker (class in celery.events.state)

 	state_cls (celery.app.events.Events attribute)

 	state_to_name (celery.bootsteps.Blueprint attribute)

 	statedb

 	StateDB (class in celery.worker.components)

 	stats() (celery.app.control.Inspect method)

 	(celery.worker.WorkController method)

 	(celery.worker.worker.WorkController method)

 	status (celery.backends.database.models.Task attribute)

 	(celery.backends.database.models.TaskExtended attribute)

 	status() (celery.result.AsyncResult property)

 	(celery.result.EagerResult property)

 	status_string() (celery.events.state.State.Worker property)

 	(celery.events.state.Worker property)

 	Step (class in celery.bootsteps)

 	steps (celery.Celery attribute)

 	stop() (celery.apps.beat.Beat.Service method)

 	(celery.apps.multi.Cluster method)

 	(celery.backends.asynchronous.BaseResultConsumer method)

 	(celery.backends.asynchronous.Drainer method)

 	(celery.backends.redis.RedisBackend.ResultConsumer method)

 	(celery.backends.rpc.RPCBackend.ResultConsumer method)

 	(celery.beat.Service method)

 	(celery.bin.multi.MultiTool method)

 	(celery.bootsteps.Blueprint method)

 	(celery.bootsteps.ConsumerStep method)

 	(celery.bootsteps.StartStopStep method)

 	(celery.concurrency.base.BasePool method)

 	(celery.concurrency.base.BasePool.Timer method)

 	(celery.utils.threads.bgThread method)

 	(celery.utils.timer2.Timer method)

 	(celery.worker.components.Hub method)

 	(celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.consumer.Consumer method)

 	(celery.worker.consumer.Events method)

 	(celery.worker.consumer.events.Events method)

 	(celery.worker.consumer.Heart method)

 	(celery.worker.consumer.heart.Heart method)

 	(celery.worker.consumer.Tasks method)

 	(celery.worker.consumer.tasks.Tasks method)

 	(celery.worker.heartbeat.Heart method)

 	(celery.worker.pidbox.Pidbox method)

 	(celery.worker.WorkController method)

 	(celery.worker.worker.WorkController method)

 	stop_verify() (celery.bin.multi.MultiTool method)

 	StopFiltering

 	stopwait() (celery.apps.multi.Cluster method)

 	(celery.bin.multi.MultiTool method)

 	storage (celery.worker.state.Persistent attribute)

 	store_errors() (celery.worker.request.Request property)

 	store_errors_even_if_ignored (celery.app.task.Task attribute)

 	(Task attribute)

 	store_result() (celery.backends.base.DisabledBackend method)

 	(celery.backends.rpc.RPCBackend method)

 	str_to_list() (in module celery.utils.text)

 	strategies

 	Strategies (celery.worker.consumer.Consumer attribute)

 	(celery.worker.consumer.consumer.Consumer attribute)

 	Strategy (celery.app.task.Task attribute)

 	strtobool() (in module celery.utils.serialization)

 	strtotal() (celery.contrib.migrate.State property)

 	style() (celery.bin.base.CLIContext method)

 	subclass_exception() (in module celery.utils.serialization)

 	subpolling_interval (celery.backends.database.DatabaseBackend attribute)

 	subtask() (celery.app.task.Task method)

 	subtask_type() (celery.utils.abstract.CallableSignature property)

 	succeeded (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	
 SUCCESS

 	state

 	SUCCESS (in module celery.states)

 	successful() (celery.result.AsyncResult method)

 	(celery.result.ResultSet method)

 	supports_autoexpire (celery.backends.cache.CacheBackend attribute)

 	(celery.backends.cassandra.CassandraBackend attribute)

 	(celery.backends.consul.ConsulBackend attribute)

 	(celery.backends.couchbase.CouchbaseBackend attribute)

 	(celery.backends.dynamodb.DynamoDBBackend attribute)

 	(celery.backends.mongodb.MongoBackend attribute)

 	(celery.backends.redis.RedisBackend attribute)

 	(celery.backends.rpc.RPCBackend attribute)

 	supports_color() (celery.app.log.Logging method)

 	supports_native_join (celery.backends.cache.CacheBackend attribute)

 	(celery.backends.redis.RedisBackend attribute)

 	(celery.backends.rpc.RPCBackend attribute)

 	supports_native_join() (celery.result.AsyncResult property)

 	(celery.result.EagerResult property)

 	(celery.result.ResultSet property)

 	sw_ident (celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	sw_sys (celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	sw_ver (celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	swap_with() (celery.utils.collections.ConfigurationView method)

 	symbol_by_name() (in module celery.utils.imports)

 	sync() (celery.apps.beat.Beat.Service method)

 	(celery.beat.PersistentScheduler method)

 	(celery.beat.Scheduler method)

 	(celery.beat.Service method)

 	(celery.worker.consumer.Mingle method)

 	(celery.worker.consumer.mingle.Mingle method)

 	(celery.worker.state.Persistent method)

 	sync_every (celery.beat.Scheduler attribute)

 	sync_every_tasks (celery.beat.Scheduler attribute)

 	sync_with_node() (celery.worker.consumer.Mingle method)

 	(celery.worker.consumer.mingle.Mingle method)

 	synloop() (in module celery.worker.loops)

T

 	
 	table() (celery.app.utils.Settings method)

 	table_name (celery.backends.dynamodb.DynamoDBBackend attribute)

 	TAIL (celery.utils.graph.DOT attribute)

 	tail() (celery.utils.graph.GraphFormatter method)

 	take() (celery.utils.collections.BufferMap method)

 	(celery.utils.collections.Messagebuffer method)

 	Task (celery.Celery attribute)

 	(class in celery.app.task)

 	(class in celery.backends.database.models)

 	(class in celery.events.state)

 	task() (celery.Celery method)

 	(celery.utils.abstract.CallableSignature property)

 	(celery.worker.request.Request property)

 	
 task-failed

 	event

 	
 task-received

 	event

 	
 task-rejected

 	event

 	
 task-retried

 	event

 	
 task-revoked

 	event

 	
 task-sent

 	event

 	
 task-started

 	event

 	
 task-succeeded

 	event

 	Task.MaxRetriesExceededError

 	Task.OperationalError

 	task_accepted() (in module celery.worker.state)

 	
 task_acks_late

 	setting

 	
 task_acks_on_failure_or_timeout

 	setting

 	
 task_always_eager

 	setting

 	
 task_annotations

 	setting

 	task_buckets

 	task_cls (celery.backends.database.DatabaseBackend attribute)

 	
 task_compression

 	setting

 	task_consumer

 	task_count (celery.events.state.State attribute)

 	
 task_create_missing_queues

 	setting

 	
 task_default_delivery_mode

 	setting

 	
 task_default_exchange

 	setting

 	task_default_exchange() (celery.app.utils.Settings property)

 	
 task_default_exchange_type

 	setting

 	
 task_default_priority

 	setting

 	
 task_default_queue

 	setting

 	
 task_default_rate_limit

 	setting

 	
 task_default_routing_key

 	setting

 	task_default_routing_key() (celery.app.utils.Settings property)

 	
 task_eager_propagates

 	setting

 	task_event() (celery.events.state.State method)

 	
 task_failure

 	signal

 	
 TASK_ID

 	celery-result command line option

 	task_id (celery.backends.database.models.Task attribute)

 	(celery.backends.database.models.TaskExtended attribute)

 	task_id() (celery.result.AsyncResult property)

 	(celery.worker.request.Request property)

 	task_id_eq() (in module celery.contrib.migrate)

 	task_id_in() (in module celery.contrib.migrate)

 	
 task_ignore_result

 	setting

 	
 task_inherit_parent_priority

 	setting

 	
 task_internal_error

 	signal

 	task_join_will_block (celery.concurrency.base.BasePool attribute)

 	(celery.concurrency.eventlet.TaskPool attribute)

 	(celery.concurrency.gevent.TaskPool attribute)

 	task_message_from_sig() (in module celery.contrib.testing.mocks)

 	task_name() (celery.worker.request.Request property)

 	
 task_postrun

 	signal

 	
 task_prerun

 	signal

 	
 task_protocol

 	setting

 	
 task_publish_retry

 	setting

 	
 task_publish_retry_policy

 	setting

 	
 task_queue_ha_policy

 	setting

 	
 task_queue_max_priority

 	setting

 	
 task_queues

 	setting

 	task_ready() (in module celery.worker.state)

 	
 task_received

 	signal

 	
 task_reject_on_worker_lost

 	setting

 	
 task_rejected

 	signal

 	
 task_remote_tracebacks

 	setting

 	task_reserved() (in module celery.worker.state)

 	
 task_retry

 	signal

 	
 task_revoked

 	signal

 	
 task_routes

 	setting

 	
 task_send_sent_event

 	setting

 	
 task_sent

 	signal

 	
 task_serializer

 	setting

 	
 task_soft_time_limit

 	setting

 	
 	
 task_store_errors_even_if_ignored

 	setting

 	
 task_success

 	signal

 	
 task_time_limit

 	setting

 	
 task_track_started

 	setting

 	task_types() (celery.events.state.State method)

 	
 task_unknown

 	signal

 	TaskDirective (class in celery.contrib.sphinx)

 	TaskDocumenter (class in celery.contrib.sphinx)

 	TaskError

 	TaskExtended (class in celery.backends.database.models)

 	TaskFormatter (class in celery.app.log)

 	tasklist() (celery.apps.worker.Worker method)

 	TaskMessage() (in module celery.contrib.testing.mocks)

 	TaskMessage1() (in module celery.contrib.testing.mocks)

 	taskmeta_collection (celery.backends.mongodb.MongoBackend attribute)

 	TaskPool (class in celery.concurrency.eventlet)

 	(class in celery.concurrency.gevent)

 	(class in celery.concurrency.prefork)

 	(class in celery.concurrency.solo)

 	(class in celery.concurrency.thread)

 	TaskPool.Timer (class in celery.concurrency.eventlet)

 	(class in celery.concurrency.gevent)

 	TaskPredicate

 	TaskRegistry (class in celery.app.registry)

 	TaskRegistry.NotRegistered

 	TaskRevokedError

 	tasks (celery.Celery attribute)

 	Tasks (class in celery.worker.consumer)

 	(class in celery.worker.consumer.tasks)

 	tasks() (celery.events.cursesmon.CursesMonitor property)

 	tasks_by_time() (celery.events.state.State method)

 	tasks_by_timestamp() (celery.events.state.State method)

 	TaskSet (class in celery.backends.database.models)

 	taskset_cls (celery.backends.database.DatabaseBackend attribute)

 	taskset_id (celery.backends.database.models.TaskSet attribute)

 	TaskType (in module celery.app.task)

 	term_scheme (celery.utils.graph.GraphFormatter attribute)

 	terminal_node() (celery.utils.graph.GraphFormatter method)

 	TERMINATE (celery.concurrency.base.BasePool attribute)

 	terminate() (celery.app.control.Control method)

 	(celery.bootsteps.StartStopStep method)

 	(celery.concurrency.base.BasePool method)

 	(celery.worker.components.Hub method)

 	(celery.worker.components.Pool method)

 	(celery.worker.request.Request method)

 	(celery.worker.WorkController method)

 	(celery.worker.worker.WorkController method)

 	terminate_job() (celery.concurrency.base.BasePool method)

 	Terminated

 	TestApp() (in module celery.contrib.testing.app)

 	TestWorkController (class in celery.contrib.testing.worker)

 	thaw() (State method)

 	then() (celery.result.AsyncResult method)

 	(celery.result.EagerResult method)

 	(celery.result.ResultSet method)

 	throw() (celery.result.AsyncResult method)

 	throws (celery.app.task.Task attribute)

 	(Task attribute)

 	tick() (celery.beat.Scheduler method)

 	time_limit (celery.app.task.Task attribute)

 	(Task attribute)

 	time_limit() (celery.app.control.Control method)

 	time_limits (celery.worker.request.Request attribute)

 	time_start (celery.worker.request.Request attribute)

 	time_to_live_seconds (celery.backends.dynamodb.DynamoDBBackend attribute)

 	TimeLimitExceeded

 	timeout (celery.backends.couchbase.CouchbaseBackend attribute)

 	TimeoutError

 	timer, [1]

 	(celery.events.snapshot.Polaroid attribute)

 	(celery.worker.consumer.Consumer attribute)

 	(celery.worker.consumer.consumer.Consumer attribute)

 	Timer (class in celery.utils.timer2)

 	(class in celery.worker.components)

 	Timer.Entry (class in celery.utils.timer2)

 	timestamp (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	
 timezone

 	setting

 	timezone (celery.Celery attribute)

 	timezone() (celery.app.utils.Settings property)

 	to_dict() (celery.backends.database.models.Task method)

 	(celery.backends.database.models.TaskExtended method)

 	(celery.backends.database.models.TaskSet method)

 	to_dot() (celery.utils.graph.DependencyGraph method)

 	to_python() (celery.app.defaults.Option method)

 	to_timestamp() (in module celery.utils.timer2)

 	to_utc() (in module celery.utils.time)

 	topsort() (celery.utils.graph.DependencyGraph method)

 	total (celery.utils.collections.BufferMap attribute)

 	total_apx (celery.contrib.migrate.State attribute)

 	total_blocks() (celery.utils.sysinfo.df property)

 	total_count (in module celery.worker.state)

 	total_run_count (celery.beat.ScheduleEntry attribute)

 	trace_task() (in module celery.app.trace)

 	traceback (celery.backends.database.models.Task attribute)

 	(celery.backends.database.models.TaskExtended attribute)

 	(celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	traceback() (celery.result.AsyncResult property)

 	(celery.result.EagerResult property)

 	TraceInfo (class in celery.app.trace)

 	track_started (celery.app.task.Task attribute)

 	(Task attribute)

 	trail (celery.app.task.Task attribute)

 	TRANSIENT_DELIVERY_MODE (celery.backends.rpc.RPCBackend.Exchange attribute)

 	Trap (class in celery.contrib.testing.app)

 	tref (celery.concurrency.base.BasePool.Timer.Entry attribute)

 	(celery.utils.timer2.Entry attribute)

 	(celery.utils.timer2.Timer.Entry attribute)

 	true_or_raise() (celery.contrib.testing.manager.ManagerMixin method)

 	truncate() (in module celery.utils.text)

 	
 TYPE

 	celery-amqp-exchange.declare command line option

 	type (celery.app.control.Control.Mailbox attribute)

 	(celery.backends.rpc.RPCBackend.Exchange attribute), [1]

 	type() (celery.utils.abstract.CallableSignature property)

 	(celery.worker.request.Request property)

 	typemap (celery.app.defaults.Option attribute)

 	typing (celery.app.task.Task attribute)

 	tzlocal() (celery.worker.request.Request property)

 	tzname() (celery.utils.time.LocalTimezone method)

U

 	
 	unbind_from() (celery.backends.rpc.RPCBackend.Exchange method)

 	underline() (celery.utils.term.colored method)

 	uniq() (in module celery.utils.functional)

 	UnitLogging (class in celery.contrib.testing.app)

 	UnpickleableExceptionWrapper

 	
 UNREADY_STATES

 	state

 	unregister() (celery.app.registry.TaskRegistry method)

 	update() (celery.beat.ScheduleEntry method)

 	(celery.events.state.State.Worker method)

 	(celery.events.state.Worker method)

 	(celery.result.ResultSet method)

 	(celery.utils.collections.ChainMap method)

 	(celery.utils.collections.LimitedSet method)

 	(celery.utils.functional.LRUCache method)

 	(celery.utils.graph.DependencyGraph method)

 	(celery.worker.autoscale.Autoscaler method)

 	update_from_dict() (celery.beat.Scheduler method)

 	
 	update_state() (celery.app.task.Task method)

 	update_strategies() (celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.consumer.Consumer method)

 	use_celery_app_trap() (in module celery.contrib.pytest)

 	USE_FAST_LOCALS

 	user (celery.backends.mongodb.MongoBackend attribute)

 	user_options (celery.Celery attribute)

 	
 user_preload_options

 	signal

 	username (celery.backends.arangodb.ArangoDbBackend attribute)

 	(celery.backends.couchbase.CouchbaseBackend attribute)

 	(celery.backends.couchdb.CouchBackend attribute)

 	(celery.backends.elasticsearch.ElasticsearchBackend attribute)

 	uses_semaphore (celery.concurrency.base.BasePool attribute)

 	(celery.concurrency.prefork.TaskPool attribute)

 	utc() (celery.worker.request.Request property)

 	utcoffset() (celery.utils.time.LocalTimezone method)

 	(in module celery.utils.time)

 	uuid() (in module celery.utils)

V

 	
 	valency_of() (celery.utils.graph.DependencyGraph method)

 	validate_arguments() (celery.bin.multi.MultiTool method)

 	value_set_for() (celery.app.utils.Settings method)

 	
 	values() (celery.utils.collections.ChainMap method)

 	(celery.utils.collections.DictAttribute method)

 	(celery.utils.functional.LRUCache method)

 	verify() (celery.security.certificate.Certificate method)

W

 	
 	wait() (celery.result.AsyncResult method)

 	(celery.result.EagerResult method)

 	wait_for() (celery.backends.asynchronous.Drainer method)

 	(celery.backends.base.DisabledBackend method)

 	(celery.contrib.testing.manager.ManagerMixin method)

 	wait_for_pending() (celery.backends.asynchronous.AsyncBackendMixin method)

 	waiting() (celery.result.ResultSet method)

 	wakeup_workers() (celery.events.EventReceiver method)

 	(celery.events.receiver.EventReceiver method)

 	warn() (in module celery.utils.deprecated)

 	weekday() (in module celery.utils.time)

 	when (celery.exceptions.Retry attribute)

 	white() (celery.utils.term.colored method)

 	win (celery.events.cursesmon.CursesMonitor attribute)

 	without_defaults() (celery.app.utils.Settings method)

 	WorkController (celery.Celery attribute)

 	(class in celery.worker)

 	(class in celery.worker.worker)

 	WorkController.Blueprint (class in celery.worker)

 	(class in celery.worker.worker)

 	worker (celery.backends.database.models.TaskExtended attribute)

 	Worker (celery.Celery attribute)

 	worker (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	Worker (class in celery.apps.worker)

 	(class in celery.events.state)

 	worker() (celery.result.AsyncResult property)

 	
 worker-heartbeat

 	event

 	
 worker-offline

 	event

 	
 worker-online

 	event

 	
 worker_autoscaler

 	setting

 	
 worker_concurrency

 	setting

 	
 worker_consumer

 	setting

 	
 worker_direct

 	setting

 	worker_direct() (in module celery.utils)

 	(in module celery.utils.nodenames)

 	
 worker_disable_rate_limits

 	setting

 	
 worker_enable_remote_control

 	setting

 	worker_event() (celery.events.state.State method)

 	
 worker_hijack_root_logger

 	setting

 	
 worker_init

 	signal

 	worker_initialized (celery.loaders.base.BaseLoader attribute)

 	
 	
 worker_log_color

 	setting

 	
 worker_log_format

 	setting

 	
 worker_lost_wait

 	setting

 	
 worker_max_memory_per_child

 	setting

 	
 worker_max_tasks_per_child

 	setting

 	worker_pid (celery.worker.request.Request attribute)

 	
 worker_pool

 	setting

 	
 worker_pool_restarts

 	setting

 	
 worker_prefetch_multiplier

 	setting

 	
 worker_proc_alive_timeout

 	setting

 	
 worker_process_init

 	signal

 	
 worker_process_shutdown

 	signal

 	
 worker_ready

 	signal

 	
 worker_redirect_stdouts

 	setting

 	
 worker_redirect_stdouts_level

 	setting

 	
 worker_send_task_events

 	setting

 	
 worker_shutdown

 	signal

 	
 worker_shutting_down

 	signal

 	
 worker_state_db

 	setting

 	
 worker_task_log_format

 	setting

 	
 worker_timer

 	setting

 	
 worker_timer_precision

 	setting

 	WorkerComponent (class in celery.worker.autoscale)

 	WorkerLostError

 	workers() (celery.events.cursesmon.CursesMonitor property)

 	WorkerShutdown

 	WorkersPool (class in celery.bin.worker)

 	WorkerTerminate

 	write() (celery.utils.log.LoggingProxy method)

 	write_capacity_units (celery.backends.dynamodb.DynamoDBBackend attribute)

 	write_pid() (celery.platforms.Pidfile method)

 	write_stats (celery.concurrency.prefork.TaskPool attribute)

 	writelines() (celery.utils.log.LoggingProxy method)

Y

 	
 	yellow() (celery.utils.term.colored method)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for _weakrefset

Access WeakSet through the weakref module.
This code is separated-out because it is needed
by abc.py to load everything else at startup.

from _weakref import ref

__all__ = ['WeakSet']

class _IterationGuard:
 # This context manager registers itself in the current iterators of the
 # weak container, such as to delay all removals until the context manager
 # exits.
 # This technique should be relatively thread-safe (since sets are).

 def __init__(self, weakcontainer):
 # Don't create cycles
 self.weakcontainer = ref(weakcontainer)

 def __enter__(self):
 w = self.weakcontainer()
 if w is not None:
 w._iterating.add(self)
 return self

 def __exit__(self, e, t, b):
 w = self.weakcontainer()
 if w is not None:
 s = w._iterating
 s.remove(self)
 if not s:
 w._commit_removals()

class WeakSet:
 def __init__(self, data=None):
 self.data = set()
 def _remove(item, selfref=ref(self)):
 self = selfref()
 if self is not None:
 if self._iterating:
 self._pending_removals.append(item)
 else:
 self.data.discard(item)
 self._remove = _remove
 # A list of keys to be removed
 self._pending_removals = []
 self._iterating = set()
 if data is not None:
 self.update(data)

 def _commit_removals(self):
 l = self._pending_removals
 discard = self.data.discard
 while l:
 discard(l.pop())

 def __iter__(self):
 with _IterationGuard(self):
 for itemref in self.data:
 item = itemref()
 if item is not None:
 # Caveat: the iterator will keep a strong reference to
 # `item` until it is resumed or closed.
 yield item

 def __len__(self):
 return len(self.data) - len(self._pending_removals)

 def __contains__(self, item):
 try:
 wr = ref(item)
 except TypeError:
 return False
 return wr in self.data

 def __reduce__(self):
 return (self.__class__, (list(self),),
 getattr(self, '__dict__', None))

 def add(self, item):
 if self._pending_removals:
 self._commit_removals()
 self.data.add(ref(item, self._remove))

 def clear(self):
 if self._pending_removals:
 self._commit_removals()
 self.data.clear()

 def copy(self):
 return self.__class__(self)

 def pop(self):
 if self._pending_removals:
 self._commit_removals()
 while True:
 try:
 itemref = self.data.pop()
 except KeyError:
 raise KeyError('pop from empty WeakSet') from None
 item = itemref()
 if item is not None:
 return item

 def remove(self, item):
 if self._pending_removals:
 self._commit_removals()
 self.data.remove(ref(item))

 def discard(self, item):
 if self._pending_removals:
 self._commit_removals()
 self.data.discard(ref(item))

 def update(self, other):
 if self._pending_removals:
 self._commit_removals()
 for element in other:
 self.add(element)

 def __ior__(self, other):
 self.update(other)
 return self

 def difference(self, other):
 newset = self.copy()
 newset.difference_update(other)
 return newset
 __sub__ = difference

 def difference_update(self, other):
 self.__isub__(other)
 def __isub__(self, other):
 if self._pending_removals:
 self._commit_removals()
 if self is other:
 self.data.clear()
 else:
 self.data.difference_update(ref(item) for item in other)
 return self

 def intersection(self, other):
 return self.__class__(item for item in other if item in self)
 __and__ = intersection

 def intersection_update(self, other):
 self.__iand__(other)
 def __iand__(self, other):
 if self._pending_removals:
 self._commit_removals()
 self.data.intersection_update(ref(item) for item in other)
 return self

 def issubset(self, other):
 return self.data.issubset(ref(item) for item in other)
 __le__ = issubset

 def __lt__(self, other):
 return self.data < set(map(ref, other))

 def issuperset(self, other):
 return self.data.issuperset(ref(item) for item in other)
 __ge__ = issuperset

 def __gt__(self, other):
 return self.data > set(map(ref, other))

 def __eq__(self, other):
 if not isinstance(other, self.__class__):
 return NotImplemented
 return self.data == set(map(ref, other))

 def symmetric_difference(self, other):
 newset = self.copy()
 newset.symmetric_difference_update(other)
 return newset
 __xor__ = symmetric_difference

 def symmetric_difference_update(self, other):
 self.__ixor__(other)
 def __ixor__(self, other):
 if self._pending_removals:
 self._commit_removals()
 if self is other:
 self.data.clear()
 else:
 self.data.symmetric_difference_update(ref(item, self._remove) for item in other)
 return self

 def union(self, other):
 return self.__class__(e for s in (self, other) for e in s)
 __or__ = union

 def isdisjoint(self, other):
 return len(self.intersection(other)) == 0

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for collections

'''This module implements specialized container datatypes providing
alternatives to Python's general purpose built-in containers, dict,
list, set, and tuple.

* namedtuple factory function for creating tuple subclasses with named fields
* deque list-like container with fast appends and pops on either end
* ChainMap dict-like class for creating a single view of multiple mappings
* Counter dict subclass for counting hashable objects
* OrderedDict dict subclass that remembers the order entries were added
* defaultdict dict subclass that calls a factory function to supply missing values
* UserDict wrapper around dictionary objects for easier dict subclassing
* UserList wrapper around list objects for easier list subclassing
* UserString wrapper around string objects for easier string subclassing

'''

__all__ = ['deque', 'defaultdict', 'namedtuple', 'UserDict', 'UserList',
 'UserString', 'Counter', 'OrderedDict', 'ChainMap']

import _collections_abc
from operator import itemgetter as _itemgetter, eq as _eq
from keyword import iskeyword as _iskeyword
import sys as _sys
import heapq as _heapq
from _weakref import proxy as _proxy
from itertools import repeat as _repeat, chain as _chain, starmap as _starmap
from reprlib import recursive_repr as _recursive_repr

try:
 from _collections import deque
except ImportError:
 pass
else:
 _collections_abc.MutableSequence.register(deque)

try:
 from _collections import defaultdict
except ImportError:
 pass

def __getattr__(name):
 # For backwards compatibility, continue to make the collections ABCs
 # through Python 3.6 available through the collections module.
 # Note, no new collections ABCs were added in Python 3.7
 if name in _collections_abc.__all__:
 obj = getattr(_collections_abc, name)
 import warnings
 warnings.warn("Using or importing the ABCs from 'collections' instead "
 "of from 'collections.abc' is deprecated, "
 "and in 3.8 it will stop working",
 DeprecationWarning, stacklevel=2)
 globals()[name] = obj
 return obj
 raise AttributeError(f'module {__name__!r} has no attribute {name!r}')

##
OrderedDict
##

class _OrderedDictKeysView(_collections_abc.KeysView):

 def __reversed__(self):
 yield from reversed(self._mapping)

class _OrderedDictItemsView(_collections_abc.ItemsView):

 def __reversed__(self):
 for key in reversed(self._mapping):
 yield (key, self._mapping[key])

class _OrderedDictValuesView(_collections_abc.ValuesView):

 def __reversed__(self):
 for key in reversed(self._mapping):
 yield self._mapping[key]

class _Link(object):
 __slots__ = 'prev', 'next', 'key', '__weakref__'

class OrderedDict(dict):
 'Dictionary that remembers insertion order'
 # An inherited dict maps keys to values.
 # The inherited dict provides __getitem__, __len__, __contains__, and get.
 # The remaining methods are order-aware.
 # Big-O running times for all methods are the same as regular dictionaries.

 # The internal self.__map dict maps keys to links in a doubly linked list.
 # The circular doubly linked list starts and ends with a sentinel element.
 # The sentinel element never gets deleted (this simplifies the algorithm).
 # The sentinel is in self.__hardroot with a weakref proxy in self.__root.
 # The prev links are weakref proxies (to prevent circular references).
 # Individual links are kept alive by the hard reference in self.__map.
 # Those hard references disappear when a key is deleted from an OrderedDict.

 def __init__(*args, **kwds):
 '''Initialize an ordered dictionary. The signature is the same as
 regular dictionaries. Keyword argument order is preserved.
 '''
 if not args:
 raise TypeError("descriptor '__init__' of 'OrderedDict' object "
 "needs an argument")
 self, *args = args
 if len(args) > 1:
 raise TypeError('expected at most 1 arguments, got %d' % len(args))
 try:
 self.__root
 except AttributeError:
 self.__hardroot = _Link()
 self.__root = root = _proxy(self.__hardroot)
 root.prev = root.next = root
 self.__map = {}
 self.__update(*args, **kwds)

 def __setitem__(self, key, value,
 dict_setitem=dict.__setitem__, proxy=_proxy, Link=_Link):
 'od.__setitem__(i, y) <==> od[i]=y'
 # Setting a new item creates a new link at the end of the linked list,
 # and the inherited dictionary is updated with the new key/value pair.
 if key not in self:
 self.__map[key] = link = Link()
 root = self.__root
 last = root.prev
 link.prev, link.next, link.key = last, root, key
 last.next = link
 root.prev = proxy(link)
 dict_setitem(self, key, value)

 def __delitem__(self, key, dict_delitem=dict.__delitem__):
 'od.__delitem__(y) <==> del od[y]'
 # Deleting an existing item uses self.__map to find the link which gets
 # removed by updating the links in the predecessor and successor nodes.
 dict_delitem(self, key)
 link = self.__map.pop(key)
 link_prev = link.prev
 link_next = link.next
 link_prev.next = link_next
 link_next.prev = link_prev
 link.prev = None
 link.next = None

 def __iter__(self):
 'od.__iter__() <==> iter(od)'
 # Traverse the linked list in order.
 root = self.__root
 curr = root.next
 while curr is not root:
 yield curr.key
 curr = curr.next

 def __reversed__(self):
 'od.__reversed__() <==> reversed(od)'
 # Traverse the linked list in reverse order.
 root = self.__root
 curr = root.prev
 while curr is not root:
 yield curr.key
 curr = curr.prev

 def clear(self):
 'od.clear() -> None. Remove all items from od.'
 root = self.__root
 root.prev = root.next = root
 self.__map.clear()
 dict.clear(self)

 def popitem(self, last=True):
 '''Remove and return a (key, value) pair from the dictionary.

 Pairs are returned in LIFO order if last is true or FIFO order if false.
 '''
 if not self:
 raise KeyError('dictionary is empty')
 root = self.__root
 if last:
 link = root.prev
 link_prev = link.prev
 link_prev.next = root
 root.prev = link_prev
 else:
 link = root.next
 link_next = link.next
 root.next = link_next
 link_next.prev = root
 key = link.key
 del self.__map[key]
 value = dict.pop(self, key)
 return key, value

 def move_to_end(self, key, last=True):
 '''Move an existing element to the end (or beginning if last is false).

 Raise KeyError if the element does not exist.
 '''
 link = self.__map[key]
 link_prev = link.prev
 link_next = link.next
 soft_link = link_next.prev
 link_prev.next = link_next
 link_next.prev = link_prev
 root = self.__root
 if last:
 last = root.prev
 link.prev = last
 link.next = root
 root.prev = soft_link
 last.next = link
 else:
 first = root.next
 link.prev = root
 link.next = first
 first.prev = soft_link
 root.next = link

 def __sizeof__(self):
 sizeof = _sys.getsizeof
 n = len(self) + 1 # number of links including root
 size = sizeof(self.__dict__) # instance dictionary
 size += sizeof(self.__map) * 2 # internal dict and inherited dict
 size += sizeof(self.__hardroot) * n # link objects
 size += sizeof(self.__root) * n # proxy objects
 return size

 update = __update = _collections_abc.MutableMapping.update

 def keys(self):
 "D.keys() -> a set-like object providing a view on D's keys"
 return _OrderedDictKeysView(self)

 def items(self):
 "D.items() -> a set-like object providing a view on D's items"
 return _OrderedDictItemsView(self)

 def values(self):
 "D.values() -> an object providing a view on D's values"
 return _OrderedDictValuesView(self)

 __ne__ = _collections_abc.MutableMapping.__ne__

 __marker = object()

 def pop(self, key, default=__marker):
 '''od.pop(k[,d]) -> v, remove specified key and return the corresponding
 value. If key is not found, d is returned if given, otherwise KeyError
 is raised.

 '''
 if key in self:
 result = self[key]
 del self[key]
 return result
 if default is self.__marker:
 raise KeyError(key)
 return default

 def setdefault(self, key, default=None):
 '''Insert key with a value of default if key is not in the dictionary.

 Return the value for key if key is in the dictionary, else default.
 '''
 if key in self:
 return self[key]
 self[key] = default
 return default

 @_recursive_repr()
 def __repr__(self):
 'od.__repr__() <==> repr(od)'
 if not self:
 return '%s()' % (self.__class__.__name__,)
 return '%s(%r)' % (self.__class__.__name__, list(self.items()))

 def __reduce__(self):
 'Return state information for pickling'
 inst_dict = vars(self).copy()
 for k in vars(OrderedDict()):
 inst_dict.pop(k, None)
 return self.__class__, (), inst_dict or None, None, iter(self.items())

 def copy(self):
 'od.copy() -> a shallow copy of od'
 return self.__class__(self)

 @classmethod
 def fromkeys(cls, iterable, value=None):
 '''Create a new ordered dictionary with keys from iterable and values set to value.
 '''
 self = cls()
 for key in iterable:
 self[key] = value
 return self

 def __eq__(self, other):
 '''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive
 while comparison to a regular mapping is order-insensitive.

 '''
 if isinstance(other, OrderedDict):
 return dict.__eq__(self, other) and all(map(_eq, self, other))
 return dict.__eq__(self, other)

try:
 from _collections import OrderedDict
except ImportError:
 # Leave the pure Python version in place.
 pass

##
namedtuple
##

_nt_itemgetters = {}

def namedtuple(typename, field_names, *, rename=False, defaults=None, module=None):
 """Returns a new subclass of tuple with named fields.

 >>> Point = namedtuple('Point', ['x', 'y'])
 >>> Point.__doc__ # docstring for the new class
 'Point(x, y)'
 >>> p = Point(11, y=22) # instantiate with positional args or keywords
 >>> p[0] + p[1] # indexable like a plain tuple
 33
 >>> x, y = p # unpack like a regular tuple
 >>> x, y
 (11, 22)
 >>> p.x + p.y # fields also accessible by name
 33
 >>> d = p._asdict() # convert to a dictionary
 >>> d['x']
 11
 >>> Point(**d) # convert from a dictionary
 Point(x=11, y=22)
 >>> p._replace(x=100) # _replace() is like str.replace() but targets named fields
 Point(x=100, y=22)

 """

 # Validate the field names. At the user's option, either generate an error
 # message or automatically replace the field name with a valid name.
 if isinstance(field_names, str):
 field_names = field_names.replace(',', ' ').split()
 field_names = list(map(str, field_names))
 typename = _sys.intern(str(typename))

 if rename:
 seen = set()
 for index, name in enumerate(field_names):
 if (not name.isidentifier()
 or _iskeyword(name)
 or name.startswith('_')
 or name in seen):
 field_names[index] = f'_{index}'
 seen.add(name)

 for name in [typename] + field_names:
 if type(name) is not str:
 raise TypeError('Type names and field names must be strings')
 if not name.isidentifier():
 raise ValueError('Type names and field names must be valid '
 f'identifiers: {name!r}')
 if _iskeyword(name):
 raise ValueError('Type names and field names cannot be a '
 f'keyword: {name!r}')

 seen = set()
 for name in field_names:
 if name.startswith('_') and not rename:
 raise ValueError('Field names cannot start with an underscore: '
 f'{name!r}')
 if name in seen:
 raise ValueError(f'Encountered duplicate field name: {name!r}')
 seen.add(name)

 field_defaults = {}
 if defaults is not None:
 defaults = tuple(defaults)
 if len(defaults) > len(field_names):
 raise TypeError('Got more default values than field names')
 field_defaults = dict(reversed(list(zip(reversed(field_names),
 reversed(defaults)))))

 # Variables used in the methods and docstrings
 field_names = tuple(map(_sys.intern, field_names))
 num_fields = len(field_names)
 arg_list = repr(field_names).replace("'", "")[1:-1]
 repr_fmt = '(' + ', '.join(f'{name}=%r' for name in field_names) + ')'
 tuple_new = tuple.__new__
 _len = len

 # Create all the named tuple methods to be added to the class namespace

 s = f'def __new__(_cls, {arg_list}): return _tuple_new(_cls, ({arg_list}))'
 namespace = {'_tuple_new': tuple_new, '__name__': f'namedtuple_{typename}'}
 # Note: exec() has the side-effect of interning the field names
 exec(s, namespace)
 __new__ = namespace['__new__']
 __new__.__doc__ = f'Create new instance of {typename}({arg_list})'
 if defaults is not None:
 __new__.__defaults__ = defaults

 @classmethod
 def _make(cls, iterable):
 result = tuple_new(cls, iterable)
 if _len(result) != num_fields:
 raise TypeError(f'Expected {num_fields} arguments, got {len(result)}')
 return result

 _make.__func__.__doc__ = (f'Make a new {typename} object from a sequence '
 'or iterable')

 def _replace(_self, **kwds):
 result = _self._make(map(kwds.pop, field_names, _self))
 if kwds:
 raise ValueError(f'Got unexpected field names: {list(kwds)!r}')
 return result

 _replace.__doc__ = (f'Return a new {typename} object replacing specified '
 'fields with new values')

 def __repr__(self):
 'Return a nicely formatted representation string'
 return self.__class__.__name__ + repr_fmt % self

 def _asdict(self):
 'Return a new OrderedDict which maps field names to their values.'
 return OrderedDict(zip(self._fields, self))

 def __getnewargs__(self):
 'Return self as a plain tuple. Used by copy and pickle.'
 return tuple(self)

 # Modify function metadata to help with introspection and debugging

 for method in (__new__, _make.__func__, _replace,
 __repr__, _asdict, __getnewargs__):
 method.__qualname__ = f'{typename}.{method.__name__}'

 # Build-up the class namespace dictionary
 # and use type() to build the result class
 class_namespace = {
 '__doc__': f'{typename}({arg_list})',
 '__slots__': (),
 '_fields': field_names,
 '_fields_defaults': field_defaults,
 '__new__': __new__,
 '_make': _make,
 '_replace': _replace,
 '__repr__': __repr__,
 '_asdict': _asdict,
 '__getnewargs__': __getnewargs__,
 }
 cache = _nt_itemgetters
 for index, name in enumerate(field_names):
 try:
 itemgetter_object, doc = cache[index]
 except KeyError:
 itemgetter_object = _itemgetter(index)
 doc = f'Alias for field number {index}'
 cache[index] = itemgetter_object, doc
 class_namespace[name] = property(itemgetter_object, doc=doc)

 result = type(typename, (tuple,), class_namespace)

 # For pickling to work, the __module__ variable needs to be set to the frame
 # where the named tuple is created. Bypass this step in environments where
 # sys._getframe is not defined (Jython for example) or sys._getframe is not
 # defined for arguments greater than 0 (IronPython), or where the user has
 # specified a particular module.
 if module is None:
 try:
 module = _sys._getframe(1).f_globals.get('__name__', '__main__')
 except (AttributeError, ValueError):
 pass
 if module is not None:
 result.__module__ = module

 return result

##
Counter
##

def _count_elements(mapping, iterable):
 'Tally elements from the iterable.'
 mapping_get = mapping.get
 for elem in iterable:
 mapping[elem] = mapping_get(elem, 0) + 1

try: # Load C helper function if available
 from _collections import _count_elements
except ImportError:
 pass

class Counter(dict):
 '''Dict subclass for counting hashable items. Sometimes called a bag
 or multiset. Elements are stored as dictionary keys and their counts
 are stored as dictionary values.

 >>> c = Counter('abcdeabcdabcaba') # count elements from a string

 >>> c.most_common(3) # three most common elements
 [('a', 5), ('b', 4), ('c', 3)]
 >>> sorted(c) # list all unique elements
 ['a', 'b', 'c', 'd', 'e']
 >>> ''.join(sorted(c.elements())) # list elements with repetitions
 'aaaaabbbbcccdde'
 >>> sum(c.values()) # total of all counts
 15

 >>> c['a'] # count of letter 'a'
 5
 >>> for elem in 'shazam': # update counts from an iterable
 ... c[elem] += 1 # by adding 1 to each element's count
 >>> c['a'] # now there are seven 'a'
 7
 >>> del c['b'] # remove all 'b'
 >>> c['b'] # now there are zero 'b'
 0

 >>> d = Counter('simsalabim') # make another counter
 >>> c.update(d) # add in the second counter
 >>> c['a'] # now there are nine 'a'
 9

 >>> c.clear() # empty the counter
 >>> c
 Counter()

 Note: If a count is set to zero or reduced to zero, it will remain
 in the counter until the entry is deleted or the counter is cleared:

 >>> c = Counter('aaabbc')
 >>> c['b'] -= 2 # reduce the count of 'b' by two
 >>> c.most_common() # 'b' is still in, but its count is zero
 [('a', 3), ('c', 1), ('b', 0)]

 '''
 # References:
 # http://en.wikipedia.org/wiki/Multiset
 # http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
 # http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm
 # http://code.activestate.com/recipes/259174/
 # Knuth, TAOCP Vol. II section 4.6.3

 def __init__(*args, **kwds):
 '''Create a new, empty Counter object. And if given, count elements
 from an input iterable. Or, initialize the count from another mapping
 of elements to their counts.

 >>> c = Counter() # a new, empty counter
 >>> c = Counter('gallahad') # a new counter from an iterable
 >>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping
 >>> c = Counter(a=4, b=2) # a new counter from keyword args

 '''
 if not args:
 raise TypeError("descriptor '__init__' of 'Counter' object "
 "needs an argument")
 self, *args = args
 if len(args) > 1:
 raise TypeError('expected at most 1 arguments, got %d' % len(args))
 super(Counter, self).__init__()
 self.update(*args, **kwds)

 def __missing__(self, key):
 'The count of elements not in the Counter is zero.'
 # Needed so that self[missing_item] does not raise KeyError
 return 0

 def most_common(self, n=None):
 '''List the n most common elements and their counts from the most
 common to the least. If n is None, then list all element counts.

 >>> Counter('abcdeabcdabcaba').most_common(3)
 [('a', 5), ('b', 4), ('c', 3)]

 '''
 # Emulate Bag.sortedByCount from Smalltalk
 if n is None:
 return sorted(self.items(), key=_itemgetter(1), reverse=True)
 return _heapq.nlargest(n, self.items(), key=_itemgetter(1))

 def elements(self):
 '''Iterator over elements repeating each as many times as its count.

 >>> c = Counter('ABCABC')
 >>> sorted(c.elements())
 ['A', 'A', 'B', 'B', 'C', 'C']

 # Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1
 >>> prime_factors = Counter({2: 2, 3: 3, 17: 1})
 >>> product = 1
 >>> for factor in prime_factors.elements(): # loop over factors
 ... product *= factor # and multiply them
 >>> product
 1836

 Note, if an element's count has been set to zero or is a negative
 number, elements() will ignore it.

 '''
 # Emulate Bag.do from Smalltalk and Multiset.begin from C++.
 return _chain.from_iterable(_starmap(_repeat, self.items()))

 # Override dict methods where necessary

 @classmethod
 def fromkeys(cls, iterable, v=None):
 # There is no equivalent method for counters because setting v=1
 # means that no element can have a count greater than one.
 raise NotImplementedError(
 'Counter.fromkeys() is undefined. Use Counter(iterable) instead.')

 def update(*args, **kwds):
 '''Like dict.update() but add counts instead of replacing them.

 Source can be an iterable, a dictionary, or another Counter instance.

 >>> c = Counter('which')
 >>> c.update('witch') # add elements from another iterable
 >>> d = Counter('watch')
 >>> c.update(d) # add elements from another counter
 >>> c['h'] # four 'h' in which, witch, and watch
 4

 '''
 # The regular dict.update() operation makes no sense here because the
 # replace behavior results in the some of original untouched counts
 # being mixed-in with all of the other counts for a mismash that
 # doesn't have a straight-forward interpretation in most counting
 # contexts. Instead, we implement straight-addition. Both the inputs
 # and outputs are allowed to contain zero and negative counts.

 if not args:
 raise TypeError("descriptor 'update' of 'Counter' object "
 "needs an argument")
 self, *args = args
 if len(args) > 1:
 raise TypeError('expected at most 1 arguments, got %d' % len(args))
 iterable = args[0] if args else None
 if iterable is not None:
 if isinstance(iterable, _collections_abc.Mapping):
 if self:
 self_get = self.get
 for elem, count in iterable.items():
 self[elem] = count + self_get(elem, 0)
 else:
 super(Counter, self).update(iterable) # fast path when counter is empty
 else:
 _count_elements(self, iterable)
 if kwds:
 self.update(kwds)

 def subtract(*args, **kwds):
 '''Like dict.update() but subtracts counts instead of replacing them.
 Counts can be reduced below zero. Both the inputs and outputs are
 allowed to contain zero and negative counts.

 Source can be an iterable, a dictionary, or another Counter instance.

 >>> c = Counter('which')
 >>> c.subtract('witch') # subtract elements from another iterable
 >>> c.subtract(Counter('watch')) # subtract elements from another counter
 >>> c['h'] # 2 in which, minus 1 in witch, minus 1 in watch
 0
 >>> c['w'] # 1 in which, minus 1 in witch, minus 1 in watch
 -1

 '''
 if not args:
 raise TypeError("descriptor 'subtract' of 'Counter' object "
 "needs an argument")
 self, *args = args
 if len(args) > 1:
 raise TypeError('expected at most 1 arguments, got %d' % len(args))
 iterable = args[0] if args else None
 if iterable is not None:
 self_get = self.get
 if isinstance(iterable, _collections_abc.Mapping):
 for elem, count in iterable.items():
 self[elem] = self_get(elem, 0) - count
 else:
 for elem in iterable:
 self[elem] = self_get(elem, 0) - 1
 if kwds:
 self.subtract(kwds)

 def copy(self):
 'Return a shallow copy.'
 return self.__class__(self)

 def __reduce__(self):
 return self.__class__, (dict(self),)

 def __delitem__(self, elem):
 'Like dict.__delitem__() but does not raise KeyError for missing values.'
 if elem in self:
 super().__delitem__(elem)

 def __repr__(self):
 if not self:
 return '%s()' % self.__class__.__name__
 try:
 items = ', '.join(map('%r: %r'.__mod__, self.most_common()))
 return '%s({%s})' % (self.__class__.__name__, items)
 except TypeError:
 # handle case where values are not orderable
 return '{0}({1!r})'.format(self.__class__.__name__, dict(self))

 # Multiset-style mathematical operations discussed in:
 # Knuth TAOCP Volume II section 4.6.3 exercise 19
 # and at http://en.wikipedia.org/wiki/Multiset
 #
 # Outputs guaranteed to only include positive counts.
 #
 # To strip negative and zero counts, add-in an empty counter:
 # c += Counter()

 def __add__(self, other):
 '''Add counts from two counters.

 >>> Counter('abbb') + Counter('bcc')
 Counter({'b': 4, 'c': 2, 'a': 1})

 '''
 if not isinstance(other, Counter):
 return NotImplemented
 result = Counter()
 for elem, count in self.items():
 newcount = count + other[elem]
 if newcount > 0:
 result[elem] = newcount
 for elem, count in other.items():
 if elem not in self and count > 0:
 result[elem] = count
 return result

 def __sub__(self, other):
 ''' Subtract count, but keep only results with positive counts.

 >>> Counter('abbbc') - Counter('bccd')
 Counter({'b': 2, 'a': 1})

 '''
 if not isinstance(other, Counter):
 return NotImplemented
 result = Counter()
 for elem, count in self.items():
 newcount = count - other[elem]
 if newcount > 0:
 result[elem] = newcount
 for elem, count in other.items():
 if elem not in self and count < 0:
 result[elem] = 0 - count
 return result

 def __or__(self, other):
 '''Union is the maximum of value in either of the input counters.

 >>> Counter('abbb') | Counter('bcc')
 Counter({'b': 3, 'c': 2, 'a': 1})

 '''
 if not isinstance(other, Counter):
 return NotImplemented
 result = Counter()
 for elem, count in self.items():
 other_count = other[elem]
 newcount = other_count if count < other_count else count
 if newcount > 0:
 result[elem] = newcount
 for elem, count in other.items():
 if elem not in self and count > 0:
 result[elem] = count
 return result

 def __and__(self, other):
 ''' Intersection is the minimum of corresponding counts.

 >>> Counter('abbb') & Counter('bcc')
 Counter({'b': 1})

 '''
 if not isinstance(other, Counter):
 return NotImplemented
 result = Counter()
 for elem, count in self.items():
 other_count = other[elem]
 newcount = count if count < other_count else other_count
 if newcount > 0:
 result[elem] = newcount
 return result

 def __pos__(self):
 'Adds an empty counter, effectively stripping negative and zero counts'
 result = Counter()
 for elem, count in self.items():
 if count > 0:
 result[elem] = count
 return result

 def __neg__(self):
 '''Subtracts from an empty counter. Strips positive and zero counts,
 and flips the sign on negative counts.

 '''
 result = Counter()
 for elem, count in self.items():
 if count < 0:
 result[elem] = 0 - count
 return result

 def _keep_positive(self):
 '''Internal method to strip elements with a negative or zero count'''
 nonpositive = [elem for elem, count in self.items() if not count > 0]
 for elem in nonpositive:
 del self[elem]
 return self

 def __iadd__(self, other):
 '''Inplace add from another counter, keeping only positive counts.

 >>> c = Counter('abbb')
 >>> c += Counter('bcc')
 >>> c
 Counter({'b': 4, 'c': 2, 'a': 1})

 '''
 for elem, count in other.items():
 self[elem] += count
 return self._keep_positive()

 def __isub__(self, other):
 '''Inplace subtract counter, but keep only results with positive counts.

 >>> c = Counter('abbbc')
 >>> c -= Counter('bccd')
 >>> c
 Counter({'b': 2, 'a': 1})

 '''
 for elem, count in other.items():
 self[elem] -= count
 return self._keep_positive()

 def __ior__(self, other):
 '''Inplace union is the maximum of value from either counter.

 >>> c = Counter('abbb')
 >>> c |= Counter('bcc')
 >>> c
 Counter({'b': 3, 'c': 2, 'a': 1})

 '''
 for elem, other_count in other.items():
 count = self[elem]
 if other_count > count:
 self[elem] = other_count
 return self._keep_positive()

 def __iand__(self, other):
 '''Inplace intersection is the minimum of corresponding counts.

 >>> c = Counter('abbb')
 >>> c &= Counter('bcc')
 >>> c
 Counter({'b': 1})

 '''
 for elem, count in self.items():
 other_count = other[elem]
 if other_count < count:
 self[elem] = other_count
 return self._keep_positive()

##
ChainMap
##

class ChainMap(_collections_abc.MutableMapping):
 ''' A ChainMap groups multiple dicts (or other mappings) together
 to create a single, updateable view.

 The underlying mappings are stored in a list. That list is public and can
 be accessed or updated using the *maps* attribute. There is no other
 state.

 Lookups search the underlying mappings successively until a key is found.
 In contrast, writes, updates, and deletions only operate on the first
 mapping.

 '''

 def __init__(self, *maps):
 '''Initialize a ChainMap by setting *maps* to the given mappings.
 If no mappings are provided, a single empty dictionary is used.

 '''
 self.maps = list(maps) or [{}] # always at least one map

 def __missing__(self, key):
 raise KeyError(key)

 def __getitem__(self, key):
 for mapping in self.maps:
 try:
 return mapping[key] # can't use 'key in mapping' with defaultdict
 except KeyError:
 pass
 return self.__missing__(key) # support subclasses that define __missing__

 def get(self, key, default=None):
 return self[key] if key in self else default

 def __len__(self):
 return len(set().union(*self.maps)) # reuses stored hash values if possible

 def __iter__(self):
 d = {}
 for mapping in reversed(self.maps):
 d.update(mapping) # reuses stored hash values if possible
 return iter(d)

 def __contains__(self, key):
 return any(key in m for m in self.maps)

 def __bool__(self):
 return any(self.maps)

 @_recursive_repr()
 def __repr__(self):
 return '{0.__class__.__name__}({1})'.format(
 self, ', '.join(map(repr, self.maps)))

 @classmethod
 def fromkeys(cls, iterable, *args):
 'Create a ChainMap with a single dict created from the iterable.'
 return cls(dict.fromkeys(iterable, *args))

 def copy(self):
 'New ChainMap or subclass with a new copy of maps[0] and refs to maps[1:]'
 return self.__class__(self.maps[0].copy(), *self.maps[1:])

 __copy__ = copy

 def new_child(self, m=None): # like Django's Context.push()
 '''New ChainMap with a new map followed by all previous maps.
 If no map is provided, an empty dict is used.
 '''
 if m is None:
 m = {}
 return self.__class__(m, *self.maps)

 @property
 def parents(self): # like Django's Context.pop()
 'New ChainMap from maps[1:].'
 return self.__class__(*self.maps[1:])

 def __setitem__(self, key, value):
 self.maps[0][key] = value

 def __delitem__(self, key):
 try:
 del self.maps[0][key]
 except KeyError:
 raise KeyError('Key not found in the first mapping: {!r}'.format(key))

 def popitem(self):
 'Remove and return an item pair from maps[0]. Raise KeyError is maps[0] is empty.'
 try:
 return self.maps[0].popitem()
 except KeyError:
 raise KeyError('No keys found in the first mapping.')

 def pop(self, key, *args):
 'Remove *key* from maps[0] and return its value. Raise KeyError if *key* not in maps[0].'
 try:
 return self.maps[0].pop(key, *args)
 except KeyError:
 raise KeyError('Key not found in the first mapping: {!r}'.format(key))

 def clear(self):
 'Clear maps[0], leaving maps[1:] intact.'
 self.maps[0].clear()

##
UserDict
##

class UserDict(_collections_abc.MutableMapping):

 # Start by filling-out the abstract methods
 def __init__(*args, **kwargs):
 if not args:
 raise TypeError("descriptor '__init__' of 'UserDict' object "
 "needs an argument")
 self, *args = args
 if len(args) > 1:
 raise TypeError('expected at most 1 arguments, got %d' % len(args))
 if args:
 dict = args[0]
 elif 'dict' in kwargs:
 dict = kwargs.pop('dict')
 import warnings
 warnings.warn("Passing 'dict' as keyword argument is deprecated",
 DeprecationWarning, stacklevel=2)
 else:
 dict = None
 self.data = {}
 if dict is not None:
 self.update(dict)
 if len(kwargs):
 self.update(kwargs)
 def __len__(self): return len(self.data)
 def __getitem__(self, key):
 if key in self.data:
 return self.data[key]
 if hasattr(self.__class__, "__missing__"):
 return self.__class__.__missing__(self, key)
 raise KeyError(key)
 def __setitem__(self, key, item): self.data[key] = item
 def __delitem__(self, key): del self.data[key]
 def __iter__(self):
 return iter(self.data)

 # Modify __contains__ to work correctly when __missing__ is present
 def __contains__(self, key):
 return key in self.data

 # Now, add the methods in dicts but not in MutableMapping
 def __repr__(self): return repr(self.data)
 def copy(self):
 if self.__class__ is UserDict:
 return UserDict(self.data.copy())
 import copy
 data = self.data
 try:
 self.data = {}
 c = copy.copy(self)
 finally:
 self.data = data
 c.update(self)
 return c
 @classmethod
 def fromkeys(cls, iterable, value=None):
 d = cls()
 for key in iterable:
 d[key] = value
 return d

##
UserList
##

class UserList(_collections_abc.MutableSequence):
 """A more or less complete user-defined wrapper around list objects."""
 def __init__(self, initlist=None):
 self.data = []
 if initlist is not None:
 # XXX should this accept an arbitrary sequence?
 if type(initlist) == type(self.data):
 self.data[:] = initlist
 elif isinstance(initlist, UserList):
 self.data[:] = initlist.data[:]
 else:
 self.data = list(initlist)
 def __repr__(self): return repr(self.data)
 def __lt__(self, other): return self.data < self.__cast(other)
 def __le__(self, other): return self.data <= self.__cast(other)
 def __eq__(self, other): return self.data == self.__cast(other)
 def __gt__(self, other): return self.data > self.__cast(other)
 def __ge__(self, other): return self.data >= self.__cast(other)
 def __cast(self, other):
 return other.data if isinstance(other, UserList) else other
 def __contains__(self, item): return item in self.data
 def __len__(self): return len(self.data)
 def __getitem__(self, i): return self.data[i]
 def __setitem__(self, i, item): self.data[i] = item
 def __delitem__(self, i): del self.data[i]
 def __add__(self, other):
 if isinstance(other, UserList):
 return self.__class__(self.data + other.data)
 elif isinstance(other, type(self.data)):
 return self.__class__(self.data + other)
 return self.__class__(self.data + list(other))
 def __radd__(self, other):
 if isinstance(other, UserList):
 return self.__class__(other.data + self.data)
 elif isinstance(other, type(self.data)):
 return self.__class__(other + self.data)
 return self.__class__(list(other) + self.data)
 def __iadd__(self, other):
 if isinstance(other, UserList):
 self.data += other.data
 elif isinstance(other, type(self.data)):
 self.data += other
 else:
 self.data += list(other)
 return self
 def __mul__(self, n):
 return self.__class__(self.data*n)
 __rmul__ = __mul__
 def __imul__(self, n):
 self.data *= n
 return self
 def append(self, item): self.data.append(item)
 def insert(self, i, item): self.data.insert(i, item)
 def pop(self, i=-1): return self.data.pop(i)
 def remove(self, item): self.data.remove(item)
 def clear(self): self.data.clear()
 def copy(self): return self.__class__(self)
 def count(self, item): return self.data.count(item)
 def index(self, item, *args): return self.data.index(item, *args)
 def reverse(self): self.data.reverse()
 def sort(self, *args, **kwds): self.data.sort(*args, **kwds)
 def extend(self, other):
 if isinstance(other, UserList):
 self.data.extend(other.data)
 else:
 self.data.extend(other)

##
UserString
##

class UserString(_collections_abc.Sequence):
 def __init__(self, seq):
 if isinstance(seq, str):
 self.data = seq
 elif isinstance(seq, UserString):
 self.data = seq.data[:]
 else:
 self.data = str(seq)
 def __str__(self): return str(self.data)
 def __repr__(self): return repr(self.data)
 def __int__(self): return int(self.data)
 def __float__(self): return float(self.data)
 def __complex__(self): return complex(self.data)
 def __hash__(self): return hash(self.data)
 def __getnewargs__(self):
 return (self.data[:],)

 def __eq__(self, string):
 if isinstance(string, UserString):
 return self.data == string.data
 return self.data == string
 def __lt__(self, string):
 if isinstance(string, UserString):
 return self.data < string.data
 return self.data < string
 def __le__(self, string):
 if isinstance(string, UserString):
 return self.data <= string.data
 return self.data <= string
 def __gt__(self, string):
 if isinstance(string, UserString):
 return self.data > string.data
 return self.data > string
 def __ge__(self, string):
 if isinstance(string, UserString):
 return self.data >= string.data
 return self.data >= string

 def __contains__(self, char):
 if isinstance(char, UserString):
 char = char.data
 return char in self.data

 def __len__(self): return len(self.data)
 def __getitem__(self, index): return self.__class__(self.data[index])
 def __add__(self, other):
 if isinstance(other, UserString):
 return self.__class__(self.data + other.data)
 elif isinstance(other, str):
 return self.__class__(self.data + other)
 return self.__class__(self.data + str(other))
 def __radd__(self, other):
 if isinstance(other, str):
 return self.__class__(other + self.data)
 return self.__class__(str(other) + self.data)
 def __mul__(self, n):
 return self.__class__(self.data*n)
 __rmul__ = __mul__
 def __mod__(self, args):
 return self.__class__(self.data % args)
 def __rmod__(self, format):
 return self.__class__(format % args)

 # the following methods are defined in alphabetical order:
 def capitalize(self): return self.__class__(self.data.capitalize())
 def casefold(self):
 return self.__class__(self.data.casefold())
 def center(self, width, *args):
 return self.__class__(self.data.center(width, *args))
 def count(self, sub, start=0, end=_sys.maxsize):
 if isinstance(sub, UserString):
 sub = sub.data
 return self.data.count(sub, start, end)
 def encode(self, encoding=None, errors=None): # XXX improve this?
 if encoding:
 if errors:
 return self.__class__(self.data.encode(encoding, errors))
 return self.__class__(self.data.encode(encoding))
 return self.__class__(self.data.encode())
 def endswith(self, suffix, start=0, end=_sys.maxsize):
 return self.data.endswith(suffix, start, end)
 def expandtabs(self, tabsize=8):
 return self.__class__(self.data.expandtabs(tabsize))
 def find(self, sub, start=0, end=_sys.maxsize):
 if isinstance(sub, UserString):
 sub = sub.data
 return self.data.find(sub, start, end)
 def format(self, *args, **kwds):
 return self.data.format(*args, **kwds)
 def format_map(self, mapping):
 return self.data.format_map(mapping)
 def index(self, sub, start=0, end=_sys.maxsize):
 return self.data.index(sub, start, end)
 def isalpha(self): return self.data.isalpha()
 def isalnum(self): return self.data.isalnum()
 def isascii(self): return self.data.isascii()
 def isdecimal(self): return self.data.isdecimal()
 def isdigit(self): return self.data.isdigit()
 def isidentifier(self): return self.data.isidentifier()
 def islower(self): return self.data.islower()
 def isnumeric(self): return self.data.isnumeric()
 def isprintable(self): return self.data.isprintable()
 def isspace(self): return self.data.isspace()
 def istitle(self): return self.data.istitle()
 def isupper(self): return self.data.isupper()
 def join(self, seq): return self.data.join(seq)
 def ljust(self, width, *args):
 return self.__class__(self.data.ljust(width, *args))
 def lower(self): return self.__class__(self.data.lower())
 def lstrip(self, chars=None): return self.__class__(self.data.lstrip(chars))
 maketrans = str.maketrans
 def partition(self, sep):
 return self.data.partition(sep)
 def replace(self, old, new, maxsplit=-1):
 if isinstance(old, UserString):
 old = old.data
 if isinstance(new, UserString):
 new = new.data
 return self.__class__(self.data.replace(old, new, maxsplit))
 def rfind(self, sub, start=0, end=_sys.maxsize):
 if isinstance(sub, UserString):
 sub = sub.data
 return self.data.rfind(sub, start, end)
 def rindex(self, sub, start=0, end=_sys.maxsize):
 return self.data.rindex(sub, start, end)
 def rjust(self, width, *args):
 return self.__class__(self.data.rjust(width, *args))
 def rpartition(self, sep):
 return self.data.rpartition(sep)
 def rstrip(self, chars=None):
 return self.__class__(self.data.rstrip(chars))
 def split(self, sep=None, maxsplit=-1):
 return self.data.split(sep, maxsplit)
 def rsplit(self, sep=None, maxsplit=-1):
 return self.data.rsplit(sep, maxsplit)
 def splitlines(self, keepends=False): return self.data.splitlines(keepends)
 def startswith(self, prefix, start=0, end=_sys.maxsize):
 return self.data.startswith(prefix, start, end)
 def strip(self, chars=None): return self.__class__(self.data.strip(chars))
 def swapcase(self): return self.__class__(self.data.swapcase())
 def title(self): return self.__class__(self.data.title())
 def translate(self, *args):
 return self.__class__(self.data.translate(*args))
 def upper(self): return self.__class__(self.data.upper())
 def zfill(self, width): return self.__class__(self.data.zfill(width))

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 All modules for which code is available

	_queue

	_socket

	_thread

	_weakrefset

	billiard.compat

	billiard.exceptions

	billiard.pool

	builtins

	celery._state

	celery.app.amqp

	celery.app.annotations

	celery.app.autoretry

	celery.app.backends

	celery.app.base

	celery.app.builtins

	celery.app.control

	celery.app.defaults

	celery.app.events

	celery.app.log

	celery.app.registry

	celery.app.routes

	celery.app.task

	celery.app.trace

	celery.app.utils

	celery.apps.beat

	celery.apps.multi

	celery.apps.worker

	celery.backends.arangodb

	celery.backends.asynchronous

	celery.backends.azureblockblob

	celery.backends.base

	celery.backends.cache

	celery.backends.cassandra

	celery.backends.consul

	celery.backends.cosmosdbsql

	celery.backends.couchbase

	celery.backends.couchdb

	celery.backends.database

	celery.backends.database.models

	celery.backends.database.session

	celery.backends.dynamodb

	celery.backends.elasticsearch

	celery.backends.filesystem

	celery.backends.mongodb

	celery.backends.redis

	celery.backends.rpc

	celery.backends.s3

	celery.beat

	celery.bin.base

	celery.bin.celery

	celery.bin.multi

	celery.bin.worker

	celery.bootsteps

	celery.canvas

	celery.concurrency

	celery.concurrency.asynpool

	celery.concurrency.base

	celery.concurrency.eventlet

	celery.concurrency.gevent

	celery.concurrency.prefork

	celery.concurrency.solo

	celery.concurrency.thread

	celery.contrib.abortable

	celery.contrib.migrate

	celery.contrib.pytest

	celery.contrib.rdb

	celery.contrib.sphinx

	celery.contrib.testing.app

	celery.contrib.testing.manager

	celery.contrib.testing.mocks

	celery.contrib.testing.worker

	celery.events.cursesmon

	celery.events.dispatcher

	celery.events.dumper

	celery.events.event

	celery.events.receiver

	celery.events.snapshot

	celery.events.state

	celery.exceptions

	celery.loaders

	celery.loaders.app

	celery.loaders.base

	celery.loaders.default

	celery.platforms

	celery.result

	celery.schedules

	celery.security

	celery.security.certificate

	celery.security.key

	celery.security.serialization

	celery.security.utils

	celery.states

	celery.utils.abstract

	celery.utils.collections

	celery.utils.debug

	celery.utils.deprecated

	celery.utils.dispatch.signal

	celery.utils.functional

	celery.utils.graph

	celery.utils.imports

	celery.utils.iso8601

	celery.utils.log

	celery.utils.nodenames

	celery.utils.objects

	celery.utils.saferepr

	celery.utils.serialization

	celery.utils.sysinfo

	celery.utils.term

	celery.utils.text

	celery.utils.threads

	celery.utils.time

	celery.utils.timer2

	celery.worker.autoscale

	celery.worker.components

	celery.worker.consumer.agent

	celery.worker.consumer.connection

	celery.worker.consumer.consumer

	celery.worker.consumer.control

	celery.worker.consumer.events

	celery.worker.consumer.gossip

	celery.worker.consumer.heart

	celery.worker.consumer.mingle

	celery.worker.consumer.tasks

	celery.worker.control

	celery.worker.heartbeat

	celery.worker.loops

	celery.worker.pidbox

	celery.worker.request

	celery.worker.state

	celery.worker.strategy

	celery.worker.worker

	collections

	kombu.asynchronous.timer

	kombu.connection

	kombu.entity

	kombu.exceptions

	kombu.messaging

	kombu.pidbox

	kombu.utils.functional

	kombu.utils.imports

	kombu.utils.objects

	kombu.utils.uuid

	logging

	sqlalchemy.orm.attributes

	zlib

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for logging

Copyright 2001-2017 by Vinay Sajip. All Rights Reserved.
#
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Vinay Sajip
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
VINAY SAJIP DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
VINAY SAJIP BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

"""
Logging package for Python. Based on PEP 282 and comments thereto in
comp.lang.python.

Copyright (C) 2001-2017 Vinay Sajip. All Rights Reserved.

To use, simply 'import logging' and log away!
"""

import sys, os, time, io, traceback, warnings, weakref, collections.abc

from string import Template

__all__ = ['BASIC_FORMAT', 'BufferingFormatter', 'CRITICAL', 'DEBUG', 'ERROR',
 'FATAL', 'FileHandler', 'Filter', 'Formatter', 'Handler', 'INFO',
 'LogRecord', 'Logger', 'LoggerAdapter', 'NOTSET', 'NullHandler',
 'StreamHandler', 'WARN', 'WARNING', 'addLevelName', 'basicConfig',
 'captureWarnings', 'critical', 'debug', 'disable', 'error',
 'exception', 'fatal', 'getLevelName', 'getLogger', 'getLoggerClass',
 'info', 'log', 'makeLogRecord', 'setLoggerClass', 'shutdown',
 'warn', 'warning', 'getLogRecordFactory', 'setLogRecordFactory',
 'lastResort', 'raiseExceptions']

import threading

__author__ = "Vinay Sajip <vinay_sajip@red-dove.com>"
__status__ = "production"
The following module attributes are no longer updated.
__version__ = "0.5.1.2"
__date__ = "07 February 2010"

#---
Miscellaneous module data
#---

#
#_startTime is used as the base when calculating the relative time of events
#
_startTime = time.time()

#
#raiseExceptions is used to see if exceptions during handling should be
#propagated
#
raiseExceptions = True

#
If you don't want threading information in the log, set this to zero
#
logThreads = True

#
If you don't want multiprocessing information in the log, set this to zero
#
logMultiprocessing = True

#
If you don't want process information in the log, set this to zero
#
logProcesses = True

#---
Level related stuff
#---
#
Default levels and level names, these can be replaced with any positive set
of values having corresponding names. There is a pseudo-level, NOTSET, which
is only really there as a lower limit for user-defined levels. Handlers and
loggers are initialized with NOTSET so that they will log all messages, even
at user-defined levels.
#

CRITICAL = 50
FATAL = CRITICAL
ERROR = 40
WARNING = 30
WARN = WARNING
INFO = 20
DEBUG = 10
NOTSET = 0

_levelToName = {
 CRITICAL: 'CRITICAL',
 ERROR: 'ERROR',
 WARNING: 'WARNING',
 INFO: 'INFO',
 DEBUG: 'DEBUG',
 NOTSET: 'NOTSET',
}
_nameToLevel = {
 'CRITICAL': CRITICAL,
 'FATAL': FATAL,
 'ERROR': ERROR,
 'WARN': WARNING,
 'WARNING': WARNING,
 'INFO': INFO,
 'DEBUG': DEBUG,
 'NOTSET': NOTSET,
}

def getLevelName(level):
 """
 Return the textual representation of logging level 'level'.

 If the level is one of the predefined levels (CRITICAL, ERROR, WARNING,
 INFO, DEBUG) then you get the corresponding string. If you have
 associated levels with names using addLevelName then the name you have
 associated with 'level' is returned.

 If a numeric value corresponding to one of the defined levels is passed
 in, the corresponding string representation is returned.

 Otherwise, the string "Level %s" % level is returned.
 """
 # See Issues #22386, #27937 and #29220 for why it's this way
 result = _levelToName.get(level)
 if result is not None:
 return result
 result = _nameToLevel.get(level)
 if result is not None:
 return result
 return "Level %s" % level

def addLevelName(level, levelName):
 """
 Associate 'levelName' with 'level'.

 This is used when converting levels to text during message formatting.
 """
 _acquireLock()
 try: #unlikely to cause an exception, but you never know...
 _levelToName[level] = levelName
 _nameToLevel[levelName] = level
 finally:
 _releaseLock()

if hasattr(sys, '_getframe'):
 currentframe = lambda: sys._getframe(3)
else: #pragma: no cover
 def currentframe():
 """Return the frame object for the caller's stack frame."""
 try:
 raise Exception
 except Exception:
 return sys.exc_info()[2].tb_frame.f_back

#
_srcfile is used when walking the stack to check when we've got the first
caller stack frame, by skipping frames whose filename is that of this
module's source. It therefore should contain the filename of this module's
source file.
#
Ordinarily we would use __file__ for this, but frozen modules don't always
have __file__ set, for some reason (see Issue #21736). Thus, we get the
filename from a handy code object from a function defined in this module.
(There's no particular reason for picking addLevelName.)
#

_srcfile = os.path.normcase(addLevelName.__code__.co_filename)

_srcfile is only used in conjunction with sys._getframe().
To provide compatibility with older versions of Python, set _srcfile
to None if _getframe() is not available; this value will prevent
findCaller() from being called. You can also do this if you want to avoid
the overhead of fetching caller information, even when _getframe() is
available.
#if not hasattr(sys, '_getframe'):
_srcfile = None

def _checkLevel(level):
 if isinstance(level, int):
 rv = level
 elif str(level) == level:
 if level not in _nameToLevel:
 raise ValueError("Unknown level: %r" % level)
 rv = _nameToLevel[level]
 else:
 raise TypeError("Level not an integer or a valid string: %r" % level)
 return rv

#---
Thread-related stuff
#---

#
#_lock is used to serialize access to shared data structures in this module.
#This needs to be an RLock because fileConfig() creates and configures
#Handlers, and so might arbitrary user threads. Since Handler code updates the
#shared dictionary _handlers, it needs to acquire the lock. But if configuring,
#the lock would already have been acquired - so we need an RLock.
#The same argument applies to Loggers and Manager.loggerDict.
#
_lock = threading.RLock()

def _acquireLock():
 """
 Acquire the module-level lock for serializing access to shared data.

 This should be released with _releaseLock().
 """
 if _lock:
 _lock.acquire()

def _releaseLock():
 """
 Release the module-level lock acquired by calling _acquireLock().
 """
 if _lock:
 _lock.release()

Prevent a held logging lock from blocking a child from logging.

if not hasattr(os, 'register_at_fork'): # Windows and friends.
 def _register_at_fork_acquire_release(instance):
 pass # no-op when os.register_at_fork does not exist.
else: # The os.register_at_fork API exists
 os.register_at_fork(before=_acquireLock,
 after_in_child=_releaseLock,
 after_in_parent=_releaseLock)

 # A collection of instances with acquire and release methods (logging.Handler)
 # to be called before and after fork. The weakref avoids us keeping discarded
 # Handler instances alive forever in case an odd program creates and destroys
 # many over its lifetime.
 _at_fork_acquire_release_weakset = weakref.WeakSet()

 def _register_at_fork_acquire_release(instance):
 # We put the instance itself in a single WeakSet as we MUST have only
 # one atomic weak ref. used by both before and after atfork calls to
 # guarantee matched pairs of acquire and release calls.
 _at_fork_acquire_release_weakset.add(instance)

 def _at_fork_weak_calls(method_name):
 for instance in _at_fork_acquire_release_weakset:
 method = getattr(instance, method_name)
 try:
 method()
 except Exception as err:
 # Similar to what PyErr_WriteUnraisable does.
 print("Ignoring exception from logging atfork", instance,
 method_name, "method:", err, file=sys.stderr)

 def _before_at_fork_weak_calls():
 _at_fork_weak_calls('acquire')

 def _after_at_fork_weak_calls():
 _at_fork_weak_calls('release')

 os.register_at_fork(before=_before_at_fork_weak_calls,
 after_in_child=_after_at_fork_weak_calls,
 after_in_parent=_after_at_fork_weak_calls)

#---
The logging record
#---

class LogRecord(object):
 """
 A LogRecord instance represents an event being logged.

 LogRecord instances are created every time something is logged. They
 contain all the information pertinent to the event being logged. The
 main information passed in is in msg and args, which are combined
 using str(msg) % args to create the message field of the record. The
 record also includes information such as when the record was created,
 the source line where the logging call was made, and any exception
 information to be logged.
 """
 def __init__(self, name, level, pathname, lineno,
 msg, args, exc_info, func=None, sinfo=None, **kwargs):
 """
 Initialize a logging record with interesting information.
 """
 ct = time.time()
 self.name = name
 self.msg = msg
 #
 # The following statement allows passing of a dictionary as a sole
 # argument, so that you can do something like
 # logging.debug("a %(a)d b %(b)s", {'a':1, 'b':2})
 # Suggested by Stefan Behnel.
 # Note that without the test for args[0], we get a problem because
 # during formatting, we test to see if the arg is present using
 # 'if self.args:'. If the event being logged is e.g. 'Value is %d'
 # and if the passed arg fails 'if self.args:' then no formatting
 # is done. For example, logger.warning('Value is %d', 0) would log
 # 'Value is %d' instead of 'Value is 0'.
 # For the use case of passing a dictionary, this should not be a
 # problem.
 # Issue #21172: a request was made to relax the isinstance check
 # to hasattr(args[0], '__getitem__'). However, the docs on string
 # formatting still seem to suggest a mapping object is required.
 # Thus, while not removing the isinstance check, it does now look
 # for collections.abc.Mapping rather than, as before, dict.
 if (args and len(args) == 1 and isinstance(args[0], collections.abc.Mapping)
 and args[0]):
 args = args[0]
 self.args = args
 self.levelname = getLevelName(level)
 self.levelno = level
 self.pathname = pathname
 try:
 self.filename = os.path.basename(pathname)
 self.module = os.path.splitext(self.filename)[0]
 except (TypeError, ValueError, AttributeError):
 self.filename = pathname
 self.module = "Unknown module"
 self.exc_info = exc_info
 self.exc_text = None # used to cache the traceback text
 self.stack_info = sinfo
 self.lineno = lineno
 self.funcName = func
 self.created = ct
 self.msecs = (ct - int(ct)) * 1000
 self.relativeCreated = (self.created - _startTime) * 1000
 if logThreads:
 self.thread = threading.get_ident()
 self.threadName = threading.current_thread().name
 else: # pragma: no cover
 self.thread = None
 self.threadName = None
 if not logMultiprocessing: # pragma: no cover
 self.processName = None
 else:
 self.processName = 'MainProcess'
 mp = sys.modules.get('multiprocessing')
 if mp is not None:
 # Errors may occur if multiprocessing has not finished loading
 # yet - e.g. if a custom import hook causes third-party code
 # to run when multiprocessing calls import. See issue 8200
 # for an example
 try:
 self.processName = mp.current_process().name
 except Exception: #pragma: no cover
 pass
 if logProcesses and hasattr(os, 'getpid'):
 self.process = os.getpid()
 else:
 self.process = None

 def __str__(self):
 return '<LogRecord: %s, %s, %s, %s, "%s">'%(self.name, self.levelno,
 self.pathname, self.lineno, self.msg)

 __repr__ = __str__

 def getMessage(self):
 """
 Return the message for this LogRecord.

 Return the message for this LogRecord after merging any user-supplied
 arguments with the message.
 """
 msg = str(self.msg)
 if self.args:
 msg = msg % self.args
 return msg

#
Determine which class to use when instantiating log records.
#
_logRecordFactory = LogRecord

def setLogRecordFactory(factory):
 """
 Set the factory to be used when instantiating a log record.

 :param factory: A callable which will be called to instantiate
 a log record.
 """
 global _logRecordFactory
 _logRecordFactory = factory

def getLogRecordFactory():
 """
 Return the factory to be used when instantiating a log record.
 """

 return _logRecordFactory

def makeLogRecord(dict):
 """
 Make a LogRecord whose attributes are defined by the specified dictionary,
 This function is useful for converting a logging event received over
 a socket connection (which is sent as a dictionary) into a LogRecord
 instance.
 """
 rv = _logRecordFactory(None, None, "", 0, "", (), None, None)
 rv.__dict__.update(dict)
 return rv

#---
Formatter classes and functions
#---

class PercentStyle(object):

 default_format = '%(message)s'
 asctime_format = '%(asctime)s'
 asctime_search = '%(asctime)'

 def __init__(self, fmt):
 self._fmt = fmt or self.default_format

 def usesTime(self):
 return self._fmt.find(self.asctime_search) >= 0

 def format(self, record):
 return self._fmt % record.__dict__

class StrFormatStyle(PercentStyle):
 default_format = '{message}'
 asctime_format = '{asctime}'
 asctime_search = '{asctime'

 def format(self, record):
 return self._fmt.format(**record.__dict__)

class StringTemplateStyle(PercentStyle):
 default_format = '${message}'
 asctime_format = '${asctime}'
 asctime_search = '${asctime}'

 def __init__(self, fmt):
 self._fmt = fmt or self.default_format
 self._tpl = Template(self._fmt)

 def usesTime(self):
 fmt = self._fmt
 return fmt.find('$asctime') >= 0 or fmt.find(self.asctime_format) >= 0

 def format(self, record):
 return self._tpl.substitute(**record.__dict__)

BASIC_FORMAT = "%(levelname)s:%(name)s:%(message)s"

_STYLES = {
 '%': (PercentStyle, BASIC_FORMAT),
 '{': (StrFormatStyle, '{levelname}:{name}:{message}'),
 '$': (StringTemplateStyle, '${levelname}:${name}:${message}'),
}

class Formatter(object):
 """
 Formatter instances are used to convert a LogRecord to text.

 Formatters need to know how a LogRecord is constructed. They are
 responsible for converting a LogRecord to (usually) a string which can
 be interpreted by either a human or an external system. The base Formatter
 allows a formatting string to be specified. If none is supplied, the
 the style-dependent default value, "%(message)s", "{message}", or
 "${message}", is used.

 The Formatter can be initialized with a format string which makes use of
 knowledge of the LogRecord attributes - e.g. the default value mentioned
 above makes use of the fact that the user's message and arguments are pre-
 formatted into a LogRecord's message attribute. Currently, the useful
 attributes in a LogRecord are described by:

 %(name)s Name of the logger (logging channel)
 %(levelno)s Numeric logging level for the message (DEBUG, INFO,
 WARNING, ERROR, CRITICAL)
 %(levelname)s Text logging level for the message ("DEBUG", "INFO",
 "WARNING", "ERROR", "CRITICAL")
 %(pathname)s Full pathname of the source file where the logging
 call was issued (if available)
 %(filename)s Filename portion of pathname
 %(module)s Module (name portion of filename)
 %(lineno)d Source line number where the logging call was issued
 (if available)
 %(funcName)s Function name
 %(created)f Time when the LogRecord was created (time.time()
 return value)
 %(asctime)s Textual time when the LogRecord was created
 %(msecs)d Millisecond portion of the creation time
 %(relativeCreated)d Time in milliseconds when the LogRecord was created,
 relative to the time the logging module was loaded
 (typically at application startup time)
 %(thread)d Thread ID (if available)
 %(threadName)s Thread name (if available)
 %(process)d Process ID (if available)
 %(message)s The result of record.getMessage(), computed just as
 the record is emitted
 """

 converter = time.localtime

 def __init__(self, fmt=None, datefmt=None, style='%'):
 """
 Initialize the formatter with specified format strings.

 Initialize the formatter either with the specified format string, or a
 default as described above. Allow for specialized date formatting with
 the optional datefmt argument. If datefmt is omitted, you get an
 ISO8601-like (or RFC 3339-like) format.

 Use a style parameter of '%', '{' or '$' to specify that you want to
 use one of %-formatting, :meth:`str.format` (``{}``) formatting or
 :class:`string.Template` formatting in your format string.

 .. versionchanged:: 3.2
 Added the ``style`` parameter.
 """
 if style not in _STYLES:
 raise ValueError('Style must be one of: %s' % ','.join(
 _STYLES.keys()))
 self._style = _STYLES[style][0](fmt)
 self._fmt = self._style._fmt
 self.datefmt = datefmt

 default_time_format = '%Y-%m-%d %H:%M:%S'
 default_msec_format = '%s,%03d'

 def formatTime(self, record, datefmt=None):
 """
 Return the creation time of the specified LogRecord as formatted text.

 This method should be called from format() by a formatter which
 wants to make use of a formatted time. This method can be overridden
 in formatters to provide for any specific requirement, but the
 basic behaviour is as follows: if datefmt (a string) is specified,
 it is used with time.strftime() to format the creation time of the
 record. Otherwise, an ISO8601-like (or RFC 3339-like) format is used.
 The resulting string is returned. This function uses a user-configurable
 function to convert the creation time to a tuple. By default,
 time.localtime() is used; to change this for a particular formatter
 instance, set the 'converter' attribute to a function with the same
 signature as time.localtime() or time.gmtime(). To change it for all
 formatters, for example if you want all logging times to be shown in GMT,
 set the 'converter' attribute in the Formatter class.
 """
 ct = self.converter(record.created)
 if datefmt:
 s = time.strftime(datefmt, ct)
 else:
 t = time.strftime(self.default_time_format, ct)
 s = self.default_msec_format % (t, record.msecs)
 return s

 def formatException(self, ei):
 """
 Format and return the specified exception information as a string.

 This default implementation just uses
 traceback.print_exception()
 """
 sio = io.StringIO()
 tb = ei[2]
 # See issues #9427, #1553375. Commented out for now.
 #if getattr(self, 'fullstack', False):
 # traceback.print_stack(tb.tb_frame.f_back, file=sio)
 traceback.print_exception(ei[0], ei[1], tb, None, sio)
 s = sio.getvalue()
 sio.close()
 if s[-1:] == "\n":
 s = s[:-1]
 return s

 def usesTime(self):
 """
 Check if the format uses the creation time of the record.
 """
 return self._style.usesTime()

 def formatMessage(self, record):
 return self._style.format(record)

 def formatStack(self, stack_info):
 """
 This method is provided as an extension point for specialized
 formatting of stack information.

 The input data is a string as returned from a call to
 :func:`traceback.print_stack`, but with the last trailing newline
 removed.

 The base implementation just returns the value passed in.
 """
 return stack_info

 def format(self, record):
 """
 Format the specified record as text.

 The record's attribute dictionary is used as the operand to a
 string formatting operation which yields the returned string.
 Before formatting the dictionary, a couple of preparatory steps
 are carried out. The message attribute of the record is computed
 using LogRecord.getMessage(). If the formatting string uses the
 time (as determined by a call to usesTime(), formatTime() is
 called to format the event time. If there is exception information,
 it is formatted using formatException() and appended to the message.
 """
 record.message = record.getMessage()
 if self.usesTime():
 record.asctime = self.formatTime(record, self.datefmt)
 s = self.formatMessage(record)
 if record.exc_info:
 # Cache the traceback text to avoid converting it multiple times
 # (it's constant anyway)
 if not record.exc_text:
 record.exc_text = self.formatException(record.exc_info)
 if record.exc_text:
 if s[-1:] != "\n":
 s = s + "\n"
 s = s + record.exc_text
 if record.stack_info:
 if s[-1:] != "\n":
 s = s + "\n"
 s = s + self.formatStack(record.stack_info)
 return s

#
The default formatter to use when no other is specified
#
_defaultFormatter = Formatter()

class BufferingFormatter(object):
 """
 A formatter suitable for formatting a number of records.
 """
 def __init__(self, linefmt=None):
 """
 Optionally specify a formatter which will be used to format each
 individual record.
 """
 if linefmt:
 self.linefmt = linefmt
 else:
 self.linefmt = _defaultFormatter

 def formatHeader(self, records):
 """
 Return the header string for the specified records.
 """
 return ""

 def formatFooter(self, records):
 """
 Return the footer string for the specified records.
 """
 return ""

 def format(self, records):
 """
 Format the specified records and return the result as a string.
 """
 rv = ""
 if len(records) > 0:
 rv = rv + self.formatHeader(records)
 for record in records:
 rv = rv + self.linefmt.format(record)
 rv = rv + self.formatFooter(records)
 return rv

#---
Filter classes and functions
#---

class Filter(object):
 """
 Filter instances are used to perform arbitrary filtering of LogRecords.

 Loggers and Handlers can optionally use Filter instances to filter
 records as desired. The base filter class only allows events which are
 below a certain point in the logger hierarchy. For example, a filter
 initialized with "A.B" will allow events logged by loggers "A.B",
 "A.B.C", "A.B.C.D", "A.B.D" etc. but not "A.BB", "B.A.B" etc. If
 initialized with the empty string, all events are passed.
 """
 def __init__(self, name=''):
 """
 Initialize a filter.

 Initialize with the name of the logger which, together with its
 children, will have its events allowed through the filter. If no
 name is specified, allow every event.
 """
 self.name = name
 self.nlen = len(name)

 def filter(self, record):
 """
 Determine if the specified record is to be logged.

 Is the specified record to be logged? Returns 0 for no, nonzero for
 yes. If deemed appropriate, the record may be modified in-place.
 """
 if self.nlen == 0:
 return True
 elif self.name == record.name:
 return True
 elif record.name.find(self.name, 0, self.nlen) != 0:
 return False
 return (record.name[self.nlen] == ".")

class Filterer(object):
 """
 A base class for loggers and handlers which allows them to share
 common code.
 """
 def __init__(self):
 """
 Initialize the list of filters to be an empty list.
 """
 self.filters = []

 def addFilter(self, filter):
 """
 Add the specified filter to this handler.
 """
 if not (filter in self.filters):
 self.filters.append(filter)

 def removeFilter(self, filter):
 """
 Remove the specified filter from this handler.
 """
 if filter in self.filters:
 self.filters.remove(filter)

 def filter(self, record):
 """
 Determine if a record is loggable by consulting all the filters.

 The default is to allow the record to be logged; any filter can veto
 this and the record is then dropped. Returns a zero value if a record
 is to be dropped, else non-zero.

 .. versionchanged:: 3.2

 Allow filters to be just callables.
 """
 rv = True
 for f in self.filters:
 if hasattr(f, 'filter'):
 result = f.filter(record)
 else:
 result = f(record) # assume callable - will raise if not
 if not result:
 rv = False
 break
 return rv

#---
Handler classes and functions
#---

_handlers = weakref.WeakValueDictionary() #map of handler names to handlers
_handlerList = [] # added to allow handlers to be removed in reverse of order initialized

def _removeHandlerRef(wr):
 """
 Remove a handler reference from the internal cleanup list.
 """
 # This function can be called during module teardown, when globals are
 # set to None. It can also be called from another thread. So we need to
 # pre-emptively grab the necessary globals and check if they're None,
 # to prevent race conditions and failures during interpreter shutdown.
 acquire, release, handlers = _acquireLock, _releaseLock, _handlerList
 if acquire and release and handlers:
 acquire()
 try:
 if wr in handlers:
 handlers.remove(wr)
 finally:
 release()

def _addHandlerRef(handler):
 """
 Add a handler to the internal cleanup list using a weak reference.
 """
 _acquireLock()
 try:
 _handlerList.append(weakref.ref(handler, _removeHandlerRef))
 finally:
 _releaseLock()

class Handler(Filterer):
 """
 Handler instances dispatch logging events to specific destinations.

 The base handler class. Acts as a placeholder which defines the Handler
 interface. Handlers can optionally use Formatter instances to format
 records as desired. By default, no formatter is specified; in this case,
 the 'raw' message as determined by record.message is logged.
 """
 def __init__(self, level=NOTSET):
 """
 Initializes the instance - basically setting the formatter to None
 and the filter list to empty.
 """
 Filterer.__init__(self)
 self._name = None
 self.level = _checkLevel(level)
 self.formatter = None
 # Add the handler to the global _handlerList (for cleanup on shutdown)
 _addHandlerRef(self)
 self.createLock()

 def get_name(self):
 return self._name

 def set_name(self, name):
 _acquireLock()
 try:
 if self._name in _handlers:
 del _handlers[self._name]
 self._name = name
 if name:
 _handlers[name] = self
 finally:
 _releaseLock()

 name = property(get_name, set_name)

 def createLock(self):
 """
 Acquire a thread lock for serializing access to the underlying I/O.
 """
 self.lock = threading.RLock()
 _register_at_fork_acquire_release(self)

 def acquire(self):
 """
 Acquire the I/O thread lock.
 """
 if self.lock:
 self.lock.acquire()

 def release(self):
 """
 Release the I/O thread lock.
 """
 if self.lock:
 self.lock.release()

 def setLevel(self, level):
 """
 Set the logging level of this handler. level must be an int or a str.
 """
 self.level = _checkLevel(level)

 def format(self, record):
 """
 Format the specified record.

 If a formatter is set, use it. Otherwise, use the default formatter
 for the module.
 """
 if self.formatter:
 fmt = self.formatter
 else:
 fmt = _defaultFormatter
 return fmt.format(record)

 def emit(self, record):
 """
 Do whatever it takes to actually log the specified logging record.

 This version is intended to be implemented by subclasses and so
 raises a NotImplementedError.
 """
 raise NotImplementedError('emit must be implemented '
 'by Handler subclasses')

 def handle(self, record):
 """
 Conditionally emit the specified logging record.

 Emission depends on filters which may have been added to the handler.
 Wrap the actual emission of the record with acquisition/release of
 the I/O thread lock. Returns whether the filter passed the record for
 emission.
 """
 rv = self.filter(record)
 if rv:
 self.acquire()
 try:
 self.emit(record)
 finally:
 self.release()
 return rv

 def setFormatter(self, fmt):
 """
 Set the formatter for this handler.
 """
 self.formatter = fmt

 def flush(self):
 """
 Ensure all logging output has been flushed.

 This version does nothing and is intended to be implemented by
 subclasses.
 """
 pass

 def close(self):
 """
 Tidy up any resources used by the handler.

 This version removes the handler from an internal map of handlers,
 _handlers, which is used for handler lookup by name. Subclasses
 should ensure that this gets called from overridden close()
 methods.
 """
 #get the module data lock, as we're updating a shared structure.
 _acquireLock()
 try: #unlikely to raise an exception, but you never know...
 if self._name and self._name in _handlers:
 del _handlers[self._name]
 finally:
 _releaseLock()

 def handleError(self, record):
 """
 Handle errors which occur during an emit() call.

 This method should be called from handlers when an exception is
 encountered during an emit() call. If raiseExceptions is false,
 exceptions get silently ignored. This is what is mostly wanted
 for a logging system - most users will not care about errors in
 the logging system, they are more interested in application errors.
 You could, however, replace this with a custom handler if you wish.
 The record which was being processed is passed in to this method.
 """
 if raiseExceptions and sys.stderr: # see issue 13807
 t, v, tb = sys.exc_info()
 try:
 sys.stderr.write('--- Logging error ---\n')
 traceback.print_exception(t, v, tb, None, sys.stderr)
 sys.stderr.write('Call stack:\n')
 # Walk the stack frame up until we're out of logging,
 # so as to print the calling context.
 frame = tb.tb_frame
 while (frame and os.path.dirname(frame.f_code.co_filename) ==
 __path__[0]):
 frame = frame.f_back
 if frame:
 traceback.print_stack(frame, file=sys.stderr)
 else:
 # couldn't find the right stack frame, for some reason
 sys.stderr.write('Logged from file %s, line %s\n' % (
 record.filename, record.lineno))
 # Issue 18671: output logging message and arguments
 try:
 sys.stderr.write('Message: %r\n'
 'Arguments: %s\n' % (record.msg,
 record.args))
 except Exception:
 sys.stderr.write('Unable to print the message and arguments'
 ' - possible formatting error.\nUse the'
 ' traceback above to help find the error.\n'
)
 except OSError: #pragma: no cover
 pass # see issue 5971
 finally:
 del t, v, tb

 def __repr__(self):
 level = getLevelName(self.level)
 return '<%s (%s)>' % (self.__class__.__name__, level)

class StreamHandler(Handler):
 """
 A handler class which writes logging records, appropriately formatted,
 to a stream. Note that this class does not close the stream, as
 sys.stdout or sys.stderr may be used.
 """

 terminator = '\n'

 def __init__(self, stream=None):
 """
 Initialize the handler.

 If stream is not specified, sys.stderr is used.
 """
 Handler.__init__(self)
 if stream is None:
 stream = sys.stderr
 self.stream = stream

 def flush(self):
 """
 Flushes the stream.
 """
 self.acquire()
 try:
 if self.stream and hasattr(self.stream, "flush"):
 self.stream.flush()
 finally:
 self.release()

 def emit(self, record):
 """
 Emit a record.

 If a formatter is specified, it is used to format the record.
 The record is then written to the stream with a trailing newline. If
 exception information is present, it is formatted using
 traceback.print_exception and appended to the stream. If the stream
 has an 'encoding' attribute, it is used to determine how to do the
 output to the stream.
 """
 try:
 msg = self.format(record)
 stream = self.stream
 # issue 35046: merged two stream.writes into one.
 stream.write(msg + self.terminator)
 self.flush()
 except Exception:
 self.handleError(record)

 def setStream(self, stream):
 """
 Sets the StreamHandler's stream to the specified value,
 if it is different.

 Returns the old stream, if the stream was changed, or None
 if it wasn't.
 """
 if stream is self.stream:
 result = None
 else:
 result = self.stream
 self.acquire()
 try:
 self.flush()
 self.stream = stream
 finally:
 self.release()
 return result

 def __repr__(self):
 level = getLevelName(self.level)
 name = getattr(self.stream, 'name', '')
 if name:
 name += ' '
 return '<%s %s(%s)>' % (self.__class__.__name__, name, level)

class FileHandler(StreamHandler):
 """
 A handler class which writes formatted logging records to disk files.
 """
 def __init__(self, filename, mode='a', encoding=None, delay=False):
 """
 Open the specified file and use it as the stream for logging.
 """
 # Issue #27493: add support for Path objects to be passed in
 filename = os.fspath(filename)
 #keep the absolute path, otherwise derived classes which use this
 #may come a cropper when the current directory changes
 self.baseFilename = os.path.abspath(filename)
 self.mode = mode
 self.encoding = encoding
 self.delay = delay
 if delay:
 #We don't open the stream, but we still need to call the
 #Handler constructor to set level, formatter, lock etc.
 Handler.__init__(self)
 self.stream = None
 else:
 StreamHandler.__init__(self, self._open())

 def close(self):
 """
 Closes the stream.
 """
 self.acquire()
 try:
 try:
 if self.stream:
 try:
 self.flush()
 finally:
 stream = self.stream
 self.stream = None
 if hasattr(stream, "close"):
 stream.close()
 finally:
 # Issue #19523: call unconditionally to
 # prevent a handler leak when delay is set
 StreamHandler.close(self)
 finally:
 self.release()

 def _open(self):
 """
 Open the current base file with the (original) mode and encoding.
 Return the resulting stream.
 """
 return open(self.baseFilename, self.mode, encoding=self.encoding)

 def emit(self, record):
 """
 Emit a record.

 If the stream was not opened because 'delay' was specified in the
 constructor, open it before calling the superclass's emit.
 """
 if self.stream is None:
 self.stream = self._open()
 StreamHandler.emit(self, record)

 def __repr__(self):
 level = getLevelName(self.level)
 return '<%s %s (%s)>' % (self.__class__.__name__, self.baseFilename, level)

class _StderrHandler(StreamHandler):
 """
 This class is like a StreamHandler using sys.stderr, but always uses
 whatever sys.stderr is currently set to rather than the value of
 sys.stderr at handler construction time.
 """
 def __init__(self, level=NOTSET):
 """
 Initialize the handler.
 """
 Handler.__init__(self, level)

 @property
 def stream(self):
 return sys.stderr

_defaultLastResort = _StderrHandler(WARNING)
lastResort = _defaultLastResort

#---
Manager classes and functions
#---

class PlaceHolder(object):
 """
 PlaceHolder instances are used in the Manager logger hierarchy to take
 the place of nodes for which no loggers have been defined. This class is
 intended for internal use only and not as part of the public API.
 """
 def __init__(self, alogger):
 """
 Initialize with the specified logger being a child of this placeholder.
 """
 self.loggerMap = { alogger : None }

 def append(self, alogger):
 """
 Add the specified logger as a child of this placeholder.
 """
 if alogger not in self.loggerMap:
 self.loggerMap[alogger] = None

#
Determine which class to use when instantiating loggers.
#

def setLoggerClass(klass):
 """
 Set the class to be used when instantiating a logger. The class should
 define __init__() such that only a name argument is required, and the
 __init__() should call Logger.__init__()
 """
 if klass != Logger:
 if not issubclass(klass, Logger):
 raise TypeError("logger not derived from logging.Logger: "
 + klass.__name__)
 global _loggerClass
 _loggerClass = klass

def getLoggerClass():
 """
 Return the class to be used when instantiating a logger.
 """
 return _loggerClass

class Manager(object):
 """
 There is [under normal circumstances] just one Manager instance, which
 holds the hierarchy of loggers.
 """
 def __init__(self, rootnode):
 """
 Initialize the manager with the root node of the logger hierarchy.
 """
 self.root = rootnode
 self.disable = 0
 self.emittedNoHandlerWarning = False
 self.loggerDict = {}
 self.loggerClass = None
 self.logRecordFactory = None

 def getLogger(self, name):
 """
 Get a logger with the specified name (channel name), creating it
 if it doesn't yet exist. This name is a dot-separated hierarchical
 name, such as "a", "a.b", "a.b.c" or similar.

 If a PlaceHolder existed for the specified name [i.e. the logger
 didn't exist but a child of it did], replace it with the created
 logger and fix up the parent/child references which pointed to the
 placeholder to now point to the logger.
 """
 rv = None
 if not isinstance(name, str):
 raise TypeError('A logger name must be a string')
 _acquireLock()
 try:
 if name in self.loggerDict:
 rv = self.loggerDict[name]
 if isinstance(rv, PlaceHolder):
 ph = rv
 rv = (self.loggerClass or _loggerClass)(name)
 rv.manager = self
 self.loggerDict[name] = rv
 self._fixupChildren(ph, rv)
 self._fixupParents(rv)
 else:
 rv = (self.loggerClass or _loggerClass)(name)
 rv.manager = self
 self.loggerDict[name] = rv
 self._fixupParents(rv)
 finally:
 _releaseLock()
 return rv

 def setLoggerClass(self, klass):
 """
 Set the class to be used when instantiating a logger with this Manager.
 """
 if klass != Logger:
 if not issubclass(klass, Logger):
 raise TypeError("logger not derived from logging.Logger: "
 + klass.__name__)
 self.loggerClass = klass

 def setLogRecordFactory(self, factory):
 """
 Set the factory to be used when instantiating a log record with this
 Manager.
 """
 self.logRecordFactory = factory

 def _fixupParents(self, alogger):
 """
 Ensure that there are either loggers or placeholders all the way
 from the specified logger to the root of the logger hierarchy.
 """
 name = alogger.name
 i = name.rfind(".")
 rv = None
 while (i > 0) and not rv:
 substr = name[:i]
 if substr not in self.loggerDict:
 self.loggerDict[substr] = PlaceHolder(alogger)
 else:
 obj = self.loggerDict[substr]
 if isinstance(obj, Logger):
 rv = obj
 else:
 assert isinstance(obj, PlaceHolder)
 obj.append(alogger)
 i = name.rfind(".", 0, i - 1)
 if not rv:
 rv = self.root
 alogger.parent = rv

 def _fixupChildren(self, ph, alogger):
 """
 Ensure that children of the placeholder ph are connected to the
 specified logger.
 """
 name = alogger.name
 namelen = len(name)
 for c in ph.loggerMap.keys():
 #The if means ... if not c.parent.name.startswith(nm)
 if c.parent.name[:namelen] != name:
 alogger.parent = c.parent
 c.parent = alogger

 def _clear_cache(self):
 """
 Clear the cache for all loggers in loggerDict
 Called when level changes are made
 """

 _acquireLock()
 for logger in self.loggerDict.values():
 if isinstance(logger, Logger):
 logger._cache.clear()
 self.root._cache.clear()
 _releaseLock()

#---
Logger classes and functions
#---

class Logger(Filterer):
 """
 Instances of the Logger class represent a single logging channel. A
 "logging channel" indicates an area of an application. Exactly how an
 "area" is defined is up to the application developer. Since an
 application can have any number of areas, logging channels are identified
 by a unique string. Application areas can be nested (e.g. an area
 of "input processing" might include sub-areas "read CSV files", "read
 XLS files" and "read Gnumeric files"). To cater for this natural nesting,
 channel names are organized into a namespace hierarchy where levels are
 separated by periods, much like the Java or Python package namespace. So
 in the instance given above, channel names might be "input" for the upper
 level, and "input.csv", "input.xls" and "input.gnu" for the sub-levels.
 There is no arbitrary limit to the depth of nesting.
 """
 def __init__(self, name, level=NOTSET):
 """
 Initialize the logger with a name and an optional level.
 """
 Filterer.__init__(self)
 self.name = name
 self.level = _checkLevel(level)
 self.parent = None
 self.propagate = True
 self.handlers = []
 self.disabled = False
 self._cache = {}

 def setLevel(self, level):
 """
 Set the logging level of this logger. level must be an int or a str.
 """
 self.level = _checkLevel(level)
 self.manager._clear_cache()

 def debug(self, msg, *args, **kwargs):
 """
 Log 'msg % args' with severity 'DEBUG'.

 To pass exception information, use the keyword argument exc_info with
 a true value, e.g.

 logger.debug("Houston, we have a %s", "thorny problem", exc_info=1)
 """
 if self.isEnabledFor(DEBUG):
 self._log(DEBUG, msg, args, **kwargs)

 def info(self, msg, *args, **kwargs):
 """
 Log 'msg % args' with severity 'INFO'.

 To pass exception information, use the keyword argument exc_info with
 a true value, e.g.

 logger.info("Houston, we have a %s", "interesting problem", exc_info=1)
 """
 if self.isEnabledFor(INFO):
 self._log(INFO, msg, args, **kwargs)

 def warning(self, msg, *args, **kwargs):
 """
 Log 'msg % args' with severity 'WARNING'.

 To pass exception information, use the keyword argument exc_info with
 a true value, e.g.

 logger.warning("Houston, we have a %s", "bit of a problem", exc_info=1)
 """
 if self.isEnabledFor(WARNING):
 self._log(WARNING, msg, args, **kwargs)

 def warn(self, msg, *args, **kwargs):
 warnings.warn("The 'warn' method is deprecated, "
 "use 'warning' instead", DeprecationWarning, 2)
 self.warning(msg, *args, **kwargs)

 def error(self, msg, *args, **kwargs):
 """
 Log 'msg % args' with severity 'ERROR'.

 To pass exception information, use the keyword argument exc_info with
 a true value, e.g.

 logger.error("Houston, we have a %s", "major problem", exc_info=1)
 """
 if self.isEnabledFor(ERROR):
 self._log(ERROR, msg, args, **kwargs)

 def exception(self, msg, *args, exc_info=True, **kwargs):
 """
 Convenience method for logging an ERROR with exception information.
 """
 self.error(msg, *args, exc_info=exc_info, **kwargs)

 def critical(self, msg, *args, **kwargs):
 """
 Log 'msg % args' with severity 'CRITICAL'.

 To pass exception information, use the keyword argument exc_info with
 a true value, e.g.

 logger.critical("Houston, we have a %s", "major disaster", exc_info=1)
 """
 if self.isEnabledFor(CRITICAL):
 self._log(CRITICAL, msg, args, **kwargs)

 fatal = critical

 def log(self, level, msg, *args, **kwargs):
 """
 Log 'msg % args' with the integer severity 'level'.

 To pass exception information, use the keyword argument exc_info with
 a true value, e.g.

 logger.log(level, "We have a %s", "mysterious problem", exc_info=1)
 """
 if not isinstance(level, int):
 if raiseExceptions:
 raise TypeError("level must be an integer")
 else:
 return
 if self.isEnabledFor(level):
 self._log(level, msg, args, **kwargs)

 def findCaller(self, stack_info=False):
 """
 Find the stack frame of the caller so that we can note the source
 file name, line number and function name.
 """
 f = currentframe()
 #On some versions of IronPython, currentframe() returns None if
 #IronPython isn't run with -X:Frames.
 if f is not None:
 f = f.f_back
 rv = "(unknown file)", 0, "(unknown function)", None
 while hasattr(f, "f_code"):
 co = f.f_code
 filename = os.path.normcase(co.co_filename)
 if filename == _srcfile:
 f = f.f_back
 continue
 sinfo = None
 if stack_info:
 sio = io.StringIO()
 sio.write('Stack (most recent call last):\n')
 traceback.print_stack(f, file=sio)
 sinfo = sio.getvalue()
 if sinfo[-1] == '\n':
 sinfo = sinfo[:-1]
 sio.close()
 rv = (co.co_filename, f.f_lineno, co.co_name, sinfo)
 break
 return rv

 def makeRecord(self, name, level, fn, lno, msg, args, exc_info,
 func=None, extra=None, sinfo=None):
 """
 A factory method which can be overridden in subclasses to create
 specialized LogRecords.
 """
 rv = _logRecordFactory(name, level, fn, lno, msg, args, exc_info, func,
 sinfo)
 if extra is not None:
 for key in extra:
 if (key in ["message", "asctime"]) or (key in rv.__dict__):
 raise KeyError("Attempt to overwrite %r in LogRecord" % key)
 rv.__dict__[key] = extra[key]
 return rv

 def _log(self, level, msg, args, exc_info=None, extra=None, stack_info=False):
 """
 Low-level logging routine which creates a LogRecord and then calls
 all the handlers of this logger to handle the record.
 """
 sinfo = None
 if _srcfile:
 #IronPython doesn't track Python frames, so findCaller raises an
 #exception on some versions of IronPython. We trap it here so that
 #IronPython can use logging.
 try:
 fn, lno, func, sinfo = self.findCaller(stack_info)
 except ValueError: # pragma: no cover
 fn, lno, func = "(unknown file)", 0, "(unknown function)"
 else: # pragma: no cover
 fn, lno, func = "(unknown file)", 0, "(unknown function)"
 if exc_info:
 if isinstance(exc_info, BaseException):
 exc_info = (type(exc_info), exc_info, exc_info.__traceback__)
 elif not isinstance(exc_info, tuple):
 exc_info = sys.exc_info()
 record = self.makeRecord(self.name, level, fn, lno, msg, args,
 exc_info, func, extra, sinfo)
 self.handle(record)

 def handle(self, record):
 """
 Call the handlers for the specified record.

 This method is used for unpickled records received from a socket, as
 well as those created locally. Logger-level filtering is applied.
 """
 if (not self.disabled) and self.filter(record):
 self.callHandlers(record)

 def addHandler(self, hdlr):
 """
 Add the specified handler to this logger.
 """
 _acquireLock()
 try:
 if not (hdlr in self.handlers):
 self.handlers.append(hdlr)
 finally:
 _releaseLock()

 def removeHandler(self, hdlr):
 """
 Remove the specified handler from this logger.
 """
 _acquireLock()
 try:
 if hdlr in self.handlers:
 self.handlers.remove(hdlr)
 finally:
 _releaseLock()

 def hasHandlers(self):
 """
 See if this logger has any handlers configured.

 Loop through all handlers for this logger and its parents in the
 logger hierarchy. Return True if a handler was found, else False.
 Stop searching up the hierarchy whenever a logger with the "propagate"
 attribute set to zero is found - that will be the last logger which
 is checked for the existence of handlers.
 """
 c = self
 rv = False
 while c:
 if c.handlers:
 rv = True
 break
 if not c.propagate:
 break
 else:
 c = c.parent
 return rv

 def callHandlers(self, record):
 """
 Pass a record to all relevant handlers.

 Loop through all handlers for this logger and its parents in the
 logger hierarchy. If no handler was found, output a one-off error
 message to sys.stderr. Stop searching up the hierarchy whenever a
 logger with the "propagate" attribute set to zero is found - that
 will be the last logger whose handlers are called.
 """
 c = self
 found = 0
 while c:
 for hdlr in c.handlers:
 found = found + 1
 if record.levelno >= hdlr.level:
 hdlr.handle(record)
 if not c.propagate:
 c = None #break out
 else:
 c = c.parent
 if (found == 0):
 if lastResort:
 if record.levelno >= lastResort.level:
 lastResort.handle(record)
 elif raiseExceptions and not self.manager.emittedNoHandlerWarning:
 sys.stderr.write("No handlers could be found for logger"
 " \"%s\"\n" % self.name)
 self.manager.emittedNoHandlerWarning = True

 def getEffectiveLevel(self):
 """
 Get the effective level for this logger.

 Loop through this logger and its parents in the logger hierarchy,
 looking for a non-zero logging level. Return the first one found.
 """
 logger = self
 while logger:
 if logger.level:
 return logger.level
 logger = logger.parent
 return NOTSET

 def isEnabledFor(self, level):
 """
 Is this logger enabled for level 'level'?
 """
 try:
 return self._cache[level]
 except KeyError:
 _acquireLock()
 if self.manager.disable >= level:
 is_enabled = self._cache[level] = False
 else:
 is_enabled = self._cache[level] = level >= self.getEffectiveLevel()
 _releaseLock()

 return is_enabled

 def getChild(self, suffix):
 """
 Get a logger which is a descendant to this one.

 This is a convenience method, such that

 logging.getLogger('abc').getChild('def.ghi')

 is the same as

 logging.getLogger('abc.def.ghi')

 It's useful, for example, when the parent logger is named using
 __name__ rather than a literal string.
 """
 if self.root is not self:
 suffix = '.'.join((self.name, suffix))
 return self.manager.getLogger(suffix)

 def __repr__(self):
 level = getLevelName(self.getEffectiveLevel())
 return '<%s %s (%s)>' % (self.__class__.__name__, self.name, level)

 def __reduce__(self):
 # In general, only the root logger will not be accessible via its name.
 # However, the root logger's class has its own __reduce__ method.
 if getLogger(self.name) is not self:
 import pickle
 raise pickle.PicklingError('logger cannot be pickled')
 return getLogger, (self.name,)

class RootLogger(Logger):
 """
 A root logger is not that different to any other logger, except that
 it must have a logging level and there is only one instance of it in
 the hierarchy.
 """
 def __init__(self, level):
 """
 Initialize the logger with the name "root".
 """
 Logger.__init__(self, "root", level)

 def __reduce__(self):
 return getLogger, ()

_loggerClass = Logger

class LoggerAdapter(object):
 """
 An adapter for loggers which makes it easier to specify contextual
 information in logging output.
 """

 def __init__(self, logger, extra):
 """
 Initialize the adapter with a logger and a dict-like object which
 provides contextual information. This constructor signature allows
 easy stacking of LoggerAdapters, if so desired.

 You can effectively pass keyword arguments as shown in the
 following example:

 adapter = LoggerAdapter(someLogger, dict(p1=v1, p2="v2"))
 """
 self.logger = logger
 self.extra = extra

 def process(self, msg, kwargs):
 """
 Process the logging message and keyword arguments passed in to
 a logging call to insert contextual information. You can either
 manipulate the message itself, the keyword args or both. Return
 the message and kwargs modified (or not) to suit your needs.

 Normally, you'll only need to override this one method in a
 LoggerAdapter subclass for your specific needs.
 """
 kwargs["extra"] = self.extra
 return msg, kwargs

 #
 # Boilerplate convenience methods
 #
 def debug(self, msg, *args, **kwargs):
 """
 Delegate a debug call to the underlying logger.
 """
 self.log(DEBUG, msg, *args, **kwargs)

 def info(self, msg, *args, **kwargs):
 """
 Delegate an info call to the underlying logger.
 """
 self.log(INFO, msg, *args, **kwargs)

 def warning(self, msg, *args, **kwargs):
 """
 Delegate a warning call to the underlying logger.
 """
 self.log(WARNING, msg, *args, **kwargs)

 def warn(self, msg, *args, **kwargs):
 warnings.warn("The 'warn' method is deprecated, "
 "use 'warning' instead", DeprecationWarning, 2)
 self.warning(msg, *args, **kwargs)

 def error(self, msg, *args, **kwargs):
 """
 Delegate an error call to the underlying logger.
 """
 self.log(ERROR, msg, *args, **kwargs)

 def exception(self, msg, *args, exc_info=True, **kwargs):
 """
 Delegate an exception call to the underlying logger.
 """
 self.log(ERROR, msg, *args, exc_info=exc_info, **kwargs)

 def critical(self, msg, *args, **kwargs):
 """
 Delegate a critical call to the underlying logger.
 """
 self.log(CRITICAL, msg, *args, **kwargs)

 def log(self, level, msg, *args, **kwargs):
 """
 Delegate a log call to the underlying logger, after adding
 contextual information from this adapter instance.
 """
 if self.isEnabledFor(level):
 msg, kwargs = self.process(msg, kwargs)
 self.logger.log(level, msg, *args, **kwargs)

 def isEnabledFor(self, level):
 """
 Is this logger enabled for level 'level'?
 """
 return self.logger.isEnabledFor(level)

 def setLevel(self, level):
 """
 Set the specified level on the underlying logger.
 """
 self.logger.setLevel(level)

 def getEffectiveLevel(self):
 """
 Get the effective level for the underlying logger.
 """
 return self.logger.getEffectiveLevel()

 def hasHandlers(self):
 """
 See if the underlying logger has any handlers.
 """
 return self.logger.hasHandlers()

 def _log(self, level, msg, args, exc_info=None, extra=None, stack_info=False):
 """
 Low-level log implementation, proxied to allow nested logger adapters.
 """
 return self.logger._log(
 level,
 msg,
 args,
 exc_info=exc_info,
 extra=extra,
 stack_info=stack_info,
)

 @property
 def manager(self):
 return self.logger.manager

 @manager.setter
 def manager(self, value):
 self.logger.manager = value

 @property
 def name(self):
 return self.logger.name

 def __repr__(self):
 logger = self.logger
 level = getLevelName(logger.getEffectiveLevel())
 return '<%s %s (%s)>' % (self.__class__.__name__, logger.name, level)

root = RootLogger(WARNING)
Logger.root = root
Logger.manager = Manager(Logger.root)

#---
Configuration classes and functions
#---

def basicConfig(**kwargs):
 """
 Do basic configuration for the logging system.

 This function does nothing if the root logger already has handlers
 configured. It is a convenience method intended for use by simple scripts
 to do one-shot configuration of the logging package.

 The default behaviour is to create a StreamHandler which writes to
 sys.stderr, set a formatter using the BASIC_FORMAT format string, and
 add the handler to the root logger.

 A number of optional keyword arguments may be specified, which can alter
 the default behaviour.

 filename Specifies that a FileHandler be created, using the specified
 filename, rather than a StreamHandler.
 filemode Specifies the mode to open the file, if filename is specified
 (if filemode is unspecified, it defaults to 'a').
 format Use the specified format string for the handler.
 datefmt Use the specified date/time format.
 style If a format string is specified, use this to specify the
 type of format string (possible values '%', '{', '$', for
 %-formatting, :meth:`str.format` and :class:`string.Template`
 - defaults to '%').
 level Set the root logger level to the specified level.
 stream Use the specified stream to initialize the StreamHandler. Note
 that this argument is incompatible with 'filename' - if both
 are present, 'stream' is ignored.
 handlers If specified, this should be an iterable of already created
 handlers, which will be added to the root handler. Any handler
 in the list which does not have a formatter assigned will be
 assigned the formatter created in this function.

 Note that you could specify a stream created using open(filename, mode)
 rather than passing the filename and mode in. However, it should be
 remembered that StreamHandler does not close its stream (since it may be
 using sys.stdout or sys.stderr), whereas FileHandler closes its stream
 when the handler is closed.

 .. versionchanged:: 3.2
 Added the ``style`` parameter.

 .. versionchanged:: 3.3
 Added the ``handlers`` parameter. A ``ValueError`` is now thrown for
 incompatible arguments (e.g. ``handlers`` specified together with
 ``filename``/``filemode``, or ``filename``/``filemode`` specified
 together with ``stream``, or ``handlers`` specified together with
 ``stream``.
 """
 # Add thread safety in case someone mistakenly calls
 # basicConfig() from multiple threads
 _acquireLock()
 try:
 if len(root.handlers) == 0:
 handlers = kwargs.pop("handlers", None)
 if handlers is None:
 if "stream" in kwargs and "filename" in kwargs:
 raise ValueError("'stream' and 'filename' should not be "
 "specified together")
 else:
 if "stream" in kwargs or "filename" in kwargs:
 raise ValueError("'stream' or 'filename' should not be "
 "specified together with 'handlers'")
 if handlers is None:
 filename = kwargs.pop("filename", None)
 mode = kwargs.pop("filemode", 'a')
 if filename:
 h = FileHandler(filename, mode)
 else:
 stream = kwargs.pop("stream", None)
 h = StreamHandler(stream)
 handlers = [h]
 dfs = kwargs.pop("datefmt", None)
 style = kwargs.pop("style", '%')
 if style not in _STYLES:
 raise ValueError('Style must be one of: %s' % ','.join(
 _STYLES.keys()))
 fs = kwargs.pop("format", _STYLES[style][1])
 fmt = Formatter(fs, dfs, style)
 for h in handlers:
 if h.formatter is None:
 h.setFormatter(fmt)
 root.addHandler(h)
 level = kwargs.pop("level", None)
 if level is not None:
 root.setLevel(level)
 if kwargs:
 keys = ', '.join(kwargs.keys())
 raise ValueError('Unrecognised argument(s): %s' % keys)
 finally:
 _releaseLock()

#---
Utility functions at module level.
Basically delegate everything to the root logger.
#---

def getLogger(name=None):
 """
 Return a logger with the specified name, creating it if necessary.

 If no name is specified, return the root logger.
 """
 if name:
 return Logger.manager.getLogger(name)
 else:
 return root

def critical(msg, *args, **kwargs):
 """
 Log a message with severity 'CRITICAL' on the root logger. If the logger
 has no handlers, call basicConfig() to add a console handler with a
 pre-defined format.
 """
 if len(root.handlers) == 0:
 basicConfig()
 root.critical(msg, *args, **kwargs)

fatal = critical

def error(msg, *args, **kwargs):
 """
 Log a message with severity 'ERROR' on the root logger. If the logger has
 no handlers, call basicConfig() to add a console handler with a pre-defined
 format.
 """
 if len(root.handlers) == 0:
 basicConfig()
 root.error(msg, *args, **kwargs)

def exception(msg, *args, exc_info=True, **kwargs):
 """
 Log a message with severity 'ERROR' on the root logger, with exception
 information. If the logger has no handlers, basicConfig() is called to add
 a console handler with a pre-defined format.
 """
 error(msg, *args, exc_info=exc_info, **kwargs)

def warning(msg, *args, **kwargs):
 """
 Log a message with severity 'WARNING' on the root logger. If the logger has
 no handlers, call basicConfig() to add a console handler with a pre-defined
 format.
 """
 if len(root.handlers) == 0:
 basicConfig()
 root.warning(msg, *args, **kwargs)

def warn(msg, *args, **kwargs):
 warnings.warn("The 'warn' function is deprecated, "
 "use 'warning' instead", DeprecationWarning, 2)
 warning(msg, *args, **kwargs)

def info(msg, *args, **kwargs):
 """
 Log a message with severity 'INFO' on the root logger. If the logger has
 no handlers, call basicConfig() to add a console handler with a pre-defined
 format.
 """
 if len(root.handlers) == 0:
 basicConfig()
 root.info(msg, *args, **kwargs)

def debug(msg, *args, **kwargs):
 """
 Log a message with severity 'DEBUG' on the root logger. If the logger has
 no handlers, call basicConfig() to add a console handler with a pre-defined
 format.
 """
 if len(root.handlers) == 0:
 basicConfig()
 root.debug(msg, *args, **kwargs)

def log(level, msg, *args, **kwargs):
 """
 Log 'msg % args' with the integer severity 'level' on the root logger. If
 the logger has no handlers, call basicConfig() to add a console handler
 with a pre-defined format.
 """
 if len(root.handlers) == 0:
 basicConfig()
 root.log(level, msg, *args, **kwargs)

def disable(level=CRITICAL):
 """
 Disable all logging calls of severity 'level' and below.
 """
 root.manager.disable = level
 root.manager._clear_cache()

def shutdown(handlerList=_handlerList):
 """
 Perform any cleanup actions in the logging system (e.g. flushing
 buffers).

 Should be called at application exit.
 """
 for wr in reversed(handlerList[:]):
 #errors might occur, for example, if files are locked
 #we just ignore them if raiseExceptions is not set
 try:
 h = wr()
 if h:
 try:
 h.acquire()
 h.flush()
 h.close()
 except (OSError, ValueError):
 # Ignore errors which might be caused
 # because handlers have been closed but
 # references to them are still around at
 # application exit.
 pass
 finally:
 h.release()
 except: # ignore everything, as we're shutting down
 if raiseExceptions:
 raise
 #else, swallow

#Let's try and shutdown automatically on application exit...
import atexit
atexit.register(shutdown)

Null handler

class NullHandler(Handler):
 """
 This handler does nothing. It's intended to be used to avoid the
 "No handlers could be found for logger XXX" one-off warning. This is
 important for library code, which may contain code to log events. If a user
 of the library does not configure logging, the one-off warning might be
 produced; to avoid this, the library developer simply needs to instantiate
 a NullHandler and add it to the top-level logger of the library module or
 package.
 """
 def handle(self, record):
 """Stub."""

 def emit(self, record):
 """Stub."""

 def createLock(self):
 self.lock = None

Warnings integration

_warnings_showwarning = None

def _showwarning(message, category, filename, lineno, file=None, line=None):
 """
 Implementation of showwarnings which redirects to logging, which will first
 check to see if the file parameter is None. If a file is specified, it will
 delegate to the original warnings implementation of showwarning. Otherwise,
 it will call warnings.formatwarning and will log the resulting string to a
 warnings logger named "py.warnings" with level logging.WARNING.
 """
 if file is not None:
 if _warnings_showwarning is not None:
 _warnings_showwarning(message, category, filename, lineno, file, line)
 else:
 s = warnings.formatwarning(message, category, filename, lineno, line)
 logger = getLogger("py.warnings")
 if not logger.handlers:
 logger.addHandler(NullHandler())
 logger.warning("%s", s)

def captureWarnings(capture):
 """
 If capture is true, redirect all warnings to the logging package.
 If capture is False, ensure that warnings are not redirected to logging
 but to their original destinations.
 """
 global _warnings_showwarning
 if capture:
 if _warnings_showwarning is None:
 _warnings_showwarning = warnings.showwarning
 warnings.showwarning = _showwarning
 else:
 if _warnings_showwarning is not None:
 warnings.showwarning = _warnings_showwarning
 _warnings_showwarning = None

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for billiard.compat

from __future__ import absolute_import

import errno
import numbers
import os
import sys

from .five import range, zip_longest

if sys.platform == 'win32':
 try:
 import _winapi # noqa
 except ImportError: # pragma: no cover
 from _multiprocessing import win32 as _winapi # noqa
else:
 _winapi = None # noqa

try:
 import resource
except ImportError: # pragma: no cover
 resource = None

try:
 from io import UnsupportedOperation
 FILENO_ERRORS = (AttributeError, ValueError, UnsupportedOperation)
except ImportError: # pragma: no cover
 # Py2
 FILENO_ERRORS = (AttributeError, ValueError) # noqa

if sys.version_info > (2, 7, 5):
 buf_t, is_new_buffer = memoryview, True # noqa
else:
 buf_t, is_new_buffer = buffer, False # noqa

if hasattr(os, 'write'):
 __write__ = os.write

 if is_new_buffer:

 def send_offset(fd, buf, offset):
 return __write__(fd, buf[offset:])

 else: # Py<2.7.6

 def send_offset(fd, buf, offset): # noqa
 return __write__(fd, buf_t(buf, offset))

else: # non-posix platform

 def send_offset(fd, buf, offset): # noqa
 raise NotImplementedError('send_offset')

try:
 fsencode = os.fsencode
 fsdecode = os.fsdecode
except AttributeError:
 def _fscodec():
 encoding = sys.getfilesystemencoding()
 if encoding == 'mbcs':
 errors = 'strict'
 else:
 errors = 'surrogateescape'

 def fsencode(filename):
 """
 Encode filename to the filesystem encoding with 'surrogateescape'
 error handler, return bytes unchanged. On Windows, use 'strict'
 error handler if the file system encoding is 'mbcs' (which is the
 default encoding).
 """
 if isinstance(filename, bytes):
 return filename
 elif isinstance(filename, str):
 return filename.encode(encoding, errors)
 else:
 raise TypeError("expect bytes or str, not %s"
 % type(filename).__name__)

 def fsdecode(filename):
 """
 Decode filename from the filesystem encoding with 'surrogateescape'
 error handler, return str unchanged. On Windows, use 'strict' error
 handler if the file system encoding is 'mbcs' (which is the default
 encoding).
 """
 if isinstance(filename, str):
 return filename
 elif isinstance(filename, bytes):
 return filename.decode(encoding, errors)
 else:
 raise TypeError("expect bytes or str, not %s"
 % type(filename).__name__)

 return fsencode, fsdecode

 fsencode, fsdecode = _fscodec()
 del _fscodec

if sys.version_info[0] == 3:
 bytes = bytes
else:
 _bytes = bytes

 # the 'bytes' alias in Python2 does not support an encoding argument.

 class bytes(_bytes): # noqa

 def __new__(cls, *args):
 if len(args) > 1:
 return _bytes(args[0]).encode(*args[1:])
 return _bytes(*args)

def maybe_fileno(f):
 """Get object fileno, or :const:`None` if not defined."""
 if isinstance(f, numbers.Integral):
 return f
 try:
 return f.fileno()
 except FILENO_ERRORS:
 pass

[docs]def get_fdmax(default=None):
 """Return the maximum number of open file descriptors
 on this system.

 :keyword default: Value returned if there's no file
 descriptor limit.

 """
 try:
 return os.sysconf('SC_OPEN_MAX')
 except:
 pass
 if resource is None: # Windows
 return default
 fdmax = resource.getrlimit(resource.RLIMIT_NOFILE)[1]
 if fdmax == resource.RLIM_INFINITY:
 return default
 return fdmax

def uniq(it):
 """Return all unique elements in ``it``, preserving order."""
 seen = set()
 return (seen.add(obj) or obj for obj in it if obj not in seen)

try:
 closerange = os.closerange
except AttributeError:

 def closerange(fd_low, fd_high): # noqa
 for fd in reversed(range(fd_low, fd_high)):
 try:
 os.close(fd)
 except OSError as exc:
 if exc.errno != errno.EBADF:
 raise

 def close_open_fds(keep=None):
 # must make sure this is 0-inclusive (Issue #celery/1882)
 keep = list(uniq(sorted(
 f for f in map(maybe_fileno, keep or []) if f is not None
)))
 maxfd = get_fdmax(default=2048)
 kL, kH = iter([-1] + keep), iter(keep + [maxfd])
 for low, high in zip_longest(kL, kH):
 if low + 1 != high:
 closerange(low + 1, high)
else:
[docs] def close_open_fds(keep=None): # noqa
 keep = [maybe_fileno(f)
 for f in (keep or []) if maybe_fileno(f) is not None]
 for fd in reversed(range(get_fdmax(default=2048))):
 if fd not in keep:
 try:
 os.close(fd)
 except OSError as exc:
 if exc.errno != errno.EBADF:
 raise

def get_errno(exc):
 """:exc:`socket.error` and :exc:`IOError` first got
 the ``.errno`` attribute in Py2.7"""
 try:
 return exc.errno
 except AttributeError:
 try:
 # e.args = (errno, reason)
 if isinstance(exc.args, tuple) and len(exc.args) == 2:
 return exc.args[0]
 except AttributeError:
 pass
 return 0

try:
 import _posixsubprocess
except ImportError:
 def spawnv_passfds(path, args, passfds):
 if sys.platform != 'win32':
 # when not using _posixsubprocess (on earlier python) and not on
 # windows, we want to keep stdout/stderr open...
 passfds = passfds + [
 maybe_fileno(sys.stdout),
 maybe_fileno(sys.stderr),
]
 pid = os.fork()
 if not pid:
 close_open_fds(keep=sorted(f for f in passfds if f))
 os.execv(fsencode(path), args)
 return pid
else:
 def spawnv_passfds(path, args, passfds):
 passfds = sorted(passfds)
 errpipe_read, errpipe_write = os.pipe()
 try:
 return _posixsubprocess.fork_exec(
 args, [fsencode(path)], True, tuple(passfds), None, None,
 -1, -1, -1, -1, -1, -1, errpipe_read, errpipe_write,
 False, False, None)
 finally:
 os.close(errpipe_read)
 os.close(errpipe_write)

if sys.platform == 'win32':

 def setblocking(handle, blocking):
 raise NotImplementedError('setblocking not implemented on win32')

 def isblocking(handle):
 raise NotImplementedError('isblocking not implemented on win32')

else:
 from os import O_NONBLOCK
 from fcntl import fcntl, F_GETFL, F_SETFL

 def isblocking(handle): # noqa
 return not (fcntl(handle, F_GETFL) & O_NONBLOCK)

 def setblocking(handle, blocking): # noqa
 flags = fcntl(handle, F_GETFL, 0)
 fcntl(
 handle, F_SETFL,
 flags & (~O_NONBLOCK) if blocking else flags | O_NONBLOCK,
)

E_PSUTIL_MISSING = """
On Windows, the ability to inspect memory usage requires the psutil library.

You can install it using pip:

 $ pip install psutil
"""

E_RESOURCE_MISSING = """
Your platform ({0}) does not seem to have the `resource.getrusage' function.

Please open an issue so that we can add support for this platform.
"""

if sys.platform == 'win32':

 try:
 import psutil
 except ImportError: # pragma: no cover
 psutil = None # noqa

 def mem_rss():
 # type () -> int
 if psutil is None:
 raise ImportError(E_PSUTIL_MISSING.strip())
 return int(psutil.Process(os.getpid()).memory_info()[0] / 1024.0)

else:
 try:
 from resource import getrusage, RUSAGE_SELF
 except ImportError: # pragma: no cover
 getrusage = RUSAGE_SELF = None # noqa

 if 'bsd' in sys.platform or sys.platform == 'darwin':
 # On BSD platforms :man:`getrusage(2)` ru_maxrss field is in bytes.

 def maxrss_to_kb(v):
 # type: (SupportsInt) -> int
 return int(v) / 1024.0

 else:
 # On Linux it's kilobytes.

 def maxrss_to_kb(v):
 # type: (SupportsInt) -> int
 return int(v)

 def mem_rss():
 # type () -> int
 if resource is None:
 raise ImportError(E_RESOURCE_MISSING.strip().format(sys.platform))
 return maxrss_to_kb(getrusage(RUSAGE_SELF).ru_maxrss)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for billiard.exceptions

from __future__ import absolute_import

try:
 from multiprocessing import (
 ProcessError,
 BufferTooShort,
 TimeoutError,
 AuthenticationError,
)
except ImportError:
 class ProcessError(Exception): # noqa
 pass

 class BufferTooShort(ProcessError): # noqa
 pass

 class TimeoutError(ProcessError): # noqa
 pass

 class AuthenticationError(ProcessError): # noqa
 pass

[docs]class TimeLimitExceeded(Exception):
 """The time limit has been exceeded and the job has been terminated."""

 def __str__(self):
 return "TimeLimitExceeded%s" % (self.args,)

[docs]class SoftTimeLimitExceeded(Exception):
 """The soft time limit has been exceeded. This exception is raised
 to give the task a chance to clean up."""

 def __str__(self):
 return "SoftTimeLimitExceeded%s" % (self.args,)

[docs]class WorkerLostError(Exception):
 """The worker processing a job has exited prematurely."""

[docs]class Terminated(Exception):
 """The worker processing a job has been terminated by user request."""

class RestartFreqExceeded(Exception):
 """Restarts too fast."""

class CoroStop(Exception):
 """Coroutine exit, as opposed to StopIteration which may
 mean it should be restarted."""
 pass

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for billiard.pool

-*- coding: utf-8 -*-
#
Module providing the `Pool` class for managing a process pool
#
multiprocessing/pool.py
#
Copyright (c) 2006-2008, R Oudkerk
Licensed to PSF under a Contributor Agreement.
#
from __future__ import absolute_import

#
Imports
#
import copy
import errno
import itertools
import os
import platform
import signal
import sys
import threading
import time
import warnings

from collections import deque
from functools import partial

from . import cpu_count, get_context
from . import util
from .common import (
 TERM_SIGNAL, human_status, pickle_loads, reset_signals, restart_state,
)
from .compat import get_errno, mem_rss, send_offset
from .einfo import ExceptionInfo
from .dummy import DummyProcess
from .exceptions import (
 CoroStop,
 RestartFreqExceeded,
 SoftTimeLimitExceeded,
 Terminated,
 TimeLimitExceeded,
 TimeoutError,
 WorkerLostError,
)
from .five import Empty, Queue, range, values, reraise, monotonic
from .util import Finalize, debug, warning

MAXMEM_USED_FMT = """\
child process exiting after exceeding memory limit ({0}KiB / {1}KiB)
"""

PY3 = sys.version_info[0] == 3

if platform.system() == 'Windows': # pragma: no cover
 # On Windows os.kill calls TerminateProcess which cannot be
 # handled by # any process, so this is needed to terminate the task
 # *and its children* (if any).
 from ._win import kill_processtree as _kill # noqa
 SIGKILL = TERM_SIGNAL
else:
 from os import kill as _kill # noqa
 SIGKILL = signal.SIGKILL

try:
 TIMEOUT_MAX = threading.TIMEOUT_MAX
except AttributeError: # pragma: no cover
 TIMEOUT_MAX = 1e10 # noqa

if sys.version_info >= (3, 3):
 _Semaphore = threading.Semaphore
else:
 # Semaphore is a factory function pointing to _Semaphore
 _Semaphore = threading._Semaphore # noqa

#
Constants representing the state of a pool
#

RUN = 0
CLOSE = 1
TERMINATE = 2

#
Constants representing the state of a job
#

ACK = 0
READY = 1
TASK = 2
NACK = 3
DEATH = 4

#
Exit code constants
#
EX_OK = 0
EX_FAILURE = 1
EX_RECYCLE = 0x9B

Signal used for soft time limits.
SIG_SOFT_TIMEOUT = getattr(signal, "SIGUSR1", None)

#
Miscellaneous
#

LOST_WORKER_TIMEOUT = 10.0
EX_OK = getattr(os, "EX_OK", 0)
GUARANTEE_MESSAGE_CONSUMPTION_RETRY_LIMIT = 300
GUARANTEE_MESSAGE_CONSUMPTION_RETRY_INTERVAL = 0.1

job_counter = itertools.count()

Lock = threading.Lock

def _get_send_offset(connection):
 try:
 native = connection.send_offset
 except AttributeError:
 native = None
 if native is None:
 return partial(send_offset, connection.fileno())
 return native

def mapstar(args):
 return list(map(*args))

def starmapstar(args):
 return list(itertools.starmap(args[0], args[1]))

def error(msg, *args, **kwargs):
 util.get_logger().error(msg, *args, **kwargs)

def stop_if_not_current(thread, timeout=None):
 if thread is not threading.current_thread():
 thread.stop(timeout)

class LaxBoundedSemaphore(_Semaphore):
 """Semaphore that checks that # release is <= # acquires,
 but ignores if # releases >= value."""

 def shrink(self):
 self._initial_value -= 1
 self.acquire()

 if PY3:

 def __init__(self, value=1, verbose=None):
 _Semaphore.__init__(self, value)
 self._initial_value = value

 def grow(self):
 with self._cond:
 self._initial_value += 1
 self._value += 1
 self._cond.notify()

 def release(self):
 cond = self._cond
 with cond:
 if self._value < self._initial_value:
 self._value += 1
 cond.notify_all()

 def clear(self):
 while self._value < self._initial_value:
 _Semaphore.release(self)
 else:

 def __init__(self, value=1, verbose=None):
 _Semaphore.__init__(self, value, verbose)
 self._initial_value = value

 def grow(self):
 cond = self._Semaphore__cond
 with cond:
 self._initial_value += 1
 self._Semaphore__value += 1
 cond.notify()

 def release(self): # noqa
 cond = self._Semaphore__cond
 with cond:
 if self._Semaphore__value < self._initial_value:
 self._Semaphore__value += 1
 cond.notifyAll()

 def clear(self): # noqa
 while self._Semaphore__value < self._initial_value:
 _Semaphore.release(self)

#
Exceptions
#

class MaybeEncodingError(Exception):
 """Wraps possible unpickleable errors, so they can be
 safely sent through the socket."""

 def __init__(self, exc, value):
 self.exc = repr(exc)
 self.value = repr(value)
 super(MaybeEncodingError, self).__init__(self.exc, self.value)

 def __repr__(self):
 return "<%s: %s>" % (self.__class__.__name__, str(self))

 def __str__(self):
 return "Error sending result: '%r'. Reason: '%r'." % (
 self.value, self.exc)

class WorkersJoined(Exception):
 """All workers have terminated."""

def soft_timeout_sighandler(signum, frame):
 raise SoftTimeLimitExceeded()

#
Code run by worker processes
#

class Worker(object):

 def __init__(self, inq, outq, synq=None, initializer=None, initargs=(),
 maxtasks=None, sentinel=None, on_exit=None,
 sigprotection=True, wrap_exception=True,
 max_memory_per_child=None, on_ready_counter=None):
 assert maxtasks is None or (type(maxtasks) == int and maxtasks > 0)
 self.initializer = initializer
 self.initargs = initargs
 self.maxtasks = maxtasks
 self.max_memory_per_child = max_memory_per_child
 self._shutdown = sentinel
 self.on_exit = on_exit
 self.sigprotection = sigprotection
 self.inq, self.outq, self.synq = inq, outq, synq
 self.wrap_exception = wrap_exception # XXX cannot disable yet
 self.on_ready_counter = on_ready_counter
 self.contribute_to_object(self)

 def contribute_to_object(self, obj):
 obj.inq, obj.outq, obj.synq = self.inq, self.outq, self.synq
 obj.inqW_fd = self.inq._writer.fileno() # inqueue write fd
 obj.outqR_fd = self.outq._reader.fileno() # outqueue read fd
 if self.synq:
 obj.synqR_fd = self.synq._reader.fileno() # synqueue read fd
 obj.synqW_fd = self.synq._writer.fileno() # synqueue write fd
 obj.send_syn_offset = _get_send_offset(self.synq._writer)
 else:
 obj.synqR_fd = obj.synqW_fd = obj._send_syn_offset = None
 obj._quick_put = self.inq._writer.send
 obj._quick_get = self.outq._reader.recv
 obj.send_job_offset = _get_send_offset(self.inq._writer)
 return obj

 def __reduce__(self):
 return self.__class__, (
 self.inq, self.outq, self.synq, self.initializer,
 self.initargs, self.maxtasks, self._shutdown, self.on_exit,
 self.sigprotection, self.wrap_exception, self.max_memory_per_child,
)

 def __call__(self):
 _exit = sys.exit
 _exitcode = [None]

 def exit(status=None):
 _exitcode[0] = status
 return _exit(status)
 sys.exit = exit

 pid = os.getpid()

 self._make_child_methods()
 self.after_fork()
 self.on_loop_start(pid=pid) # callback on loop start
 try:
 sys.exit(self.workloop(pid=pid))
 except Exception as exc:
 error('Pool process %r error: %r', self, exc, exc_info=1)
 self._do_exit(pid, _exitcode[0], exc)
 finally:
 self._do_exit(pid, _exitcode[0], None)

 def _do_exit(self, pid, exitcode, exc=None):
 if exitcode is None:
 exitcode = EX_FAILURE if exc else EX_OK

 if self.on_exit is not None:
 self.on_exit(pid, exitcode)

 if sys.platform != 'win32':
 try:
 self.outq.put((DEATH, (pid, exitcode)))
 time.sleep(1)
 finally:
 os._exit(exitcode)
 else:
 os._exit(exitcode)

 def on_loop_start(self, pid):
 pass

 def prepare_result(self, result):
 return result

 def workloop(self, debug=debug, now=monotonic, pid=None):
 pid = pid or os.getpid()
 put = self.outq.put
 inqW_fd = self.inqW_fd
 synqW_fd = self.synqW_fd
 maxtasks = self.maxtasks
 max_memory_per_child = self.max_memory_per_child or 0
 prepare_result = self.prepare_result

 wait_for_job = self.wait_for_job
 _wait_for_syn = self.wait_for_syn

 def wait_for_syn(jid):
 i = 0
 while 1:
 if i > 60:
 error('!!!WAIT FOR ACK TIMEOUT: job:%r fd:%r!!!',
 jid, self.synq._reader.fileno(), exc_info=1)
 req = _wait_for_syn()
 if req:
 type_, args = req
 if type_ == NACK:
 return False
 assert type_ == ACK
 return True
 i += 1

 completed = 0
 try:
 while maxtasks is None or (maxtasks and completed < maxtasks):
 req = wait_for_job()
 if req:
 type_, args_ = req
 assert type_ == TASK
 job, i, fun, args, kwargs = args_
 put((ACK, (job, i, now(), pid, synqW_fd)))
 if _wait_for_syn:
 confirm = wait_for_syn(job)
 if not confirm:
 continue # received NACK
 try:
 result = (True, prepare_result(fun(*args, **kwargs)))
 except Exception:
 result = (False, ExceptionInfo())
 try:
 put((READY, (job, i, result, inqW_fd)))
 except Exception as exc:
 _, _, tb = sys.exc_info()
 try:
 wrapped = MaybeEncodingError(exc, result[1])
 einfo = ExceptionInfo((
 MaybeEncodingError, wrapped, tb,
))
 put((READY, (job, i, (False, einfo), inqW_fd)))
 finally:
 del(tb)
 completed += 1
 if max_memory_per_child > 0:
 used_kb = mem_rss()
 if used_kb <= 0:
 error('worker unable to determine memory usage')
 if used_kb > 0 and used_kb > max_memory_per_child:
 warning(MAXMEM_USED_FMT.format(
 used_kb, max_memory_per_child))
 return EX_RECYCLE

 debug('worker exiting after %d tasks', completed)
 if maxtasks:
 return EX_RECYCLE if completed == maxtasks else EX_FAILURE
 return EX_OK
 finally:
 # Before exiting the worker, we want to ensure that that all
 # messages produced by the worker have been consumed by the main
 # process. This prevents the worker being terminated prematurely
 # and messages being lost.
 self._ensure_messages_consumed(completed=completed)

 def _ensure_messages_consumed(self, completed):
 """ Returns true if all messages sent out have been received and
 consumed within a reasonable amount of time """

 if not self.on_ready_counter:
 return False

 for retry in range(GUARANTEE_MESSAGE_CONSUMPTION_RETRY_LIMIT):
 if self.on_ready_counter.value >= completed:
 debug('ensured messages consumed after %d retries', retry)
 return True
 time.sleep(GUARANTEE_MESSAGE_CONSUMPTION_RETRY_INTERVAL)
 warning('could not ensure all messages were consumed prior to '
 'exiting')
 return False

 def after_fork(self):
 if hasattr(self.inq, '_writer'):
 self.inq._writer.close()
 if hasattr(self.outq, '_reader'):
 self.outq._reader.close()

 if self.initializer is not None:
 self.initializer(*self.initargs)

 # Make sure all exiting signals call finally: blocks.
 # This is important for the semaphore to be released.
 reset_signals(full=self.sigprotection)

 # install signal handler for soft timeouts.
 if SIG_SOFT_TIMEOUT is not None:
 signal.signal(SIG_SOFT_TIMEOUT, soft_timeout_sighandler)

 try:
 signal.signal(signal.SIGINT, signal.SIG_IGN)
 except AttributeError:
 pass

 def _make_recv_method(self, conn):
 get = conn.get

 if hasattr(conn, '_reader'):
 _poll = conn._reader.poll
 if hasattr(conn, 'get_payload') and conn.get_payload:
 get_payload = conn.get_payload

 def _recv(timeout, loads=pickle_loads):
 return True, loads(get_payload())
 else:
 def _recv(timeout): # noqa
 if _poll(timeout):
 return True, get()
 return False, None
 else:
 def _recv(timeout): # noqa
 try:
 return True, get(timeout=timeout)
 except Queue.Empty:
 return False, None
 return _recv

 def _make_child_methods(self, loads=pickle_loads):
 self.wait_for_job = self._make_protected_receive(self.inq)
 self.wait_for_syn = (self._make_protected_receive(self.synq)
 if self.synq else None)

 def _make_protected_receive(self, conn):
 _receive = self._make_recv_method(conn)
 should_shutdown = self._shutdown.is_set if self._shutdown else None

 def receive(debug=debug):
 if should_shutdown and should_shutdown():
 debug('worker got sentinel -- exiting')
 raise SystemExit(EX_OK)
 try:
 ready, req = _receive(1.0)
 if not ready:
 return None
 except (EOFError, IOError) as exc:
 if get_errno(exc) == errno.EINTR:
 return None # interrupted, maybe by gdb
 debug('worker got %s -- exiting', type(exc).__name__)
 raise SystemExit(EX_FAILURE)
 if req is None:
 debug('worker got sentinel -- exiting')
 raise SystemExit(EX_FAILURE)
 return req

 return receive

#
Class representing a process pool
#

class PoolThread(DummyProcess):

 def __init__(self, *args, **kwargs):
 DummyProcess.__init__(self)
 self._state = RUN
 self._was_started = False
 self.daemon = True

 def run(self):
 try:
 return self.body()
 except RestartFreqExceeded as exc:
 error("Thread %r crashed: %r", type(self).__name__, exc,
 exc_info=1)
 _kill(os.getpid(), TERM_SIGNAL)
 sys.exit()
 except Exception as exc:
 error("Thread %r crashed: %r", type(self).__name__, exc,
 exc_info=1)
 os._exit(1)

 def start(self, *args, **kwargs):
 self._was_started = True
 super(PoolThread, self).start(*args, **kwargs)

 def on_stop_not_started(self):
 pass

 def stop(self, timeout=None):
 if self._was_started:
 self.join(timeout)
 return
 self.on_stop_not_started()

 def terminate(self):
 self._state = TERMINATE

 def close(self):
 self._state = CLOSE

class Supervisor(PoolThread):

 def __init__(self, pool):
 self.pool = pool
 super(Supervisor, self).__init__()

 def body(self):
 debug('worker handler starting')

 time.sleep(0.8)

 pool = self.pool

 try:
 # do a burst at startup to verify that we can start
 # our pool processes, and in that time we lower
 # the max restart frequency.
 prev_state = pool.restart_state
 pool.restart_state = restart_state(10 * pool._processes, 1)
 for _ in range(10):
 if self._state == RUN and pool._state == RUN:
 pool._maintain_pool()
 time.sleep(0.1)

 # Keep maintaing workers until the cache gets drained, unless
 # the pool is termianted
 pool.restart_state = prev_state
 while self._state == RUN and pool._state == RUN:
 pool._maintain_pool()
 time.sleep(0.8)
 except RestartFreqExceeded:
 pool.close()
 pool.join()
 raise
 debug('worker handler exiting')

class TaskHandler(PoolThread):

 def __init__(self, taskqueue, put, outqueue, pool, cache):
 self.taskqueue = taskqueue
 self.put = put
 self.outqueue = outqueue
 self.pool = pool
 self.cache = cache
 super(TaskHandler, self).__init__()

 def body(self):
 cache = self.cache
 taskqueue = self.taskqueue
 put = self.put

 for taskseq, set_length in iter(taskqueue.get, None):
 task = None
 i = -1
 try:
 for i, task in enumerate(taskseq):
 if self._state:
 debug('task handler found thread._state != RUN')
 break
 try:
 put(task)
 except IOError:
 debug('could not put task on queue')
 break
 except Exception:
 job, ind = task[:2]
 try:
 cache[job]._set(ind, (False, ExceptionInfo()))
 except KeyError:
 pass
 else:
 if set_length:
 debug('doing set_length()')
 set_length(i + 1)
 continue
 break
 except Exception:
 job, ind = task[:2] if task else (0, 0)
 if job in cache:
 cache[job]._set(ind + 1, (False, ExceptionInfo()))
 if set_length:
 util.debug('doing set_length()')
 set_length(i + 1)
 else:
 debug('task handler got sentinel')

 self.tell_others()

 def tell_others(self):
 outqueue = self.outqueue
 put = self.put
 pool = self.pool

 try:
 # tell result handler to finish when cache is empty
 debug('task handler sending sentinel to result handler')
 outqueue.put(None)

 # tell workers there is no more work
 debug('task handler sending sentinel to workers')
 for p in pool:
 put(None)
 except IOError:
 debug('task handler got IOError when sending sentinels')

 debug('task handler exiting')

 def on_stop_not_started(self):
 self.tell_others()

class TimeoutHandler(PoolThread):

 def __init__(self, processes, cache, t_soft, t_hard):
 self.processes = processes
 self.cache = cache
 self.t_soft = t_soft
 self.t_hard = t_hard
 self._it = None
 super(TimeoutHandler, self).__init__()

 def _process_by_pid(self, pid):
 return next((
 (proc, i) for i, proc in enumerate(self.processes)
 if proc.pid == pid
), (None, None))

 def on_soft_timeout(self, job):
 debug('soft time limit exceeded for %r', job)
 process, _index = self._process_by_pid(job._worker_pid)
 if not process:
 return

 # Run timeout callback
 job.handle_timeout(soft=True)

 try:
 _kill(job._worker_pid, SIG_SOFT_TIMEOUT)
 except OSError as exc:
 if get_errno(exc) != errno.ESRCH:
 raise

 def on_hard_timeout(self, job):
 if job.ready():
 return
 debug('hard time limit exceeded for %r', job)
 # Remove from cache and set return value to an exception
 try:
 raise TimeLimitExceeded(job._timeout)
 except TimeLimitExceeded:
 job._set(job._job, (False, ExceptionInfo()))
 else: # pragma: no cover
 pass

 # Remove from _pool
 process, _index = self._process_by_pid(job._worker_pid)

 # Run timeout callback
 job.handle_timeout(soft=False)

 if process:
 self._trywaitkill(process)

 def _trywaitkill(self, worker):
 debug('timeout: sending TERM to %s', worker._name)
 try:
 if os.getpgid(worker.pid) == worker.pid:
 debug("worker %s is a group leader. It is safe to kill (SIGTERM) the whole group", worker.pid)
 os.killpg(os.getpgid(worker.pid), signal.SIGTERM)
 else:
 worker.terminate()
 except OSError:
 pass
 else:
 if worker._popen.wait(timeout=0.1):
 return
 debug('timeout: TERM timed-out, now sending KILL to %s', worker._name)
 try:
 if os.getpgid(worker.pid) == worker.pid:
 debug("worker %s is a group leader. It is safe to kill (SIGKILL) the whole group", worker.pid)
 os.killpg(os.getpgid(worker.pid), signal.SIGKILL)
 else:
 _kill(worker.pid, SIGKILL)
 except OSError:
 pass

 def handle_timeouts(self):
 t_hard, t_soft = self.t_hard, self.t_soft
 dirty = set()
 on_soft_timeout = self.on_soft_timeout
 on_hard_timeout = self.on_hard_timeout

 def _timed_out(start, timeout):
 if not start or not timeout:
 return False
 if monotonic() >= start + timeout:
 return True

 # Inner-loop
 while self._state == RUN:
 # Perform a shallow copy before iteration because keys can change.
 # A deep copy fails (on shutdown) due to thread.lock objects.
 # https://github.com/celery/billiard/issues/260
 cache = copy.copy(self.cache)

 # Remove dirty items not in cache anymore
 if dirty:
 dirty = set(k for k in dirty if k in cache)

 for i, job in cache.items():
 ack_time = job._time_accepted
 soft_timeout = job._soft_timeout
 if soft_timeout is None:
 soft_timeout = t_soft
 hard_timeout = job._timeout
 if hard_timeout is None:
 hard_timeout = t_hard
 if _timed_out(ack_time, hard_timeout):
 on_hard_timeout(job)
 elif i not in dirty and _timed_out(ack_time, soft_timeout):
 on_soft_timeout(job)
 dirty.add(i)
 yield

 def body(self):
 while self._state == RUN:
 try:
 for _ in self.handle_timeouts():
 time.sleep(1.0) # don't spin
 except CoroStop:
 break
 debug('timeout handler exiting')

 def handle_event(self, *args):
 if self._it is None:
 self._it = self.handle_timeouts()
 try:
 next(self._it)
 except StopIteration:
 self._it = None

class ResultHandler(PoolThread):

 def __init__(self, outqueue, get, cache, poll,
 join_exited_workers, putlock, restart_state,
 check_timeouts, on_job_ready, on_ready_counters=None):
 self.outqueue = outqueue
 self.get = get
 self.cache = cache
 self.poll = poll
 self.join_exited_workers = join_exited_workers
 self.putlock = putlock
 self.restart_state = restart_state
 self._it = None
 self._shutdown_complete = False
 self.check_timeouts = check_timeouts
 self.on_job_ready = on_job_ready
 self.on_ready_counters = on_ready_counters
 self._make_methods()
 super(ResultHandler, self).__init__()

 def on_stop_not_started(self):
 # used when pool started without result handler thread.
 self.finish_at_shutdown(handle_timeouts=True)

 def _make_methods(self):
 cache = self.cache
 putlock = self.putlock
 restart_state = self.restart_state
 on_job_ready = self.on_job_ready

 def on_ack(job, i, time_accepted, pid, synqW_fd):
 restart_state.R = 0
 try:
 cache[job]._ack(i, time_accepted, pid, synqW_fd)
 except (KeyError, AttributeError):
 # Object gone or doesn't support _ack (e.g. IMAPIterator).
 pass

 def on_ready(job, i, obj, inqW_fd):
 if on_job_ready is not None:
 on_job_ready(job, i, obj, inqW_fd)
 try:
 item = cache[job]
 except KeyError:
 return

 if self.on_ready_counters:
 worker_pid = next(iter(item.worker_pids()), None)
 if worker_pid and worker_pid in self.on_ready_counters:
 on_ready_counter = self.on_ready_counters[worker_pid]
 with on_ready_counter.get_lock():
 on_ready_counter.value += 1

 if not item.ready():
 if putlock is not None:
 putlock.release()
 try:
 item._set(i, obj)
 except KeyError:
 pass

 def on_death(pid, exitcode):
 try:
 os.kill(pid, TERM_SIGNAL)
 except OSError as exc:
 if get_errno(exc) != errno.ESRCH:
 raise

 state_handlers = self.state_handlers = {
 ACK: on_ack, READY: on_ready, DEATH: on_death
 }

 def on_state_change(task):
 state, args = task
 try:
 state_handlers[state](*args)
 except KeyError:
 debug("Unknown job state: %s (args=%s)", state, args)
 self.on_state_change = on_state_change

 def _process_result(self, timeout=1.0):
 poll = self.poll
 on_state_change = self.on_state_change

 while 1:
 try:
 ready, task = poll(timeout)
 except (IOError, EOFError) as exc:
 debug('result handler got %r -- exiting', exc)
 raise CoroStop()

 if self._state:
 assert self._state == TERMINATE
 debug('result handler found thread._state=TERMINATE')
 raise CoroStop()

 if ready:
 if task is None:
 debug('result handler got sentinel')
 raise CoroStop()
 on_state_change(task)
 if timeout != 0: # blocking
 break
 else:
 break
 yield

 def handle_event(self, fileno=None, events=None):
 if self._state == RUN:
 if self._it is None:
 self._it = self._process_result(0) # non-blocking
 try:
 next(self._it)
 except (StopIteration, CoroStop):
 self._it = None

 def body(self):
 debug('result handler starting')
 try:
 while self._state == RUN:
 try:
 for _ in self._process_result(1.0): # blocking
 pass
 except CoroStop:
 break
 finally:
 self.finish_at_shutdown()

 def finish_at_shutdown(self, handle_timeouts=False):
 self._shutdown_complete = True
 get = self.get
 outqueue = self.outqueue
 cache = self.cache
 poll = self.poll
 join_exited_workers = self.join_exited_workers
 check_timeouts = self.check_timeouts
 on_state_change = self.on_state_change

 time_terminate = None
 while cache and self._state != TERMINATE:
 if check_timeouts is not None:
 check_timeouts()
 try:
 ready, task = poll(1.0)
 except (IOError, EOFError) as exc:
 debug('result handler got %r -- exiting', exc)
 return

 if ready:
 if task is None:
 debug('result handler ignoring extra sentinel')
 continue

 on_state_change(task)
 try:
 join_exited_workers(shutdown=True)
 except WorkersJoined:
 now = monotonic()
 if not time_terminate:
 time_terminate = now
 else:
 if now - time_terminate > 5.0:
 debug('result handler exiting: timed out')
 break
 debug('result handler: all workers terminated, '
 'timeout in %ss',
 abs(min(now - time_terminate - 5.0, 0)))

 if hasattr(outqueue, '_reader'):
 debug('ensuring that outqueue is not full')
 # If we don't make room available in outqueue then
 # attempts to add the sentinel (None) to outqueue may
 # block. There is guaranteed to be no more than 2 sentinels.
 try:
 for i in range(10):
 if not outqueue._reader.poll():
 break
 get()
 except (IOError, EOFError):
 pass

 debug('result handler exiting: len(cache)=%s, thread._state=%s',
 len(cache), self._state)

class Pool(object):
 '''
 Class which supports an async version of applying functions to arguments.
 '''
 _wrap_exception = True
 Worker = Worker
 Supervisor = Supervisor
 TaskHandler = TaskHandler
 TimeoutHandler = TimeoutHandler
 ResultHandler = ResultHandler
 SoftTimeLimitExceeded = SoftTimeLimitExceeded

 def __init__(self, processes=None, initializer=None, initargs=(),
 maxtasksperchild=None, timeout=None, soft_timeout=None,
 lost_worker_timeout=None,
 max_restarts=None, max_restart_freq=1,
 on_process_up=None,
 on_process_down=None,
 on_timeout_set=None,
 on_timeout_cancel=None,
 threads=True,
 semaphore=None,
 putlocks=False,
 allow_restart=False,
 synack=False,
 on_process_exit=None,
 context=None,
 max_memory_per_child=None,
 enable_timeouts=False,
 **kwargs):
 self._ctx = context or get_context()
 self.synack = synack
 self._setup_queues()
 self._taskqueue = Queue()
 self._cache = {}
 self._state = RUN
 self.timeout = timeout
 self.soft_timeout = soft_timeout
 self._maxtasksperchild = maxtasksperchild
 self._max_memory_per_child = max_memory_per_child
 self._initializer = initializer
 self._initargs = initargs
 self._on_process_exit = on_process_exit
 self.lost_worker_timeout = lost_worker_timeout or LOST_WORKER_TIMEOUT
 self.on_process_up = on_process_up
 self.on_process_down = on_process_down
 self.on_timeout_set = on_timeout_set
 self.on_timeout_cancel = on_timeout_cancel
 self.threads = threads
 self.readers = {}
 self.allow_restart = allow_restart

 self.enable_timeouts = bool(
 enable_timeouts or
 self.timeout is not None or
 self.soft_timeout is not None
)

 if soft_timeout and SIG_SOFT_TIMEOUT is None:
 warnings.warn(UserWarning(
 "Soft timeouts are not supported: "
 "on this platform: It does not have the SIGUSR1 signal.",
))
 soft_timeout = None

 self._processes = self.cpu_count() if processes is None else processes
 self.max_restarts = max_restarts or round(self._processes * 100)
 self.restart_state = restart_state(max_restarts, max_restart_freq or 1)

 if initializer is not None and not callable(initializer):
 raise TypeError('initializer must be a callable')

 if on_process_exit is not None and not callable(on_process_exit):
 raise TypeError('on_process_exit must be callable')

 self._Process = self._ctx.Process

 self._pool = []
 self._poolctrl = {}
 self._on_ready_counters = {}
 self.putlocks = putlocks
 self._putlock = semaphore or LaxBoundedSemaphore(self._processes)
 for i in range(self._processes):
 self._create_worker_process(i)

 self._worker_handler = self.Supervisor(self)
 if threads:
 self._worker_handler.start()

 self._task_handler = self.TaskHandler(self._taskqueue,
 self._quick_put,
 self._outqueue,
 self._pool,
 self._cache)
 if threads:
 self._task_handler.start()

 self.check_timeouts = None

 # Thread killing timedout jobs.
 if self.enable_timeouts:
 self._timeout_handler = self.TimeoutHandler(
 self._pool, self._cache,
 self.soft_timeout, self.timeout,
)
 self._timeout_handler_mutex = Lock()
 self._timeout_handler_started = False
 self._start_timeout_handler()
 # If running without threads, we need to check for timeouts
 # while waiting for unfinished work at shutdown.
 if not threads:
 self.check_timeouts = self._timeout_handler.handle_event
 else:
 self._timeout_handler = None
 self._timeout_handler_started = False
 self._timeout_handler_mutex = None

 # Thread processing results in the outqueue.
 self._result_handler = self.create_result_handler()
 self.handle_result_event = self._result_handler.handle_event

 if threads:
 self._result_handler.start()

 self._terminate = Finalize(
 self, self._terminate_pool,
 args=(self._taskqueue, self._inqueue, self._outqueue,
 self._pool, self._worker_handler, self._task_handler,
 self._result_handler, self._cache,
 self._timeout_handler,
 self._help_stuff_finish_args()),
 exitpriority=15,
)

 def Process(self, *args, **kwds):
 return self._Process(*args, **kwds)

 def WorkerProcess(self, worker):
 return worker.contribute_to_object(self.Process(target=worker))

 def create_result_handler(self, **extra_kwargs):
 return self.ResultHandler(
 self._outqueue, self._quick_get, self._cache,
 self._poll_result, self._join_exited_workers,
 self._putlock, self.restart_state, self.check_timeouts,
 self.on_job_ready, on_ready_counters=self._on_ready_counters,
 **extra_kwargs
)

 def on_job_ready(self, job, i, obj, inqW_fd):
 pass

 def _help_stuff_finish_args(self):
 return self._inqueue, self._task_handler, self._pool

 def cpu_count(self):
 try:
 return cpu_count()
 except NotImplementedError:
 return 1

 def handle_result_event(self, *args):
 return self._result_handler.handle_event(*args)

 def _process_register_queues(self, worker, queues):
 pass

 def _process_by_pid(self, pid):
 return next((
 (proc, i) for i, proc in enumerate(self._pool)
 if proc.pid == pid
), (None, None))

 def get_process_queues(self):
 return self._inqueue, self._outqueue, None

 def _create_worker_process(self, i):
 sentinel = self._ctx.Event() if self.allow_restart else None
 inq, outq, synq = self.get_process_queues()
 on_ready_counter = self._ctx.Value('i')
 w = self.WorkerProcess(self.Worker(
 inq, outq, synq, self._initializer, self._initargs,
 self._maxtasksperchild, sentinel, self._on_process_exit,
 # Need to handle all signals if using the ipc semaphore,
 # to make sure the semaphore is released.
 sigprotection=self.threads,
 wrap_exception=self._wrap_exception,
 max_memory_per_child=self._max_memory_per_child,
 on_ready_counter=on_ready_counter,
))
 self._pool.append(w)
 self._process_register_queues(w, (inq, outq, synq))
 w.name = w.name.replace('Process', 'PoolWorker')
 w.daemon = True
 w.index = i
 w.start()
 self._poolctrl[w.pid] = sentinel
 self._on_ready_counters[w.pid] = on_ready_counter
 if self.on_process_up:
 self.on_process_up(w)
 return w

 def process_flush_queues(self, worker):
 pass

 def _join_exited_workers(self, shutdown=False):
 """Cleanup after any worker processes which have exited due to
 reaching their specified lifetime. Returns True if any workers were
 cleaned up.
 """
 now = None
 # The worker may have published a result before being terminated,
 # but we have no way to accurately tell if it did. So we wait for
 # _lost_worker_timeout seconds before we mark the job with
 # WorkerLostError.
 for job in [job for job in list(self._cache.values())
 if not job.ready() and job._worker_lost]:
 now = now or monotonic()
 lost_time, lost_ret = job._worker_lost
 if now - lost_time > job._lost_worker_timeout:
 self.mark_as_worker_lost(job, lost_ret)

 if shutdown and not len(self._pool):
 raise WorkersJoined()

 cleaned, exitcodes = {}, {}
 for i in reversed(range(len(self._pool))):
 worker = self._pool[i]
 exitcode = worker.exitcode
 popen = worker._popen
 if popen is None or exitcode is not None:
 # worker exited
 debug('Supervisor: cleaning up worker %d', i)
 if popen is not None:
 worker.join()
 debug('Supervisor: worked %d joined', i)
 cleaned[worker.pid] = worker
 exitcodes[worker.pid] = exitcode
 if exitcode not in (EX_OK, EX_RECYCLE) and \
 not getattr(worker, '_controlled_termination', False):
 error(
 'Process %r pid:%r exited with %r',
 worker.name, worker.pid, human_status(exitcode),
 exc_info=0,
)
 self.process_flush_queues(worker)
 del self._pool[i]
 del self._poolctrl[worker.pid]
 del self._on_ready_counters[worker.pid]
 if cleaned:
 all_pids = [w.pid for w in self._pool]
 for job in list(self._cache.values()):
 acked_by_gone = next(
 (pid for pid in job.worker_pids()
 if pid in cleaned or pid not in all_pids),
 None
)
 # already accepted by process
 if acked_by_gone:
 self.on_job_process_down(job, acked_by_gone)
 if not job.ready():
 exitcode = exitcodes.get(acked_by_gone) or 0
 proc = cleaned.get(acked_by_gone)
 if proc and getattr(proc, '_job_terminated', False):
 job._set_terminated(exitcode)
 else:
 self.on_job_process_lost(
 job, acked_by_gone, exitcode,
)
 else:
 # started writing to
 write_to = job._write_to
 # was scheduled to write to
 sched_for = job._scheduled_for

 if write_to and not write_to._is_alive():
 self.on_job_process_down(job, write_to.pid)
 elif sched_for and not sched_for._is_alive():
 self.on_job_process_down(job, sched_for.pid)

 for worker in values(cleaned):
 if self.on_process_down:
 if not shutdown:
 self._process_cleanup_queues(worker)
 self.on_process_down(worker)
 return list(exitcodes.values())
 return []

 def on_partial_read(self, job, worker):
 pass

 def _process_cleanup_queues(self, worker):
 pass

 def on_job_process_down(self, job, pid_gone):
 pass

 def on_job_process_lost(self, job, pid, exitcode):
 job._worker_lost = (monotonic(), exitcode)

 def mark_as_worker_lost(self, job, exitcode):
 try:
 raise WorkerLostError(
 'Worker exited prematurely: {0}.'.format(
 human_status(exitcode)),
)
 except WorkerLostError:
 job._set(None, (False, ExceptionInfo()))
 else: # pragma: no cover
 pass

 def __enter__(self):
 return self

 def __exit__(self, *exc_info):
 return self.terminate()

 def on_grow(self, n):
 pass

 def on_shrink(self, n):
 pass

 def shrink(self, n=1):
 for i, worker in enumerate(self._iterinactive()):
 self._processes -= 1
 if self._putlock:
 self._putlock.shrink()
 worker.terminate_controlled()
 self.on_shrink(1)
 if i >= n - 1:
 break
 else:
 raise ValueError("Can't shrink pool. All processes busy!")

 def grow(self, n=1):
 for i in range(n):
 self._processes += 1
 if self._putlock:
 self._putlock.grow()
 self.on_grow(n)

 def _iterinactive(self):
 for worker in self._pool:
 if not self._worker_active(worker):
 yield worker

 def _worker_active(self, worker):
 for job in values(self._cache):
 if worker.pid in job.worker_pids():
 return True
 return False

 def _repopulate_pool(self, exitcodes):
 """Bring the number of pool processes up to the specified number,
 for use after reaping workers which have exited.
 """
 for i in range(self._processes - len(self._pool)):
 if self._state != RUN:
 return
 try:
 if exitcodes and exitcodes[i] not in (EX_OK, EX_RECYCLE):
 self.restart_state.step()
 except IndexError:
 self.restart_state.step()
 self._create_worker_process(self._avail_index())
 debug('added worker')

 def _avail_index(self):
 assert len(self._pool) < self._processes
 indices = set(p.index for p in self._pool)
 return next(i for i in range(self._processes) if i not in indices)

 def did_start_ok(self):
 return not self._join_exited_workers()

 def _maintain_pool(self):
 """"Clean up any exited workers and start replacements for them.
 """
 joined = self._join_exited_workers()
 self._repopulate_pool(joined)
 for i in range(len(joined)):
 if self._putlock is not None:
 self._putlock.release()

 def maintain_pool(self):
 if self._worker_handler._state == RUN and self._state == RUN:
 try:
 self._maintain_pool()
 except RestartFreqExceeded:
 self.close()
 self.join()
 raise
 except OSError as exc:
 if get_errno(exc) == errno.ENOMEM:
 reraise(MemoryError,
 MemoryError(str(exc)),
 sys.exc_info()[2])
 raise

 def _setup_queues(self):
 self._inqueue = self._ctx.SimpleQueue()
 self._outqueue = self._ctx.SimpleQueue()
 self._quick_put = self._inqueue._writer.send
 self._quick_get = self._outqueue._reader.recv

 def _poll_result(timeout):
 if self._outqueue._reader.poll(timeout):
 return True, self._quick_get()
 return False, None
 self._poll_result = _poll_result

 def _start_timeout_handler(self):
 # ensure more than one thread does not start the timeout handler
 # thread at once.
 if self.threads and self._timeout_handler is not None:
 with self._timeout_handler_mutex:
 if not self._timeout_handler_started:
 self._timeout_handler_started = True
 self._timeout_handler.start()

 def apply(self, func, args=(), kwds={}):
 '''
 Equivalent of `func(*args, **kwargs)`.
 '''
 if self._state == RUN:
 return self.apply_async(func, args, kwds).get()

 def starmap(self, func, iterable, chunksize=None):
 '''
 Like `map()` method but the elements of the `iterable` are expected to
 be iterables as well and will be unpacked as arguments. Hence
 `func` and (a, b) becomes func(a, b).
 '''
 if self._state == RUN:
 return self._map_async(func, iterable,
 starmapstar, chunksize).get()

 def starmap_async(self, func, iterable, chunksize=None,
 callback=None, error_callback=None):
 '''
 Asynchronous version of `starmap()` method.
 '''
 if self._state == RUN:
 return self._map_async(func, iterable, starmapstar, chunksize,
 callback, error_callback)

 def map(self, func, iterable, chunksize=None):
 '''
 Apply `func` to each element in `iterable`, collecting the results
 in a list that is returned.
 '''
 if self._state == RUN:
 return self.map_async(func, iterable, chunksize).get()

 def imap(self, func, iterable, chunksize=1, lost_worker_timeout=None):
 '''
 Equivalent of `map()` -- can be MUCH slower than `Pool.map()`.
 '''
 if self._state != RUN:
 return
 lost_worker_timeout = lost_worker_timeout or self.lost_worker_timeout
 if chunksize == 1:
 result = IMapIterator(self._cache,
 lost_worker_timeout=lost_worker_timeout)
 self._taskqueue.put((
 ((TASK, (result._job, i, func, (x,), {}))
 for i, x in enumerate(iterable)),
 result._set_length,
))
 return result
 else:
 assert chunksize > 1
 task_batches = Pool._get_tasks(func, iterable, chunksize)
 result = IMapIterator(self._cache,
 lost_worker_timeout=lost_worker_timeout)
 self._taskqueue.put((
 ((TASK, (result._job, i, mapstar, (x,), {}))
 for i, x in enumerate(task_batches)),
 result._set_length,
))
 return (item for chunk in result for item in chunk)

 def imap_unordered(self, func, iterable, chunksize=1,
 lost_worker_timeout=None):
 '''
 Like `imap()` method but ordering of results is arbitrary.
 '''
 if self._state != RUN:
 return
 lost_worker_timeout = lost_worker_timeout or self.lost_worker_timeout
 if chunksize == 1:
 result = IMapUnorderedIterator(
 self._cache, lost_worker_timeout=lost_worker_timeout,
)
 self._taskqueue.put((
 ((TASK, (result._job, i, func, (x,), {}))
 for i, x in enumerate(iterable)),
 result._set_length,
))
 return result
 else:
 assert chunksize > 1
 task_batches = Pool._get_tasks(func, iterable, chunksize)
 result = IMapUnorderedIterator(
 self._cache, lost_worker_timeout=lost_worker_timeout,
)
 self._taskqueue.put((
 ((TASK, (result._job, i, mapstar, (x,), {}))
 for i, x in enumerate(task_batches)),
 result._set_length,
))
 return (item for chunk in result for item in chunk)

 def apply_async(self, func, args=(), kwds={},
 callback=None, error_callback=None, accept_callback=None,
 timeout_callback=None, waitforslot=None,
 soft_timeout=None, timeout=None, lost_worker_timeout=None,
 callbacks_propagate=(),
 correlation_id=None):
 '''
 Asynchronous equivalent of `apply()` method.

 Callback is called when the functions return value is ready.
 The accept callback is called when the job is accepted to be executed.

 Simplified the flow is like this:

 >>> def apply_async(func, args, kwds, callback, accept_callback):
 ... if accept_callback:
 ... accept_callback()
 ... retval = func(*args, **kwds)
 ... if callback:
 ... callback(retval)

 '''
 if self._state != RUN:
 return
 soft_timeout = soft_timeout or self.soft_timeout
 timeout = timeout or self.timeout
 lost_worker_timeout = lost_worker_timeout or self.lost_worker_timeout
 if soft_timeout and SIG_SOFT_TIMEOUT is None:
 warnings.warn(UserWarning(
 "Soft timeouts are not supported: "
 "on this platform: It does not have the SIGUSR1 signal.",
))
 soft_timeout = None
 if self._state == RUN:
 waitforslot = self.putlocks if waitforslot is None else waitforslot
 if waitforslot and self._putlock is not None:
 self._putlock.acquire()
 result = ApplyResult(
 self._cache, callback, accept_callback, timeout_callback,
 error_callback, soft_timeout, timeout, lost_worker_timeout,
 on_timeout_set=self.on_timeout_set,
 on_timeout_cancel=self.on_timeout_cancel,
 callbacks_propagate=callbacks_propagate,
 send_ack=self.send_ack if self.synack else None,
 correlation_id=correlation_id,
)
 if timeout or soft_timeout:
 # start the timeout handler thread when required.
 self._start_timeout_handler()
 if self.threads:
 self._taskqueue.put(([(TASK, (result._job, None,
 func, args, kwds))], None))
 else:
 self._quick_put((TASK, (result._job, None, func, args, kwds)))
 return result

 def send_ack(self, response, job, i, fd):
 pass

 def terminate_job(self, pid, sig=None):
 proc, _ = self._process_by_pid(pid)
 if proc is not None:
 try:
 _kill(pid, sig or TERM_SIGNAL)
 except OSError as exc:
 if get_errno(exc) != errno.ESRCH:
 raise
 else:
 proc._controlled_termination = True
 proc._job_terminated = True

 def map_async(self, func, iterable, chunksize=None,
 callback=None, error_callback=None):
 '''
 Asynchronous equivalent of `map()` method.
 '''
 return self._map_async(
 func, iterable, mapstar, chunksize, callback, error_callback,
)

 def _map_async(self, func, iterable, mapper, chunksize=None,
 callback=None, error_callback=None):
 '''
 Helper function to implement map, starmap and their async counterparts.
 '''
 if self._state != RUN:
 return
 if not hasattr(iterable, '__len__'):
 iterable = list(iterable)

 if chunksize is None:
 chunksize, extra = divmod(len(iterable), len(self._pool) * 4)
 if extra:
 chunksize += 1
 if len(iterable) == 0:
 chunksize = 0

 task_batches = Pool._get_tasks(func, iterable, chunksize)
 result = MapResult(self._cache, chunksize, len(iterable), callback,
 error_callback=error_callback)
 self._taskqueue.put((((TASK, (result._job, i, mapper, (x,), {}))
 for i, x in enumerate(task_batches)), None))
 return result

 @staticmethod
 def _get_tasks(func, it, size):
 it = iter(it)
 while 1:
 x = tuple(itertools.islice(it, size))
 if not x:
 return
 yield (func, x)

 def __reduce__(self):
 raise NotImplementedError(
 'pool objects cannot be passed between processes or pickled',
)

 def close(self):
 debug('closing pool')
 if self._state == RUN:
 self._state = CLOSE
 if self._putlock:
 self._putlock.clear()
 self._worker_handler.close()
 self._taskqueue.put(None)
 stop_if_not_current(self._worker_handler)

 def terminate(self):
 debug('terminating pool')
 self._state = TERMINATE
 self._worker_handler.terminate()
 self._terminate()

 @staticmethod
 def _stop_task_handler(task_handler):
 stop_if_not_current(task_handler)

 def join(self):
 assert self._state in (CLOSE, TERMINATE)
 debug('joining worker handler')
 stop_if_not_current(self._worker_handler)
 debug('joining task handler')
 self._stop_task_handler(self._task_handler)
 debug('joining result handler')
 stop_if_not_current(self._result_handler)
 debug('result handler joined')
 for i, p in enumerate(self._pool):
 debug('joining worker %s/%s (%r)', i + 1, len(self._pool), p)
 if p._popen is not None: # process started?
 p.join()
 debug('pool join complete')

 def restart(self):
 for e in values(self._poolctrl):
 e.set()

 @staticmethod
 def _help_stuff_finish(inqueue, task_handler, _pool):
 # task_handler may be blocked trying to put items on inqueue
 debug('removing tasks from inqueue until task handler finished')
 inqueue._rlock.acquire()
 while task_handler.is_alive() and inqueue._reader.poll():
 inqueue._reader.recv()
 time.sleep(0)

 @classmethod
 def _set_result_sentinel(cls, outqueue, pool):
 outqueue.put(None)

 @classmethod
 def _terminate_pool(cls, taskqueue, inqueue, outqueue, pool,
 worker_handler, task_handler,
 result_handler, cache, timeout_handler,
 help_stuff_finish_args):

 # this is guaranteed to only be called once
 debug('finalizing pool')

 worker_handler.terminate()

 task_handler.terminate()
 taskqueue.put(None) # sentinel

 debug('helping task handler/workers to finish')
 cls._help_stuff_finish(*help_stuff_finish_args)

 result_handler.terminate()
 cls._set_result_sentinel(outqueue, pool)

 if timeout_handler is not None:
 timeout_handler.terminate()

 # Terminate workers which haven't already finished
 if pool and hasattr(pool[0], 'terminate'):
 debug('terminating workers')
 for p in pool:
 if p._is_alive():
 p.terminate()

 debug('joining task handler')
 cls._stop_task_handler(task_handler)

 debug('joining result handler')
 result_handler.stop()

 if timeout_handler is not None:
 debug('joining timeout handler')
 timeout_handler.stop(TIMEOUT_MAX)

 if pool and hasattr(pool[0], 'terminate'):
 debug('joining pool workers')
 for p in pool:
 if p.is_alive():
 # worker has not yet exited
 debug('cleaning up worker %d', p.pid)
 if p._popen is not None:
 p.join()
 debug('pool workers joined')

 if inqueue:
 inqueue.close()
 if outqueue:
 outqueue.close()

 @property
 def process_sentinels(self):
 return [w._popen.sentinel for w in self._pool]

#
Class whose instances are returned by `Pool.apply_async()`
#

class ApplyResult(object):
 _worker_lost = None
 _write_to = None
 _scheduled_for = None

 def __init__(self, cache, callback, accept_callback=None,
 timeout_callback=None, error_callback=None, soft_timeout=None,
 timeout=None, lost_worker_timeout=LOST_WORKER_TIMEOUT,
 on_timeout_set=None, on_timeout_cancel=None,
 callbacks_propagate=(), send_ack=None,
 correlation_id=None):
 self.correlation_id = correlation_id
 self._mutex = Lock()
 self._event = threading.Event()
 self._job = next(job_counter)
 self._cache = cache
 self._callback = callback
 self._accept_callback = accept_callback
 self._error_callback = error_callback
 self._timeout_callback = timeout_callback
 self._timeout = timeout
 self._soft_timeout = soft_timeout
 self._lost_worker_timeout = lost_worker_timeout
 self._on_timeout_set = on_timeout_set
 self._on_timeout_cancel = on_timeout_cancel
 self._callbacks_propagate = callbacks_propagate or ()
 self._send_ack = send_ack

 self._accepted = False
 self._cancelled = False
 self._worker_pid = None
 self._time_accepted = None
 self._terminated = None
 cache[self._job] = self

 def __repr__(self):
 return '<%s: {id} ack:{ack} ready:{ready}>'.format(
 self.__class__.__name__,
 id=self._job, ack=self._accepted, ready=self.ready(),
)

 def ready(self):
 return self._event.isSet()

 def accepted(self):
 return self._accepted

 def successful(self):
 assert self.ready()
 return self._success

 def _cancel(self):
 """Only works if synack is used."""
 self._cancelled = True

 def discard(self):
 self._cache.pop(self._job, None)

 def terminate(self, signum):
 self._terminated = signum

 def _set_terminated(self, signum=None):
 try:
 raise Terminated(-(signum or 0))
 except Terminated:
 self._set(None, (False, ExceptionInfo()))

 def worker_pids(self):
 return [self._worker_pid] if self._worker_pid else []

 def wait(self, timeout=None):
 self._event.wait(timeout)

 def get(self, timeout=None):
 self.wait(timeout)
 if not self.ready():
 raise TimeoutError
 if self._success:
 return self._value
 else:
 raise self._value.exception

 def safe_apply_callback(self, fun, *args, **kwargs):
 if fun:
 try:
 fun(*args, **kwargs)
 except self._callbacks_propagate:
 raise
 except Exception as exc:
 error('Pool callback raised exception: %r', exc,
 exc_info=1)

 def handle_timeout(self, soft=False):
 if self._timeout_callback is not None:
 self.safe_apply_callback(
 self._timeout_callback, soft=soft,
 timeout=self._soft_timeout if soft else self._timeout,
)

 def _set(self, i, obj):
 with self._mutex:
 if self._on_timeout_cancel:
 self._on_timeout_cancel(self)
 self._success, self._value = obj
 self._event.set()
 if self._accepted:
 # if not accepted yet, then the set message
 # was received before the ack, which means
 # the ack will remove the entry.
 self._cache.pop(self._job, None)

 # apply callbacks last
 if self._callback and self._success:
 self.safe_apply_callback(
 self._callback, self._value)
 if (self._value is not None and
 self._error_callback and not self._success):
 self.safe_apply_callback(
 self._error_callback, self._value)

 def _ack(self, i, time_accepted, pid, synqW_fd):
 with self._mutex:
 if self._cancelled and self._send_ack:
 self._accepted = True
 if synqW_fd:
 return self._send_ack(NACK, pid, self._job, synqW_fd)
 return
 self._accepted = True
 self._time_accepted = time_accepted
 self._worker_pid = pid
 if self.ready():
 # ack received after set()
 self._cache.pop(self._job, None)
 if self._on_timeout_set:
 self._on_timeout_set(self, self._soft_timeout, self._timeout)
 response = ACK
 if self._accept_callback:
 try:
 self._accept_callback(pid, time_accepted)
 except self._propagate_errors:
 response = NACK
 raise
 except Exception:
 response = NACK
 # ignore other errors
 finally:
 if self._send_ack and synqW_fd:
 return self._send_ack(
 response, pid, self._job, synqW_fd
)
 if self._send_ack and synqW_fd:
 self._send_ack(response, pid, self._job, synqW_fd)

#
Class whose instances are returned by `Pool.map_async()`
#

class MapResult(ApplyResult):

 def __init__(self, cache, chunksize, length, callback, error_callback):
 ApplyResult.__init__(
 self, cache, callback, error_callback=error_callback,
)
 self._success = True
 self._length = length
 self._value = [None] * length
 self._accepted = [False] * length
 self._worker_pid = [None] * length
 self._time_accepted = [None] * length
 self._chunksize = chunksize
 if chunksize <= 0:
 self._number_left = 0
 self._event.set()
 del cache[self._job]
 else:
 self._number_left = length // chunksize + bool(length % chunksize)

 def _set(self, i, success_result):
 success, result = success_result
 if success:
 self._value[i * self._chunksize:(i + 1) * self._chunksize] = result
 self._number_left -= 1
 if self._number_left == 0:
 if self._callback:
 self._callback(self._value)
 if self._accepted:
 self._cache.pop(self._job, None)
 self._event.set()
 else:
 self._success = False
 self._value = result
 if self._error_callback:
 self._error_callback(self._value)
 if self._accepted:
 self._cache.pop(self._job, None)
 self._event.set()

 def _ack(self, i, time_accepted, pid, *args):
 start = i * self._chunksize
 stop = min((i + 1) * self._chunksize, self._length)
 for j in range(start, stop):
 self._accepted[j] = True
 self._worker_pid[j] = pid
 self._time_accepted[j] = time_accepted
 if self.ready():
 self._cache.pop(self._job, None)

 def accepted(self):
 return all(self._accepted)

 def worker_pids(self):
 return [pid for pid in self._worker_pid if pid]

#
Class whose instances are returned by `Pool.imap()`
#

class IMapIterator(object):
 _worker_lost = None

 def __init__(self, cache, lost_worker_timeout=LOST_WORKER_TIMEOUT):
 self._cond = threading.Condition(threading.Lock())
 self._job = next(job_counter)
 self._cache = cache
 self._items = deque()
 self._index = 0
 self._length = None
 self._ready = False
 self._unsorted = {}
 self._worker_pids = []
 self._lost_worker_timeout = lost_worker_timeout
 cache[self._job] = self

 def __iter__(self):
 return self

 def next(self, timeout=None):
 with self._cond:
 try:
 item = self._items.popleft()
 except IndexError:
 if self._index == self._length:
 self._ready = True
 raise StopIteration
 self._cond.wait(timeout)
 try:
 item = self._items.popleft()
 except IndexError:
 if self._index == self._length:
 self._ready = True
 raise StopIteration
 raise TimeoutError

 success, value = item
 if success:
 return value
 raise Exception(value)

 __next__ = next # XXX

 def _set(self, i, obj):
 with self._cond:
 if self._index == i:
 self._items.append(obj)
 self._index += 1
 while self._index in self._unsorted:
 obj = self._unsorted.pop(self._index)
 self._items.append(obj)
 self._index += 1
 self._cond.notify()
 else:
 self._unsorted[i] = obj

 if self._index == self._length:
 self._ready = True
 del self._cache[self._job]

 def _set_length(self, length):
 with self._cond:
 self._length = length
 if self._index == self._length:
 self._ready = True
 self._cond.notify()
 del self._cache[self._job]

 def _ack(self, i, time_accepted, pid, *args):
 self._worker_pids.append(pid)

 def ready(self):
 return self._ready

 def worker_pids(self):
 return self._worker_pids

#
Class whose instances are returned by `Pool.imap_unordered()`
#

class IMapUnorderedIterator(IMapIterator):

 def _set(self, i, obj):
 with self._cond:
 self._items.append(obj)
 self._index += 1
 self._cond.notify()
 if self._index == self._length:
 self._ready = True
 del self._cache[self._job]

#
#
#

class ThreadPool(Pool):

 from .dummy import Process as DummyProcess
 Process = DummyProcess

 def __init__(self, processes=None, initializer=None, initargs=()):
 Pool.__init__(self, processes, initializer, initargs)

 def _setup_queues(self):
 self._inqueue = Queue()
 self._outqueue = Queue()
 self._quick_put = self._inqueue.put
 self._quick_get = self._outqueue.get

 def _poll_result(timeout):
 try:
 return True, self._quick_get(timeout=timeout)
 except Empty:
 return False, None
 self._poll_result = _poll_result

 @staticmethod
 def _help_stuff_finish(inqueue, task_handler, pool):
 # put sentinels at head of inqueue to make workers finish
 with inqueue.not_empty:
 inqueue.queue.clear()
 inqueue.queue.extend([None] * len(pool))
 inqueue.not_empty.notify_all()

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery._state

"""Internal state.

This is an internal module containing thread state
like the ``current_app``, and ``current_task``.

This module shouldn't be used directly.
"""

import os
import sys
import threading
import weakref

from celery.local import Proxy
from celery.utils.threads import LocalStack

__all__ = (
 'set_default_app', 'get_current_app', 'get_current_task',
 'get_current_worker_task', 'current_app', 'current_task',
 'connect_on_app_finalize',
)

#: Global default app used when no current app.
default_app = None

#: Function returning the app provided or the default app if none.
#:
#: The environment variable :envvar:`CELERY_TRACE_APP` is used to
#: trace app leaks. When enabled an exception is raised if there
#: is no active app.
app_or_default = None

#: List of all app instances (weakrefs), mustn't be used directly.
_apps = weakref.WeakSet()

#: Global set of functions to call whenever a new app is finalized.
#: Shared tasks, and built-in tasks are created by adding callbacks here.
_on_app_finalizers = set()

_task_join_will_block = False

[docs]def connect_on_app_finalize(callback):
 """Connect callback to be called when any app is finalized."""
 _on_app_finalizers.add(callback)
 return callback

def _announce_app_finalized(app):
 callbacks = set(_on_app_finalizers)
 for callback in callbacks:
 callback(app)

def _set_task_join_will_block(blocks):
 global _task_join_will_block
 _task_join_will_block = blocks

def task_join_will_block():
 return _task_join_will_block

class _TLS(threading.local):
 #: Apps with the :attr:`~celery.app.base.BaseApp.set_as_current` attribute
 #: sets this, so it will always contain the last instantiated app,
 #: and is the default app returned by :func:`app_or_default`.
 current_app = None

_tls = _TLS()

_task_stack = LocalStack()

#: Function used to push a task to the thread local stack
#: keeping track of the currently executing task.
#: You must remember to pop the task after.
push_current_task = _task_stack.push

#: Function used to pop a task from the thread local stack
#: keeping track of the currently executing task.
pop_current_task = _task_stack.pop

[docs]def set_default_app(app):
 """Set default app."""
 global default_app
 default_app = app

def _get_current_app():
 if default_app is None:
 #: creates the global fallback app instance.
 from celery.app.base import Celery
 set_default_app(Celery(
 'default', fixups=[], set_as_current=False,
 loader=os.environ.get('CELERY_LOADER') or 'default',
))
 return _tls.current_app or default_app

def _set_current_app(app):
 _tls.current_app = app

if os.environ.get('C_STRICT_APP'): # pragma: no cover
 def get_current_app():
 """Return the current app."""
 raise RuntimeError('USES CURRENT APP')
elif os.environ.get('C_WARN_APP'): # pragma: no cover
[docs] def get_current_app(): # noqa
 import traceback
 print('-- USES CURRENT_APP', file=sys.stderr) # noqa+
 traceback.print_stack(file=sys.stderr)
 return _get_current_app()

else:
 get_current_app = _get_current_app

[docs]def get_current_task():
 """Currently executing task."""
 return _task_stack.top

[docs]def get_current_worker_task():
 """Currently executing task, that was applied by the worker.

 This is used to differentiate between the actual task
 executed by the worker and any task that was called within
 a task (using ``task.__call__`` or ``task.apply``)
 """
 for task in reversed(_task_stack.stack):
 if not task.request.called_directly:
 return task

#: Proxy to current app.
current_app = Proxy(get_current_app)

#: Proxy to current task.
current_task = Proxy(get_current_task)

def _register_app(app):
 _apps.add(app)

def _deregister_app(app):
 _apps.discard(app)

def _get_active_apps():
 return _apps

def _app_or_default(app=None):
 if app is None:
 return get_current_app()
 return app

def _app_or_default_trace(app=None): # pragma: no cover
 from traceback import print_stack
 try:
 from billiard.process import current_process
 except ImportError:
 current_process = None
 if app is None:
 if getattr(_tls, 'current_app', None):
 print('-- RETURNING TO CURRENT APP --') # noqa+
 print_stack()
 return _tls.current_app
 if not current_process or current_process()._name == 'MainProcess':
 raise Exception('DEFAULT APP')
 print('-- RETURNING TO DEFAULT APP --') # noqa+
 print_stack()
 return default_app
 return app

[docs]def enable_trace():
 """Enable tracing of app instances."""
 global app_or_default
 app_or_default = _app_or_default_trace

[docs]def disable_trace():
 """Disable tracing of app instances."""
 global app_or_default
 app_or_default = _app_or_default

if os.environ.get('CELERY_TRACE_APP'): # pragma: no cover
 enable_trace()
else:
 disable_trace()

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.beat

"""The periodic task scheduler."""

import copy
import errno
import heapq
import os
import shelve
import sys
import time
import traceback
from calendar import timegm
from collections import namedtuple
from functools import total_ordering
from threading import Event, Thread

from billiard import ensure_multiprocessing
from billiard.common import reset_signals
from billiard.context import Process
from kombu.utils.functional import maybe_evaluate, reprcall
from kombu.utils.objects import cached_property

from . import __version__, platforms, signals
from .exceptions import reraise
from .schedules import crontab, maybe_schedule
from .utils.imports import load_extension_class_names, symbol_by_name
from .utils.log import get_logger, iter_open_logger_fds
from .utils.time import humanize_seconds, maybe_make_aware

__all__ = (
 'SchedulingError', 'ScheduleEntry', 'Scheduler',
 'PersistentScheduler', 'Service', 'EmbeddedService',
)

event_t = namedtuple('event_t', ('time', 'priority', 'entry'))

logger = get_logger(__name__)
debug, info, error, warning = (logger.debug, logger.info,
 logger.error, logger.warning)

DEFAULT_MAX_INTERVAL = 300 # 5 minutes

[docs]class SchedulingError(Exception):
 """An error occurred while scheduling a task."""

class BeatLazyFunc:
 """An lazy function declared in 'beat_schedule' and called before sending to worker.

 Example:

 beat_schedule = {
 'test-every-5-minutes': {
 'task': 'test',
 'schedule': 300,
 'kwargs': {
 "current": BeatCallBack(datetime.datetime.now)
 }
 }
 }

 """

 def __init__(self, func, *args, **kwargs):
 self._func = func
 self._func_params = {
 "args": args,
 "kwargs": kwargs
 }

 def __call__(self):
 return self.delay()

 def delay(self):
 return self._func(*self._func_params["args"], **self._func_params["kwargs"])

[docs]@total_ordering
class ScheduleEntry:
 """An entry in the scheduler.

 Arguments:
 name (str): see :attr:`name`.
 schedule (~celery.schedules.schedule): see :attr:`schedule`.
 args (Tuple): see :attr:`args`.
 kwargs (Dict): see :attr:`kwargs`.
 options (Dict): see :attr:`options`.
 last_run_at (~datetime.datetime): see :attr:`last_run_at`.
 total_run_count (int): see :attr:`total_run_count`.
 relative (bool): Is the time relative to when the server starts?
 """

 #: The task name
 name = None

 #: The schedule (:class:`~celery.schedules.schedule`)
 schedule = None

 #: Positional arguments to apply.
 args = None

 #: Keyword arguments to apply.
 kwargs = None

 #: Task execution options.
 options = None

 #: The time and date of when this task was last scheduled.
 last_run_at = None

 #: Total number of times this task has been scheduled.
 total_run_count = 0

 def __init__(self, name=None, task=None, last_run_at=None,
 total_run_count=None, schedule=None, args=(), kwargs=None,
 options=None, relative=False, app=None):
 self.app = app
 self.name = name
 self.task = task
 self.args = args
 self.kwargs = kwargs if kwargs else {}
 self.options = options if options else {}
 self.schedule = maybe_schedule(schedule, relative, app=self.app)
 self.last_run_at = last_run_at or self.default_now()
 self.total_run_count = total_run_count or 0

[docs] def default_now(self):
 return self.schedule.now() if self.schedule else self.app.now()

 _default_now = default_now # compat

 def _next_instance(self, last_run_at=None):
 """Return new instance, with date and count fields updated."""
 return self.__class__(**dict(
 self,
 last_run_at=last_run_at or self.default_now(),
 total_run_count=self.total_run_count + 1,
))
 __next__ = next = _next_instance # for 2to3

 def __reduce__(self):
 return self.__class__, (
 self.name, self.task, self.last_run_at, self.total_run_count,
 self.schedule, self.args, self.kwargs, self.options,
)

[docs] def update(self, other):
 """Update values from another entry.

 Will only update "editable" fields:
 ``task``, ``schedule``, ``args``, ``kwargs``, ``options``.
 """
 self.__dict__.update({
 'task': other.task, 'schedule': other.schedule,
 'args': other.args, 'kwargs': other.kwargs,
 'options': other.options,
 })

[docs] def is_due(self):
 """See :meth:`~celery.schedule.schedule.is_due`."""
 return self.schedule.is_due(self.last_run_at)

 def __iter__(self):
 return iter(vars(self).items())

 def __repr__(self):
 return '<{name}: {0.name} {call} {0.schedule}'.format(
 self,
 call=reprcall(self.task, self.args or (), self.kwargs or {}),
 name=type(self).__name__,
)

 def __lt__(self, other):
 if isinstance(other, ScheduleEntry):
 # How the object is ordered doesn't really matter, as
 # in the scheduler heap, the order is decided by the
 # preceding members of the tuple ``(time, priority, entry)``.
 #
 # If all that's left to order on is the entry then it can
 # just as well be random.
 return id(self) < id(other)
 return NotImplemented

[docs] def editable_fields_equal(self, other):
 for attr in ('task', 'args', 'kwargs', 'options', 'schedule'):
 if getattr(self, attr) != getattr(other, attr):
 return False
 return True

 def __eq__(self, other):
 """Test schedule entries equality.

 Will only compare "editable" fields:
 ``task``, ``schedule``, ``args``, ``kwargs``, ``options``.
 """
 return self.editable_fields_equal(other)

 def __ne__(self, other):
 """Test schedule entries inequality.

 Will only compare "editable" fields:
 ``task``, ``schedule``, ``args``, ``kwargs``, ``options``.
 """
 return not self == other

[docs]class Scheduler:
 """Scheduler for periodic tasks.

 The :program:`celery beat` program may instantiate this class
 multiple times for introspection purposes, but then with the
 ``lazy`` argument set. It's important for subclasses to
 be idempotent when this argument is set.

 Arguments:
 schedule (~celery.schedules.schedule): see :attr:`schedule`.
 max_interval (int): see :attr:`max_interval`.
 lazy (bool): Don't set up the schedule.
 """

 Entry = ScheduleEntry

 #: The schedule dict/shelve.
 schedule = None

 #: Maximum time to sleep between re-checking the schedule.
 max_interval = DEFAULT_MAX_INTERVAL

 #: How often to sync the schedule (3 minutes by default)
 sync_every = 3 * 60

 #: How many tasks can be called before a sync is forced.
 sync_every_tasks = None

 _last_sync = None
 _tasks_since_sync = 0

 logger = logger # compat

 def __init__(self, app, schedule=None, max_interval=None,
 Producer=None, lazy=False, sync_every_tasks=None, **kwargs):
 self.app = app
 self.data = maybe_evaluate({} if schedule is None else schedule)
 self.max_interval = (max_interval or
 app.conf.beat_max_loop_interval or
 self.max_interval)
 self.Producer = Producer or app.amqp.Producer
 self._heap = None
 self.old_schedulers = None
 self.sync_every_tasks = (
 app.conf.beat_sync_every if sync_every_tasks is None
 else sync_every_tasks)
 if not lazy:
 self.setup_schedule()

[docs] def install_default_entries(self, data):
 entries = {}
 if self.app.conf.result_expires and \
 not self.app.backend.supports_autoexpire:
 if 'celery.backend_cleanup' not in data:
 entries['celery.backend_cleanup'] = {
 'task': 'celery.backend_cleanup',
 'schedule': crontab('0', '4', '*'),
 'options': {'expires': 12 * 3600}}
 self.update_from_dict(entries)

[docs] def apply_entry(self, entry, producer=None):
 info('Scheduler: Sending due task %s (%s)', entry.name, entry.task)
 try:
 result = self.apply_async(entry, producer=producer, advance=False)
 except Exception as exc: # pylint: disable=broad-except
 error('Message Error: %s\n%s',
 exc, traceback.format_stack(), exc_info=True)
 else:
 debug('%s sent. id->%s', entry.task, result.id)

[docs] def adjust(self, n, drift=-0.010):
 if n and n > 0:
 return n + drift
 return n

[docs] def is_due(self, entry):
 return entry.is_due()

 def _when(self, entry, next_time_to_run, mktime=timegm):
 """Return a utc timestamp, make sure heapq in currect order."""
 adjust = self.adjust

 as_now = maybe_make_aware(entry.default_now())

 return (mktime(as_now.utctimetuple()) +
 as_now.microsecond / 1e6 +
 (adjust(next_time_to_run) or 0))

[docs] def populate_heap(self, event_t=event_t, heapify=heapq.heapify):
 """Populate the heap with the data contained in the schedule."""
 priority = 5
 self._heap = []
 for entry in self.schedule.values():
 is_due, next_call_delay = entry.is_due()
 self._heap.append(event_t(
 self._when(
 entry,
 0 if is_due else next_call_delay
) or 0,
 priority, entry
))
 heapify(self._heap)

 # pylint disable=redefined-outer-name
[docs] def tick(self, event_t=event_t, min=min, heappop=heapq.heappop,
 heappush=heapq.heappush):
 """Run a tick - one iteration of the scheduler.

 Executes one due task per call.

 Returns:
 float: preferred delay in seconds for next call.
 """
 adjust = self.adjust
 max_interval = self.max_interval

 if (self._heap is None or
 not self.schedules_equal(self.old_schedulers, self.schedule)):
 self.old_schedulers = copy.copy(self.schedule)
 self.populate_heap()

 H = self._heap

 if not H:
 return max_interval

 event = H[0]
 entry = event[2]
 is_due, next_time_to_run = self.is_due(entry)
 if is_due:
 verify = heappop(H)
 if verify is event:
 next_entry = self.reserve(entry)
 self.apply_entry(entry, producer=self.producer)
 heappush(H, event_t(self._when(next_entry, next_time_to_run),
 event[1], next_entry))
 return 0
 else:
 heappush(H, verify)
 return min(verify[0], max_interval)
 return min(adjust(next_time_to_run) or max_interval, max_interval)

[docs] def schedules_equal(self, old_schedules, new_schedules):
 if old_schedules is new_schedules is None:
 return True
 if old_schedules is None or new_schedules is None:
 return False
 if set(old_schedules.keys()) != set(new_schedules.keys()):
 return False
 for name, old_entry in old_schedules.items():
 new_entry = new_schedules.get(name)
 if not new_entry:
 return False
 if new_entry != old_entry:
 return False
 return True

[docs] def should_sync(self):
 return (
 (not self._last_sync or
 (time.monotonic() - self._last_sync) > self.sync_every) or
 (self.sync_every_tasks and
 self._tasks_since_sync >= self.sync_every_tasks)
)

[docs] def reserve(self, entry):
 new_entry = self.schedule[entry.name] = next(entry)
 return new_entry

[docs] def apply_async(self, entry, producer=None, advance=True, **kwargs):
 # Update time-stamps and run counts before we actually execute,
 # so we have that done if an exception is raised (doesn't schedule
 # forever.)
 entry = self.reserve(entry) if advance else entry
 task = self.app.tasks.get(entry.task)

 try:
 entry_args = [v() if isinstance(v, BeatLazyFunc) else v for v in (entry.args or [])]
 entry_kwargs = {k: v() if isinstance(v, BeatLazyFunc) else v for k, v in entry.kwargs.items()}
 if task:
 return task.apply_async(entry_args, entry_kwargs,
 producer=producer,
 **entry.options)
 else:
 return self.send_task(entry.task, entry_args, entry_kwargs,
 producer=producer,
 **entry.options)
 except Exception as exc: # pylint: disable=broad-except
 reraise(SchedulingError, SchedulingError(
 "Couldn't apply scheduled task {0.name}: {exc}".format(
 entry, exc=exc)), sys.exc_info()[2])
 finally:
 self._tasks_since_sync += 1
 if self.should_sync():
 self._do_sync()

[docs] def send_task(self, *args, **kwargs):
 return self.app.send_task(*args, **kwargs)

[docs] def setup_schedule(self):
 self.install_default_entries(self.data)
 self.merge_inplace(self.app.conf.beat_schedule)

 def _do_sync(self):
 try:
 debug('beat: Synchronizing schedule...')
 self.sync()
 finally:
 self._last_sync = time.monotonic()
 self._tasks_since_sync = 0

[docs] def sync(self):
 pass

[docs] def close(self):
 self.sync()

[docs] def add(self, **kwargs):
 entry = self.Entry(app=self.app, **kwargs)
 self.schedule[entry.name] = entry
 return entry

 def _maybe_entry(self, name, entry):
 if isinstance(entry, self.Entry):
 entry.app = self.app
 return entry
 return self.Entry(**dict(entry, name=name, app=self.app))

[docs] def update_from_dict(self, dict_):
 self.schedule.update({
 name: self._maybe_entry(name, entry)
 for name, entry in dict_.items()
 })

[docs] def merge_inplace(self, b):
 schedule = self.schedule
 A, B = set(schedule), set(b)

 # Remove items from disk not in the schedule anymore.
 for key in A ^ B:
 schedule.pop(key, None)

 # Update and add new items in the schedule
 for key in B:
 entry = self.Entry(**dict(b[key], name=key, app=self.app))
 if schedule.get(key):
 schedule[key].update(entry)
 else:
 schedule[key] = entry

 def _ensure_connected(self):
 # callback called for each retry while the connection
 # can't be established.
 def _error_handler(exc, interval):
 error('beat: Connection error: %s. '
 'Trying again in %s seconds...', exc, interval)

 return self.connection.ensure_connection(
 _error_handler, self.app.conf.broker_connection_max_retries
)

[docs] def get_schedule(self):
 return self.data

[docs] def set_schedule(self, schedule):
 self.data = schedule

 schedule = property(get_schedule, set_schedule)

[docs] @cached_property
 def connection(self):
 return self.app.connection_for_write()

[docs] @cached_property
 def producer(self):
 return self.Producer(self._ensure_connected(), auto_declare=False)

 @property
 def info(self):
 return ''

[docs]class PersistentScheduler(Scheduler):
 """Scheduler backed by :mod:`shelve` database."""

 persistence = shelve
 known_suffixes = ('', '.db', '.dat', '.bak', '.dir')

 _store = None

 def __init__(self, *args, **kwargs):
 self.schedule_filename = kwargs.get('schedule_filename')
 Scheduler.__init__(self, *args, **kwargs)

 def _remove_db(self):
 for suffix in self.known_suffixes:
 with platforms.ignore_errno(errno.ENOENT):
 os.remove(self.schedule_filename + suffix)

 def _open_schedule(self):
 return self.persistence.open(self.schedule_filename, writeback=True)

 def _destroy_open_corrupted_schedule(self, exc):
 error('Removing corrupted schedule file %r: %r',
 self.schedule_filename, exc, exc_info=True)
 self._remove_db()
 return self._open_schedule()

[docs] def setup_schedule(self):
 try:
 self._store = self._open_schedule()
 # In some cases there may be different errors from a storage
 # backend for corrupted files. Example - DBPageNotFoundError
 # exception from bsddb. In such case the file will be
 # successfully opened but the error will be raised on first key
 # retrieving.
 self._store.keys()
 except Exception as exc: # pylint: disable=broad-except
 self._store = self._destroy_open_corrupted_schedule(exc)

 self._create_schedule()

 tz = self.app.conf.timezone
 stored_tz = self._store.get('tz')
 if stored_tz is not None and stored_tz != tz:
 warning('Reset: Timezone changed from %r to %r', stored_tz, tz)
 self._store.clear() # Timezone changed, reset db!
 utc = self.app.conf.enable_utc
 stored_utc = self._store.get('utc_enabled')
 if stored_utc is not None and stored_utc != utc:
 choices = {True: 'enabled', False: 'disabled'}
 warning('Reset: UTC changed from %s to %s',
 choices[stored_utc], choices[utc])
 self._store.clear() # UTC setting changed, reset db!
 entries = self._store.setdefault('entries', {})
 self.merge_inplace(self.app.conf.beat_schedule)
 self.install_default_entries(self.schedule)
 self._store.update({
 '__version__': __version__,
 'tz': tz,
 'utc_enabled': utc,
 })
 self.sync()
 debug('Current schedule:\n' + '\n'.join(
 repr(entry) for entry in entries.values()))

 def _create_schedule(self):
 for _ in (1, 2):
 try:
 self._store['entries']
 except KeyError:
 # new schedule db
 try:
 self._store['entries'] = {}
 except KeyError as exc:
 self._store = self._destroy_open_corrupted_schedule(exc)
 continue
 else:
 if '__version__' not in self._store:
 warning('DB Reset: Account for new __version__ field')
 self._store.clear() # remove schedule at 2.2.2 upgrade.
 elif 'tz' not in self._store:
 warning('DB Reset: Account for new tz field')
 self._store.clear() # remove schedule at 3.0.8 upgrade
 elif 'utc_enabled' not in self._store:
 warning('DB Reset: Account for new utc_enabled field')
 self._store.clear() # remove schedule at 3.0.9 upgrade
 break

[docs] def get_schedule(self):
 return self._store['entries']

[docs] def set_schedule(self, schedule):
 self._store['entries'] = schedule

 schedule = property(get_schedule, set_schedule)

[docs] def sync(self):
 if self._store is not None:
 self._store.sync()

[docs] def close(self):
 self.sync()
 self._store.close()

 @property
 def info(self):
 return f' . db -> {self.schedule_filename}'

[docs]class Service:
 """Celery periodic task service."""

 scheduler_cls = PersistentScheduler

 def __init__(self, app, max_interval=None, schedule_filename=None,
 scheduler_cls=None):
 self.app = app
 self.max_interval = (max_interval or
 app.conf.beat_max_loop_interval)
 self.scheduler_cls = scheduler_cls or self.scheduler_cls
 self.schedule_filename = (
 schedule_filename or app.conf.beat_schedule_filename)

 self._is_shutdown = Event()
 self._is_stopped = Event()

 def __reduce__(self):
 return self.__class__, (self.max_interval, self.schedule_filename,
 self.scheduler_cls, self.app)

[docs] def start(self, embedded_process=False):
 info('beat: Starting...')
 debug('beat: Ticking with max interval->%s',
 humanize_seconds(self.scheduler.max_interval))

 signals.beat_init.send(sender=self)
 if embedded_process:
 signals.beat_embedded_init.send(sender=self)
 platforms.set_process_title('celery beat')

 try:
 while not self._is_shutdown.is_set():
 interval = self.scheduler.tick()
 if interval and interval > 0.0:
 debug('beat: Waking up %s.',
 humanize_seconds(interval, prefix='in '))
 time.sleep(interval)
 if self.scheduler.should_sync():
 self.scheduler._do_sync()
 except (KeyboardInterrupt, SystemExit):
 self._is_shutdown.set()
 finally:
 self.sync()

[docs] def sync(self):
 self.scheduler.close()
 self._is_stopped.set()

[docs] def stop(self, wait=False):
 info('beat: Shutting down...')
 self._is_shutdown.set()
 wait and self._is_stopped.wait() # block until shutdown done.

[docs] def get_scheduler(self, lazy=False,
 extension_namespace='celery.beat_schedulers'):
 filename = self.schedule_filename
 aliases = dict(
 load_extension_class_names(extension_namespace) or {})
 return symbol_by_name(self.scheduler_cls, aliases=aliases)(
 app=self.app,
 schedule_filename=filename,
 max_interval=self.max_interval,
 lazy=lazy,
)

[docs] @cached_property
 def scheduler(self):
 return self.get_scheduler()

class _Threaded(Thread):
 """Embedded task scheduler using threading."""

 def __init__(self, app, **kwargs):
 super().__init__()
 self.app = app
 self.service = Service(app, **kwargs)
 self.daemon = True
 self.name = 'Beat'

 def run(self):
 self.app.set_current()
 self.service.start()

 def stop(self):
 self.service.stop(wait=True)

try:
 ensure_multiprocessing()
except NotImplementedError: # pragma: no cover
 _Process = None
else:
 class _Process(Process): # noqa

 def __init__(self, app, **kwargs):
 super().__init__()
 self.app = app
 self.service = Service(app, **kwargs)
 self.name = 'Beat'

 def run(self):
 reset_signals(full=False)
 platforms.close_open_fds([
 sys.__stdin__, sys.__stdout__, sys.__stderr__,
] + list(iter_open_logger_fds()))
 self.app.set_default()
 self.app.set_current()
 self.service.start(embedded_process=True)

 def stop(self):
 self.service.stop()
 self.terminate()

[docs]def EmbeddedService(app, max_interval=None, **kwargs):
 """Return embedded clock service.

 Arguments:
 thread (bool): Run threaded instead of as a separate process.
 Uses :mod:`multiprocessing` by default, if available.
 """
 if kwargs.pop('thread', False) or _Process is None:
 # Need short max interval to be able to stop thread
 # in reasonable time.
 return _Threaded(app, max_interval=1, **kwargs)
 return _Process(app, max_interval=max_interval, **kwargs)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.bootsteps

"""A directed acyclic graph of reusable components."""

from collections import deque
from threading import Event

from kombu.common import ignore_errors
from kombu.utils.encoding import bytes_to_str
from kombu.utils.imports import symbol_by_name

from .utils.graph import DependencyGraph, GraphFormatter
from .utils.imports import instantiate, qualname
from .utils.log import get_logger

try:
 from greenlet import GreenletExit
except ImportError: # pragma: no cover
 IGNORE_ERRORS = ()
else:
 IGNORE_ERRORS = (GreenletExit,)

__all__ = ('Blueprint', 'Step', 'StartStopStep', 'ConsumerStep')

#: States
RUN = 0x1
CLOSE = 0x2
TERMINATE = 0x3

logger = get_logger(__name__)

def _pre(ns, fmt):
 return f'| {ns.alias}: {fmt}'

def _label(s):
 return s.name.rsplit('.', 1)[-1]

class StepFormatter(GraphFormatter):
 """Graph formatter for :class:`Blueprint`."""

 blueprint_prefix = '⧉'
 conditional_prefix = '∘'
 blueprint_scheme = {
 'shape': 'parallelogram',
 'color': 'slategray4',
 'fillcolor': 'slategray3',
 }

 def label(self, step):
 return step and '{}{}'.format(
 self._get_prefix(step),
 bytes_to_str(
 (step.label or _label(step)).encode('utf-8', 'ignore')),
)

 def _get_prefix(self, step):
 if step.last:
 return self.blueprint_prefix
 if step.conditional:
 return self.conditional_prefix
 return ''

 def node(self, obj, **attrs):
 scheme = self.blueprint_scheme if obj.last else self.node_scheme
 return self.draw_node(obj, scheme, attrs)

 def edge(self, a, b, **attrs):
 if a.last:
 attrs.update(arrowhead='none', color='darkseagreen3')
 return self.draw_edge(a, b, self.edge_scheme, attrs)

[docs]class Blueprint:
 """Blueprint containing bootsteps that can be applied to objects.

 Arguments:
 steps Sequence[Union[str, Step]]: List of steps.
 name (str): Set explicit name for this blueprint.
 on_start (Callable): Optional callback applied after blueprint start.
 on_close (Callable): Optional callback applied before blueprint close.
 on_stopped (Callable): Optional callback applied after
 blueprint stopped.
 """

 GraphFormatter = StepFormatter

 name = None
 state = None
 started = 0
 default_steps = set()
 state_to_name = {
 0: 'initializing',
 RUN: 'running',
 CLOSE: 'closing',
 TERMINATE: 'terminating',
 }

 def __init__(self, steps=None, name=None,
 on_start=None, on_close=None, on_stopped=None):
 self.name = name or self.name or qualname(type(self))
 self.types = set(steps or []) | set(self.default_steps)
 self.on_start = on_start
 self.on_close = on_close
 self.on_stopped = on_stopped
 self.shutdown_complete = Event()
 self.steps = {}

[docs] def start(self, parent):
 self.state = RUN
 if self.on_start:
 self.on_start()
 for i, step in enumerate(s for s in parent.steps if s is not None):
 self._debug('Starting %s', step.alias)
 self.started = i + 1
 step.start(parent)
 logger.debug('^-- substep ok')

[docs] def human_state(self):
 return self.state_to_name[self.state or 0]

[docs] def info(self, parent):
 info = {}
 for step in parent.steps:
 info.update(step.info(parent) or {})
 return info

[docs] def close(self, parent):
 if self.on_close:
 self.on_close()
 self.send_all(parent, 'close', 'closing', reverse=False)

[docs] def restart(self, parent, method='stop',
 description='restarting', propagate=False):
 self.send_all(parent, method, description, propagate=propagate)

[docs] def send_all(self, parent, method,
 description=None, reverse=True, propagate=True, args=()):
 description = description or method.replace('_', ' ')
 steps = reversed(parent.steps) if reverse else parent.steps
 for step in steps:
 if step:
 fun = getattr(step, method, None)
 if fun is not None:
 self._debug('%s %s...',
 description.capitalize(), step.alias)
 try:
 fun(parent, *args)
 except Exception as exc: # pylint: disable=broad-except
 if propagate:
 raise
 logger.exception(
 'Error on %s %s: %r', description, step.alias, exc)

[docs] def stop(self, parent, close=True, terminate=False):
 what = 'terminating' if terminate else 'stopping'
 if self.state in (CLOSE, TERMINATE):
 return

 if self.state != RUN or self.started != len(parent.steps):
 # Not fully started, can safely exit.
 self.state = TERMINATE
 self.shutdown_complete.set()
 return
 self.close(parent)
 self.state = CLOSE

 self.restart(
 parent, 'terminate' if terminate else 'stop',
 description=what, propagate=False,
)

 if self.on_stopped:
 self.on_stopped()
 self.state = TERMINATE
 self.shutdown_complete.set()

[docs] def join(self, timeout=None):
 try:
 # Will only get here if running green,
 # makes sure all greenthreads have exited.
 self.shutdown_complete.wait(timeout=timeout)
 except IGNORE_ERRORS:
 pass

[docs] def apply(self, parent, **kwargs):
 """Apply the steps in this blueprint to an object.

 This will apply the ``__init__`` and ``include`` methods
 of each step, with the object as argument::

 step = Step(obj)
 ...
 step.include(obj)

 For :class:`StartStopStep` the services created
 will also be added to the objects ``steps`` attribute.
 """
 self._debug('Preparing bootsteps.')
 order = self.order = []
 steps = self.steps = self.claim_steps()

 self._debug('Building graph...')
 for S in self._finalize_steps(steps):
 step = S(parent, **kwargs)
 steps[step.name] = step
 order.append(step)
 self._debug('New boot order: {%s}',
 ', '.join(s.alias for s in self.order))
 for step in order:
 step.include(parent)
 return self

[docs] def connect_with(self, other):
 self.graph.adjacent.update(other.graph.adjacent)
 self.graph.add_edge(type(other.order[0]), type(self.order[-1]))

 def __getitem__(self, name):
 return self.steps[name]

 def _find_last(self):
 return next((C for C in self.steps.values() if C.last), None)

 def _firstpass(self, steps):
 for step in steps.values():
 step.requires = [symbol_by_name(dep) for dep in step.requires]
 stream = deque(step.requires for step in steps.values())
 while stream:
 for node in stream.popleft():
 node = symbol_by_name(node)
 if node.name not in self.steps:
 steps[node.name] = node
 stream.append(node.requires)

 def _finalize_steps(self, steps):
 last = self._find_last()
 self._firstpass(steps)
 it = ((C, C.requires) for C in steps.values())
 G = self.graph = DependencyGraph(
 it, formatter=self.GraphFormatter(root=last),
)
 if last:
 for obj in G:
 if obj != last:
 G.add_edge(last, obj)
 try:
 return G.topsort()
 except KeyError as exc:
 raise KeyError('unknown bootstep: %s' % exc)

[docs] def claim_steps(self):
 return dict(self.load_step(step) for step in self.types)

[docs] def load_step(self, step):
 step = symbol_by_name(step)
 return step.name, step

 def _debug(self, msg, *args):
 return logger.debug(_pre(self, msg), *args)

 @property
 def alias(self):
 return _label(self)

class StepType(type):
 """Meta-class for steps."""

 name = None
 requires = None

 def __new__(cls, name, bases, attrs):
 module = attrs.get('__module__')
 qname = f'{module}.{name}' if module else name
 attrs.update(
 __qualname__=qname,
 name=attrs.get('name') or qname,
)
 return super().__new__(cls, name, bases, attrs)

 def __str__(cls):
 return cls.name

 def __repr__(cls):
 return 'step:{0.name}{{{0.requires!r}}}'.format(cls)

[docs]class Step(metaclass=StepType):
 """A Bootstep.

 The :meth:`__init__` method is called when the step
 is bound to a parent object, and can as such be used
 to initialize attributes in the parent object at
 parent instantiation-time.
 """

 #: Optional step name, will use ``qualname`` if not specified.
 name = None

 #: Optional short name used for graph outputs and in logs.
 label = None

 #: Set this to true if the step is enabled based on some condition.
 conditional = False

 #: List of other steps that that must be started before this step.
 #: Note that all dependencies must be in the same blueprint.
 requires = ()

 #: This flag is reserved for the workers Consumer,
 #: since it is required to always be started last.
 #: There can only be one object marked last
 #: in every blueprint.
 last = False

 #: This provides the default for :meth:`include_if`.
 enabled = True

 def __init__(self, parent, **kwargs):
 pass

[docs] def include_if(self, parent):
 """Return true if bootstep should be included.

 You can define this as an optional predicate that decides whether
 this step should be created.
 """
 return self.enabled

[docs] def instantiate(self, name, *args, **kwargs):
 return instantiate(name, *args, **kwargs)

 def _should_include(self, parent):
 if self.include_if(parent):
 return True, self.create(parent)
 return False, None

[docs] def include(self, parent):
 return self._should_include(parent)[0]

[docs] def create(self, parent):
 """Create the step."""

 def __repr__(self):
 return f'<step: {self.alias}>'

 @property
 def alias(self):
 return self.label or _label(self)

[docs] def info(self, obj):
 pass

[docs]class StartStopStep(Step):
 """Bootstep that must be started and stopped in order."""

 #: Optional obj created by the :meth:`create` method.
 #: This is used by :class:`StartStopStep` to keep the
 #: original service object.
 obj = None

[docs] def start(self, parent):
 if self.obj:
 return self.obj.start()

[docs] def stop(self, parent):
 if self.obj:
 return self.obj.stop()

[docs] def close(self, parent):
 pass

[docs] def terminate(self, parent):
 if self.obj:
 return getattr(self.obj, 'terminate', self.obj.stop)()

[docs] def include(self, parent):
 inc, ret = self._should_include(parent)
 if inc:
 self.obj = ret
 parent.steps.append(self)
 return inc

[docs]class ConsumerStep(StartStopStep):
 """Bootstep that starts a message consumer."""

 requires = ('celery.worker.consumer:Connection',)
 consumers = None

[docs] def get_consumers(self, channel):
 raise NotImplementedError('missing get_consumers')

[docs] def start(self, c):
 channel = c.connection.channel()
 self.consumers = self.get_consumers(channel)
 for consumer in self.consumers or []:
 consumer.consume()

[docs] def stop(self, c):
 self._close(c, True)

[docs] def shutdown(self, c):
 self._close(c, False)

 def _close(self, c, cancel_consumers=True):
 channels = set()
 for consumer in self.consumers or []:
 if cancel_consumers:
 ignore_errors(c.connection, consumer.cancel)
 if consumer.channel:
 channels.add(consumer.channel)
 for channel in channels:
 ignore_errors(c.connection, channel.close)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.canvas

"""Composing task work-flows.

.. seealso:

 You should import these from :mod:`celery` and not this module.
"""

import itertools
import operator
from collections import deque
from collections.abc import MutableSequence
from copy import deepcopy
from functools import partial as _partial
from functools import reduce
from operator import itemgetter

from kombu.utils.functional import fxrange, reprcall
from kombu.utils.objects import cached_property
from kombu.utils.uuid import uuid
from vine import barrier

from celery._state import current_app
from celery.result import GroupResult, allow_join_result
from celery.utils import abstract
from celery.utils.collections import ChainMap
from celery.utils.functional import _regen
from celery.utils.functional import chunks as _chunks
from celery.utils.functional import (is_list, maybe_list, regen,
 seq_concat_item, seq_concat_seq)
from celery.utils.objects import getitem_property
from celery.utils.text import remove_repeating_from_task, truncate

__all__ = (
 'Signature', 'chain', 'xmap', 'xstarmap', 'chunks',
 'group', 'chord', 'signature', 'maybe_signature',
)

def maybe_unroll_group(group):
 """Unroll group with only one member."""
 # Issue #1656
 try:
 size = len(group.tasks)
 except TypeError:
 try:
 size = group.tasks.__length_hint__()
 except (AttributeError, TypeError):
 return group
 else:
 return list(group.tasks)[0] if size == 1 else group
 else:
 return group.tasks[0] if size == 1 else group

def task_name_from(task):
 return getattr(task, 'name', task)

def _upgrade(fields, sig):
 """Used by custom signatures in .from_dict, to keep common fields."""
 sig.update(chord_size=fields.get('chord_size'))
 return sig

[docs]@abstract.CallableSignature.register
class Signature(dict):
 """Task Signature.

 Class that wraps the arguments and execution options
 for a single task invocation.

 Used as the parts in a :class:`group` and other constructs,
 or to pass tasks around as callbacks while being compatible
 with serializers with a strict type subset.

 Signatures can also be created from tasks:

 - Using the ``.signature()`` method that has the same signature
 as ``Task.apply_async``:

 .. code-block:: pycon

 >>> add.signature(args=(1,), kwargs={'kw': 2}, options={})

 - or the ``.s()`` shortcut that works for star arguments:

 .. code-block:: pycon

 >>> add.s(1, kw=2)

 - the ``.s()`` shortcut does not allow you to specify execution options
 but there's a chaning `.set` method that returns the signature:

 .. code-block:: pycon

 >>> add.s(2, 2).set(countdown=10).set(expires=30).delay()

 Note:
 You should use :func:`~celery.signature` to create new signatures.
 The ``Signature`` class is the type returned by that function and
 should be used for ``isinstance`` checks for signatures.

 See Also:
 :ref:`guide-canvas` for the complete guide.

 Arguments:
 task (Union[Type[celery.app.task.Task], str]): Either a task
 class/instance, or the name of a task.
 args (Tuple): Positional arguments to apply.
 kwargs (Dict): Keyword arguments to apply.
 options (Dict): Additional options to :meth:`Task.apply_async`.

 Note:
 If the first argument is a :class:`dict`, the other
 arguments will be ignored and the values in the dict will be used
 instead::

 >>> s = signature('tasks.add', args=(2, 2))
 >>> signature(s)
 {'task': 'tasks.add', args=(2, 2), kwargs={}, options={}}
 """

 TYPES = {}
 _app = _type = None
 # The following fields must not be changed during freezing/merging because
 # to do so would disrupt completion of parent tasks
 _IMMUTABLE_OPTIONS = {"group_id"}

 @classmethod
 def register_type(cls, name=None):
 def _inner(subclass):
 cls.TYPES[name or subclass.__name__] = subclass
 return subclass

 return _inner

 @classmethod
 def from_dict(cls, d, app=None):
 typ = d.get('subtask_type')
 if typ:
 target_cls = cls.TYPES[typ]
 if target_cls is not cls:
 return target_cls.from_dict(d, app=app)
 return Signature(d, app=app)

 def __init__(self, task=None, args=None, kwargs=None, options=None,
 type=None, subtask_type=None, immutable=False,
 app=None, **ex):
 self._app = app

 if isinstance(task, dict):
 super().__init__(task) # works like dict(d)
 else:
 # Also supports using task class/instance instead of string name.
 try:
 task_name = task.name
 except AttributeError:
 task_name = task
 else:
 self._type = task

 super().__init__(
 task=task_name, args=tuple(args or ()),
 kwargs=kwargs or {},
 options=dict(options or {}, **ex),
 subtask_type=subtask_type,
 immutable=immutable,
 chord_size=None,
)

 def __call__(self, *partial_args, **partial_kwargs):
 """Call the task directly (in the current process)."""
 args, kwargs, _ = self._merge(partial_args, partial_kwargs, None)
 return self.type(*args, **kwargs)

 def delay(self, *partial_args, **partial_kwargs):
 """Shortcut to :meth:`apply_async` using star arguments."""
 return self.apply_async(partial_args, partial_kwargs)

 def apply(self, args=None, kwargs=None, **options):
 """Call task locally.

 Same as :meth:`apply_async` but executed the task inline instead
 of sending a task message.
 """
 args = args if args else ()
 kwargs = kwargs if kwargs else {}
 # Extra options set to None are dismissed
 options = {k: v for k, v in options.items() if v is not None}
 # For callbacks: extra args are prepended to the stored args.
 args, kwargs, options = self._merge(args, kwargs, options)
 return self.type.apply(args, kwargs, **options)

 def apply_async(self, args=None, kwargs=None, route_name=None, **options):
 """Apply this task asynchronously.

 Arguments:
 args (Tuple): Partial args to be prepended to the existing args.
 kwargs (Dict): Partial kwargs to be merged with existing kwargs.
 options (Dict): Partial options to be merged
 with existing options.

 Returns:
 ~@AsyncResult: promise of future evaluation.

 See also:
 :meth:`~@Task.apply_async` and the :ref:`guide-calling` guide.
 """
 args = args if args else ()
 kwargs = kwargs if kwargs else {}
 # Extra options set to None are dismissed
 options = {k: v for k, v in options.items() if v is not None}
 try:
 _apply = self._apply_async
 except IndexError: # pragma: no cover
 # no tasks for chain, etc to find type
 return
 # For callbacks: extra args are prepended to the stored args.
 if args or kwargs or options:
 args, kwargs, options = self._merge(args, kwargs, options)
 else:
 args, kwargs, options = self.args, self.kwargs, self.options
 # pylint: disable=too-many-function-args
 # Borks on this, as it's a property
 return _apply(args, kwargs, **options)

 def _merge(self, args=None, kwargs=None, options=None, force=False):
 args = args if args else ()
 kwargs = kwargs if kwargs else {}
 if options is not None:
 # We build a new options dictionary where values in `options`
 # override values in `self.options` except for keys which are
 # noted as being immutable (unrelated to signature immutability)
 # implying that allowing their value to change would stall tasks
 new_options = dict(self.options, **{
 k: v for k, v in options.items()
 if k not in self._IMMUTABLE_OPTIONS or k not in self.options
 })
 else:
 new_options = self.options
 if self.immutable and not force:
 return (self.args, self.kwargs, new_options)
 return (tuple(args) + tuple(self.args) if args else self.args,
 dict(self.kwargs, **kwargs) if kwargs else self.kwargs,
 new_options)

 def clone(self, args=None, kwargs=None, **opts):
 """Create a copy of this signature.

 Arguments:
 args (Tuple): Partial args to be prepended to the existing args.
 kwargs (Dict): Partial kwargs to be merged with existing kwargs.
 options (Dict): Partial options to be merged with
 existing options.
 """
 args = args if args else ()
 kwargs = kwargs if kwargs else {}
 # need to deepcopy options so origins links etc. is not modified.
 if args or kwargs or opts:
 args, kwargs, opts = self._merge(args, kwargs, opts)
 else:
 args, kwargs, opts = self.args, self.kwargs, self.options
 signature = Signature.from_dict({'task': self.task,
 'args': tuple(args),
 'kwargs': kwargs,
 'options': deepcopy(opts),
 'subtask_type': self.subtask_type,
 'chord_size': self.chord_size,
 'immutable': self.immutable},
 app=self._app)
 signature._type = self._type
 return signature

 partial = clone

 def freeze(self, _id=None, group_id=None, chord=None,
 root_id=None, parent_id=None, group_index=None):
 """Finalize the signature by adding a concrete task id.

 The task won't be called and you shouldn't call the signature
 twice after freezing it as that'll result in two task messages
 using the same task id.

 Returns:
 ~@AsyncResult: promise of future evaluation.
 """
 # pylint: disable=redefined-outer-name
 # XXX chord is also a class in outer scope.
 opts = self.options
 try:
 tid = opts['task_id']
 except KeyError:
 tid = opts['task_id'] = _id or uuid()
 if root_id:
 opts['root_id'] = root_id
 if parent_id:
 opts['parent_id'] = parent_id
 if 'reply_to' not in opts:
 opts['reply_to'] = self.app.oid
 if group_id and "group_id" not in opts:
 opts['group_id'] = group_id
 if chord:
 opts['chord'] = chord
 if group_index is not None:
 opts['group_index'] = group_index
 # pylint: disable=too-many-function-args
 # Borks on this, as it's a property.
 return self.AsyncResult(tid)

 _freeze = freeze

 def replace(self, args=None, kwargs=None, options=None):
 """Replace the args, kwargs or options set for this signature.

 These are only replaced if the argument for the section is
 not :const:`None`.
 """
 signature = self.clone()
 if args is not None:
 signature.args = args
 if kwargs is not None:
 signature.kwargs = kwargs
 if options is not None:
 signature.options = options
 return signature

 def set(self, immutable=None, **options):
 """Set arbitrary execution options (same as ``.options.update(…)``).

 Returns:
 Signature: This is a chaining method call
 (i.e., it will return ``self``).
 """
 if immutable is not None:
 self.set_immutable(immutable)
 self.options.update(options)
 return self

 def set_immutable(self, immutable):
 self.immutable = immutable

 def _with_list_option(self, key):
 items = self.options.setdefault(key, [])
 if not isinstance(items, MutableSequence):
 items = self.options[key] = [items]
 return items

 def append_to_list_option(self, key, value):
 items = self._with_list_option(key)
 if value not in items:
 items.append(value)
 return value

 def extend_list_option(self, key, value):
 items = self._with_list_option(key)
 items.extend(maybe_list(value))

 def link(self, callback):
 """Add callback task to be applied if this task succeeds.

 Returns:
 Signature: the argument passed, for chaining
 or use with :func:`~functools.reduce`.
 """
 return self.append_to_list_option('link', callback)

 def link_error(self, errback):
 """Add callback task to be applied on error in task execution.

 Returns:
 Signature: the argument passed, for chaining
 or use with :func:`~functools.reduce`.
 """
 return self.append_to_list_option('link_error', errback)

 def on_error(self, errback):
 """Version of :meth:`link_error` that supports chaining.

 on_error chains the original signature, not the errback so::

 >>> add.s(2, 2).on_error(errback.s()).delay()

 calls the ``add`` task, not the ``errback`` task, but the
 reverse is true for :meth:`link_error`.
 """
 self.link_error(errback)
 return self

 def flatten_links(self):
 """Return a recursive list of dependencies.

 "unchain" if you will, but with links intact.
 """
 return list(itertools.chain.from_iterable(itertools.chain(
 [[self]],
 (link.flatten_links()
 for link in maybe_list(self.options.get('link')) or [])
)))

 def __or__(self, other):
 # These could be implemented in each individual class,
 # I'm sure, but for now we have this.
 if isinstance(self, group):
 # group() | task -> chord
 return chord(self, body=other, app=self._app)
 elif isinstance(other, group):
 # unroll group with one member
 other = maybe_unroll_group(other)
 if isinstance(self, _chain):
 # chain | group() -> chain
 tasks = self.unchain_tasks()
 if not tasks:
 # If the chain is empty, return the group
 return other
 return _chain(seq_concat_item(
 tasks, other), app=self._app)
 # task | group() -> chain
 return _chain(self, other, app=self.app)

 if not isinstance(self, _chain) and isinstance(other, _chain):
 # task | chain -> chain
 return _chain(seq_concat_seq(
 (self,), other.unchain_tasks()), app=self._app)
 elif isinstance(other, _chain):
 # chain | chain -> chain
 return _chain(seq_concat_seq(
 self.unchain_tasks(), other.unchain_tasks()), app=self._app)
 elif isinstance(self, chord):
 # chord | task -> attach to body
 sig = self.clone()
 sig.body = sig.body | other
 return sig
 elif isinstance(other, Signature):
 if isinstance(self, _chain):
 if self.tasks and isinstance(self.tasks[-1], group):
 # CHAIN [last item is group] | TASK -> chord
 sig = self.clone()
 sig.tasks[-1] = chord(
 sig.tasks[-1], other, app=self._app)
 return sig
 elif self.tasks and isinstance(self.tasks[-1], chord):
 # CHAIN [last item is chord] -> chain with chord body.
 sig = self.clone()
 sig.tasks[-1].body = sig.tasks[-1].body | other
 return sig
 else:
 # chain | task -> chain
 return _chain(seq_concat_item(
 self.unchain_tasks(), other), app=self._app)
 # task | task -> chain
 return _chain(self, other, app=self._app)
 return NotImplemented

 def __ior__(self, other):
 # Python 3.9 introduces | as the merge operator for dicts.
 # We override the in-place version of that operator
 # so that canvases continue to work as they did before.
 return self.__or__(other)

 def election(self):
 type = self.type
 app = type.app
 tid = self.options.get('task_id') or uuid()

 with app.producer_or_acquire(None) as producer:
 props = type.backend.on_task_call(producer, tid)
 app.control.election(tid, 'task',
 self.clone(task_id=tid, **props),
 connection=producer.connection)
 return type.AsyncResult(tid)

 def reprcall(self, *args, **kwargs):
 args, kwargs, _ = self._merge(args, kwargs, {}, force=True)
 return reprcall(self['task'], args, kwargs)

 def __deepcopy__(self, memo):
 memo[id(self)] = self
 return dict(self)

 def __invert__(self):
 return self.apply_async().get()

 def __reduce__(self):
 # for serialization, the task type is lazily loaded,
 # and not stored in the dict itself.
 return signature, (dict(self),)

 def __json__(self):
 return dict(self)

 def __repr__(self):
 return self.reprcall()

 def items(self):
 for k, v in dict.items(self):
 yield k.decode() if isinstance(k, bytes) else k, v

 @property
 def name(self):
 # for duck typing compatibility with Task.name
 return self.task

 @cached_property
 def type(self):
 return self._type or self.app.tasks[self['task']]

 @cached_property
 def app(self):
 return self._app or current_app

 @cached_property
 def AsyncResult(self):
 try:
 return self.type.AsyncResult
 except KeyError: # task not registered
 return self.app.AsyncResult

 @cached_property
 def _apply_async(self):
 try:
 return self.type.apply_async
 except KeyError:
 return _partial(self.app.send_task, self['task'])

 id = getitem_property('options.task_id', 'Task UUID')
 parent_id = getitem_property('options.parent_id', 'Task parent UUID.')
 root_id = getitem_property('options.root_id', 'Task root UUID.')
 task = getitem_property('task', 'Name of task.')
 args = getitem_property('args', 'Positional arguments to task.')
 kwargs = getitem_property('kwargs', 'Keyword arguments to task.')
 options = getitem_property('options', 'Task execution options.')
 subtask_type = getitem_property('subtask_type', 'Type of signature')
 chord_size = getitem_property(
 'chord_size', 'Size of chord (if applicable)')
 immutable = getitem_property(
 'immutable', 'Flag set if no longer accepts new arguments')

def _prepare_chain_from_options(options, tasks, use_link):
 # When we publish groups we reuse the same options dictionary for all of
 # the tasks in the group. See:
 # https://github.com/celery/celery/blob/fb37cb0b8/celery/canvas.py#L1022.
 # Issue #5354 reported that the following type of canvases
 # causes a Celery worker to hang:
 # group(
 # add.s(1, 1),
 # add.s(1, 1)
 #) | tsum.s() | add.s(1) | group(add.s(1), add.s(1))
 # The resolution of #5354 in PR #5681 was to only set the `chain` key
 # in the options dictionary if it is not present.
 # Otherwise we extend the existing list of tasks in the chain with the new
 # tasks: options['chain'].extend(chain_).
 # Before PR #5681 we overrode the `chain` key in each iteration
 # of the loop which applies all the tasks in the group:
 # options['chain'] = tasks if not use_link else None
 # This caused Celery to execute chains correctly in most cases since
 # in each iteration the `chain` key would reset itself to a new value
 # and the side effect of mutating the key did not propagate
 # to the next task in the group.
 # Since we now mutated the `chain` key, a *list* which is passed
 # by *reference*, the next task in the group will extend the list
 # of tasks in the chain instead of setting a new one from the chain_
 # variable above.
 # This causes Celery to execute a chain, even though there might not be
 # one to begin with. Alternatively, it causes Celery to execute more tasks
 # that were previously present in the previous task in the group.
 # The solution is to be careful and never mutate the options dictionary
 # to begin with.
 # Here is an example of a canvas which triggers this issue:
 # add.s(5, 6) | group((add.s(1) | add.s(2), add.s(3))).
 # The expected result is [14, 14]. However, when we extend the `chain`
 # key the `add.s(3)` task erroneously has `add.s(2)` in its chain since
 # it was previously applied to `add.s(1)`.
 # Without being careful not to mutate the options dictionary, the result
 # in this case is [16, 14].
 # To avoid deep-copying the entire options dictionary every single time we
 # run a chain we use a ChainMap and ensure that we never mutate
 # the original `chain` key, hence we use list_a + list_b to create a new
 # list.
 if use_link:
 return ChainMap({'chain': None}, options)
 elif 'chain' not in options:
 return ChainMap({'chain': tasks}, options)
 elif tasks is not None:
 # chain option may already be set, resulting in
 # "multiple values for keyword argument 'chain'" error.
 # Issue #3379.
 # If a chain already exists, we need to extend it with the next
 # tasks in the chain.
 # Issue #5354.
 # WARNING: Be careful not to mutate `options['chain']`.
 return ChainMap({'chain': options['chain'] + tasks},
 options)

@Signature.register_type(name='chain')
class _chain(Signature):
 tasks = getitem_property('kwargs.tasks', 'Tasks in chain.')

 @classmethod
 def from_dict(cls, d, app=None):
 tasks = d['kwargs']['tasks']
 if tasks:
 if isinstance(tasks, tuple): # aaaargh
 tasks = d['kwargs']['tasks'] = list(tasks)
 tasks = [maybe_signature(task, app=app) for task in tasks]
 return _upgrade(d, _chain(tasks, app=app, **d['options']))

 def __init__(self, *tasks, **options):
 tasks = (regen(tasks[0]) if len(tasks) == 1 and is_list(tasks[0])
 else tasks)
 Signature.__init__(
 self, 'celery.chain', (), {'tasks': tasks}, **options
)
 self._use_link = options.pop('use_link', None)
 self.subtask_type = 'chain'
 self._frozen = None

 def __call__(self, *args, **kwargs):
 if self.tasks:
 return self.apply_async(args, kwargs)

 def clone(self, *args, **kwargs):
 to_signature = maybe_signature
 signature = Signature.clone(self, *args, **kwargs)
 signature.kwargs['tasks'] = [
 to_signature(sig, app=self._app, clone=True)
 for sig in signature.kwargs['tasks']
]
 return signature

 def unchain_tasks(self):
 # Clone chain's tasks assigning signatures from link_error
 # to each task
 tasks = [t.clone() for t in self.tasks]
 for sig in self.options.get('link_error', []):
 for task in tasks:
 task.link_error(sig)
 return tasks

 def apply_async(self, args=None, kwargs=None, **options):
 # python is best at unpacking kwargs, so .run is here to do that.
 args = args if args else ()
 kwargs = kwargs if kwargs else []
 app = self.app
 if app.conf.task_always_eager:
 with allow_join_result():
 return self.apply(args, kwargs, **options)
 return self.run(args, kwargs, app=app, **(
 dict(self.options, **options) if options else self.options))

 def run(self, args=None, kwargs=None, group_id=None, chord=None,
 task_id=None, link=None, link_error=None, publisher=None,
 producer=None, root_id=None, parent_id=None, app=None, **options):
 # pylint: disable=redefined-outer-name
 # XXX chord is also a class in outer scope.
 args = args if args else ()
 kwargs = kwargs if kwargs else []
 app = app or self.app
 use_link = self._use_link
 if use_link is None and app.conf.task_protocol == 1:
 use_link = True
 args = (tuple(args) + tuple(self.args)
 if args and not self.immutable else self.args)

 tasks, results_from_prepare = self.prepare_steps(
 args, kwargs, self.tasks, root_id, parent_id, link_error, app,
 task_id, group_id, chord,
)

 if results_from_prepare:
 if link:
 tasks[0].extend_list_option('link', link)
 first_task = tasks.pop()
 options = _prepare_chain_from_options(options, tasks, use_link)

 result_from_apply = first_task.apply_async(**options)
 # If we only have a single task, it may be important that we pass
 # the real result object rather than the one obtained via freezing.
 # e.g. For `GroupResult`s, we need to pass back the result object
 # which will actually have its promise fulfilled by the subtasks,
 # something that will never occur for the frozen result.
 if not tasks:
 return result_from_apply
 else:
 return results_from_prepare[0]

 def freeze(self, _id=None, group_id=None, chord=None,
 root_id=None, parent_id=None, group_index=None):
 # pylint: disable=redefined-outer-name
 # XXX chord is also a class in outer scope.
 _, results = self._frozen = self.prepare_steps(
 self.args, self.kwargs, self.tasks, root_id, parent_id, None,
 self.app, _id, group_id, chord, clone=False,
 group_index=group_index,
)
 return results[0]

 def prepare_steps(self, args, kwargs, tasks,
 root_id=None, parent_id=None, link_error=None, app=None,
 last_task_id=None, group_id=None, chord_body=None,
 clone=True, from_dict=Signature.from_dict,
 group_index=None):
 app = app or self.app
 # use chain message field for protocol 2 and later.
 # this avoids pickle blowing the stack on the recursion
 # required by linking task together in a tree structure.
 # (why is pickle using recursion? or better yet why cannot python
 # do tail call optimization making recursion actually useful?)
 use_link = self._use_link
 if use_link is None and app.conf.task_protocol == 1:
 use_link = True
 steps = deque(tasks)

 steps_pop = steps.pop
 steps_extend = steps.extend

 prev_task = None
 prev_res = None
 tasks, results = [], []
 i = 0
 # NOTE: We are doing this in reverse order.
 # The result is a list of tasks in reverse order, that is
 # passed as the ``chain`` message field.
 # As it's reversed the worker can just do ``chain.pop()`` to
 # get the next task in the chain.
 while steps:
 task = steps_pop()
 is_first_task, is_last_task = not steps, not i

 if not isinstance(task, abstract.CallableSignature):
 task = from_dict(task, app=app)
 if isinstance(task, group):
 task = maybe_unroll_group(task)

 # first task gets partial args from chain
 if clone:
 if is_first_task:
 task = task.clone(args, kwargs)
 else:
 task = task.clone()
 elif is_first_task:
 task.args = tuple(args) + tuple(task.args)

 if isinstance(task, _chain):
 # splice the chain
 steps_extend(task.tasks)
 continue

 if isinstance(task, group) and prev_task:
 # automatically upgrade group(...) | s to chord(group, s)
 # for chords we freeze by pretending it's a normal
 # signature instead of a group.
 tasks.pop()
 results.pop()
 try:
 task = chord(
 task, body=prev_task,
 task_id=prev_res.task_id, root_id=root_id, app=app,
)
 except AttributeError:
 # A GroupResult does not have a task_id since it consists
 # of multiple tasks.
 # We therefore, have to construct the chord without it.
 # Issues #5467, #3585.
 task = chord(
 task, body=prev_task,
 root_id=root_id, app=app,
)

 if is_last_task:
 # chain(task_id=id) means task id is set for the last task
 # in the chain. If the chord is part of a chord/group
 # then that chord/group must synchronize based on the
 # last task in the chain, so we only set the group_id and
 # chord callback for the last task.
 res = task.freeze(
 last_task_id,
 root_id=root_id, group_id=group_id, chord=chord_body,
 group_index=group_index,
)
 else:
 res = task.freeze(root_id=root_id)

 i += 1

 if prev_task:
 if use_link:
 # link previous task to this task.
 task.link(prev_task)

 if prev_res and not prev_res.parent:
 prev_res.parent = res

 if link_error:
 for errback in maybe_list(link_error):
 task.link_error(errback)

 tasks.append(task)
 results.append(res)

 prev_task, prev_res = task, res
 if isinstance(task, chord):
 app.backend.ensure_chords_allowed()
 # If the task is a chord, and the body is a chain
 # the chain has already been prepared, and res is
 # set to the last task in the callback chain.

 # We need to change that so that it points to the
 # group result object.
 node = res
 while node.parent:
 node = node.parent
 prev_res = node
 return tasks, results

 def apply(self, args=None, kwargs=None, **options):
 args = args if args else ()
 kwargs = kwargs if kwargs else {}
 last, (fargs, fkwargs) = None, (args, kwargs)
 for task in self.tasks:
 res = task.clone(fargs, fkwargs).apply(
 last and (last.get(),), **dict(self.options, **options))
 res.parent, last, (fargs, fkwargs) = last, res, (None, None)
 return last

 @property
 def app(self):
 app = self._app
 if app is None:
 try:
 app = self.tasks[0]._app
 except LookupError:
 pass
 return app or current_app

 def __repr__(self):
 if not self.tasks:
 return f'<{type(self).__name__}@{id(self):#x}: empty>'
 return remove_repeating_from_task(
 self.tasks[0]['task'],
 ' | '.join(repr(t) for t in self.tasks))

[docs]class chain(_chain):
 """Chain tasks together.

 Each tasks follows one another,
 by being applied as a callback of the previous task.

 Note:
 If called with only one argument, then that argument must
 be an iterable of tasks to chain: this allows us
 to use generator expressions.

 Example:
 This is effectively :math:`((2 + 2) + 4)`:

 .. code-block:: pycon

 >>> res = chain(add.s(2, 2), add.s(4))()
 >>> res.get()
 8

 Calling a chain will return the result of the last task in the chain.
 You can get to the other tasks by following the ``result.parent``'s:

 .. code-block:: pycon

 >>> res.parent.get()
 4

 Using a generator expression:

 .. code-block:: pycon

 >>> lazy_chain = chain(add.s(i) for i in range(10))
 >>> res = lazy_chain(3)

 Arguments:
 *tasks (Signature): List of task signatures to chain.
 If only one argument is passed and that argument is
 an iterable, then that'll be used as the list of signatures
 to chain instead. This means that you can use a generator
 expression.

 Returns:
 ~celery.chain: A lazy signature that can be called to apply the first
 task in the chain. When that task succeeds the next task in the
 chain is applied, and so on.
 """

 # could be function, but must be able to reference as :class:`chain`.
 def __new__(cls, *tasks, **kwargs):
 # This forces `chain(X, Y, Z)` to work the same way as `X | Y | Z`
 if not kwargs and tasks:
 if len(tasks) != 1 or is_list(tasks[0]):
 tasks = tasks[0] if len(tasks) == 1 else tasks
 # if is_list(tasks) and len(tasks) == 1:
 # return super(chain, cls).__new__(cls, tasks, **kwargs)
 return reduce(operator.or_, tasks, chain())
 return super().__new__(cls, *tasks, **kwargs)

class _basemap(Signature):
 _task_name = None
 _unpack_args = itemgetter('task', 'it')

 @classmethod
 def from_dict(cls, d, app=None):
 return _upgrade(
 d, cls(*cls._unpack_args(d['kwargs']), app=app, **d['options']),
)

 def __init__(self, task, it, **options):
 Signature.__init__(
 self, self._task_name, (),
 {'task': task, 'it': regen(it)}, immutable=True, **options
)

 def apply_async(self, args=None, kwargs=None, **opts):
 # need to evaluate generators
 args = args if args else ()
 kwargs = kwargs if kwargs else {}
 task, it = self._unpack_args(self.kwargs)
 return self.type.apply_async(
 (), {'task': task, 'it': list(it)},
 route_name=task_name_from(self.kwargs.get('task')), **opts
)

@Signature.register_type()
class xmap(_basemap):
 """Map operation for tasks.

 Note:
 Tasks executed sequentially in process, this is not a
 parallel operation like :class:`group`.
 """

 _task_name = 'celery.map'

 def __repr__(self):
 task, it = self._unpack_args(self.kwargs)
 return f'[{task.task}(x) for x in {truncate(repr(it), 100)}]'

@Signature.register_type()
class xstarmap(_basemap):
 """Map operation for tasks, using star arguments."""

 _task_name = 'celery.starmap'

 def __repr__(self):
 task, it = self._unpack_args(self.kwargs)
 return f'[{task.task}(*x) for x in {truncate(repr(it), 100)}]'

@Signature.register_type()
class chunks(Signature):
 """Partition of tasks into chunks of size n."""

 _unpack_args = itemgetter('task', 'it', 'n')

 @classmethod
 def from_dict(cls, d, app=None):
 return _upgrade(
 d, chunks(*cls._unpack_args(
 d['kwargs']), app=app, **d['options']),
)

 def __init__(self, task, it, n, **options):
 Signature.__init__(
 self, 'celery.chunks', (),
 {'task': task, 'it': regen(it), 'n': n},
 immutable=True, **options
)

 def __call__(self, **options):
 return self.apply_async(**options)

 def apply_async(self, args=None, kwargs=None, **opts):
 args = args if args else ()
 kwargs = kwargs if kwargs else {}
 return self.group().apply_async(
 args, kwargs,
 route_name=task_name_from(self.kwargs.get('task')), **opts
)

 def group(self):
 # need to evaluate generators
 task, it, n = self._unpack_args(self.kwargs)
 return group((xstarmap(task, part, app=self._app)
 for part in _chunks(iter(it), n)),
 app=self._app)

 @classmethod
 def apply_chunks(cls, task, it, n, app=None):
 return cls(task, it, n, app=app)()

def _maybe_group(tasks, app):
 if isinstance(tasks, dict):
 tasks = signature(tasks, app=app)

 if isinstance(tasks, (group, _chain)):
 tasks = tasks.tasks
 elif isinstance(tasks, abstract.CallableSignature):
 tasks = [tasks]
 else:
 tasks = [signature(t, app=app) for t in tasks]
 return tasks

[docs]@Signature.register_type()
class group(Signature):
 """Creates a group of tasks to be executed in parallel.

 A group is lazy so you must call it to take action and evaluate
 the group.

 Note:
 If only one argument is passed, and that argument is an iterable
 then that'll be used as the list of tasks instead: this
 allows us to use ``group`` with generator expressions.

 Example:
 >>> lazy_group = group([add.s(2, 2), add.s(4, 4)])
 >>> promise = lazy_group() # <-- evaluate: returns lazy result.
 >>> promise.get() # <-- will wait for the task to return
 [4, 8]

 Arguments:
 *tasks (List[Signature]): A list of signatures that this group will
 call. If there's only one argument, and that argument is an
 iterable, then that'll define the list of signatures instead.
 **options (Any): Execution options applied to all tasks
 in the group.

 Returns:
 ~celery.group: signature that when called will then call all of the
 tasks in the group (and return a :class:`GroupResult` instance
 that can be used to inspect the state of the group).
 """

 tasks = getitem_property('kwargs.tasks', 'Tasks in group.')

 @classmethod
 def from_dict(cls, d, app=None):
 # We need to mutate the `kwargs` element in place to avoid confusing
 # `freeze()` implementations which end up here and expect to be able to
 # access elements from that dictionary later and refer to objects
 # canonicalized here
 orig_tasks = d["kwargs"]["tasks"]
 d["kwargs"]["tasks"] = rebuilt_tasks = type(orig_tasks)((
 maybe_signature(task, app=app) for task in orig_tasks
))
 return _upgrade(
 d, group(rebuilt_tasks, app=app, **d['options']),
)

 def __init__(self, *tasks, **options):
 if len(tasks) == 1:
 tasks = tasks[0]
 if isinstance(tasks, group):
 tasks = tasks.tasks
 if isinstance(tasks, abstract.CallableSignature):
 tasks = [tasks.clone()]
 if not isinstance(tasks, _regen):
 tasks = regen(tasks)
 Signature.__init__(
 self, 'celery.group', (), {'tasks': tasks}, **options
)
 self.subtask_type = 'group'

 def __call__(self, *partial_args, **options):
 return self.apply_async(partial_args, **options)

 def skew(self, start=1.0, stop=None, step=1.0):
 it = fxrange(start, stop, step, repeatlast=True)
 for task in self.tasks:
 task.set(countdown=next(it))
 return self

 def apply_async(self, args=None, kwargs=None, add_to_parent=True,
 producer=None, link=None, link_error=None, **options):
 args = args if args else ()
 if link is not None:
 raise TypeError('Cannot add link to group: use a chord')
 if link_error is not None:
 raise TypeError(
 'Cannot add link to group: do that on individual tasks')
 app = self.app
 if app.conf.task_always_eager:
 return self.apply(args, kwargs, **options)
 if not self.tasks:
 return self.freeze()

 options, group_id, root_id = self._freeze_gid(options)
 tasks = self._prepared(self.tasks, [], group_id, root_id, app)
 p = barrier()
 results = list(self._apply_tasks(tasks, producer, app, p,
 args=args, kwargs=kwargs, **options))
 result = self.app.GroupResult(group_id, results, ready_barrier=p)
 p.finalize()

 # - Special case of group(A.s() | group(B.s(), C.s()))
 # That is, group with single item that's a chain but the
 # last task in that chain is a group.
 #
 # We cannot actually support arbitrary GroupResults in chains,
 # but this special case we can.
 if len(result) == 1 and isinstance(result[0], GroupResult):
 result = result[0]

 parent_task = app.current_worker_task
 if add_to_parent and parent_task:
 parent_task.add_trail(result)
 return result

 def apply(self, args=None, kwargs=None, **options):
 args = args if args else ()
 kwargs = kwargs if kwargs else {}
 app = self.app
 if not self.tasks:
 return self.freeze() # empty group returns GroupResult
 options, group_id, root_id = self._freeze_gid(options)
 tasks = self._prepared(self.tasks, [], group_id, root_id, app)
 return app.GroupResult(group_id, [
 sig.apply(args=args, kwargs=kwargs, **options) for sig, _ in tasks
])

 def set_immutable(self, immutable):
 for task in self.tasks:
 task.set_immutable(immutable)

 def link(self, sig):
 # Simply link to first task
 sig = sig.clone().set(immutable=True)
 return self.tasks[0].link(sig)

 def link_error(self, sig):
 try:
 sig = sig.clone().set(immutable=True)
 except AttributeError:
 # See issue #5265. I don't use isinstance because current tests
 # pass a Mock object as argument.
 sig['immutable'] = True
 sig = Signature.from_dict(sig)
 return self.tasks[0].link_error(sig)

 def _prepared(self, tasks, partial_args, group_id, root_id, app,
 CallableSignature=abstract.CallableSignature,
 from_dict=Signature.from_dict,
 isinstance=isinstance, tuple=tuple):
 for task in tasks:
 if isinstance(task, CallableSignature):
 # local sigs are always of type Signature, and we
 # clone them to make sure we don't modify the originals.
 task = task.clone()
 else:
 # serialized sigs must be converted to Signature.
 task = from_dict(task, app=app)
 if isinstance(task, group):
 # needs yield_from :(
 unroll = task._prepared(
 task.tasks, partial_args, group_id, root_id, app,
)
 yield from unroll
 else:
 if partial_args and not task.immutable:
 task.args = tuple(partial_args) + tuple(task.args)
 yield task, task.freeze(group_id=group_id, root_id=root_id)

 def _apply_tasks(self, tasks, producer=None, app=None, p=None,
 add_to_parent=None, chord=None,
 args=None, kwargs=None, **options):
 # pylint: disable=redefined-outer-name
 # XXX chord is also a class in outer scope.
 app = app or self.app
 with app.producer_or_acquire(producer) as producer:
 for sig, res in tasks:
 sig.apply_async(producer=producer, add_to_parent=False,
 chord=sig.options.get('chord') or chord,
 args=args, kwargs=kwargs,
 **options)

 # adding callback to result, such that it will gradually
 # fulfill the barrier.
 #
 # Using barrier.add would use result.then, but we need
 # to add the weak argument here to only create a weak
 # reference to the object.
 if p and not p.cancelled and not p.ready:
 p.size += 1
 res.then(p, weak=True)
 yield res # <-- r.parent, etc set in the frozen result.

 def _freeze_gid(self, options):
 # remove task_id and use that as the group_id,
 # if we don't remove it then every task will have the same id...
 options = dict(self.options, **options)
 options['group_id'] = group_id = (
 options.pop('task_id', uuid()))
 return options, group_id, options.get('root_id')

 def freeze(self, _id=None, group_id=None, chord=None,
 root_id=None, parent_id=None, group_index=None):
 # pylint: disable=redefined-outer-name
 # XXX chord is also a class in outer scope.
 opts = self.options
 try:
 gid = opts['task_id']
 except KeyError:
 gid = opts['task_id'] = group_id or uuid()
 if group_id:
 opts['group_id'] = group_id
 if chord:
 opts['chord'] = chord
 if group_index is not None:
 opts['group_index'] = group_index
 root_id = opts.setdefault('root_id', root_id)
 parent_id = opts.setdefault('parent_id', parent_id)
 new_tasks = []
 # Need to unroll subgroups early so that chord gets the
 # right result instance for chord_unlock etc.
 results = list(self._freeze_unroll(
 new_tasks, group_id, chord, root_id, parent_id,
))
 if isinstance(self.tasks, MutableSequence):
 self.tasks[:] = new_tasks
 else:
 self.tasks = new_tasks
 return self.app.GroupResult(gid, results)

 _freeze = freeze

 def _freeze_unroll(self, new_tasks, group_id, chord, root_id, parent_id):
 # pylint: disable=redefined-outer-name
 # XXX chord is also a class in outer scope.
 stack = deque(self.tasks)
 group_index = 0
 while stack:
 task = maybe_signature(stack.popleft(), app=self._app).clone()
 if isinstance(task, group):
 stack.extendleft(task.tasks)
 else:
 new_tasks.append(task)
 yield task.freeze(group_id=group_id,
 chord=chord, root_id=root_id,
 parent_id=parent_id,
 group_index=group_index)
 group_index += 1

 def __repr__(self):
 if self.tasks:
 return remove_repeating_from_task(
 self.tasks[0]['task'],
 f'group({self.tasks!r})')
 return 'group(<empty>)'

 def __len__(self):
 return len(self.tasks)

 @property
 def app(self):
 app = self._app
 if app is None:
 try:
 app = self.tasks[0].app
 except LookupError:
 pass
 return app if app is not None else current_app

[docs]@Signature.register_type()
class chord(Signature):
 r"""Barrier synchronization primitive.

 A chord consists of a header and a body.

 The header is a group of tasks that must complete before the callback is
 called. A chord is essentially a callback for a group of tasks.

 The body is applied with the return values of all the header
 tasks as a list.

 Example:

 The chord:

 .. code-block:: pycon

 >>> res = chord([add.s(2, 2), add.s(4, 4)])(sum_task.s())

 is effectively :math:`\Sigma ((2 + 2) + (4 + 4))`:

 .. code-block:: pycon

 >>> res.get()
 12
 """

 @classmethod
 def from_dict(cls, d, app=None):
 options = d.copy()
 args, options['kwargs'] = cls._unpack_args(**options['kwargs'])
 return _upgrade(d, cls(*args, app=app, **options))

 @staticmethod
 def _unpack_args(header=None, body=None, **kwargs):
 # Python signatures are better at extracting keys from dicts
 # than manually popping things off.
 return (header, body), kwargs

 def __init__(self, header, body=None, task='celery.chord',
 args=None, kwargs=None, app=None, **options):
 args = args if args else ()
 kwargs = kwargs if kwargs else {}
 Signature.__init__(
 self, task, args,
 {'kwargs': kwargs, 'header': _maybe_group(header, app),
 'body': maybe_signature(body, app=app)}, app=app, **options
)
 self.subtask_type = 'chord'

 def __call__(self, body=None, **options):
 return self.apply_async((), {'body': body} if body else {}, **options)

 def freeze(self, _id=None, group_id=None, chord=None,
 root_id=None, parent_id=None, group_index=None):
 # pylint: disable=redefined-outer-name
 # XXX chord is also a class in outer scope.
 if not isinstance(self.tasks, group):
 self.tasks = group(self.tasks, app=self.app)
 header_result = self.tasks.freeze(
 parent_id=parent_id, root_id=root_id, chord=self.body)
 body_result = self.body.freeze(
 _id, root_id=root_id, chord=chord, group_id=group_id,
 group_index=group_index)
 # we need to link the body result back to the group result,
 # but the body may actually be a chain,
 # so find the first result without a parent
 node = body_result
 seen = set()
 while node:
 if node.id in seen:
 raise RuntimeError('Recursive result parents')
 seen.add(node.id)
 if node.parent is None:
 node.parent = header_result
 break
 node = node.parent
 self.id = self.tasks.id
 return body_result

 def apply_async(self, args=None, kwargs=None, task_id=None,
 producer=None, publisher=None, connection=None,
 router=None, result_cls=None, **options):
 args = args if args else ()
 kwargs = kwargs if kwargs else {}
 args = (tuple(args) + tuple(self.args)
 if args and not self.immutable else self.args)
 body = kwargs.pop('body', None) or self.kwargs['body']
 kwargs = dict(self.kwargs['kwargs'], **kwargs)
 body = body.clone(**options)
 app = self._get_app(body)
 tasks = (self.tasks.clone() if isinstance(self.tasks, group)
 else group(self.tasks, app=app))
 if app.conf.task_always_eager:
 with allow_join_result():
 return self.apply(args, kwargs,
 body=body, task_id=task_id, **options)

 merged_options = dict(self.options, **options) if options else self.options
 option_task_id = merged_options.pop("task_id", None)
 if task_id is None:
 task_id = option_task_id

 # chord([A, B, ...], C)
 return self.run(tasks, body, args, task_id=task_id, **merged_options)

 def apply(self, args=None, kwargs=None,
 propagate=True, body=None, **options):
 args = args if args else ()
 kwargs = kwargs if kwargs else {}
 body = self.body if body is None else body
 tasks = (self.tasks.clone() if isinstance(self.tasks, group)
 else group(self.tasks, app=self.app))
 return body.apply(
 args=(tasks.apply(args, kwargs).get(propagate=propagate),),
)

 @classmethod
 def __descend(cls, sig_obj):
 # Sometimes serialized signatures might make their way here
 if not isinstance(sig_obj, Signature) and isinstance(sig_obj, dict):
 sig_obj = Signature.from_dict(sig_obj)
 if isinstance(sig_obj, group):
 # Each task in a group counts toward this chord
 subtasks = getattr(sig_obj.tasks, "tasks", sig_obj.tasks)
 return sum(cls.__descend(task) for task in subtasks)
 elif isinstance(sig_obj, _chain):
 # The last element in a chain counts toward this chord
 return cls.__descend(sig_obj.tasks[-1])
 elif isinstance(sig_obj, chord):
 # The child chord's body counts toward this chord
 return cls.__descend(sig_obj.body)
 elif isinstance(sig_obj, Signature):
 # Each simple signature counts as 1 completion for this chord
 return 1
 # Any other types are assumed to be iterables of simple signatures
 return len(sig_obj)

 def __length_hint__(self):
 tasks = getattr(self.tasks, "tasks", self.tasks)
 return sum(self.__descend(task) for task in tasks)

 def run(self, header, body, partial_args, app=None, interval=None,
 countdown=1, max_retries=None, eager=False,
 task_id=None, **options):
 app = app or self._get_app(body)
 group_id = header.options.get('task_id') or uuid()
 root_id = body.options.get('root_id')
 body.chord_size = self.__length_hint__()
 options = dict(self.options, **options) if options else self.options
 if options:
 options.pop('task_id', None)
 body.options.update(options)

 bodyres = body.freeze(task_id, root_id=root_id)

 # Chains should not be passed to the header tasks. See #3771
 options.pop('chain', None)
 # Neither should chords, for deeply nested chords to work
 options.pop('chord', None)
 options.pop('task_id', None)

 header_result = header.freeze(group_id=group_id, chord=body, root_id=root_id)

 if len(header_result) > 0:
 app.backend.apply_chord(
 header_result,
 body,
 interval=interval,
 countdown=countdown,
 max_retries=max_retries,
)
 header_result = header(*partial_args, task_id=group_id, **options)
 # The execution of a chord body is normally triggered by its header's
 # tasks completing. If the header is empty this will never happen, so
 # we execute the body manually here.
 else:
 body.delay([])

 bodyres.parent = header_result
 return bodyres

 def clone(self, *args, **kwargs):
 signature = Signature.clone(self, *args, **kwargs)
 # need to make copy of body
 try:
 signature.kwargs['body'] = maybe_signature(
 signature.kwargs['body'], clone=True)
 except (AttributeError, KeyError):
 pass
 return signature

 def link(self, callback):
 self.body.link(callback)
 return callback

 def link_error(self, errback):
 self.body.link_error(errback)
 return errback

 def set_immutable(self, immutable):
 # changes mutability of header only, not callback.
 for task in self.tasks:
 task.set_immutable(immutable)

 def __repr__(self):
 if self.body:
 if isinstance(self.body, _chain):
 return remove_repeating_from_task(
 self.body.tasks[0]['task'],
 '%({} | {!r})'.format(
 self.body.tasks[0].reprcall(self.tasks),
 chain(self.body.tasks[1:], app=self._app),
),
)
 return '%' + remove_repeating_from_task(
 self.body['task'], self.body.reprcall(self.tasks))
 return f'<chord without body: {self.tasks!r}>'

 @cached_property
 def app(self):
 return self._get_app(self.body)

 def _get_app(self, body=None):
 app = self._app
 if app is None:
 try:
 tasks = self.tasks.tasks # is a group
 except AttributeError:
 tasks = self.tasks
 if len(tasks):
 app = tasks[0]._app
 if app is None and body is not None:
 app = body._app
 return app if app is not None else current_app

 tasks = getitem_property('kwargs.header', 'Tasks in chord header.')
 body = getitem_property('kwargs.body', 'Body task of chord.')

[docs]def signature(varies, *args, **kwargs):
 """Create new signature.

 - if the first argument is a signature already then it's cloned.
 - if the first argument is a dict, then a Signature version is returned.

 Returns:
 Signature: The resulting signature.
 """
 app = kwargs.get('app')
 if isinstance(varies, dict):
 if isinstance(varies, abstract.CallableSignature):
 return varies.clone()
 return Signature.from_dict(varies, app=app)
 return Signature(varies, *args, **kwargs)

subtask = signature # noqa: E305 XXX compat

def maybe_signature(d, app=None, clone=False):
 """Ensure obj is a signature, or None.

 Arguments:
 d (Optional[Union[abstract.CallableSignature, Mapping]]):
 Signature or dict-serialized signature.
 app (celery.Celery):
 App to bind signature to.
 clone (bool):
 If d' is already a signature, the signature
 will be cloned when this flag is enabled.

 Returns:
 Optional[abstract.CallableSignature]
 """
 if d is not None:
 if isinstance(d, abstract.CallableSignature):
 if clone:
 d = d.clone()
 elif isinstance(d, dict):
 d = signature(d)

 if app is not None:
 d._app = app
 return d

maybe_subtask = maybe_signature # noqa: E305 XXX compat

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.concurrency

"""Pool implementation abstract factory, and alias definitions."""

Import from kombu directly as it's used
early in the import stage, where celery.utils loads
too much (e.g., for eventlet patching)
from kombu.utils.imports import symbol_by_name

__all__ = ('get_implementation',)

ALIASES = {
 'prefork': 'celery.concurrency.prefork:TaskPool',
 'eventlet': 'celery.concurrency.eventlet:TaskPool',
 'gevent': 'celery.concurrency.gevent:TaskPool',
 'solo': 'celery.concurrency.solo:TaskPool',
 'processes': 'celery.concurrency.prefork:TaskPool', # XXX compat alias
}

try:
 import concurrent.futures # noqa: F401
except ImportError:
 pass
else:
 ALIASES['threads'] = 'celery.concurrency.thread:TaskPool'

[docs]def get_implementation(cls):
 """Return pool implementation by name."""
 return symbol_by_name(cls, ALIASES)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.exceptions

"""Celery error types.

Error Hierarchy
===============

- :exc:`Exception`
 - :exc:`celery.exceptions.CeleryError`
 - :exc:`~celery.exceptions.ImproperlyConfigured`
 - :exc:`~celery.exceptions.SecurityError`
 - :exc:`~celery.exceptions.TaskPredicate`
 - :exc:`~celery.exceptions.Ignore`
 - :exc:`~celery.exceptions.Reject`
 - :exc:`~celery.exceptions.Retry`
 - :exc:`~celery.exceptions.TaskError`
 - :exc:`~celery.exceptions.QueueNotFound`
 - :exc:`~celery.exceptions.IncompleteStream`
 - :exc:`~celery.exceptions.NotRegistered`
 - :exc:`~celery.exceptions.AlreadyRegistered`
 - :exc:`~celery.exceptions.TimeoutError`
 - :exc:`~celery.exceptions.MaxRetriesExceededError`
 - :exc:`~celery.exceptions.TaskRevokedError`
 - :exc:`~celery.exceptions.InvalidTaskError`
 - :exc:`~celery.exceptions.ChordError`
 - :exc:`~celery.exceptions.BackendError`
 - :exc:`~celery.exceptions.BackendGetMetaError`
 - :exc:`~celery.exceptions.BackendStoreError`
 - :class:`kombu.exceptions.KombuError`
 - :exc:`~celery.exceptions.OperationalError`

 Raised when a transport connection error occurs while
 sending a message (be it a task, remote control command error).

 .. note::
 This exception does not inherit from
 :exc:`~celery.exceptions.CeleryError`.
 - **billiard errors** (prefork pool)
 - :exc:`~celery.exceptions.SoftTimeLimitExceeded`
 - :exc:`~celery.exceptions.TimeLimitExceeded`
 - :exc:`~celery.exceptions.WorkerLostError`
 - :exc:`~celery.exceptions.Terminated`
- :class:`UserWarning`
 - :class:`~celery.exceptions.CeleryWarning`
 - :class:`~celery.exceptions.AlwaysEagerIgnored`
 - :class:`~celery.exceptions.DuplicateNodenameWarning`
 - :class:`~celery.exceptions.FixupWarning`
 - :class:`~celery.exceptions.NotConfigured`
- :exc:`BaseException`
 - :exc:`SystemExit`
 - :exc:`~celery.exceptions.WorkerTerminate`
 - :exc:`~celery.exceptions.WorkerShutdown`
"""

import numbers

from billiard.exceptions import (SoftTimeLimitExceeded, Terminated,
 TimeLimitExceeded, WorkerLostError)
from kombu.exceptions import OperationalError

__all__ = (
 'reraise',
 # Warnings
 'CeleryWarning',
 'AlwaysEagerIgnored', 'DuplicateNodenameWarning',
 'FixupWarning', 'NotConfigured',

 # Core errors
 'CeleryError',
 'ImproperlyConfigured', 'SecurityError',

 # Kombu (messaging) errors.
 'OperationalError',

 # Task semi-predicates
 'TaskPredicate', 'Ignore', 'Reject', 'Retry',

 # Task related errors.
 'TaskError', 'QueueNotFound', 'IncompleteStream',
 'NotRegistered', 'AlreadyRegistered', 'TimeoutError',
 'MaxRetriesExceededError', 'TaskRevokedError',
 'InvalidTaskError', 'ChordError',

 # Backend related errors.
 'BackendError', 'BackendGetMetaError', 'BackendStoreError',

 # Billiard task errors.
 'SoftTimeLimitExceeded', 'TimeLimitExceeded',
 'WorkerLostError', 'Terminated',

 # Deprecation warnings (forcing Python to emit them).
 'CPendingDeprecationWarning', 'CDeprecationWarning',

 # Worker shutdown semi-predicates (inherits from SystemExit).
 'WorkerShutdown', 'WorkerTerminate',
)

UNREGISTERED_FMT = """\
Task of kind {0} never registered, please make sure it's imported.\
"""

[docs]def reraise(tp, value, tb=None):
 """Reraise exception."""
 if value.__traceback__ is not tb:
 raise value.with_traceback(tb)
 raise value

[docs]class CeleryWarning(UserWarning):
 """Base class for all Celery warnings."""

[docs]class AlwaysEagerIgnored(CeleryWarning):
 """send_task ignores :setting:`task_always_eager` option."""

[docs]class DuplicateNodenameWarning(CeleryWarning):
 """Multiple workers are using the same nodename."""

[docs]class FixupWarning(CeleryWarning):
 """Fixup related warning."""

[docs]class NotConfigured(CeleryWarning):
 """Celery hasn't been configured, as no config module has been found."""

[docs]class CeleryError(Exception):
 """Base class for all Celery errors."""

[docs]class TaskPredicate(CeleryError):
 """Base class for task-related semi-predicates."""

[docs]class Retry(TaskPredicate):
 """The task is to be retried later."""

 #: Optional message describing context of retry.
 message = None

 #: Exception (if any) that caused the retry to happen.
 exc = None

 #: Time of retry (ETA), either :class:`numbers.Real` or
 #: :class:`~datetime.datetime`.
 when = None

 def __init__(self, message=None, exc=None, when=None, is_eager=False,
 sig=None, **kwargs):
 from kombu.utils.encoding import safe_repr
 self.message = message
 if isinstance(exc, str):
 self.exc, self.excs = None, exc
 else:
 self.exc, self.excs = exc, safe_repr(exc) if exc else None
 self.when = when
 self.is_eager = is_eager
 self.sig = sig
 super().__init__(self, exc, when, **kwargs)

[docs] def humanize(self):
 if isinstance(self.when, numbers.Number):
 return f'in {self.when}s'
 return f'at {self.when}'

 def __str__(self):
 if self.message:
 return self.message
 if self.excs:
 return f'Retry {self.humanize()}: {self.excs}'
 return f'Retry {self.humanize()}'

 def __reduce__(self):
 return self.__class__, (self.message, self.excs, self.when)

RetryTaskError = Retry # noqa: E305 XXX compat

[docs]class Ignore(TaskPredicate):
 """A task can raise this to ignore doing state updates."""

[docs]class Reject(TaskPredicate):
 """A task can raise this if it wants to reject/re-queue the message."""

 def __init__(self, reason=None, requeue=False):
 self.reason = reason
 self.requeue = requeue
 super().__init__(reason, requeue)

 def __repr__(self):
 return f'reject requeue={self.requeue}: {self.reason}'

[docs]class ImproperlyConfigured(CeleryError):
 """Celery is somehow improperly configured."""

[docs]class SecurityError(CeleryError):
 """Security related exception."""

[docs]class TaskError(CeleryError):
 """Task related errors."""

[docs]class QueueNotFound(KeyError, TaskError):
 """Task routed to a queue not in ``conf.queues``."""

[docs]class IncompleteStream(TaskError):
 """Found the end of a stream of data, but the data isn't complete."""

[docs]class NotRegistered(KeyError, TaskError):
 """The task is not registered."""

 def __repr__(self):
 return UNREGISTERED_FMT.format(self)

[docs]class AlreadyRegistered(TaskError):
 """The task is already registered."""

 # XXX Unused

[docs]class TimeoutError(TaskError):
 """The operation timed out."""

[docs]class MaxRetriesExceededError(TaskError):
 """The tasks max restart limit has been exceeded."""

 def __init__(self, *args, **kwargs):
 self.task_args = kwargs.pop("task_args", [])
 self.task_kwargs = kwargs.pop("task_kwargs", dict())
 super().__init__(*args, **kwargs)

[docs]class TaskRevokedError(TaskError):
 """The task has been revoked, so no result available."""

[docs]class InvalidTaskError(TaskError):
 """The task has invalid data or ain't properly constructed."""

[docs]class ChordError(TaskError):
 """A task part of the chord raised an exception."""

[docs]class CPendingDeprecationWarning(PendingDeprecationWarning):
 """Warning of pending deprecation."""

[docs]class CDeprecationWarning(DeprecationWarning):
 """Warning of deprecation."""

[docs]class WorkerTerminate(SystemExit):
 """Signals that the worker should terminate immediately."""

SystemTerminate = WorkerTerminate # noqa: E305 XXX compat

[docs]class WorkerShutdown(SystemExit):
 """Signals that the worker should perform a warm shutdown."""

[docs]class BackendError(Exception):
 """An issue writing or reading to/from the backend."""

[docs]class BackendGetMetaError(BackendError):
 """An issue reading from the backend."""

 def __init__(self, *args, **kwargs):
 self.task_id = kwargs.get('task_id', "")

 def __repr__(self):
 return super().__repr__() + " task_id:" + self.task_id

[docs]class BackendStoreError(BackendError):
 """An issue writing from the backend."""

 def __init__(self, *args, **kwargs):
 self.state = kwargs.get('state', "")
 self.task_id = kwargs.get('task_id', "")

 def __repr__(self):
 return super().__repr__() + " state:" + self.state + " task_id:" + self.task_id

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.loaders

"""Get loader by name.

Loaders define how configuration is read, what happens
when workers start, when tasks are executed and so on.
"""
from celery.utils.imports import import_from_cwd, symbol_by_name

__all__ = ('get_loader_cls',)

LOADER_ALIASES = {
 'app': 'celery.loaders.app:AppLoader',
 'default': 'celery.loaders.default:Loader',
}

[docs]def get_loader_cls(loader):
 """Get loader class by name/alias."""
 return symbol_by_name(loader, LOADER_ALIASES, imp=import_from_cwd)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.platforms

"""Platforms.

Utilities dealing with platform specifics: signals, daemonization,
users, groups, and so on.
"""

import atexit
import errno
import math
import numbers
import os
import platform as _platform
import signal as _signal
import struct
import sys
import warnings
from collections import namedtuple
from contextlib import contextmanager

from billiard.compat import close_open_fds, get_fdmax
fileno used to be in this module
from kombu.utils.compat import maybe_fileno
from kombu.utils.encoding import safe_str

from .exceptions import SecurityError, reraise
from .local import try_import

try:
 from billiard.process import current_process
except ImportError: # pragma: no cover
 current_process = None

_setproctitle = try_import('setproctitle')
resource = try_import('resource')
pwd = try_import('pwd')
grp = try_import('grp')
mputil = try_import('multiprocessing.util')

__all__ = (
 'EX_OK', 'EX_FAILURE', 'EX_UNAVAILABLE', 'EX_USAGE', 'SYSTEM',
 'IS_macOS', 'IS_WINDOWS', 'SIGMAP', 'pyimplementation', 'LockFailed',
 'get_fdmax', 'Pidfile', 'create_pidlock', 'close_open_fds',
 'DaemonContext', 'detached', 'parse_uid', 'parse_gid', 'setgroups',
 'initgroups', 'setgid', 'setuid', 'maybe_drop_privileges', 'signals',
 'signal_name', 'set_process_title', 'set_mp_process_title',
 'get_errno_name', 'ignore_errno', 'fd_by_path', 'isatty',
)

exitcodes
EX_OK = getattr(os, 'EX_OK', 0)
EX_FAILURE = 1
EX_UNAVAILABLE = getattr(os, 'EX_UNAVAILABLE', 69)
EX_USAGE = getattr(os, 'EX_USAGE', 64)
EX_CANTCREAT = getattr(os, 'EX_CANTCREAT', 73)

SYSTEM = _platform.system()
IS_macOS = SYSTEM == 'Darwin'
IS_WINDOWS = SYSTEM == 'Windows'

DAEMON_WORKDIR = '/'

PIDFILE_FLAGS = os.O_CREAT | os.O_EXCL | os.O_WRONLY
PIDFILE_MODE = ((os.R_OK | os.W_OK) << 6) | ((os.R_OK) << 3) | (os.R_OK)

PIDLOCKED = """ERROR: Pidfile ({0}) already exists.
Seems we're already running? (pid: {1})"""

_range = namedtuple('_range', ('start', 'stop'))

C_FORCE_ROOT = os.environ.get('C_FORCE_ROOT', False)

ROOT_DISALLOWED = """\
Running a worker with superuser privileges when the
worker accepts messages serialized with pickle is a very bad idea!

If you really want to continue then you have to set the C_FORCE_ROOT
environment variable (but please think about this before you do).

User information: uid={uid} euid={euid} gid={gid} egid={egid}
"""

ROOT_DISCOURAGED = """\
You're running the worker with superuser privileges: this is
absolutely not recommended!

Please specify a different user using the --uid option.

User information: uid={uid} euid={euid} gid={gid} egid={egid}
"""

SIGNAMES = {
 sig for sig in dir(_signal)
 if sig.startswith('SIG') and '_' not in sig
}
SIGMAP = {getattr(_signal, name): name for name in SIGNAMES}

[docs]def isatty(fh):
 """Return true if the process has a controlling terminal."""
 try:
 return fh.isatty()
 except AttributeError:
 pass

[docs]def pyimplementation():
 """Return string identifying the current Python implementation."""
 if hasattr(_platform, 'python_implementation'):
 return _platform.python_implementation()
 elif sys.platform.startswith('java'):
 return 'Jython ' + sys.platform
 elif hasattr(sys, 'pypy_version_info'):
 v = '.'.join(str(p) for p in sys.pypy_version_info[:3])
 if sys.pypy_version_info[3:]:
 v += '-' + ''.join(str(p) for p in sys.pypy_version_info[3:])
 return 'PyPy ' + v
 else:
 return 'CPython'

[docs]class LockFailed(Exception):
 """Raised if a PID lock can't be acquired."""

[docs]class Pidfile:
 """Pidfile.

 This is the type returned by :func:`create_pidlock`.

 See Also:
 Best practice is to not use this directly but rather use
 the :func:`create_pidlock` function instead:
 more convenient and also removes stale pidfiles (when
 the process holding the lock is no longer running).
 """

 #: Path to the pid lock file.
 path = None

 def __init__(self, path):
 self.path = os.path.abspath(path)

[docs] def acquire(self):
 """Acquire lock."""
 try:
 self.write_pid()
 except OSError as exc:
 reraise(LockFailed, LockFailed(str(exc)), sys.exc_info()[2])
 return self

 __enter__ = acquire

[docs] def is_locked(self):
 """Return true if the pid lock exists."""
 return os.path.exists(self.path)

[docs] def release(self, *args):
 """Release lock."""
 self.remove()

 __exit__ = release

[docs] def read_pid(self):
 """Read and return the current pid."""
 with ignore_errno('ENOENT'):
 with open(self.path) as fh:
 line = fh.readline()
 if line.strip() == line: # must contain '\n'
 raise ValueError(
 f'Partial or invalid pidfile {self.path}')

 try:
 return int(line.strip())
 except ValueError:
 raise ValueError(
 f'pidfile {self.path} contents invalid.')

[docs] def remove(self):
 """Remove the lock."""
 with ignore_errno(errno.ENOENT, errno.EACCES):
 os.unlink(self.path)

[docs] def remove_if_stale(self):
 """Remove the lock if the process isn't running.

 I.e. process does not respons to signal.
 """
 try:
 pid = self.read_pid()
 except ValueError:
 print('Broken pidfile found - Removing it.', file=sys.stderr)
 self.remove()
 return True
 if not pid:
 self.remove()
 return True

 try:
 os.kill(pid, 0)
 except os.error as exc:
 if exc.errno == errno.ESRCH or exc.errno == errno.EPERM:
 print('Stale pidfile exists - Removing it.', file=sys.stderr)
 self.remove()
 return True
 except SystemError:
 print('Stale pidfile exists - Removing it.', file=sys.stderr)
 self.remove()
 return True
 return False

[docs] def write_pid(self):
 pid = os.getpid()
 content = f'{pid}\n'

 pidfile_fd = os.open(self.path, PIDFILE_FLAGS, PIDFILE_MODE)
 pidfile = os.fdopen(pidfile_fd, 'w')
 try:
 pidfile.write(content)
 # flush and sync so that the re-read below works.
 pidfile.flush()
 try:
 os.fsync(pidfile_fd)
 except AttributeError: # pragma: no cover
 pass
 finally:
 pidfile.close()

 rfh = open(self.path)
 try:
 if rfh.read() != content:
 raise LockFailed(
 "Inconsistency: Pidfile content doesn't match at re-read")
 finally:
 rfh.close()

PIDFile = Pidfile # noqa: E305 XXX compat alias

[docs]def create_pidlock(pidfile):
 """Create and verify pidfile.

 If the pidfile already exists the program exits with an error message,
 however if the process it refers to isn't running anymore, the pidfile
 is deleted and the program continues.

 This function will automatically install an :mod:`atexit` handler
 to release the lock at exit, you can skip this by calling
 :func:`_create_pidlock` instead.

 Returns:
 Pidfile: used to manage the lock.

 Example:
 >>> pidlock = create_pidlock('/var/run/app.pid')
 """
 pidlock = _create_pidlock(pidfile)
 atexit.register(pidlock.release)
 return pidlock

def _create_pidlock(pidfile):
 pidlock = Pidfile(pidfile)
 if pidlock.is_locked() and not pidlock.remove_if_stale():
 print(PIDLOCKED.format(pidfile, pidlock.read_pid()), file=sys.stderr)
 raise SystemExit(EX_CANTCREAT)
 pidlock.acquire()
 return pidlock

[docs]def fd_by_path(paths):
 """Return a list of file descriptors.

 This method returns list of file descriptors corresponding to
 file paths passed in paths variable.

 Arguments:
 paths: List[str]: List of file paths.

 Returns:
 List[int]: List of file descriptors.

 Example:
 >>> keep = fd_by_path(['/dev/urandom', '/my/precious/'])
 """
 stats = set()
 for path in paths:
 try:
 fd = os.open(path, os.O_RDONLY)
 except OSError:
 continue
 try:
 stats.add(os.fstat(fd)[1:3])
 finally:
 os.close(fd)

 def fd_in_stats(fd):
 try:
 return os.fstat(fd)[1:3] in stats
 except OSError:
 return False

 return [_fd for _fd in range(get_fdmax(2048)) if fd_in_stats(_fd)]

[docs]class DaemonContext:
 """Context manager daemonizing the process."""

 _is_open = False

 def __init__(self, pidfile=None, workdir=None, umask=None,
 fake=False, after_chdir=None, after_forkers=True,
 **kwargs):
 if isinstance(umask, str):
 # octal or decimal, depending on initial zero.
 umask = int(umask, 8 if umask.startswith('0') else 10)
 self.workdir = workdir or DAEMON_WORKDIR
 self.umask = umask
 self.fake = fake
 self.after_chdir = after_chdir
 self.after_forkers = after_forkers
 self.stdfds = (sys.stdin, sys.stdout, sys.stderr)

[docs] def redirect_to_null(self, fd):
 if fd is not None:
 dest = os.open(os.devnull, os.O_RDWR)
 os.dup2(dest, fd)

[docs] def open(self):
 if not self._is_open:
 if not self.fake:
 self._detach()

 os.chdir(self.workdir)
 if self.umask is not None:
 os.umask(self.umask)

 if self.after_chdir:
 self.after_chdir()

 if not self.fake:
 # We need to keep /dev/urandom from closing because
 # shelve needs it, and Beat needs shelve to start.
 keep = list(self.stdfds) + fd_by_path(['/dev/urandom'])
 close_open_fds(keep)
 for fd in self.stdfds:
 self.redirect_to_null(maybe_fileno(fd))
 if self.after_forkers and mputil is not None:
 mputil._run_after_forkers()

 self._is_open = True

 __enter__ = open

[docs] def close(self, *args):
 if self._is_open:
 self._is_open = False

 __exit__ = close

 def _detach(self):
 if os.fork() == 0: # first child
 os.setsid() # create new session
 if os.fork() > 0: # pragma: no cover
 # second child
 os._exit(0)
 else:
 os._exit(0)
 return self

[docs]def detached(logfile=None, pidfile=None, uid=None, gid=None, umask=0,
 workdir=None, fake=False, **opts):
 """Detach the current process in the background (daemonize).

 Arguments:
 logfile (str): Optional log file.
 The ability to write to this file
 will be verified before the process is detached.
 pidfile (str): Optional pid file.
 The pidfile won't be created,
 as this is the responsibility of the child. But the process will
 exit if the pid lock exists and the pid written is still running.
 uid (int, str): Optional user id or user name to change
 effective privileges to.
 gid (int, str): Optional group id or group name to change
 effective privileges to.
 umask (str, int): Optional umask that'll be effective in
 the child process.
 workdir (str): Optional new working directory.
 fake (bool): Don't actually detach, intended for debugging purposes.
 **opts (Any): Ignored.

 Example:
 >>> from celery.platforms import detached, create_pidlock
 >>> with detached(
 ... logfile='/var/log/app.log',
 ... pidfile='/var/run/app.pid',
 ... uid='nobody'):
 ... # Now in detached child process with effective user set to nobody,
 ... # and we know that our logfile can be written to, and that
 ... # the pidfile isn't locked.
 ... pidlock = create_pidlock('/var/run/app.pid')
 ...
 ... # Run the program
 ... program.run(logfile='/var/log/app.log')
 """
 if not resource:
 raise RuntimeError('This platform does not support detach.')
 workdir = os.getcwd() if workdir is None else workdir

 signals.reset('SIGCLD') # Make sure SIGCLD is using the default handler.
 maybe_drop_privileges(uid=uid, gid=gid)

 def after_chdir_do():
 # Since without stderr any errors will be silently suppressed,
 # we need to know that we have access to the logfile.
 logfile and open(logfile, 'a').close()
 # Doesn't actually create the pidfile, but makes sure it's not stale.
 if pidfile:
 _create_pidlock(pidfile).release()

 return DaemonContext(
 umask=umask, workdir=workdir, fake=fake, after_chdir=after_chdir_do,
)

[docs]def parse_uid(uid):
 """Parse user id.

 Arguments:
 uid (str, int): Actual uid, or the username of a user.
 Returns:
 int: The actual uid.
 """
 try:
 return int(uid)
 except ValueError:
 try:
 return pwd.getpwnam(uid).pw_uid
 except (AttributeError, KeyError):
 raise KeyError(f'User does not exist: {uid}')

[docs]def parse_gid(gid):
 """Parse group id.

 Arguments:
 gid (str, int): Actual gid, or the name of a group.
 Returns:
 int: The actual gid of the group.
 """
 try:
 return int(gid)
 except ValueError:
 try:
 return grp.getgrnam(gid).gr_gid
 except (AttributeError, KeyError):
 raise KeyError(f'Group does not exist: {gid}')

def _setgroups_hack(groups):
 # :fun:`setgroups` may have a platform-dependent limit,
 # and it's not always possible to know in advance what this limit
 # is, so we use this ugly hack stolen from glibc.
 groups = groups[:]

 while 1:
 try:
 return os.setgroups(groups)
 except ValueError: # error from Python's check.
 if len(groups) <= 1:
 raise
 groups[:] = groups[:-1]
 except OSError as exc: # error from the OS.
 if exc.errno != errno.EINVAL or len(groups) <= 1:
 raise
 groups[:] = groups[:-1]

[docs]def setgroups(groups):
 """Set active groups from a list of group ids."""
 max_groups = None
 try:
 max_groups = os.sysconf('SC_NGROUPS_MAX')
 except Exception: # pylint: disable=broad-except
 pass
 try:
 return _setgroups_hack(groups[:max_groups])
 except OSError as exc:
 if exc.errno != errno.EPERM:
 raise
 if any(group not in groups for group in os.getgroups()):
 # we shouldn't be allowed to change to this group.
 raise

[docs]def initgroups(uid, gid):
 """Init process group permissions.

 Compat version of :func:`os.initgroups` that was first
 added to Python 2.7.
 """
 if not pwd: # pragma: no cover
 return
 username = pwd.getpwuid(uid)[0]
 if hasattr(os, 'initgroups'): # Python 2.7+
 return os.initgroups(username, gid)
 groups = [gr.gr_gid for gr in grp.getgrall()
 if username in gr.gr_mem]
 setgroups(groups)

[docs]def setgid(gid):
 """Version of :func:`os.setgid` supporting group names."""
 os.setgid(parse_gid(gid))

[docs]def setuid(uid):
 """Version of :func:`os.setuid` supporting usernames."""
 os.setuid(parse_uid(uid))

[docs]def maybe_drop_privileges(uid=None, gid=None):
 """Change process privileges to new user/group.

 If UID and GID is specified, the real user/group is changed.

 If only UID is specified, the real user is changed, and the group is
 changed to the users primary group.

 If only GID is specified, only the group is changed.
 """
 if sys.platform == 'win32':
 return
 if os.geteuid():
 # no point trying to setuid unless we're root.
 if not os.getuid():
 raise SecurityError('contact support')
 uid = uid and parse_uid(uid)
 gid = gid and parse_gid(gid)

 if uid:
 _setuid(uid, gid)
 else:
 gid and setgid(gid)

 if uid and not os.getuid() and not os.geteuid():
 raise SecurityError('Still root uid after drop privileges!')
 if gid and not os.getgid() and not os.getegid():
 raise SecurityError('Still root gid after drop privileges!')

def _setuid(uid, gid):
 # If GID isn't defined, get the primary GID of the user.
 if not gid and pwd:
 gid = pwd.getpwuid(uid).pw_gid
 # Must set the GID before initgroups(), as setgid()
 # is known to zap the group list on some platforms.

 # setgid must happen before setuid (otherwise the setgid operation
 # may fail because of insufficient privileges and possibly stay
 # in a privileged group).
 setgid(gid)
 initgroups(uid, gid)

 # at last:
 setuid(uid)
 # ... and make sure privileges cannot be restored:
 try:
 setuid(0)
 except OSError as exc:
 if exc.errno != errno.EPERM:
 raise
 # we should get here: cannot restore privileges,
 # everything was fine.
 else:
 raise SecurityError(
 'non-root user able to restore privileges after setuid.')

class Signals:
 """Convenience interface to :mod:`signals`.

 If the requested signal isn't supported on the current platform,
 the operation will be ignored.

 Example:
 >>> from celery.platforms import signals

 >>> from proj.handlers import my_handler
 >>> signals['INT'] = my_handler

 >>> signals['INT']
 my_handler

 >>> signals.supported('INT')
 True

 >>> signals.signum('INT')
 2

 >>> signals.ignore('USR1')
 >>> signals['USR1'] == signals.ignored
 True

 >>> signals.reset('USR1')
 >>> signals['USR1'] == signals.default
 True

 >>> from proj.handlers import exit_handler, hup_handler
 >>> signals.update(INT=exit_handler,
 ... TERM=exit_handler,
 ... HUP=hup_handler)
 """

 ignored = _signal.SIG_IGN
 default = _signal.SIG_DFL

 if hasattr(_signal, 'setitimer'):

 def arm_alarm(self, seconds):
 _signal.setitimer(_signal.ITIMER_REAL, seconds)
 else: # pragma: no cover
 try:
 from itimer import alarm as _itimer_alarm # noqa
 except ImportError:

 def arm_alarm(self, seconds): # noqa
 _signal.alarm(math.ceil(seconds))
 else: # pragma: no cover

 def arm_alarm(self, seconds): # noqa
 return _itimer_alarm(seconds) # noqa

 def reset_alarm(self):
 return _signal.alarm(0)

 def supported(self, name):
 """Return true value if signal by ``name`` exists on this platform."""
 try:
 self.signum(name)
 except AttributeError:
 return False
 else:
 return True

 def signum(self, name):
 """Get signal number by name."""
 if isinstance(name, numbers.Integral):
 return name
 if not isinstance(name, str) \
 or not name.isupper():
 raise TypeError('signal name must be uppercase string.')
 if not name.startswith('SIG'):
 name = 'SIG' + name
 return getattr(_signal, name)

 def reset(self, *signal_names):
 """Reset signals to the default signal handler.

 Does nothing if the platform has no support for signals,
 or the specified signal in particular.
 """
 self.update((sig, self.default) for sig in signal_names)

 def ignore(self, *names):
 """Ignore signal using :const:`SIG_IGN`.

 Does nothing if the platform has no support for signals,
 or the specified signal in particular.
 """
 self.update((sig, self.ignored) for sig in names)

 def __getitem__(self, name):
 return _signal.getsignal(self.signum(name))

 def __setitem__(self, name, handler):
 """Install signal handler.

 Does nothing if the current platform has no support for signals,
 or the specified signal in particular.
 """
 try:
 _signal.signal(self.signum(name), handler)
 except (AttributeError, ValueError):
 pass

 def update(self, _d_=None, **sigmap):
 """Set signal handlers from a mapping."""
 for name, handler in dict(_d_ or {}, **sigmap).items():
 self[name] = handler

signals = Signals()
get_signal = signals.signum # compat
install_signal_handler = signals.__setitem__ # compat
reset_signal = signals.reset # compat
ignore_signal = signals.ignore # compat

[docs]def signal_name(signum):
 """Return name of signal from signal number."""
 return SIGMAP[signum][3:]

def strargv(argv):
 arg_start = 2 if 'manage' in argv[0] else 1
 if len(argv) > arg_start:
 return ' '.join(argv[arg_start:])
 return ''

[docs]def set_process_title(progname, info=None):
 """Set the :command:`ps` name for the currently running process.

 Only works if :pypi:`setproctitle` is installed.
 """
 proctitle = f'[{progname}]'
 proctitle = f'{proctitle} {info}' if info else proctitle
 if _setproctitle:
 _setproctitle.setproctitle(safe_str(proctitle))
 return proctitle

if os.environ.get('NOSETPS'): # pragma: no cover

 def set_mp_process_title(*a, **k):
 """Disabled feature."""
else:

[docs] def set_mp_process_title(progname, info=None, hostname=None): # noqa
 """Set the :command:`ps` name from the current process name.

 Only works if :pypi:`setproctitle` is installed.
 """
 if hostname:
 progname = f'{progname}: {hostname}'
 name = current_process().name if current_process else 'MainProcess'
 return set_process_title(f'{progname}:{name}', info=info)

[docs]def get_errno_name(n):
 """Get errno for string (e.g., ``ENOENT``)."""
 if isinstance(n, str):
 return getattr(errno, n)
 return n

[docs]@contextmanager
def ignore_errno(*errnos, **kwargs):
 """Context manager to ignore specific POSIX error codes.

 Takes a list of error codes to ignore: this can be either
 the name of the code, or the code integer itself::

 >>> with ignore_errno('ENOENT'):
 ... with open('foo', 'r') as fh:
 ... return fh.read()

 >>> with ignore_errno(errno.ENOENT, errno.EPERM):
 ... pass

 Arguments:
 types (Tuple[Exception]): A tuple of exceptions to ignore
 (when the errno matches). Defaults to :exc:`Exception`.
 """
 types = kwargs.get('types') or (Exception,)
 errnos = [get_errno_name(errno) for errno in errnos]
 try:
 yield
 except types as exc:
 if not hasattr(exc, 'errno'):
 raise
 if exc.errno not in errnos:
 raise

def check_privileges(accept_content):
 uid = os.getuid() if hasattr(os, 'getuid') else 65535
 gid = os.getgid() if hasattr(os, 'getgid') else 65535
 euid = os.geteuid() if hasattr(os, 'geteuid') else 65535
 egid = os.getegid() if hasattr(os, 'getegid') else 65535

 if hasattr(os, 'fchown'):
 if not all(hasattr(os, attr)
 for attr in ['getuid', 'getgid', 'geteuid', 'getegid']):
 raise SecurityError('suspicious platform, contact support')

 if not uid or not gid or not euid or not egid:
 if ('pickle' in accept_content or
 'application/x-python-serialize' in accept_content):
 if not C_FORCE_ROOT:
 try:
 print(ROOT_DISALLOWED.format(
 uid=uid, euid=euid, gid=gid, egid=egid,
), file=sys.stderr)
 finally:
 sys.stderr.flush()
 os._exit(1)
 warnings.warn(RuntimeWarning(ROOT_DISCOURAGED.format(
 uid=uid, euid=euid, gid=gid, egid=egid,
)))

if sys.version_info < (2, 7, 7): # pragma: no cover
 import functools

 def _to_bytes_arg(fun):
 @functools.wraps(fun)
 def _inner(s, *args, **kwargs):
 return fun(s.encode(), *args, **kwargs)
 return _inner

 pack = _to_bytes_arg(struct.pack)
 unpack = _to_bytes_arg(struct.unpack)
 unpack_from = _to_bytes_arg(struct.unpack_from)
else:
 pack = struct.pack
 unpack = struct.unpack
 unpack_from = struct.unpack_from

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.result

"""Task results/state and results for groups of tasks."""

import datetime
import time
from collections import deque
from contextlib import contextmanager

from kombu.utils.objects import cached_property
from vine import Thenable, barrier, promise

from . import current_app, states
from ._state import _set_task_join_will_block, task_join_will_block
from .app import app_or_default
from .exceptions import ImproperlyConfigured, IncompleteStream, TimeoutError
from .utils.graph import DependencyGraph, GraphFormatter
from .utils.iso8601 import parse_iso8601

try:
 import tblib
except ImportError:
 tblib = None

__all__ = (
 'ResultBase', 'AsyncResult', 'ResultSet',
 'GroupResult', 'EagerResult', 'result_from_tuple',
)

E_WOULDBLOCK = """\
Never call result.get() within a task!
See http://docs.celeryq.org/en/latest/userguide/tasks.html\
#task-synchronous-subtasks
"""

def assert_will_not_block():
 if task_join_will_block():
 raise RuntimeError(E_WOULDBLOCK)

@contextmanager
def allow_join_result():
 reset_value = task_join_will_block()
 _set_task_join_will_block(False)
 try:
 yield
 finally:
 _set_task_join_will_block(reset_value)

@contextmanager
def denied_join_result():
 reset_value = task_join_will_block()
 _set_task_join_will_block(True)
 try:
 yield
 finally:
 _set_task_join_will_block(reset_value)

[docs]class ResultBase:
 """Base class for results."""

 #: Parent result (if part of a chain)
 parent = None

[docs]@Thenable.register
class AsyncResult(ResultBase):
 """Query task state.

 Arguments:
 id (str): See :attr:`id`.
 backend (Backend): See :attr:`backend`.
 """

 app = None

 #: Error raised for timeouts.
 TimeoutError = TimeoutError

 #: The task's UUID.
 id = None

 #: The task result backend to use.
 backend = None

 def __init__(self, id, backend=None,
 task_name=None, # deprecated
 app=None, parent=None):
 if id is None:
 raise ValueError(
 f'AsyncResult requires valid id, not {type(id)}')
 self.app = app_or_default(app or self.app)
 self.id = id
 self.backend = backend or self.app.backend
 self.parent = parent
 self.on_ready = promise(self._on_fulfilled, weak=True)
 self._cache = None
 self._ignored = False

 @property
 def ignored(self):
 """If True, task result retrieval is disabled."""
 if hasattr(self, '_ignored'):
 return self._ignored
 return False

 @ignored.setter
 def ignored(self, value):
 """Enable/disable task result retrieval."""
 self._ignored = value

[docs] def then(self, callback, on_error=None, weak=False):
 self.backend.add_pending_result(self, weak=weak)
 return self.on_ready.then(callback, on_error)

 def _on_fulfilled(self, result):
 self.backend.remove_pending_result(self)
 return result

[docs] def as_tuple(self):
 parent = self.parent
 return (self.id, parent and parent.as_tuple()), None

[docs] def as_list(self):
 """Return as a list of task IDs."""
 results = []
 parent = self.parent
 results.append(self.id)
 if parent is not None:
 results.extend(parent.as_list())
 return results

[docs] def forget(self):
 """Forget the result of this task and its parents."""
 self._cache = None
 if self.parent:
 self.parent.forget()
 self.backend.forget(self.id)

[docs] def revoke(self, connection=None, terminate=False, signal=None,
 wait=False, timeout=None):
 """Send revoke signal to all workers.

 Any worker receiving the task, or having reserved the
 task, *must* ignore it.

 Arguments:
 terminate (bool): Also terminate the process currently working
 on the task (if any).
 signal (str): Name of signal to send to process if terminate.
 Default is TERM.
 wait (bool): Wait for replies from workers.
 The ``timeout`` argument specifies the seconds to wait.
 Disabled by default.
 timeout (float): Time in seconds to wait for replies when
 ``wait`` is enabled.
 """
 self.app.control.revoke(self.id, connection=connection,
 terminate=terminate, signal=signal,
 reply=wait, timeout=timeout)

[docs] def get(self, timeout=None, propagate=True, interval=0.5,
 no_ack=True, follow_parents=True, callback=None, on_message=None,
 on_interval=None, disable_sync_subtasks=True,
 EXCEPTION_STATES=states.EXCEPTION_STATES,
 PROPAGATE_STATES=states.PROPAGATE_STATES):
 """Wait until task is ready, and return its result.

 Warning:
 Waiting for tasks within a task may lead to deadlocks.
 Please read :ref:`task-synchronous-subtasks`.

 Warning:
 Backends use resources to store and transmit results. To ensure
 that resources are released, you must eventually call
 :meth:`~@AsyncResult.get` or :meth:`~@AsyncResult.forget` on
 EVERY :class:`~@AsyncResult` instance returned after calling
 a task.

 Arguments:
 timeout (float): How long to wait, in seconds, before the
 operation times out.
 propagate (bool): Re-raise exception if the task failed.
 interval (float): Time to wait (in seconds) before retrying to
 retrieve the result. Note that this does not have any effect
 when using the RPC/redis result store backends, as they don't
 use polling.
 no_ack (bool): Enable amqp no ack (automatically acknowledge
 message). If this is :const:`False` then the message will
 not be acked.
 follow_parents (bool): Re-raise any exception raised by
 parent tasks.
 disable_sync_subtasks (bool): Disable tasks to wait for sub tasks
 this is the default configuration. CAUTION do not enable this
 unless you must.

 Raises:
 celery.exceptions.TimeoutError: if `timeout` isn't
 :const:`None` and the result does not arrive within
 `timeout` seconds.
 Exception: If the remote call raised an exception then that
 exception will be re-raised in the caller process.
 """
 if self.ignored:
 return

 if disable_sync_subtasks:
 assert_will_not_block()
 _on_interval = promise()
 if follow_parents and propagate and self.parent:
 _on_interval = promise(self._maybe_reraise_parent_error, weak=True)
 self._maybe_reraise_parent_error()
 if on_interval:
 _on_interval.then(on_interval)

 if self._cache:
 if propagate:
 self.maybe_throw(callback=callback)
 return self.result

 self.backend.add_pending_result(self)
 return self.backend.wait_for_pending(
 self, timeout=timeout,
 interval=interval,
 on_interval=_on_interval,
 no_ack=no_ack,
 propagate=propagate,
 callback=callback,
 on_message=on_message,
)

 wait = get # deprecated alias to :meth:`get`.

 def _maybe_reraise_parent_error(self):
 for node in reversed(list(self._parents())):
 node.maybe_throw()

 def _parents(self):
 node = self.parent
 while node:
 yield node
 node = node.parent

[docs] def collect(self, intermediate=False, **kwargs):
 """Collect results as they return.

 Iterator, like :meth:`get` will wait for the task to complete,
 but will also follow :class:`AsyncResult` and :class:`ResultSet`
 returned by the task, yielding ``(result, value)`` tuples for each
 result in the tree.

 An example would be having the following tasks:

 .. code-block:: python

 from celery import group
 from proj.celery import app

 @app.task(trail=True)
 def A(how_many):
 return group(B.s(i) for i in range(how_many))()

 @app.task(trail=True)
 def B(i):
 return pow2.delay(i)

 @app.task(trail=True)
 def pow2(i):
 return i ** 2

 .. code-block:: pycon

 >>> from celery.result import ResultBase
 >>> from proj.tasks import A

 >>> result = A.delay(10)
 >>> [v for v in result.collect()
 ... if not isinstance(v, (ResultBase, tuple))]
 [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

 Note:
 The ``Task.trail`` option must be enabled
 so that the list of children is stored in ``result.children``.
 This is the default but enabled explicitly for illustration.

 Yields:
 Tuple[AsyncResult, Any]: tuples containing the result instance
 of the child task, and the return value of that task.
 """
 for _, R in self.iterdeps(intermediate=intermediate):
 yield R, R.get(**kwargs)

[docs] def get_leaf(self):
 value = None
 for _, R in self.iterdeps():
 value = R.get()
 return value

[docs] def iterdeps(self, intermediate=False):
 stack = deque([(None, self)])

 while stack:
 parent, node = stack.popleft()
 yield parent, node
 if node.ready():
 stack.extend((node, child) for child in node.children or [])
 else:
 if not intermediate:
 raise IncompleteStream()

[docs] def ready(self):
 """Return :const:`True` if the task has executed.

 If the task is still running, pending, or is waiting
 for retry then :const:`False` is returned.
 """
 return self.state in self.backend.READY_STATES

[docs] def successful(self):
 """Return :const:`True` if the task executed successfully."""
 return self.state == states.SUCCESS

[docs] def failed(self):
 """Return :const:`True` if the task failed."""
 return self.state == states.FAILURE

[docs] def throw(self, *args, **kwargs):
 self.on_ready.throw(*args, **kwargs)

[docs] def maybe_throw(self, propagate=True, callback=None):
 cache = self._get_task_meta() if self._cache is None else self._cache
 state, value, tb = (
 cache['status'], cache['result'], cache.get('traceback'))
 if state in states.PROPAGATE_STATES and propagate:
 self.throw(value, self._to_remote_traceback(tb))
 if callback is not None:
 callback(self.id, value)
 return value

 maybe_reraise = maybe_throw # XXX compat alias

 def _to_remote_traceback(self, tb):
 if tb and tblib is not None and self.app.conf.task_remote_tracebacks:
 return tblib.Traceback.from_string(tb).as_traceback()

[docs] def build_graph(self, intermediate=False, formatter=None):
 graph = DependencyGraph(
 formatter=formatter or GraphFormatter(root=self.id, shape='oval'),
)
 for parent, node in self.iterdeps(intermediate=intermediate):
 graph.add_arc(node)
 if parent:
 graph.add_edge(parent, node)
 return graph

 def __str__(self):
 """`str(self) -> self.id`."""
 return str(self.id)

 def __hash__(self):
 """`hash(self) -> hash(self.id)`."""
 return hash(self.id)

 def __repr__(self):
 return f'<{type(self).__name__}: {self.id}>'

 def __eq__(self, other):
 if isinstance(other, AsyncResult):
 return other.id == self.id
 elif isinstance(other, str):
 return other == self.id
 return NotImplemented

 def __ne__(self, other):
 res = self.__eq__(other)
 return True if res is NotImplemented else not res

 def __copy__(self):
 return self.__class__(
 self.id, self.backend, None, self.app, self.parent,
)

 def __reduce__(self):
 return self.__class__, self.__reduce_args__()

 def __reduce_args__(self):
 return self.id, self.backend, None, None, self.parent

 def __del__(self):
 """Cancel pending operations when the instance is destroyed."""
 if self.backend is not None:
 self.backend.remove_pending_result(self)

[docs] @cached_property
 def graph(self):
 return self.build_graph()

 @property
 def supports_native_join(self):
 return self.backend.supports_native_join

 @property
 def children(self):
 return self._get_task_meta().get('children')

 def _maybe_set_cache(self, meta):
 if meta:
 state = meta['status']
 if state in states.READY_STATES:
 d = self._set_cache(self.backend.meta_from_decoded(meta))
 self.on_ready(self)
 return d
 return meta

 def _get_task_meta(self):
 if self._cache is None:
 return self._maybe_set_cache(self.backend.get_task_meta(self.id))
 return self._cache

 def _iter_meta(self, **kwargs):
 return iter([self._get_task_meta()])

 def _set_cache(self, d):
 children = d.get('children')
 if children:
 d['children'] = [
 result_from_tuple(child, self.app) for child in children
]
 self._cache = d
 return d

 @property
 def result(self):
 """Task return value.

 Note:
 When the task has been executed, this contains the return value.
 If the task raised an exception, this will be the exception
 instance.
 """
 return self._get_task_meta()['result']
 info = result

 @property
 def traceback(self):
 """Get the traceback of a failed task."""
 return self._get_task_meta().get('traceback')

 @property
 def state(self):
 """The tasks current state.

 Possible values includes:

 PENDING

 The task is waiting for execution.

 STARTED

 The task has been started.

 RETRY

 The task is to be retried, possibly because of failure.

 FAILURE

 The task raised an exception, or has exceeded the retry limit.
 The :attr:`result` attribute then contains the
 exception raised by the task.

 SUCCESS

 The task executed successfully. The :attr:`result` attribute
 then contains the tasks return value.
 """
 return self._get_task_meta()['status']
 status = state # XXX compat

 @property
 def task_id(self):
 """Compat. alias to :attr:`id`."""
 return self.id

 @task_id.setter # noqa
 def task_id(self, id):
 self.id = id

 @property
 def name(self):
 return self._get_task_meta().get('name')

 @property
 def args(self):
 return self._get_task_meta().get('args')

 @property
 def kwargs(self):
 return self._get_task_meta().get('kwargs')

 @property
 def worker(self):
 return self._get_task_meta().get('worker')

 @property
 def date_done(self):
 """UTC date and time."""
 date_done = self._get_task_meta().get('date_done')
 if date_done and not isinstance(date_done, datetime.datetime):
 return parse_iso8601(date_done)
 return date_done

 @property
 def retries(self):
 return self._get_task_meta().get('retries')

 @property
 def queue(self):
 return self._get_task_meta().get('queue')

[docs]@Thenable.register
class ResultSet(ResultBase):
 """A collection of results.

 Arguments:
 results (Sequence[AsyncResult]): List of result instances.
 """

 _app = None

 #: List of results in in the set.
 results = None

 def __init__(self, results, app=None, ready_barrier=None, **kwargs):
 self._app = app
 self.results = results
 self.on_ready = promise(args=(self,))
 self._on_full = ready_barrier or barrier(results)
 if self._on_full:
 self._on_full.then(promise(self._on_ready, weak=True))

[docs] def add(self, result):
 """Add :class:`AsyncResult` as a new member of the set.

 Does nothing if the result is already a member.
 """
 if result not in self.results:
 self.results.append(result)
 if self._on_full:
 self._on_full.add(result)

 def _on_ready(self):
 if self.backend.is_async:
 self.on_ready()

[docs] def remove(self, result):
 """Remove result from the set; it must be a member.

 Raises:
 KeyError: if the result isn't a member.
 """
 if isinstance(result, str):
 result = self.app.AsyncResult(result)
 try:
 self.results.remove(result)
 except ValueError:
 raise KeyError(result)

[docs] def discard(self, result):
 """Remove result from the set if it is a member.

 Does nothing if it's not a member.
 """
 try:
 self.remove(result)
 except KeyError:
 pass

[docs] def update(self, results):
 """Extend from iterable of results."""
 self.results.extend(r for r in results if r not in self.results)

[docs] def clear(self):
 """Remove all results from this set."""
 self.results[:] = [] # don't create new list.

[docs] def successful(self):
 """Return true if all tasks successful.

 Returns:
 bool: true if all of the tasks finished
 successfully (i.e. didn't raise an exception).
 """
 return all(result.successful() for result in self.results)

[docs] def failed(self):
 """Return true if any of the tasks failed.

 Returns:
 bool: true if one of the tasks failed.
 (i.e., raised an exception)
 """
 return any(result.failed() for result in self.results)

[docs] def maybe_throw(self, callback=None, propagate=True):
 for result in self.results:
 result.maybe_throw(callback=callback, propagate=propagate)

 maybe_reraise = maybe_throw # XXX compat alias.

[docs] def waiting(self):
 """Return true if any of the tasks are incomplete.

 Returns:
 bool: true if one of the tasks are still
 waiting for execution.
 """
 return any(not result.ready() for result in self.results)

[docs] def ready(self):
 """Did all of the tasks complete? (either by success of failure).

 Returns:
 bool: true if all of the tasks have been executed.
 """
 return all(result.ready() for result in self.results)

[docs] def completed_count(self):
 """Task completion count.

 Returns:
 int: the number of tasks completed.
 """
 return sum(int(result.successful()) for result in self.results)

[docs] def forget(self):
 """Forget about (and possible remove the result of) all the tasks."""
 for result in self.results:
 result.forget()

[docs] def revoke(self, connection=None, terminate=False, signal=None,
 wait=False, timeout=None):
 """Send revoke signal to all workers for all tasks in the set.

 Arguments:
 terminate (bool): Also terminate the process currently working
 on the task (if any).
 signal (str): Name of signal to send to process if terminate.
 Default is TERM.
 wait (bool): Wait for replies from worker.
 The ``timeout`` argument specifies the number of seconds
 to wait. Disabled by default.
 timeout (float): Time in seconds to wait for replies when
 the ``wait`` argument is enabled.
 """
 self.app.control.revoke([r.id for r in self.results],
 connection=connection, timeout=timeout,
 terminate=terminate, signal=signal, reply=wait)

 def __iter__(self):
 return iter(self.results)

 def __getitem__(self, index):
 """`res[i] -> res.results[i]`."""
 return self.results[index]

[docs] def get(self, timeout=None, propagate=True, interval=0.5,
 callback=None, no_ack=True, on_message=None,
 disable_sync_subtasks=True, on_interval=None):
 """See :meth:`join`.

 This is here for API compatibility with :class:`AsyncResult`,
 in addition it uses :meth:`join_native` if available for the
 current result backend.
 """
 return (self.join_native if self.supports_native_join else self.join)(
 timeout=timeout, propagate=propagate,
 interval=interval, callback=callback, no_ack=no_ack,
 on_message=on_message, disable_sync_subtasks=disable_sync_subtasks,
 on_interval=on_interval,
)

[docs] def join(self, timeout=None, propagate=True, interval=0.5,
 callback=None, no_ack=True, on_message=None,
 disable_sync_subtasks=True, on_interval=None):
 """Gather the results of all tasks as a list in order.

 Note:
 This can be an expensive operation for result store
 backends that must resort to polling (e.g., database).

 You should consider using :meth:`join_native` if your backend
 supports it.

 Warning:
 Waiting for tasks within a task may lead to deadlocks.
 Please see :ref:`task-synchronous-subtasks`.

 Arguments:
 timeout (float): The number of seconds to wait for results
 before the operation times out.
 propagate (bool): If any of the tasks raises an exception,
 the exception will be re-raised when this flag is set.
 interval (float): Time to wait (in seconds) before retrying to
 retrieve a result from the set. Note that this does not have
 any effect when using the amqp result store backend,
 as it does not use polling.
 callback (Callable): Optional callback to be called for every
 result received. Must have signature ``(task_id, value)``
 No results will be returned by this function if a callback
 is specified. The order of results is also arbitrary when a
 callback is used. To get access to the result object for
 a particular id you'll have to generate an index first:
 ``index = {r.id: r for r in gres.results.values()}``
 Or you can create new result objects on the fly:
 ``result = app.AsyncResult(task_id)`` (both will
 take advantage of the backend cache anyway).
 no_ack (bool): Automatic message acknowledgment (Note that if this
 is set to :const:`False` then the messages
 will not be acknowledged).
 disable_sync_subtasks (bool): Disable tasks to wait for sub tasks
 this is the default configuration. CAUTION do not enable this
 unless you must.

 Raises:
 celery.exceptions.TimeoutError: if ``timeout`` isn't
 :const:`None` and the operation takes longer than ``timeout``
 seconds.
 """
 if disable_sync_subtasks:
 assert_will_not_block()
 time_start = time.monotonic()
 remaining = None

 if on_message is not None:
 raise ImproperlyConfigured(
 'Backend does not support on_message callback')

 results = []
 for result in self.results:
 remaining = None
 if timeout:
 remaining = timeout - (time.monotonic() - time_start)
 if remaining <= 0.0:
 raise TimeoutError('join operation timed out')
 value = result.get(
 timeout=remaining, propagate=propagate,
 interval=interval, no_ack=no_ack, on_interval=on_interval,
 disable_sync_subtasks=disable_sync_subtasks,
)
 if callback:
 callback(result.id, value)
 else:
 results.append(value)
 return results

[docs] def then(self, callback, on_error=None, weak=False):
 return self.on_ready.then(callback, on_error)

[docs] def iter_native(self, timeout=None, interval=0.5, no_ack=True,
 on_message=None, on_interval=None):
 """Backend optimized version of :meth:`iterate`.

 .. versionadded:: 2.2

 Note that this does not support collecting the results
 for different task types using different backends.

 This is currently only supported by the amqp, Redis and cache
 result backends.
 """
 return self.backend.iter_native(
 self,
 timeout=timeout, interval=interval, no_ack=no_ack,
 on_message=on_message, on_interval=on_interval,
)

[docs] def join_native(self, timeout=None, propagate=True,
 interval=0.5, callback=None, no_ack=True,
 on_message=None, on_interval=None,
 disable_sync_subtasks=True):
 """Backend optimized version of :meth:`join`.

 .. versionadded:: 2.2

 Note that this does not support collecting the results
 for different task types using different backends.

 This is currently only supported by the amqp, Redis and cache
 result backends.
 """
 if disable_sync_subtasks:
 assert_will_not_block()
 order_index = None if callback else {
 result.id: i for i, result in enumerate(self.results)
 }
 acc = None if callback else [None for _ in range(len(self))]
 for task_id, meta in self.iter_native(timeout, interval, no_ack,
 on_message, on_interval):
 if isinstance(meta, list):
 value = []
 for children_result in meta:
 value.append(children_result.get())
 else:
 value = meta['result']
 if propagate and meta['status'] in states.PROPAGATE_STATES:
 raise value
 if callback:
 callback(task_id, value)
 else:
 acc[order_index[task_id]] = value
 return acc

 def _iter_meta(self, **kwargs):
 return (meta for _, meta in self.backend.get_many(
 {r.id for r in self.results}, max_iterations=1, **kwargs
))

 def _failed_join_report(self):
 return (res for res in self.results
 if res.backend.is_cached(res.id) and
 res.state in states.PROPAGATE_STATES)

 def __len__(self):
 return len(self.results)

 def __eq__(self, other):
 if isinstance(other, ResultSet):
 return other.results == self.results
 return NotImplemented

 def __ne__(self, other):
 res = self.__eq__(other)
 return True if res is NotImplemented else not res

 def __repr__(self):
 return f'<{type(self).__name__}: [{", ".join(r.id for r in self.results)}]>'

 @property
 def supports_native_join(self):
 try:
 return self.results[0].supports_native_join
 except IndexError:
 pass

 @property
 def app(self):
 if self._app is None:
 self._app = (self.results[0].app if self.results else
 current_app._get_current_object())
 return self._app

 @app.setter
 def app(self, app): # noqa
 self._app = app

 @property
 def backend(self):
 return self.app.backend if self.app else self.results[0].backend

[docs]@Thenable.register
class GroupResult(ResultSet):
 """Like :class:`ResultSet`, but with an associated id.

 This type is returned by :class:`~celery.group`.

 It enables inspection of the tasks state and return values as
 a single entity.

 Arguments:
 id (str): The id of the group.
 results (Sequence[AsyncResult]): List of result instances.
 parent (ResultBase): Parent result of this group.
 """

 #: The UUID of the group.
 id = None

 #: List/iterator of results in the group
 results = None

 def __init__(self, id=None, results=None, parent=None, **kwargs):
 self.id = id
 self.parent = parent
 ResultSet.__init__(self, results, **kwargs)

 def _on_ready(self):
 self.backend.remove_pending_result(self)
 ResultSet._on_ready(self)

[docs] def save(self, backend=None):
 """Save group-result for later retrieval using :meth:`restore`.

 Example:
 >>> def save_and_restore(result):
 ... result.save()
 ... result = GroupResult.restore(result.id)
 """
 return (backend or self.app.backend).save_group(self.id, self)

[docs] def delete(self, backend=None):
 """Remove this result if it was previously saved."""
 (backend or self.app.backend).delete_group(self.id)

 def __reduce__(self):
 return self.__class__, self.__reduce_args__()

 def __reduce_args__(self):
 return self.id, self.results

 def __bool__(self):
 return bool(self.id or self.results)
 __nonzero__ = __bool__ # Included for Py2 backwards compatibility

 def __eq__(self, other):
 if isinstance(other, GroupResult):
 return (
 other.id == self.id and
 other.results == self.results and
 other.parent == self.parent
)
 elif isinstance(other, str):
 return other == self.id
 return NotImplemented

 def __ne__(self, other):
 res = self.__eq__(other)
 return True if res is NotImplemented else not res

 def __repr__(self):
 return f'<{type(self).__name__}: {self.id} [{", ".join(r.id for r in self.results)}]>'

 def __str__(self):
 """`str(self) -> self.id`."""
 return str(self.id)

 def __hash__(self):
 """`hash(self) -> hash(self.id)`."""
 return hash(self.id)

[docs] def as_tuple(self):
 return (
 (self.id, self.parent and self.parent.as_tuple()),
 [r.as_tuple() for r in self.results]
)

 @property
 def children(self):
 return self.results

[docs] @classmethod
 def restore(cls, id, backend=None, app=None):
 """Restore previously saved group result."""
 app = app or (
 cls.app if not isinstance(cls.app, property) else current_app
)
 backend = backend or app.backend
 return backend.restore_group(id)

[docs]@Thenable.register
class EagerResult(AsyncResult):
 """Result that we know has already been executed."""

 def __init__(self, id, ret_value, state, traceback=None):
 # pylint: disable=super-init-not-called
 # XXX should really not be inheriting from AsyncResult
 self.id = id
 self._result = ret_value
 self._state = state
 self._traceback = traceback
 self.on_ready = promise()
 self.on_ready(self)

[docs] def then(self, callback, on_error=None, weak=False):
 return self.on_ready.then(callback, on_error)

 def _get_task_meta(self):
 return self._cache

 def __reduce__(self):
 return self.__class__, self.__reduce_args__()

 def __reduce_args__(self):
 return (self.id, self._result, self._state, self._traceback)

 def __copy__(self):
 cls, args = self.__reduce__()
 return cls(*args)

[docs] def ready(self):
 return True

[docs] def get(self, timeout=None, propagate=True,
 disable_sync_subtasks=True, **kwargs):
 if disable_sync_subtasks:
 assert_will_not_block()

 if self.successful():
 return self.result
 elif self.state in states.PROPAGATE_STATES:
 if propagate:
 raise self.result if isinstance(
 self.result, Exception) else Exception(self.result)
 return self.result

 wait = get # XXX Compat (remove 5.0)

[docs] def forget(self):
 pass

[docs] def revoke(self, *args, **kwargs):
 self._state = states.REVOKED

 def __repr__(self):
 return f'<EagerResult: {self.id}>'

 @property
 def _cache(self):
 return {
 'task_id': self.id,
 'result': self._result,
 'status': self._state,
 'traceback': self._traceback,
 }

 @property
 def result(self):
 """The tasks return value."""
 return self._result

 @property
 def state(self):
 """The tasks state."""
 return self._state
 status = state

 @property
 def traceback(self):
 """The traceback if the task failed."""
 return self._traceback

 @property
 def supports_native_join(self):
 return False

[docs]def result_from_tuple(r, app=None):
 """Deserialize result from tuple."""
 # earlier backends may just pickle, so check if
 # result is already prepared.
 app = app_or_default(app)
 Result = app.AsyncResult
 if not isinstance(r, ResultBase):
 res, nodes = r
 id, parent = res if isinstance(res, (list, tuple)) else (res, None)
 if parent:
 parent = result_from_tuple(parent, app)

 if nodes is not None:
 return app.GroupResult(
 id, [result_from_tuple(child, app) for child in nodes],
 parent=parent,
)

 return Result(id, parent=parent)
 return r

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.schedules

"""Schedules define the intervals at which periodic tasks run."""

import numbers
import re
from bisect import bisect, bisect_left
from collections import namedtuple
from collections.abc import Iterable
from datetime import datetime, timedelta

from kombu.utils.objects import cached_property

from . import current_app
from .utils.collections import AttributeDict
from .utils.time import (ffwd, humanize_seconds, localize, maybe_make_aware,
 maybe_timedelta, remaining, timezone, weekday)

__all__ = (
 'ParseException', 'schedule', 'crontab', 'crontab_parser',
 'maybe_schedule', 'solar',
)

schedstate = namedtuple('schedstate', ('is_due', 'next'))

CRON_PATTERN_INVALID = """\
Invalid crontab pattern. Valid range is {min}-{max}. \
'{value}' was found.\
"""

CRON_INVALID_TYPE = """\
Argument cronspec needs to be of any of the following types: \
int, str, or an iterable type. {type!r} was given.\
"""

CRON_REPR = """\
<crontab: {0._orig_minute} {0._orig_hour} {0._orig_day_of_week} \
{0._orig_day_of_month} {0._orig_month_of_year} (m/h/d/dM/MY)>\
"""

SOLAR_INVALID_LATITUDE = """\
Argument latitude {lat} is invalid, must be between -90 and 90.\
"""

SOLAR_INVALID_LONGITUDE = """\
Argument longitude {lon} is invalid, must be between -180 and 180.\
"""

SOLAR_INVALID_EVENT = """\
Argument event "{event}" is invalid, must be one of {all_events}.\
"""

def cronfield(s):
 return '*' if s is None else s

[docs]class ParseException(Exception):
 """Raised by :class:`crontab_parser` when the input can't be parsed."""

class BaseSchedule:

 def __init__(self, nowfun=None, app=None):
 self.nowfun = nowfun
 self._app = app

 def now(self):
 return (self.nowfun or self.app.now)()

 def remaining_estimate(self, last_run_at):
 raise NotImplementedError()

 def is_due(self, last_run_at):
 raise NotImplementedError()

 def maybe_make_aware(self, dt):
 return maybe_make_aware(dt, self.tz)

 @property
 def app(self):
 return self._app or current_app._get_current_object()

 @app.setter # noqa
 def app(self, app):
 self._app = app

 @cached_property
 def tz(self):
 return self.app.timezone

 @cached_property
 def utc_enabled(self):
 return self.app.conf.enable_utc

 def to_local(self, dt):
 if not self.utc_enabled:
 return timezone.to_local_fallback(dt)
 return dt

 def __eq__(self, other):
 if isinstance(other, BaseSchedule):
 return other.nowfun == self.nowfun
 return NotImplemented

[docs]class schedule(BaseSchedule):
 """Schedule for periodic task.

 Arguments:
 run_every (float, ~datetime.timedelta): Time interval.
 relative (bool): If set to True the run time will be rounded to the
 resolution of the interval.
 nowfun (Callable): Function returning the current date and time
 (:class:`~datetime.datetime`).
 app (Celery): Celery app instance.
 """

 relative = False

 def __init__(self, run_every=None, relative=False, nowfun=None, app=None):
 self.run_every = maybe_timedelta(run_every)
 self.relative = relative
 super().__init__(nowfun=nowfun, app=app)

[docs] def remaining_estimate(self, last_run_at):
 return remaining(
 self.maybe_make_aware(last_run_at), self.run_every,
 self.maybe_make_aware(self.now()), self.relative,
)

[docs] def is_due(self, last_run_at):
 """Return tuple of ``(is_due, next_time_to_check)``.

 Notes:
 - next time to check is in seconds.

 - ``(True, 20)``, means the task should be run now, and the next
 time to check is in 20 seconds.

 - ``(False, 12.3)``, means the task is not due, but that the
 scheduler should check again in 12.3 seconds.

 The next time to check is used to save energy/CPU cycles,
 it does not need to be accurate but will influence the precision
 of your schedule. You must also keep in mind
 the value of :setting:`beat_max_loop_interval`,
 that decides the maximum number of seconds the scheduler can
 sleep between re-checking the periodic task intervals. So if you
 have a task that changes schedule at run-time then your next_run_at
 check will decide how long it will take before a change to the
 schedule takes effect. The max loop interval takes precedence
 over the next check at value returned.

 .. admonition:: Scheduler max interval variance

 The default max loop interval may vary for different schedulers.
 For the default scheduler the value is 5 minutes, but for example
 the :pypi:`django-celery-beat` database scheduler the value
 is 5 seconds.
 """
 last_run_at = self.maybe_make_aware(last_run_at)
 rem_delta = self.remaining_estimate(last_run_at)
 remaining_s = max(rem_delta.total_seconds(), 0)
 if remaining_s == 0:
 return schedstate(is_due=True, next=self.seconds)
 return schedstate(is_due=False, next=remaining_s)

 def __repr__(self):
 return f'<freq: {self.human_seconds}>'

 def __eq__(self, other):
 if isinstance(other, schedule):
 return self.run_every == other.run_every
 return self.run_every == other

 def __ne__(self, other):
 return not self.__eq__(other)

 def __reduce__(self):
 return self.__class__, (self.run_every, self.relative, self.nowfun)

 @property
 def seconds(self):
 return max(self.run_every.total_seconds(), 0)

 @property
 def human_seconds(self):
 return humanize_seconds(self.seconds)

[docs]class crontab_parser:
 """Parser for Crontab expressions.

 Any expression of the form 'groups'
 (see BNF grammar below) is accepted and expanded to a set of numbers.
 These numbers represent the units of time that the Crontab needs to
 run on:

 .. code-block:: bnf

 digit :: '0'..'9'
 dow :: 'a'..'z'
 number :: digit+ | dow+
 steps :: number
 range :: number ('-' number) ?
 numspec :: '*' | range
 expr :: numspec ('/' steps) ?
 groups :: expr (',' expr) *

 The parser is a general purpose one, useful for parsing hours, minutes and
 day of week expressions. Example usage:

 .. code-block:: pycon

 >>> minutes = crontab_parser(60).parse('*/15')
 [0, 15, 30, 45]
 >>> hours = crontab_parser(24).parse('*/4')
 [0, 4, 8, 12, 16, 20]
 >>> day_of_week = crontab_parser(7).parse('*')
 [0, 1, 2, 3, 4, 5, 6]

 It can also parse day of month and month of year expressions if initialized
 with a minimum of 1. Example usage:

 .. code-block:: pycon

 >>> days_of_month = crontab_parser(31, 1).parse('*/3')
 [1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31]
 >>> months_of_year = crontab_parser(12, 1).parse('*/2')
 [1, 3, 5, 7, 9, 11]
 >>> months_of_year = crontab_parser(12, 1).parse('2-12/2')
 [2, 4, 6, 8, 10, 12]

 The maximum possible expanded value returned is found by the formula:

 :math:`max_ + min_ - 1`
 """

 ParseException = ParseException

 _range = r'(\w+?)-(\w+)'
 _steps = r'/(\w+)?'
 _star = r'*'

 def __init__(self, max_=60, min_=0):
 self.max_ = max_
 self.min_ = min_
 self.pats = (
 (re.compile(self._range + self._steps), self._range_steps),
 (re.compile(self._range), self._expand_range),
 (re.compile(self._star + self._steps), self._star_steps),
 (re.compile('^' + self._star + '$'), self._expand_star),
)

[docs] def parse(self, spec):
 acc = set()
 for part in spec.split(','):
 if not part:
 raise self.ParseException('empty part')
 acc |= set(self._parse_part(part))
 return acc

 def _parse_part(self, part):
 for regex, handler in self.pats:
 m = regex.match(part)
 if m:
 return handler(m.groups())
 return self._expand_range((part,))

 def _expand_range(self, toks):
 fr = self._expand_number(toks[0])
 if len(toks) > 1:
 to = self._expand_number(toks[1])
 if to < fr: # Wrap around max_ if necessary
 return (list(range(fr, self.min_ + self.max_)) +
 list(range(self.min_, to + 1)))
 return list(range(fr, to + 1))
 return [fr]

 def _range_steps(self, toks):
 if len(toks) != 3 or not toks[2]:
 raise self.ParseException('empty filter')
 return self._expand_range(toks[:2])[::int(toks[2])]

 def _star_steps(self, toks):
 if not toks or not toks[0]:
 raise self.ParseException('empty filter')
 return self._expand_star()[::int(toks[0])]

 def _expand_star(self, *args):
 return list(range(self.min_, self.max_ + self.min_))

 def _expand_number(self, s):
 if isinstance(s, str) and s[0] == '-':
 raise self.ParseException('negative numbers not supported')
 try:
 i = int(s)
 except ValueError:
 try:
 i = weekday(s)
 except KeyError:
 raise ValueError(f'Invalid weekday literal {s!r}.')

 max_val = self.min_ + self.max_ - 1
 if i > max_val:
 raise ValueError(
 f'Invalid end range: {i} > {max_val}.')
 if i < self.min_:
 raise ValueError(
 f'Invalid beginning range: {i} < {self.min_}.')

 return i

[docs]class crontab(BaseSchedule):
 """Crontab schedule.

 A Crontab can be used as the ``run_every`` value of a
 periodic task entry to add :manpage:`crontab(5)`-like scheduling.

 Like a :manpage:`cron(5)`-job, you can specify units of time of when
 you'd like the task to execute. It's a reasonably complete
 implementation of :command:`cron`'s features, so it should provide a fair
 degree of scheduling needs.

 You can specify a minute, an hour, a day of the week, a day of the
 month, and/or a month in the year in any of the following formats:

 .. attribute:: minute

 - A (list of) integers from 0-59 that represent the minutes of
 an hour of when execution should occur; or
 - A string representing a Crontab pattern. This may get pretty
 advanced, like ``minute='*/15'`` (for every quarter) or
 ``minute='1,13,30-45,50-59/2'``.

 .. attribute:: hour

 - A (list of) integers from 0-23 that represent the hours of
 a day of when execution should occur; or
 - A string representing a Crontab pattern. This may get pretty
 advanced, like ``hour='*/3'`` (for every three hours) or
 ``hour='0,8-17/2'`` (at midnight, and every two hours during
 office hours).

 .. attribute:: day_of_week

 - A (list of) integers from 0-6, where Sunday = 0 and Saturday =
 6, that represent the days of a week that execution should
 occur.
 - A string representing a Crontab pattern. This may get pretty
 advanced, like ``day_of_week='mon-fri'`` (for weekdays only).
 (Beware that ``day_of_week='*/2'`` does not literally mean
 'every two days', but 'every day that is divisible by two'!)

 .. attribute:: day_of_month

 - A (list of) integers from 1-31 that represents the days of the
 month that execution should occur.
 - A string representing a Crontab pattern. This may get pretty
 advanced, such as ``day_of_month='2-30/2'`` (for every even
 numbered day) or ``day_of_month='1-7,15-21'`` (for the first and
 third weeks of the month).

 .. attribute:: month_of_year

 - A (list of) integers from 1-12 that represents the months of
 the year during which execution can occur.
 - A string representing a Crontab pattern. This may get pretty
 advanced, such as ``month_of_year='*/3'`` (for the first month
 of every quarter) or ``month_of_year='2-12/2'`` (for every even
 numbered month).

 .. attribute:: nowfun

 Function returning the current date and time
 (:class:`~datetime.datetime`).

 .. attribute:: app

 The Celery app instance.

 It's important to realize that any day on which execution should
 occur must be represented by entries in all three of the day and
 month attributes. For example, if ``day_of_week`` is 0 and
 ``day_of_month`` is every seventh day, only months that begin
 on Sunday and are also in the ``month_of_year`` attribute will have
 execution events. Or, ``day_of_week`` is 1 and ``day_of_month``
 is '1-7,15-21' means every first and third Monday of every month
 present in ``month_of_year``.
 """

 def __init__(self, minute='*', hour='*', day_of_week='*',
 day_of_month='*', month_of_year='*', **kwargs):
 self._orig_minute = cronfield(minute)
 self._orig_hour = cronfield(hour)
 self._orig_day_of_week = cronfield(day_of_week)
 self._orig_day_of_month = cronfield(day_of_month)
 self._orig_month_of_year = cronfield(month_of_year)
 self._orig_kwargs = kwargs
 self.hour = self._expand_cronspec(hour, 24)
 self.minute = self._expand_cronspec(minute, 60)
 self.day_of_week = self._expand_cronspec(day_of_week, 7)
 self.day_of_month = self._expand_cronspec(day_of_month, 31, 1)
 self.month_of_year = self._expand_cronspec(month_of_year, 12, 1)
 super().__init__(**kwargs)

 @staticmethod
 def _expand_cronspec(cronspec, max_, min_=0):
 """Expand cron specification.

 Takes the given cronspec argument in one of the forms:

 .. code-block:: text

 int (like 7)
 str (like '3-5,*/15', '*', or 'monday')
 set (like {0,15,30,45}
 list (like [8-17])

 And convert it to an (expanded) set representing all time unit
 values on which the Crontab triggers. Only in case of the base
 type being :class:`str`, parsing occurs. (It's fast and
 happens only once for each Crontab instance, so there's no
 significant performance overhead involved.)

 For the other base types, merely Python type conversions happen.

 The argument ``max_`` is needed to determine the expansion of
 ``*`` and ranges. The argument ``min_`` is needed to determine
 the expansion of ``*`` and ranges for 1-based cronspecs, such as
 day of month or month of year. The default is sufficient for minute,
 hour, and day of week.
 """
 if isinstance(cronspec, numbers.Integral):
 result = {cronspec}
 elif isinstance(cronspec, str):
 result = crontab_parser(max_, min_).parse(cronspec)
 elif isinstance(cronspec, set):
 result = cronspec
 elif isinstance(cronspec, Iterable):
 result = set(cronspec)
 else:
 raise TypeError(CRON_INVALID_TYPE.format(type=type(cronspec)))

 # assure the result does not preceed the min or exceed the max
 for number in result:
 if number >= max_ + min_ or number < min_:
 raise ValueError(CRON_PATTERN_INVALID.format(
 min=min_, max=max_ - 1 + min_, value=number))
 return result

 def _delta_to_next(self, last_run_at, next_hour, next_minute):
 """Find next delta.

 Takes a :class:`~datetime.datetime` of last run, next minute and hour,
 and returns a :class:`~celery.utils.time.ffwd` for the next
 scheduled day and time.

 Only called when ``day_of_month`` and/or ``month_of_year``
 cronspec is specified to further limit scheduled task execution.
 """
 datedata = AttributeDict(year=last_run_at.year)
 days_of_month = sorted(self.day_of_month)
 months_of_year = sorted(self.month_of_year)

 def day_out_of_range(year, month, day):
 try:
 datetime(year=year, month=month, day=day)
 except ValueError:
 return True
 return False

 def is_before_last_run(year, month, day):
 return self.maybe_make_aware(datetime(year,
 month,
 day)) < last_run_at

 def roll_over():
 for _ in range(2000):
 flag = (datedata.dom == len(days_of_month) or
 day_out_of_range(datedata.year,
 months_of_year[datedata.moy],
 days_of_month[datedata.dom]) or
 (is_before_last_run(datedata.year,
 months_of_year[datedata.moy],
 days_of_month[datedata.dom])))

 if flag:
 datedata.dom = 0
 datedata.moy += 1
 if datedata.moy == len(months_of_year):
 datedata.moy = 0
 datedata.year += 1
 else:
 break
 else:
 # Tried 2000 times, we're most likely in an infinite loop
 raise RuntimeError('unable to rollover, '
 'time specification is probably invalid')

 if last_run_at.month in self.month_of_year:
 datedata.dom = bisect(days_of_month, last_run_at.day)
 datedata.moy = bisect_left(months_of_year, last_run_at.month)
 else:
 datedata.dom = 0
 datedata.moy = bisect(months_of_year, last_run_at.month)
 if datedata.moy == len(months_of_year):
 datedata.moy = 0
 roll_over()

 while 1:
 th = datetime(year=datedata.year,
 month=months_of_year[datedata.moy],
 day=days_of_month[datedata.dom])
 if th.isoweekday() % 7 in self.day_of_week:
 break
 datedata.dom += 1
 roll_over()

 return ffwd(year=datedata.year,
 month=months_of_year[datedata.moy],
 day=days_of_month[datedata.dom],
 hour=next_hour,
 minute=next_minute,
 second=0,
 microsecond=0)

 def __repr__(self):
 return CRON_REPR.format(self)

 def __reduce__(self):
 return (self.__class__, (self._orig_minute,
 self._orig_hour,
 self._orig_day_of_week,
 self._orig_day_of_month,
 self._orig_month_of_year), self._orig_kwargs)

 def __setstate__(self, state):
 # Calling super's init because the kwargs aren't necessarily passed in
 # the same form as they are stored by the superclass
 super().__init__(**state)

[docs] def remaining_delta(self, last_run_at, tz=None, ffwd=ffwd):
 # pylint: disable=redefined-outer-name
 # caching global ffwd
 tz = tz or self.tz
 last_run_at = self.maybe_make_aware(last_run_at)
 now = self.maybe_make_aware(self.now())
 dow_num = last_run_at.isoweekday() % 7 # Sunday is day 0, not day 7

 execute_this_date = (
 last_run_at.month in self.month_of_year and
 last_run_at.day in self.day_of_month and
 dow_num in self.day_of_week
)

 execute_this_hour = (
 execute_this_date and
 last_run_at.day == now.day and
 last_run_at.month == now.month and
 last_run_at.year == now.year and
 last_run_at.hour in self.hour and
 last_run_at.minute < max(self.minute)
)

 if execute_this_hour:
 next_minute = min(minute for minute in self.minute
 if minute > last_run_at.minute)
 delta = ffwd(minute=next_minute, second=0, microsecond=0)
 else:
 next_minute = min(self.minute)
 execute_today = (execute_this_date and
 last_run_at.hour < max(self.hour))

 if execute_today:
 next_hour = min(hour for hour in self.hour
 if hour > last_run_at.hour)
 delta = ffwd(hour=next_hour, minute=next_minute,
 second=0, microsecond=0)
 else:
 next_hour = min(self.hour)
 all_dom_moy = (self._orig_day_of_month == '*' and
 self._orig_month_of_year == '*')
 if all_dom_moy:
 next_day = min([day for day in self.day_of_week
 if day > dow_num] or self.day_of_week)
 add_week = next_day == dow_num

 delta = ffwd(
 weeks=add_week and 1 or 0,
 weekday=(next_day - 1) % 7,
 hour=next_hour,
 minute=next_minute,
 second=0,
 microsecond=0,
)
 else:
 delta = self._delta_to_next(last_run_at,
 next_hour, next_minute)
 return self.to_local(last_run_at), delta, self.to_local(now)

[docs] def remaining_estimate(self, last_run_at, ffwd=ffwd):
 """Estimate of next run time.

 Returns when the periodic task should run next as a
 :class:`~datetime.timedelta`.
 """
 # pylint: disable=redefined-outer-name
 # caching global ffwd
 return remaining(*self.remaining_delta(last_run_at, ffwd=ffwd))

[docs] def is_due(self, last_run_at):
 """Return tuple of ``(is_due, next_time_to_run)``.

 Note:
 Next time to run is in seconds.

 SeeAlso:
 :meth:`celery.schedules.schedule.is_due` for more information.
 """
 rem_delta = self.remaining_estimate(last_run_at)
 rem = max(rem_delta.total_seconds(), 0)
 due = rem == 0
 if due:
 rem_delta = self.remaining_estimate(self.now())
 rem = max(rem_delta.total_seconds(), 0)
 return schedstate(due, rem)

 def __eq__(self, other):
 if isinstance(other, crontab):
 return (
 other.month_of_year == self.month_of_year and
 other.day_of_month == self.day_of_month and
 other.day_of_week == self.day_of_week and
 other.hour == self.hour and
 other.minute == self.minute and
 super().__eq__(other)
)
 return NotImplemented

 def __ne__(self, other):
 res = self.__eq__(other)
 if res is NotImplemented:
 return True
 return not res

[docs]def maybe_schedule(s, relative=False, app=None):
 """Return schedule from number, timedelta, or actual schedule."""
 if s is not None:
 if isinstance(s, numbers.Number):
 s = timedelta(seconds=s)
 if isinstance(s, timedelta):
 return schedule(s, relative, app=app)
 else:
 s.app = app
 return s

[docs]class solar(BaseSchedule):
 """Solar event.

 A solar event can be used as the ``run_every`` value of a
 periodic task entry to schedule based on certain solar events.

 Notes:

 Available event valus are:

 - ``dawn_astronomical``
 - ``dawn_nautical``
 - ``dawn_civil``
 - ``sunrise``
 - ``solar_noon``
 - ``sunset``
 - ``dusk_civil``
 - ``dusk_nautical``
 - ``dusk_astronomical``

 Arguments:
 event (str): Solar event that triggers this task.
 See note for available values.
 lat (int): The latitude of the observer.
 lon (int): The longitude of the observer.
 nowfun (Callable): Function returning the current date and time
 as a class:`~datetime.datetime`.
 app (Celery): Celery app instance.
 """

 _all_events = {
 'dawn_astronomical',
 'dawn_nautical',
 'dawn_civil',
 'sunrise',
 'solar_noon',
 'sunset',
 'dusk_civil',
 'dusk_nautical',
 'dusk_astronomical',
 }
 _horizons = {
 'dawn_astronomical': '-18',
 'dawn_nautical': '-12',
 'dawn_civil': '-6',
 'sunrise': '-0:34',
 'solar_noon': '0',
 'sunset': '-0:34',
 'dusk_civil': '-6',
 'dusk_nautical': '-12',
 'dusk_astronomical': '18',
 }
 _methods = {
 'dawn_astronomical': 'next_rising',
 'dawn_nautical': 'next_rising',
 'dawn_civil': 'next_rising',
 'sunrise': 'next_rising',
 'solar_noon': 'next_transit',
 'sunset': 'next_setting',
 'dusk_civil': 'next_setting',
 'dusk_nautical': 'next_setting',
 'dusk_astronomical': 'next_setting',
 }
 _use_center_l = {
 'dawn_astronomical': True,
 'dawn_nautical': True,
 'dawn_civil': True,
 'sunrise': False,
 'solar_noon': False,
 'sunset': False,
 'dusk_civil': True,
 'dusk_nautical': True,
 'dusk_astronomical': True,
 }

 def __init__(self, event, lat, lon, **kwargs):
 self.ephem = __import__('ephem')
 self.event = event
 self.lat = lat
 self.lon = lon
 super().__init__(**kwargs)

 if event not in self._all_events:
 raise ValueError(SOLAR_INVALID_EVENT.format(
 event=event, all_events=', '.join(sorted(self._all_events)),
))
 if lat < -90 or lat > 90:
 raise ValueError(SOLAR_INVALID_LATITUDE.format(lat=lat))
 if lon < -180 or lon > 180:
 raise ValueError(SOLAR_INVALID_LONGITUDE.format(lon=lon))

 cal = self.ephem.Observer()
 cal.lat = str(lat)
 cal.lon = str(lon)
 cal.elev = 0
 cal.horizon = self._horizons[event]
 cal.pressure = 0
 self.cal = cal

 self.method = self._methods[event]
 self.use_center = self._use_center_l[event]

 def __reduce__(self):
 return self.__class__, (self.event, self.lat, self.lon)

 def __repr__(self):
 return '<solar: {} at latitude {}, longitude: {}>'.format(
 self.event, self.lat, self.lon,
)

[docs] def remaining_estimate(self, last_run_at):
 """Return estimate of next time to run.

 Returns:
 ~datetime.timedelta: when the periodic task should
 run next, or if it shouldn't run today (e.g., the sun does
 not rise today), returns the time when the next check
 should take place.
 """
 last_run_at = self.maybe_make_aware(last_run_at)
 last_run_at_utc = localize(last_run_at, timezone.utc)
 self.cal.date = last_run_at_utc
 try:
 if self.use_center:
 next_utc = getattr(self.cal, self.method)(
 self.ephem.Sun(),
 start=last_run_at_utc, use_center=self.use_center
)
 else:
 next_utc = getattr(self.cal, self.method)(
 self.ephem.Sun(), start=last_run_at_utc
)

 except self.ephem.CircumpolarError: # pragma: no cover
 # Sun won't rise/set today. Check again tomorrow
 # (specifically, after the next anti-transit).
 next_utc = (
 self.cal.next_antitransit(self.ephem.Sun()) +
 timedelta(minutes=1)
)
 next = self.maybe_make_aware(next_utc.datetime())
 now = self.maybe_make_aware(self.now())
 delta = next - now
 return delta

[docs] def is_due(self, last_run_at):
 """Return tuple of ``(is_due, next_time_to_run)``.

 Note:
 next time to run is in seconds.

 See Also:
 :meth:`celery.schedules.schedule.is_due` for more information.
 """
 rem_delta = self.remaining_estimate(last_run_at)
 rem = max(rem_delta.total_seconds(), 0)
 due = rem == 0
 if due:
 rem_delta = self.remaining_estimate(self.now())
 rem = max(rem_delta.total_seconds(), 0)
 return schedstate(due, rem)

 def __eq__(self, other):
 if isinstance(other, solar):
 return (
 other.event == self.event and
 other.lat == self.lat and
 other.lon == self.lon
)
 return NotImplemented

 def __ne__(self, other):
 res = self.__eq__(other)
 if res is NotImplemented:
 return True
 return not res

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.security

"""Message Signing Serializer."""
from kombu.serialization import \
 disable_insecure_serializers as _disable_insecure_serializers
from kombu.serialization import registry

from celery.exceptions import ImproperlyConfigured

from .serialization import register_auth # noqa: need cryptography first

CRYPTOGRAPHY_NOT_INSTALLED = """\
You need to install the cryptography library to use the auth serializer.
Please install by:

 $ pip install cryptography
"""

SECURITY_SETTING_MISSING = """\
Sorry, but you have to configure the
 * security_key
 * security_certificate, and the
 * security_cert_store
configuration settings to use the auth serializer.

Please see the configuration reference for more information.
"""

SETTING_MISSING = """\
You have to configure a special task serializer
for signing and verifying tasks:
 * task_serializer = 'auth'

You have to accept only tasks which are serialized with 'auth'.
There is no point in signing messages if they are not verified.
 * accept_content = ['auth']
"""

__all__ = ('setup_security',)

try:
 import cryptography # noqa
except ImportError:
 raise ImproperlyConfigured(CRYPTOGRAPHY_NOT_INSTALLED)

[docs]def setup_security(allowed_serializers=None, key=None, cert=None, store=None,
 digest=None, serializer='json', app=None):
 """See :meth:`@Celery.setup_security`."""
 if app is None:
 from celery import current_app
 app = current_app._get_current_object()

 _disable_insecure_serializers(allowed_serializers)

 # check conf for sane security settings
 conf = app.conf
 if conf.task_serializer != 'auth' or conf.accept_content != ['auth']:
 raise ImproperlyConfigured(SETTING_MISSING)

 key = key or conf.security_key
 cert = cert or conf.security_certificate
 store = store or conf.security_cert_store
 digest = digest or conf.security_digest

 if not (key and cert and store):
 raise ImproperlyConfigured(SECURITY_SETTING_MISSING)

 with open(key) as kf:
 with open(cert) as cf:
 register_auth(kf.read(), cf.read(), store, digest, serializer)
 registry._set_default_serializer('auth')

def disable_untrusted_serializers(whitelist=None):
 _disable_insecure_serializers(allowed=whitelist)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.states

"""Built-in task states.

.. _states:

States

See :ref:`task-states`.

.. _statesets:

Sets

.. state:: READY_STATES

READY_STATES
~~~~~~~~~~~~

Set of states meaning the task result is ready (has been executed).

.. state:: UNREADY_STATES

UNREADY_STATES
~~~~~~~~~~~~~~

Set of states meaning the task result is not ready (hasn't been executed).

.. state:: EXCEPTION_STATES

EXCEPTION_STATES
~~~~~~~~~~~~~~~~

Set of states meaning the task returned an exception.

.. state:: PROPAGATE_STATES

PROPAGATE_STATES
~~~~~~~~~~~~~~~~

Set of exception states that should propagate exceptions to the user.

.. state:: ALL_STATES

ALL_STATES
~~~~~~~~~~

Set of all possible states.

Misc
----

"""

__all__ = (
    'PENDING', 'RECEIVED', 'STARTED', 'SUCCESS', 'FAILURE',
    'REVOKED', 'RETRY', 'IGNORED', 'READY_STATES', 'UNREADY_STATES',
    'EXCEPTION_STATES', 'PROPAGATE_STATES', 'precedence', 'state',
)

#: State precedence.
#: None represents the precedence of an unknown state.
#: Lower index means higher precedence.
PRECEDENCE = [
    'SUCCESS',
    'FAILURE',
    None,
    'REVOKED',
    'STARTED',
    'RECEIVED',
    'REJECTED',
    'RETRY',
    'PENDING',
]

#: Hash lookup of PRECEDENCE to index
PRECEDENCE_LOOKUP = dict(zip(PRECEDENCE, range(0, len(PRECEDENCE))))
NONE_PRECEDENCE = PRECEDENCE_LOOKUP[None]


[docs]def precedence(state):
    """Get the precedence index for state.

    Lower index means higher precedence.
    """
    try:
        return PRECEDENCE_LOOKUP[state]
    except KeyError:
        return NONE_PRECEDENCE



[docs]class state(str):
    """Task state.

    State is a subclass of :class:`str`, implementing comparison
    methods adhering to state precedence rules::

        >>> from celery.states import state, PENDING, SUCCESS

        >>> state(PENDING) < state(SUCCESS)
        True

    Any custom state is considered to be lower than :state:`FAILURE` and
    :state:`SUCCESS`, but higher than any of the other built-in states::

        >>> state('PROGRESS') > state(STARTED)
        True

        >>> state('PROGRESS') > state('SUCCESS')
        False
    """

    def __gt__(self, other):
        return precedence(self) < precedence(other)

    def __ge__(self, other):
        return precedence(self) <= precedence(other)

    def __lt__(self, other):
        return precedence(self) > precedence(other)

    def __le__(self, other):
        return precedence(self) >= precedence(other)



#: Task state is unknown (assumed pending since you know the id).
PENDING = 'PENDING'
#: Task was received by a worker (only used in events).
RECEIVED = 'RECEIVED'
#: Task was started by a worker (:setting:`task_track_started`).
STARTED = 'STARTED'
#: Task succeeded
SUCCESS = 'SUCCESS'
#: Task failed
FAILURE = 'FAILURE'
#: Task was revoked.
REVOKED = 'REVOKED'
#: Task was rejected (only used in events).
REJECTED = 'REJECTED'
#: Task is waiting for retry.
RETRY = 'RETRY'
IGNORED = 'IGNORED'

READY_STATES = frozenset({SUCCESS, FAILURE, REVOKED})
UNREADY_STATES = frozenset({PENDING, RECEIVED, STARTED, REJECTED, RETRY})
EXCEPTION_STATES = frozenset({RETRY, FAILURE, REVOKED})
PROPAGATE_STATES = frozenset({FAILURE, REVOKED})

ALL_STATES = frozenset({
    PENDING, RECEIVED, STARTED, SUCCESS, FAILURE, RETRY, REVOKED,
})




            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.app.amqp

"""Sending/Receiving Messages (Kombu integration)."""
import numbers
from collections import namedtuple
from collections.abc import Mapping
from datetime import timedelta
from weakref import WeakValueDictionary

from kombu import Connection, Consumer, Exchange, Producer, Queue, pools
from kombu.common import Broadcast
from kombu.utils.functional import maybe_list
from kombu.utils.objects import cached_property

from celery import signals
from celery.utils.nodenames import anon_nodename
from celery.utils.saferepr import saferepr
from celery.utils.text import indent as textindent
from celery.utils.time import maybe_make_aware

from . import routes as _routes

__all__ = ('AMQP', 'Queues', 'task_message')

#: earliest date supported by time.mktime.
INT_MIN = -2147483648

#: Human readable queue declaration.
QUEUE_FORMAT = """
.> {0.name:<16} exchange={0.exchange.name}({0.exchange.type}) \
key={0.routing_key}
"""

task_message = namedtuple('task_message',
                          ('headers', 'properties', 'body', 'sent_event'))


def utf8dict(d, encoding='utf-8'):
    return {k.decode(encoding) if isinstance(k, bytes) else k: v
            for k, v in d.items()}


[docs]class Queues(dict):
    """Queue name⇒ declaration mapping.

    Arguments:
        queues (Iterable): Initial list/tuple or dict of queues.
        create_missing (bool): By default any unknown queues will be
            added automatically, but if this flag is disabled the occurrence
            of unknown queues in `wanted` will raise :exc:`KeyError`.
        ha_policy (Sequence, str): Default HA policy for queues with none set.
        max_priority (int): Default x-max-priority for queues with none set.
    """

    #: If set, this is a subset of queues to consume from.
    #: The rest of the queues are then used for routing only.
    _consume_from = None

    def __init__(self, queues=None, default_exchange=None,
                 create_missing=True, ha_policy=None, autoexchange=None,
                 max_priority=None, default_routing_key=None):
        dict.__init__(self)
        self.aliases = WeakValueDictionary()
        self.default_exchange = default_exchange
        self.default_routing_key = default_routing_key
        self.create_missing = create_missing
        self.ha_policy = ha_policy
        self.autoexchange = Exchange if autoexchange is None else autoexchange
        self.max_priority = max_priority
        if queues is not None and not isinstance(queues, Mapping):
            queues = {q.name: q for q in queues}
        queues = queues or {}
        for name, q in queues.items():
            self.add(q) if isinstance(q, Queue) else self.add_compat(name, **q)

    def __getitem__(self, name):
        try:
            return self.aliases[name]
        except KeyError:
            return dict.__getitem__(self, name)

    def __setitem__(self, name, queue):
        if self.default_exchange and not queue.exchange:
            queue.exchange = self.default_exchange
        dict.__setitem__(self, name, queue)
        if queue.alias:
            self.aliases[queue.alias] = queue

    def __missing__(self, name):
        if self.create_missing:
            return self.add(self.new_missing(name))
        raise KeyError(name)

[docs]    def add(self, queue, **kwargs):
        """Add new queue.

        The first argument can either be a :class:`kombu.Queue` instance,
        or the name of a queue.  If the former the rest of the keyword
        arguments are ignored, and options are simply taken from the queue
        instance.

        Arguments:
            queue (kombu.Queue, str): Queue to add.
            exchange (kombu.Exchange, str):
                if queue is str, specifies exchange name.
            routing_key (str): if queue is str, specifies binding key.
            exchange_type (str): if queue is str, specifies type of exchange.
            **options (Any): Additional declaration options used when
                queue is a str.
        """
        if not isinstance(queue, Queue):
            return self.add_compat(queue, **kwargs)
        return self._add(queue)


[docs]    def add_compat(self, name, **options):
        # docs used to use binding_key as routing key
        options.setdefault('routing_key', options.get('binding_key'))
        if options['routing_key'] is None:
            options['routing_key'] = name
        return self._add(Queue.from_dict(name, **options))


    def _add(self, queue):
        if queue.exchange is None or queue.exchange.name == '':
            queue.exchange = self.default_exchange
        if not queue.routing_key:
            queue.routing_key = self.default_routing_key
        if self.ha_policy:
            if queue.queue_arguments is None:
                queue.queue_arguments = {}
            self._set_ha_policy(queue.queue_arguments)
        if self.max_priority is not None:
            if queue.queue_arguments is None:
                queue.queue_arguments = {}
            self._set_max_priority(queue.queue_arguments)
        self[queue.name] = queue
        return queue

    def _set_ha_policy(self, args):
        policy = self.ha_policy
        if isinstance(policy, (list, tuple)):
            return args.update({'ha-mode': 'nodes',
                                'ha-params': list(policy)})
        args['ha-mode'] = policy

    def _set_max_priority(self, args):
        if 'x-max-priority' not in args and self.max_priority is not None:
            return args.update({'x-max-priority': self.max_priority})

[docs]    def format(self, indent=0, indent_first=True):
        """Format routing table into string for log dumps."""
        active = self.consume_from
        if not active:
            return ''
        info = [QUEUE_FORMAT.strip().format(q)
                for _, q in sorted(active.items())]
        if indent_first:
            return textindent('\n'.join(info), indent)
        return info[0] + '\n' + textindent('\n'.join(info[1:]), indent)


[docs]    def select_add(self, queue, **kwargs):
        """Add new task queue that'll be consumed from.

        The queue will be active even when a subset has been selected
        using the :option:`celery worker -Q` option.
        """
        q = self.add(queue, **kwargs)
        if self._consume_from is not None:
            self._consume_from[q.name] = q
        return q


[docs]    def select(self, include):
        """Select a subset of currently defined queues to consume from.

        Arguments:
            include (Sequence[str], str): Names of queues to consume from.
        """
        if include:
            self._consume_from = {
                name: self[name] for name in maybe_list(include)
            }


[docs]    def deselect(self, exclude):
        """Deselect queues so that they won't be consumed from.

        Arguments:
            exclude (Sequence[str], str): Names of queues to avoid
                consuming from.
        """
        if exclude:
            exclude = maybe_list(exclude)
            if self._consume_from is None:
                # using all queues
                return self.select(k for k in self if k not in exclude)
            # using selection
            for queue in exclude:
                self._consume_from.pop(queue, None)


[docs]    def new_missing(self, name):
        return Queue(name, self.autoexchange(name), name)


    @property
    def consume_from(self):
        if self._consume_from is not None:
            return self._consume_from
        return self



[docs]class AMQP:
    """App AMQP API: app.amqp."""

    Connection = Connection
    Consumer = Consumer
    Producer = Producer

    #: compat alias to Connection
    BrokerConnection = Connection

    queues_cls = Queues

    #: Cached and prepared routing table.
    _rtable = None

    #: Underlying producer pool instance automatically
    #: set by the :attr:`producer_pool`.
    _producer_pool = None

    # Exchange class/function used when defining automatic queues.
    # For example, you can use ``autoexchange = lambda n: None`` to use the
    # AMQP default exchange: a shortcut to bypass routing
    # and instead send directly to the queue named in the routing key.
    autoexchange = None

    #: Max size of positional argument representation used for
    #: logging purposes.
    argsrepr_maxsize = 1024

    #: Max size of keyword argument representation used for logging purposes.
    kwargsrepr_maxsize = 1024

    def __init__(self, app):
        self.app = app
        self.task_protocols = {
            1: self.as_task_v1,
            2: self.as_task_v2,
        }
        self.app._conf.bind_to(self._handle_conf_update)

[docs]    @cached_property
    def create_task_message(self):
        return self.task_protocols[self.app.conf.task_protocol]


[docs]    @cached_property
    def send_task_message(self):
        return self._create_task_sender()


[docs]    def Queues(self, queues, create_missing=None, ha_policy=None,
               autoexchange=None, max_priority=None):
        # Create new :class:`Queues` instance, using queue defaults
        # from the current configuration.
        conf = self.app.conf
        default_routing_key = conf.task_default_routing_key
        if create_missing is None:
            create_missing = conf.task_create_missing_queues
        if ha_policy is None:
            ha_policy = conf.task_queue_ha_policy
        if max_priority is None:
            max_priority = conf.task_queue_max_priority
        if not queues and conf.task_default_queue:
            queues = (Queue(conf.task_default_queue,
                            exchange=self.default_exchange,
                            routing_key=default_routing_key),)
        autoexchange = (self.autoexchange if autoexchange is None
                        else autoexchange)
        return self.queues_cls(
            queues, self.default_exchange, create_missing,
            ha_policy, autoexchange, max_priority, default_routing_key,
        )


[docs]    def Router(self, queues=None, create_missing=None):
        """Return the current task router."""
        return _routes.Router(self.routes, queues or self.queues,
                              self.app.either('task_create_missing_queues',
                                              create_missing), app=self.app)


[docs]    def flush_routes(self):
        self._rtable = _routes.prepare(self.app.conf.task_routes)


    def TaskConsumer(self, channel, queues=None, accept=None, **kw):
        if accept is None:
            accept = self.app.conf.accept_content
        return self.Consumer(
            channel, accept=accept,
            queues=queues or list(self.queues.consume_from.values()),
            **kw
        )

    def as_task_v2(self, task_id, name, args=None, kwargs=None,
                   countdown=None, eta=None, group_id=None, group_index=None,
                   expires=None, retries=0, chord=None,
                   callbacks=None, errbacks=None, reply_to=None,
                   time_limit=None, soft_time_limit=None,
                   create_sent_event=False, root_id=None, parent_id=None,
                   shadow=None, chain=None, now=None, timezone=None,
                   origin=None, argsrepr=None, kwargsrepr=None):
        args = args or ()
        kwargs = kwargs or {}
        if not isinstance(args, (list, tuple)):
            raise TypeError('task args must be a list or tuple')
        if not isinstance(kwargs, Mapping):
            raise TypeError('task keyword arguments must be a mapping')
        if countdown:  # convert countdown to ETA
            self._verify_seconds(countdown, 'countdown')
            now = now or self.app.now()
            timezone = timezone or self.app.timezone
            eta = maybe_make_aware(
                now + timedelta(seconds=countdown), tz=timezone,
            )
        if isinstance(expires, numbers.Real):
            self._verify_seconds(expires, 'expires')
            now = now or self.app.now()
            timezone = timezone or self.app.timezone
            expires = maybe_make_aware(
                now + timedelta(seconds=expires), tz=timezone,
            )
        if not isinstance(eta, str):
            eta = eta and eta.isoformat()
        # If we retry a task `expires` will already be ISO8601-formatted.
        if not isinstance(expires, str):
            expires = expires and expires.isoformat()

        if argsrepr is None:
            argsrepr = saferepr(args, self.argsrepr_maxsize)
        if kwargsrepr is None:
            kwargsrepr = saferepr(kwargs, self.kwargsrepr_maxsize)

        if callbacks:
            callbacks = [utf8dict(callback) for callback in callbacks]
        if errbacks:
            errbacks = [utf8dict(errback) for errback in errbacks]
        if chord:
            chord = utf8dict(chord)

        if not root_id:  # empty root_id defaults to task_id
            root_id = task_id

        return task_message(
            headers={
                'lang': 'py',
                'task': name,
                'id': task_id,
                'shadow': shadow,
                'eta': eta,
                'expires': expires,
                'group': group_id,
                'group_index': group_index,
                'retries': retries,
                'timelimit': [time_limit, soft_time_limit],
                'root_id': root_id,
                'parent_id': parent_id,
                'argsrepr': argsrepr,
                'kwargsrepr': kwargsrepr,
                'origin': origin or anon_nodename()
            },
            properties={
                'correlation_id': task_id,
                'reply_to': reply_to or '',
            },
            body=(
                args, kwargs, {
                    'callbacks': callbacks,
                    'errbacks': errbacks,
                    'chain': chain,
                    'chord': chord,
                },
            ),
            sent_event={
                'uuid': task_id,
                'root_id': root_id,
                'parent_id': parent_id,
                'name': name,
                'args': argsrepr,
                'kwargs': kwargsrepr,
                'retries': retries,
                'eta': eta,
                'expires': expires,
            } if create_sent_event else None,
        )

    def as_task_v1(self, task_id, name, args=None, kwargs=None,
                   countdown=None, eta=None, group_id=None, group_index=None,
                   expires=None, retries=0,
                   chord=None, callbacks=None, errbacks=None, reply_to=None,
                   time_limit=None, soft_time_limit=None,
                   create_sent_event=False, root_id=None, parent_id=None,
                   shadow=None, now=None, timezone=None,
                   **compat_kwargs):
        args = args or ()
        kwargs = kwargs or {}
        utc = self.utc
        if not isinstance(args, (list, tuple)):
            raise TypeError('task args must be a list or tuple')
        if not isinstance(kwargs, Mapping):
            raise TypeError('task keyword arguments must be a mapping')
        if countdown:  # convert countdown to ETA
            self._verify_seconds(countdown, 'countdown')
            now = now or self.app.now()
            eta = now + timedelta(seconds=countdown)
        if isinstance(expires, numbers.Real):
            self._verify_seconds(expires, 'expires')
            now = now or self.app.now()
            expires = now + timedelta(seconds=expires)
        eta = eta and eta.isoformat()
        expires = expires and expires.isoformat()

        if callbacks:
            callbacks = [utf8dict(callback) for callback in callbacks]
        if errbacks:
            errbacks = [utf8dict(errback) for errback in errbacks]
        if chord:
            chord = utf8dict(chord)

        return task_message(
            headers={},
            properties={
                'correlation_id': task_id,
                'reply_to': reply_to or '',
            },
            body={
                'task': name,
                'id': task_id,
                'args': args,
                'kwargs': kwargs,
                'group': group_id,
                'group_index': group_index,
                'retries': retries,
                'eta': eta,
                'expires': expires,
                'utc': utc,
                'callbacks': callbacks,
                'errbacks': errbacks,
                'timelimit': (time_limit, soft_time_limit),
                'taskset': group_id,
                'chord': chord,
            },
            sent_event={
                'uuid': task_id,
                'name': name,
                'args': saferepr(args),
                'kwargs': saferepr(kwargs),
                'retries': retries,
                'eta': eta,
                'expires': expires,
            } if create_sent_event else None,
        )

    def _verify_seconds(self, s, what):
        if s < INT_MIN:
            raise ValueError(f'{what} is out of range: {s!r}')
        return s

    def _create_task_sender(self):
        default_retry = self.app.conf.task_publish_retry
        default_policy = self.app.conf.task_publish_retry_policy
        default_delivery_mode = self.app.conf.task_default_delivery_mode
        default_queue = self.default_queue
        queues = self.queues
        send_before_publish = signals.before_task_publish.send
        before_receivers = signals.before_task_publish.receivers
        send_after_publish = signals.after_task_publish.send
        after_receivers = signals.after_task_publish.receivers

        send_task_sent = signals.task_sent.send   # XXX compat
        sent_receivers = signals.task_sent.receivers

        default_evd = self._event_dispatcher
        default_exchange = self.default_exchange

        default_rkey = self.app.conf.task_default_routing_key
        default_serializer = self.app.conf.task_serializer
        default_compressor = self.app.conf.result_compression

        def send_task_message(producer, name, message,
                              exchange=None, routing_key=None, queue=None,
                              event_dispatcher=None,
                              retry=None, retry_policy=None,
                              serializer=None, delivery_mode=None,
                              compression=None, declare=None,
                              headers=None, exchange_type=None, **kwargs):
            retry = default_retry if retry is None else retry
            headers2, properties, body, sent_event = message
            if headers:
                headers2.update(headers)
            if kwargs:
                properties.update(kwargs)

            qname = queue
            if queue is None and exchange is None:
                queue = default_queue
            if queue is not None:
                if isinstance(queue, str):
                    qname, queue = queue, queues[queue]
                else:
                    qname = queue.name

            if delivery_mode is None:
                try:
                    delivery_mode = queue.exchange.delivery_mode
                except AttributeError:
                    pass
                delivery_mode = delivery_mode or default_delivery_mode

            if exchange_type is None:
                try:
                    exchange_type = queue.exchange.type
                except AttributeError:
                    exchange_type = 'direct'

            # convert to anon-exchange, when exchange not set and direct ex.
            if (not exchange or not routing_key) and exchange_type == 'direct':
                exchange, routing_key = '', qname
            elif exchange is None:
                # not topic exchange, and exchange not undefined
                exchange = queue.exchange.name or default_exchange
                routing_key = routing_key or queue.routing_key or default_rkey
            if declare is None and queue and not isinstance(queue, Broadcast):
                declare = [queue]

            # merge default and custom policy
            retry = default_retry if retry is None else retry
            _rp = (dict(default_policy, **retry_policy) if retry_policy
                   else default_policy)

            if before_receivers:
                send_before_publish(
                    sender=name, body=body,
                    exchange=exchange, routing_key=routing_key,
                    declare=declare, headers=headers2,
                    properties=properties, retry_policy=retry_policy,
                )
            ret = producer.publish(
                body,
                exchange=exchange,
                routing_key=routing_key,
                serializer=serializer or default_serializer,
                compression=compression or default_compressor,
                retry=retry, retry_policy=_rp,
                delivery_mode=delivery_mode, declare=declare,
                headers=headers2,
                **properties
            )
            if after_receivers:
                send_after_publish(sender=name, body=body, headers=headers2,
                                   exchange=exchange, routing_key=routing_key)
            if sent_receivers:  # XXX deprecated
                if isinstance(body, tuple):  # protocol version 2
                    send_task_sent(
                        sender=name, task_id=headers2['id'], task=name,
                        args=body[0], kwargs=body[1],
                        eta=headers2['eta'], taskset=headers2['group'],
                    )
                else:  # protocol version 1
                    send_task_sent(
                        sender=name, task_id=body['id'], task=name,
                        args=body['args'], kwargs=body['kwargs'],
                        eta=body['eta'], taskset=body['taskset'],
                    )
            if sent_event:
                evd = event_dispatcher or default_evd
                exname = exchange
                if isinstance(exname, Exchange):
                    exname = exname.name
                sent_event.update({
                    'queue': qname,
                    'exchange': exname,
                    'routing_key': routing_key,
                })
                evd.publish('task-sent', sent_event,
                            producer, retry=retry, retry_policy=retry_policy)
            return ret
        return send_task_message

[docs]    @cached_property
    def default_queue(self):
        return self.queues[self.app.conf.task_default_queue]


    @cached_property
    def queues(self):
        """Queue name⇒ declaration mapping."""
        return self.Queues(self.app.conf.task_queues)

[docs]    @queues.setter  # noqa
    def queues(self, queues):
        return self.Queues(queues)


    @property
    def routes(self):
        if self._rtable is None:
            self.flush_routes()
        return self._rtable

    @cached_property
    def router(self):
        return self.Router()

[docs]    @router.setter
    def router(self, value):
        return value


    @property
    def producer_pool(self):
        if self._producer_pool is None:
            self._producer_pool = pools.producers[
                self.app.connection_for_write()]
            self._producer_pool.limit = self.app.pool.limit
        return self._producer_pool
    publisher_pool = producer_pool  # compat alias

[docs]    @cached_property
    def default_exchange(self):
        return Exchange(self.app.conf.task_default_exchange,
                        self.app.conf.task_default_exchange_type)


    @cached_property
    def utc(self):
        return self.app.conf.enable_utc

    @cached_property
    def _event_dispatcher(self):
        # We call Dispatcher.publish with a custom producer
        # so don't need the diuspatcher to be enabled.
        return self.app.events.Dispatcher(enabled=False)

    def _handle_conf_update(self, *args, **kwargs):
        if ('task_routes' in kwargs or 'task_routes' in args):
            self.flush_routes()
            self.router = self.Router()
        return





            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.app.annotations

"""Task Annotations.

Annotations is a nice term for monkey-patching task classes
in the configuration.

This prepares and performs the annotations in the
:setting:`task_annotations` setting.
"""
from celery.utils.functional import firstmethod, mlazy
from celery.utils.imports import instantiate

_first_match = firstmethod('annotate')
_first_match_any = firstmethod('annotate_any')

__all__ = ('MapAnnotation', 'prepare', 'resolve_all')


[docs]class MapAnnotation(dict):
    """Annotation map: task_name => attributes."""

[docs]    def annotate_any(self):
        try:
            return dict(self['*'])
        except KeyError:
            pass


[docs]    def annotate(self, task):
        try:
            return dict(self[task.name])
        except KeyError:
            pass




[docs]def prepare(annotations):
    """Expand the :setting:`task_annotations` setting."""
    def expand_annotation(annotation):
        if isinstance(annotation, dict):
            return MapAnnotation(annotation)
        elif isinstance(annotation, str):
            return mlazy(instantiate, annotation)
        return annotation

    if annotations is None:
        return ()
    elif not isinstance(annotations, (list, tuple)):
        annotations = (annotations,)
    return [expand_annotation(anno) for anno in annotations]



[docs]def resolve_all(anno, task):
    """Resolve all pending annotations."""
    return (x for x in (_first_match(anno, task), _first_match_any(anno)) if x)





            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.app.autoretry

"""Tasks auto-retry functionality."""
from vine.utils import wraps

from celery.exceptions import Ignore, Retry
from celery.utils.time import get_exponential_backoff_interval


[docs]def add_autoretry_behaviour(task, **options):
    """Wrap task's `run` method with auto-retry functionality."""
    autoretry_for = tuple(
        options.get('autoretry_for',
                    getattr(task, 'autoretry_for', ()))
    )
    retry_kwargs = options.get(
        'retry_kwargs', getattr(task, 'retry_kwargs', {})
    )
    retry_backoff = int(
        options.get('retry_backoff',
                    getattr(task, 'retry_backoff', False))
    )
    retry_backoff_max = int(
        options.get('retry_backoff_max',
                    getattr(task, 'retry_backoff_max', 600))
    )
    retry_jitter = options.get(
        'retry_jitter', getattr(task, 'retry_jitter', True)
    )

    if autoretry_for and not hasattr(task, '_orig_run'):

        @wraps(task.run)
        def run(*args, **kwargs):
            try:
                return task._orig_run(*args, **kwargs)
            except Ignore:
                # If Ignore signal occures task shouldn't be retried,
                # even if it suits autoretry_for list
                raise
            except Retry:
                raise
            except autoretry_for as exc:
                if retry_backoff:
                    retry_kwargs['countdown'] = \
                        get_exponential_backoff_interval(
                            factor=retry_backoff,
                            retries=task.request.retries,
                            maximum=retry_backoff_max,
                            full_jitter=retry_jitter)
                raise task.retry(exc=exc, **retry_kwargs)

        task._orig_run, task.run = task.run, run





            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.app.backends

"""Backend selection."""
import sys
import types

from celery._state import current_app
from celery.exceptions import ImproperlyConfigured, reraise
from celery.utils.imports import load_extension_class_names, symbol_by_name

__all__ = ('by_name', 'by_url')

UNKNOWN_BACKEND = """
Unknown result backend: {0!r}.  Did you spell that correctly? ({1!r})
"""

BACKEND_ALIASES = {
    'amqp': 'celery.backends.amqp:AMQPBackend',
    'rpc': 'celery.backends.rpc.RPCBackend',
    'cache': 'celery.backends.cache:CacheBackend',
    'redis': 'celery.backends.redis:RedisBackend',
    'rediss': 'celery.backends.redis:RedisBackend',
    'sentinel': 'celery.backends.redis:SentinelBackend',
    'mongodb': 'celery.backends.mongodb:MongoBackend',
    'db': 'celery.backends.database:DatabaseBackend',
    'database': 'celery.backends.database:DatabaseBackend',
    'elasticsearch': 'celery.backends.elasticsearch:ElasticsearchBackend',
    'cassandra': 'celery.backends.cassandra:CassandraBackend',
    'couchbase': 'celery.backends.couchbase:CouchbaseBackend',
    'couchdb': 'celery.backends.couchdb:CouchBackend',
    'cosmosdbsql': 'celery.backends.cosmosdbsql:CosmosDBSQLBackend',
    'riak': 'celery.backends.riak:RiakBackend',
    'file': 'celery.backends.filesystem:FilesystemBackend',
    'disabled': 'celery.backends.base:DisabledBackend',
    'consul': 'celery.backends.consul:ConsulBackend',
    'dynamodb': 'celery.backends.dynamodb:DynamoDBBackend',
    'azureblockblob': 'celery.backends.azureblockblob:AzureBlockBlobBackend',
    'arangodb': 'celery.backends.arangodb:ArangoDbBackend',
    's3': 'celery.backends.s3:S3Backend',
}


[docs]def by_name(backend=None, loader=None,
            extension_namespace='celery.result_backends'):
    """Get backend class by name/alias."""
    backend = backend or 'disabled'
    loader = loader or current_app.loader
    aliases = dict(BACKEND_ALIASES, **loader.override_backends)
    aliases.update(
        load_extension_class_names(extension_namespace) or {})
    try:
        cls = symbol_by_name(backend, aliases)
    except ValueError as exc:
        reraise(ImproperlyConfigured, ImproperlyConfigured(
            UNKNOWN_BACKEND.strip().format(backend, exc)), sys.exc_info()[2])
    if isinstance(cls, types.ModuleType):
        raise ImproperlyConfigured(UNKNOWN_BACKEND.strip().format(
            backend, 'is a Python module, not a backend class.'))
    return cls



[docs]def by_url(backend=None, loader=None):
    """Get backend class by URL."""
    url = None
    if backend and '://' in backend:
        url = backend
        scheme, _, _ = url.partition('://')
        if '+' in scheme:
            backend, url = url.split('+', 1)
        else:
            backend = scheme
    return by_name(backend, loader), url





            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.app.base

"""Actual App instance implementation."""
import inspect
import os
import threading
import warnings
from collections import UserDict, defaultdict, deque
from datetime import datetime
from operator import attrgetter

from kombu import pools
from kombu.clocks import LamportClock
from kombu.common import oid_from
from kombu.utils.compat import register_after_fork
from kombu.utils.objects import cached_property
from kombu.utils.uuid import uuid
from vine import starpromise

from celery import platforms, signals
from celery._state import (_announce_app_finalized, _deregister_app,
                           _register_app, _set_current_app, _task_stack,
                           connect_on_app_finalize, get_current_app,
                           get_current_worker_task, set_default_app)
from celery.exceptions import AlwaysEagerIgnored, ImproperlyConfigured
from celery.loaders import get_loader_cls
from celery.local import PromiseProxy, maybe_evaluate
from celery.utils import abstract
from celery.utils.collections import AttributeDictMixin
from celery.utils.dispatch import Signal
from celery.utils.functional import first, head_from_fun, maybe_list
from celery.utils.imports import gen_task_name, instantiate, symbol_by_name
from celery.utils.log import get_logger
from celery.utils.objects import FallbackContext, mro_lookup
from celery.utils.time import timezone, to_utc

# Load all builtin tasks
from . import builtins  # noqa
from . import backends
from .annotations import prepare as prepare_annotations
from .autoretry import add_autoretry_behaviour
from .defaults import DEFAULT_SECURITY_DIGEST, find_deprecated_settings
from .registry import TaskRegistry
from .utils import (AppPickler, Settings, _new_key_to_old, _old_key_to_new,
                    _unpickle_app, _unpickle_app_v2, appstr, bugreport,
                    detect_settings)

__all__ = ('Celery',)

logger = get_logger(__name__)

BUILTIN_FIXUPS = {
    'celery.fixups.django:fixup',
}
USING_EXECV = os.environ.get('FORKED_BY_MULTIPROCESSING')

ERR_ENVVAR_NOT_SET = """
The environment variable {0!r} is not set,
and as such the configuration could not be loaded.

Please set this variable and make sure it points to
a valid configuration module.

Example:
    {0}="proj.celeryconfig"
"""


def app_has_custom(app, attr):
    """Return true if app has customized method `attr`.

    Note:
        This is used for optimizations in cases where we know
        how the default behavior works, but need to account
        for someone using inheritance to override a method/property.
    """
    return mro_lookup(app.__class__, attr, stop={Celery, object},
                      monkey_patched=[__name__])


def _unpickle_appattr(reverse_name, args):
    """Unpickle app."""
    # Given an attribute name and a list of args, gets
    # the attribute from the current app and calls it.
    return get_current_app()._rgetattr(reverse_name)(*args)


def _after_fork_cleanup_app(app):
    # This is used with multiprocessing.register_after_fork,
    # so need to be at module level.
    try:
        app._after_fork()
    except Exception as exc:  # pylint: disable=broad-except
        logger.info('after forker raised exception: %r', exc, exc_info=1)


class PendingConfiguration(UserDict, AttributeDictMixin):
    # `app.conf` will be of this type before being explicitly configured,
    # meaning the app can keep any configuration set directly
    # on `app.conf` before the `app.config_from_object` call.
    #
    # accessing any key will finalize the configuration,
    # replacing `app.conf` with a concrete settings object.

    callback = None
    _data = None

    def __init__(self, conf, callback):
        object.__setattr__(self, '_data', conf)
        object.__setattr__(self, 'callback', callback)

    def __setitem__(self, key, value):
        self._data[key] = value

    def clear(self):
        self._data.clear()

    def update(self, *args, **kwargs):
        self._data.update(*args, **kwargs)

    def setdefault(self, *args, **kwargs):
        return self._data.setdefault(*args, **kwargs)

    def __contains__(self, key):
        # XXX will not show finalized configuration
        # setdefault will cause `key in d` to happen,
        # so for setdefault to be lazy, so does contains.
        return key in self._data

    def __len__(self):
        return len(self.data)

    def __repr__(self):
        return repr(self.data)

    @cached_property
    def data(self):
        return self.callback()


[docs]class Celery:
    """Celery application.

    Arguments:
        main (str): Name of the main module if running as `__main__`.
            This is used as the prefix for auto-generated task names.

    Keyword Arguments:
        broker (str): URL of the default broker used.
        backend (Union[str, Type[celery.backends.base.Backend]]):
            The result store backend class, or the name of the backend
            class to use.

            Default is the value of the :setting:`result_backend` setting.
        autofinalize (bool): If set to False a :exc:`RuntimeError`
            will be raised if the task registry or tasks are used before
            the app is finalized.
        set_as_current (bool):  Make this the global current app.
        include (List[str]): List of modules every worker should import.

        amqp (Union[str, Type[AMQP]]): AMQP object or class name.
        events (Union[str, Type[celery.app.events.Events]]): Events object or
            class name.
        log (Union[str, Type[Logging]]): Log object or class name.
        control (Union[str, Type[celery.app.control.Control]]): Control object
            or class name.
        tasks (Union[str, Type[TaskRegistry]]): A task registry, or the name of
            a registry class.
        fixups (List[str]): List of fix-up plug-ins (e.g., see
            :mod:`celery.fixups.django`).
        config_source (Union[str, class]): Take configuration from a class,
            or object.  Attributes may include any settings described in
            the documentation.
        task_cls (Union[str, Type[celery.app.task.Task]]): base task class to
            use. See :ref:`this section <custom-task-cls-app-wide>` for usage.
    """

    #: This is deprecated, use :meth:`reduce_keys` instead
    Pickler = AppPickler

    SYSTEM = platforms.SYSTEM
    IS_macOS, IS_WINDOWS = platforms.IS_macOS, platforms.IS_WINDOWS

    #: Name of the `__main__` module.  Required for standalone scripts.
    #:
    #: If set this will be used instead of `__main__` when automatically
    #: generating task names.
    main = None

    #: Custom options for command-line programs.
    #: See :ref:`extending-commandoptions`
    user_options = None

    #: Custom bootsteps to extend and modify the worker.
    #: See :ref:`extending-bootsteps`.
    steps = None

    builtin_fixups = BUILTIN_FIXUPS

    amqp_cls = 'celery.app.amqp:AMQP'
    backend_cls = None
    events_cls = 'celery.app.events:Events'
    loader_cls = None
    log_cls = 'celery.app.log:Logging'
    control_cls = 'celery.app.control:Control'
    task_cls = 'celery.app.task:Task'
    registry_cls = 'celery.app.registry:TaskRegistry'

    _fixups = None
    _pool = None
    _conf = None
    _after_fork_registered = False

    #: Signal sent when app is loading configuration.
    on_configure = None

    #: Signal sent after app has prepared the configuration.
    on_after_configure = None

    #: Signal sent after app has been finalized.
    on_after_finalize = None

    #: Signal sent by every new process after fork.
    on_after_fork = None

    def __init__(self, main=None, loader=None, backend=None,
                 amqp=None, events=None, log=None, control=None,
                 set_as_current=True, tasks=None, broker=None, include=None,
                 changes=None, config_source=None, fixups=None, task_cls=None,
                 autofinalize=True, namespace=None, strict_typing=True,
                 **kwargs):
        self.clock = LamportClock()
        self.main = main
        self.amqp_cls = amqp or self.amqp_cls
        self.events_cls = events or self.events_cls
        self.loader_cls = loader or self._get_default_loader()
        self.log_cls = log or self.log_cls
        self.control_cls = control or self.control_cls
        self.task_cls = task_cls or self.task_cls
        self.set_as_current = set_as_current
        self.registry_cls = symbol_by_name(self.registry_cls)
        self.user_options = defaultdict(set)
        self.steps = defaultdict(set)
        self.autofinalize = autofinalize
        self.namespace = namespace
        self.strict_typing = strict_typing

        self.configured = False
        self._config_source = config_source
        self._pending_defaults = deque()
        self._pending_periodic_tasks = deque()

        self.finalized = False
        self._finalize_mutex = threading.Lock()
        self._pending = deque()
        self._tasks = tasks
        if not isinstance(self._tasks, TaskRegistry):
            self._tasks = self.registry_cls(self._tasks or {})

        # If the class defines a custom __reduce_args__ we need to use
        # the old way of pickling apps: pickling a list of
        # args instead of the new way that pickles a dict of keywords.
        self._using_v1_reduce = app_has_custom(self, '__reduce_args__')

        # these options are moved to the config to
        # simplify pickling of the app object.
        self._preconf = changes or {}
        self._preconf_set_by_auto = set()
        self.__autoset('broker_url', broker)
        self.__autoset('result_backend', backend)
        self.__autoset('include', include)
        self.__autoset('broker_use_ssl', kwargs.get('broker_use_ssl'))
        self.__autoset('redis_backend_use_ssl', kwargs.get('redis_backend_use_ssl'))
        self._conf = Settings(
            PendingConfiguration(
                self._preconf, self._finalize_pending_conf),
            prefix=self.namespace,
            keys=(_old_key_to_new, _new_key_to_old),
        )

        # - Apply fix-ups.
        self.fixups = set(self.builtin_fixups) if fixups is None else fixups
        # ...store fixup instances in _fixups to keep weakrefs alive.
        self._fixups = [symbol_by_name(fixup)(self) for fixup in self.fixups]

        if self.set_as_current:
            self.set_current()

        # Signals
        if self.on_configure is None:
            # used to be a method pre 4.0
            self.on_configure = Signal(name='app.on_configure')
        self.on_after_configure = Signal(
            name='app.on_after_configure',
            providing_args={'source'},
        )
        self.on_after_finalize = Signal(name='app.on_after_finalize')
        self.on_after_fork = Signal(name='app.on_after_fork')

        self.on_init()
        _register_app(self)

    def _get_default_loader(self):
        # the --loader command-line argument sets the environment variable.
        return (
            os.environ.get('CELERY_LOADER') or
            self.loader_cls or
            'celery.loaders.app:AppLoader'
        )

[docs]    def on_init(self):
        """Optional callback called at init."""


    def __autoset(self, key, value):
        if value:
            self._preconf[key] = value
            self._preconf_set_by_auto.add(key)

[docs]    def set_current(self):
        """Make this the current app for this thread."""
        _set_current_app(self)


[docs]    def set_default(self):
        """Make this the default app for all threads."""
        set_default_app(self)


    def _ensure_after_fork(self):
        if not self._after_fork_registered:
            self._after_fork_registered = True
            if register_after_fork is not None:
                register_after_fork(self, _after_fork_cleanup_app)

[docs]    def close(self):
        """Clean up after the application.

        Only necessary for dynamically created apps, and you should
        probably use the :keyword:`with` statement instead.

        Example:
            >>> with Celery(set_as_current=False) as app:
            ...     with app.connection_for_write() as conn:
            ...         pass
        """
        self._pool = None
        _deregister_app(self)


[docs]    def task(self, *args, **opts):
        """Decorator to create a task class out of any callable.

        See :ref:`Task options<task-options>` for a list of the
        arguments that can be passed to this decorator.

        Examples:
            .. code-block:: python

                @app.task
                def refresh_feed(url):
                    store_feed(feedparser.parse(url))

            with setting extra options:

            .. code-block:: python

                @app.task(exchange='feeds')
                def refresh_feed(url):
                    return store_feed(feedparser.parse(url))

        Note:
            App Binding: For custom apps the task decorator will return
            a proxy object, so that the act of creating the task is not
            performed until the task is used or the task registry is accessed.

            If you're depending on binding to be deferred, then you must
            not access any attributes on the returned object until the
            application is fully set up (finalized).
        """
        if USING_EXECV and opts.get('lazy', True):
            # When using execv the task in the original module will point to a
            # different app, so doing things like 'add.request' will point to
            # a different task instance.  This makes sure it will always use
            # the task instance from the current app.
            # Really need a better solution for this :(
            from . import shared_task
            return shared_task(*args, lazy=False, **opts)

        def inner_create_task_cls(shared=True, filter=None, lazy=True, **opts):
            _filt = filter

            def _create_task_cls(fun):
                if shared:
                    def cons(app):
                        return app._task_from_fun(fun, **opts)
                    cons.__name__ = fun.__name__
                    connect_on_app_finalize(cons)
                if not lazy or self.finalized:
                    ret = self._task_from_fun(fun, **opts)
                else:
                    # return a proxy object that evaluates on first use
                    ret = PromiseProxy(self._task_from_fun, (fun,), opts,
                                       __doc__=fun.__doc__)
                    self._pending.append(ret)
                if _filt:
                    return _filt(ret)
                return ret

            return _create_task_cls

        if len(args) == 1:
            if callable(args[0]):
                return inner_create_task_cls(**opts)(*args)
            raise TypeError('argument 1 to @task() must be a callable')
        if args:
            raise TypeError(
                '@task() takes exactly 1 argument ({} given)'.format(
                    sum([len(args), len(opts)])))
        return inner_create_task_cls(**opts)


    def _task_from_fun(self, fun, name=None, base=None, bind=False, **options):
        if not self.finalized and not self.autofinalize:
            raise RuntimeError('Contract breach: app not finalized')
        name = name or self.gen_task_name(fun.__name__, fun.__module__)
        base = base or self.Task

        if name not in self._tasks:
            run = fun if bind else staticmethod(fun)
            task = type(fun.__name__, (base,), dict({
                'app': self,
                'name': name,
                'run': run,
                '_decorated': True,
                '__doc__': fun.__doc__,
                '__module__': fun.__module__,
                '__annotations__': fun.__annotations__,
                '__header__': staticmethod(head_from_fun(fun, bound=bind)),
                '__wrapped__': run}, **options))()
            # for some reason __qualname__ cannot be set in type()
            # so we have to set it here.
            try:
                task.__qualname__ = fun.__qualname__
            except AttributeError:
                pass
            self._tasks[task.name] = task
            task.bind(self)  # connects task to this app
            add_autoretry_behaviour(task, **options)
        else:
            task = self._tasks[name]
        return task

    def register_task(self, task):
        """Utility for registering a task-based class.

        Note:
            This is here for compatibility with old Celery 1.0
            style task classes, you should not need to use this for
            new projects.
        """
        task = inspect.isclass(task) and task() or task
        if not task.name:
            task_cls = type(task)
            task.name = self.gen_task_name(
                task_cls.__name__, task_cls.__module__)
        add_autoretry_behaviour(task)
        self.tasks[task.name] = task
        task._app = self
        task.bind(self)
        return task

[docs]    def gen_task_name(self, name, module):
        return gen_task_name(self, name, module)


[docs]    def finalize(self, auto=False):
        """Finalize the app.

        This loads built-in tasks, evaluates pending task decorators,
        reads configuration, etc.
        """
        with self._finalize_mutex:
            if not self.finalized:
                if auto and not self.autofinalize:
                    raise RuntimeError('Contract breach: app not finalized')
                self.finalized = True
                _announce_app_finalized(self)

                pending = self._pending
                while pending:
                    maybe_evaluate(pending.popleft())

                for task in self._tasks.values():
                    task.bind(self)

                self.on_after_finalize.send(sender=self)


[docs]    def add_defaults(self, fun):
        """Add default configuration from dict ``d``.

        If the argument is a callable function then it will be regarded
        as a promise, and it won't be loaded until the configuration is
        actually needed.

        This method can be compared to:

        .. code-block:: pycon

            >>> celery.conf.update(d)

        with a difference that 1) no copy will be made and 2) the dict will
        not be transferred when the worker spawns child processes, so
        it's important that the same configuration happens at import time
        when pickle restores the object on the other side.
        """
        if not callable(fun):
            d, fun = fun, lambda: d
        if self.configured:
            return self._conf.add_defaults(fun())
        self._pending_defaults.append(fun)


[docs]    def config_from_object(self, obj,
                           silent=False, force=False, namespace=None):
        """Read configuration from object.

        Object is either an actual object or the name of a module to import.

        Example:
            >>> celery.config_from_object('myapp.celeryconfig')

            >>> from myapp import celeryconfig
            >>> celery.config_from_object(celeryconfig)

        Arguments:
            silent (bool): If true then import errors will be ignored.
            force (bool): Force reading configuration immediately.
                By default the configuration will be read only when required.
        """
        self._config_source = obj
        self.namespace = namespace or self.namespace
        if force or self.configured:
            self._conf = None
            if self.loader.config_from_object(obj, silent=silent):
                return self.conf


[docs]    def config_from_envvar(self, variable_name, silent=False, force=False):
        """Read configuration from environment variable.

        The value of the environment variable must be the name
        of a module to import.

        Example:
            >>> os.environ['CELERY_CONFIG_MODULE'] = 'myapp.celeryconfig'
            >>> celery.config_from_envvar('CELERY_CONFIG_MODULE')
        """
        module_name = os.environ.get(variable_name)
        if not module_name:
            if silent:
                return False
            raise ImproperlyConfigured(
                ERR_ENVVAR_NOT_SET.strip().format(variable_name))
        return self.config_from_object(module_name, silent=silent, force=force)


    def config_from_cmdline(self, argv, namespace='celery'):
        self._conf.update(
            self.loader.cmdline_config_parser(argv, namespace)
        )

[docs]    def setup_security(self, allowed_serializers=None, key=None, cert=None,
                       store=None, digest=DEFAULT_SECURITY_DIGEST,
                       serializer='json'):
        """Setup the message-signing serializer.

        This will affect all application instances (a global operation).

        Disables untrusted serializers and if configured to use the ``auth``
        serializer will register the ``auth`` serializer with the provided
        settings into the Kombu serializer registry.

        Arguments:
            allowed_serializers (Set[str]): List of serializer names, or
                content_types that should be exempt from being disabled.
            key (str): Name of private key file to use.
                Defaults to the :setting:`security_key` setting.
            cert (str): Name of certificate file to use.
                Defaults to the :setting:`security_certificate` setting.
            store (str): Directory containing certificates.
                Defaults to the :setting:`security_cert_store` setting.
            digest (str): Digest algorithm used when signing messages.
                Default is ``sha256``.
            serializer (str): Serializer used to encode messages after
                they've been signed.  See :setting:`task_serializer` for
                the serializers supported.  Default is ``json``.
        """
        from celery.security import setup_security
        return setup_security(allowed_serializers, key, cert,
                              store, digest, serializer, app=self)


[docs]    def autodiscover_tasks(self, packages=None,
                           related_name='tasks', force=False):
        """Auto-discover task modules.

        Searches a list of packages for a "tasks.py" module (or use
        related_name argument).

        If the name is empty, this will be delegated to fix-ups (e.g., Django).

        For example if you have a directory layout like this:

        .. code-block:: text

            foo/__init__.py
               tasks.py
               models.py

            bar/__init__.py
                tasks.py
                models.py

            baz/__init__.py
                models.py

        Then calling ``app.autodiscover_tasks(['foo', 'bar', 'baz'])`` will
        result in the modules ``foo.tasks`` and ``bar.tasks`` being imported.

        Arguments:
            packages (List[str]): List of packages to search.
                This argument may also be a callable, in which case the
                value returned is used (for lazy evaluation).
            related_name (Optional[str]): The name of the module to find.  Defaults
                to "tasks": meaning "look for 'module.tasks' for every
                module in ``packages``.".  If ``None`` will only try to import
                the package, i.e. "look for 'module'".
            force (bool): By default this call is lazy so that the actual
                auto-discovery won't happen until an application imports
                the default modules.  Forcing will cause the auto-discovery
                to happen immediately.
        """
        if force:
            return self._autodiscover_tasks(packages, related_name)
        signals.import_modules.connect(starpromise(
            self._autodiscover_tasks, packages, related_name,
        ), weak=False, sender=self)


    def _autodiscover_tasks(self, packages, related_name, **kwargs):
        if packages:
            return self._autodiscover_tasks_from_names(packages, related_name)
        return self._autodiscover_tasks_from_fixups(related_name)

    def _autodiscover_tasks_from_names(self, packages, related_name):
        # packages argument can be lazy
        return self.loader.autodiscover_tasks(
            packages() if callable(packages) else packages, related_name,
        )

    def _autodiscover_tasks_from_fixups(self, related_name):
        return self._autodiscover_tasks_from_names([
            pkg for fixup in self._fixups
            for pkg in fixup.autodiscover_tasks()
            if hasattr(fixup, 'autodiscover_tasks')
        ], related_name=related_name)

[docs]    def send_task(self, name, args=None, kwargs=None, countdown=None,
                  eta=None, task_id=None, producer=None, connection=None,
                  router=None, result_cls=None, expires=None,
                  publisher=None, link=None, link_error=None,
                  add_to_parent=True, group_id=None, group_index=None,
                  retries=0, chord=None,
                  reply_to=None, time_limit=None, soft_time_limit=None,
                  root_id=None, parent_id=None, route_name=None,
                  shadow=None, chain=None, task_type=None, **options):
        """Send task by name.

        Supports the same arguments as :meth:`@-Task.apply_async`.

        Arguments:
            name (str): Name of task to call (e.g., `"tasks.add"`).
            result_cls (AsyncResult): Specify custom result class.
        """
        parent = have_parent = None
        amqp = self.amqp
        task_id = task_id or uuid()
        producer = producer or publisher  # XXX compat
        router = router or amqp.router
        conf = self.conf
        if conf.task_always_eager:  # pragma: no cover
            warnings.warn(AlwaysEagerIgnored(
                'task_always_eager has no effect on send_task',
            ), stacklevel=2)

        ignored_result = options.pop('ignore_result', False)
        options = router.route(
            options, route_name or name, args, kwargs, task_type)

        if not root_id or not parent_id:
            parent = self.current_worker_task
            if parent:
                if not root_id:
                    root_id = parent.request.root_id or parent.request.id
                if not parent_id:
                    parent_id = parent.request.id

                if conf.task_inherit_parent_priority:
                    options.setdefault('priority',
                                       parent.request.delivery_info.get('priority'))

        message = amqp.create_task_message(
            task_id, name, args, kwargs, countdown, eta, group_id, group_index,
            expires, retries, chord,
            maybe_list(link), maybe_list(link_error),
            reply_to or self.oid, time_limit, soft_time_limit,
            self.conf.task_send_sent_event,
            root_id, parent_id, shadow, chain,
            argsrepr=options.get('argsrepr'),
            kwargsrepr=options.get('kwargsrepr'),
        )

        if connection:
            producer = amqp.Producer(connection, auto_declare=False)

        with self.producer_or_acquire(producer) as P:
            with P.connection._reraise_as_library_errors():
                if not ignored_result:
                    self.backend.on_task_call(P, task_id)
                amqp.send_task_message(P, name, message, **options)
        result = (result_cls or self.AsyncResult)(task_id)
        # We avoid using the constructor since a custom result class
        # can be used, in which case the constructor may still use
        # the old signature.
        result.ignored = ignored_result

        if add_to_parent:
            if not have_parent:
                parent, have_parent = self.current_worker_task, True
            if parent:
                parent.add_trail(result)
        return result


[docs]    def connection_for_read(self, url=None, **kwargs):
        """Establish connection used for consuming.

        See Also:
            :meth:`connection` for supported arguments.
        """
        return self._connection(url or self.conf.broker_read_url, **kwargs)


[docs]    def connection_for_write(self, url=None, **kwargs):
        """Establish connection used for producing.

        See Also:
            :meth:`connection` for supported arguments.
        """
        return self._connection(url or self.conf.broker_write_url, **kwargs)


[docs]    def connection(self, hostname=None, userid=None, password=None,
                   virtual_host=None, port=None, ssl=None,
                   connect_timeout=None, transport=None,
                   transport_options=None, heartbeat=None,
                   login_method=None, failover_strategy=None, **kwargs):
        """Establish a connection to the message broker.

        Please use :meth:`connection_for_read` and
        :meth:`connection_for_write` instead, to convey the intent
        of use for this connection.

        Arguments:
            url: Either the URL or the hostname of the broker to use.
            hostname (str): URL, Hostname/IP-address of the broker.
                If a URL is used, then the other argument below will
                be taken from the URL instead.
            userid (str): Username to authenticate as.
            password (str): Password to authenticate with
            virtual_host (str): Virtual host to use (domain).
            port (int): Port to connect to.
            ssl (bool, Dict): Defaults to the :setting:`broker_use_ssl`
                setting.
            transport (str): defaults to the :setting:`broker_transport`
                setting.
            transport_options (Dict): Dictionary of transport specific options.
            heartbeat (int): AMQP Heartbeat in seconds (``pyamqp`` only).
            login_method (str): Custom login method to use (AMQP only).
            failover_strategy (str, Callable): Custom failover strategy.
            **kwargs: Additional arguments to :class:`kombu.Connection`.

        Returns:
            kombu.Connection: the lazy connection instance.
        """
        return self.connection_for_write(
            hostname or self.conf.broker_write_url,
            userid=userid, password=password,
            virtual_host=virtual_host, port=port, ssl=ssl,
            connect_timeout=connect_timeout, transport=transport,
            transport_options=transport_options, heartbeat=heartbeat,
            login_method=login_method, failover_strategy=failover_strategy,
            **kwargs
        )


    def _connection(self, url, userid=None, password=None,
                    virtual_host=None, port=None, ssl=None,
                    connect_timeout=None, transport=None,
                    transport_options=None, heartbeat=None,
                    login_method=None, failover_strategy=None, **kwargs):
        conf = self.conf
        return self.amqp.Connection(
            url,
            userid or conf.broker_user,
            password or conf.broker_password,
            virtual_host or conf.broker_vhost,
            port or conf.broker_port,
            transport=transport or conf.broker_transport,
            ssl=self.either('broker_use_ssl', ssl),
            heartbeat=heartbeat,
            login_method=login_method or conf.broker_login_method,
            failover_strategy=(
                failover_strategy or conf.broker_failover_strategy
            ),
            transport_options=dict(
                conf.broker_transport_options, **transport_options or {}
            ),
            connect_timeout=self.either(
                'broker_connection_timeout', connect_timeout
            ),
        )
    broker_connection = connection

    def _acquire_connection(self, pool=True):
        """Helper for :meth:`connection_or_acquire`."""
        if pool:
            return self.pool.acquire(block=True)
        return self.connection_for_write()

[docs]    def connection_or_acquire(self, connection=None, pool=True, *_, **__):
        """Context used to acquire a connection from the pool.

        For use within a :keyword:`with` statement to get a connection
        from the pool if one is not already provided.

        Arguments:
            connection (kombu.Connection): If not provided, a connection
                will be acquired from the connection pool.
        """
        return FallbackContext(connection, self._acquire_connection, pool=pool)

    default_connection = connection_or_acquire  # XXX compat

[docs]    def producer_or_acquire(self, producer=None):
        """Context used to acquire a producer from the pool.

        For use within a :keyword:`with` statement to get a producer
        from the pool if one is not already provided

        Arguments:
            producer (kombu.Producer): If not provided, a producer
                will be acquired from the producer pool.
        """
        return FallbackContext(
            producer, self.producer_pool.acquire, block=True,
        )

    default_producer = producer_or_acquire  # XXX compat

[docs]    def prepare_config(self, c):
        """Prepare configuration before it is merged with the defaults."""
        return find_deprecated_settings(c)


[docs]    def now(self):
        """Return the current time and date as a datetime."""
        now_in_utc = to_utc(datetime.utcnow())
        return now_in_utc.astimezone(self.timezone)


[docs]    def select_queues(self, queues=None):
        """Select subset of queues.

        Arguments:
            queues (Sequence[str]): a list of queue names to keep.
        """
        return self.amqp.queues.select(queues)


    def either(self, default_key, *defaults):
        """Get key from configuration or use default values.

        Fallback to the value of a configuration key if none of the
        `*values` are true.
        """
        return first(None, [
            first(None, defaults), starpromise(self.conf.get, default_key),
        ])

[docs]    def bugreport(self):
        """Return information useful in bug reports."""
        return bugreport(self)


    def _get_backend(self):
        backend, url = backends.by_url(
            self.backend_cls or self.conf.result_backend,
            self.loader)
        return backend(app=self, url=url)

    def _finalize_pending_conf(self):
        """Get config value by key and finalize loading the configuration.

        Note:
            This is used by PendingConfiguration:
                as soon as you access a key the configuration is read.
        """
        conf = self._conf = self._load_config()
        return conf

    def _load_config(self):
        if isinstance(self.on_configure, Signal):
            self.on_configure.send(sender=self)
        else:
            # used to be a method pre 4.0
            self.on_configure()
        if self._config_source:
            self.loader.config_from_object(self._config_source)
        self.configured = True
        settings = detect_settings(
            self.prepare_config(self.loader.conf), self._preconf,
            ignore_keys=self._preconf_set_by_auto, prefix=self.namespace,
        )
        if self._conf is not None:
            # replace in place, as someone may have referenced app.conf,
            # done some changes, accessed a key, and then try to make more
            # changes to the reference and not the finalized value.
            self._conf.swap_with(settings)
        else:
            self._conf = settings

        # load lazy config dict initializers.
        pending_def = self._pending_defaults
        while pending_def:
            self._conf.add_defaults(maybe_evaluate(pending_def.popleft()()))

        # load lazy periodic tasks
        pending_beat = self._pending_periodic_tasks
        while pending_beat:
            self._add_periodic_task(*pending_beat.popleft())

        self.on_after_configure.send(sender=self, source=self._conf)
        return self._conf

    def _after_fork(self):
        self._pool = None
        try:
            self.__dict__['amqp']._producer_pool = None
        except (AttributeError, KeyError):
            pass
        self.on_after_fork.send(sender=self)

[docs]    def signature(self, *args, **kwargs):
        """Return a new :class:`~celery.Signature` bound to this app."""
        kwargs['app'] = self
        return self._canvas.signature(*args, **kwargs)


[docs]    def add_periodic_task(self, schedule, sig,
                          args=(), kwargs=(), name=None, **opts):
        key, entry = self._sig_to_periodic_task_entry(
            schedule, sig, args, kwargs, name, **opts)
        if self.configured:
            self._add_periodic_task(key, entry)
        else:
            self._pending_periodic_tasks.append((key, entry))
        return key


    def _sig_to_periodic_task_entry(self, schedule, sig,
                                    args=(), kwargs=None, name=None, **opts):
        kwargs = {} if not kwargs else kwargs
        sig = (sig.clone(args, kwargs)
               if isinstance(sig, abstract.CallableSignature)
               else self.signature(sig.name, args, kwargs))
        return name or repr(sig), {
            'schedule': schedule,
            'task': sig.name,
            'args': sig.args,
            'kwargs': sig.kwargs,
            'options': dict(sig.options, **opts),
        }

    def _add_periodic_task(self, key, entry):
        self._conf.beat_schedule[key] = entry

    def create_task_cls(self):
        """Create a base task class bound to this app."""
        return self.subclass_with_self(
            self.task_cls, name='Task', attribute='_app',
            keep_reduce=True, abstract=True,
        )

    def subclass_with_self(self, Class, name=None, attribute='app',
                           reverse=None, keep_reduce=False, **kw):
        """Subclass an app-compatible class.

        App-compatible means that the class has a class attribute that
        provides the default app it should use, for example:
        ``class Foo: app = None``.

        Arguments:
            Class (type): The app-compatible class to subclass.
            name (str): Custom name for the target class.
            attribute (str): Name of the attribute holding the app,
                Default is 'app'.
            reverse (str): Reverse path to this object used for pickling
                purposes. For example, to get ``app.AsyncResult``,
                use ``"AsyncResult"``.
            keep_reduce (bool): If enabled a custom ``__reduce__``
                implementation won't be provided.
        """
        Class = symbol_by_name(Class)
        reverse = reverse if reverse else Class.__name__

        def __reduce__(self):
            return _unpickle_appattr, (reverse, self.__reduce_args__())

        attrs = dict(
            {attribute: self},
            __module__=Class.__module__,
            __doc__=Class.__doc__,
            **kw)
        if not keep_reduce:
            attrs['__reduce__'] = __reduce__

        return type(name or Class.__name__, (Class,), attrs)

    def _rgetattr(self, path):
        return attrgetter(path)(self)

    def __enter__(self):
        return self

    def __exit__(self, *exc_info):
        self.close()

    def __repr__(self):
        return '<{} {}>'.format(type(self).__name__, appstr(self))

    def __reduce__(self):
        if self._using_v1_reduce:
            return self.__reduce_v1__()
        return (_unpickle_app_v2, (self.__class__, self.__reduce_keys__()))

    def __reduce_v1__(self):
        # Reduce only pickles the configuration changes,
        # so the default configuration doesn't have to be passed
        # between processes.
        return (
            _unpickle_app,
            (self.__class__, self.Pickler) + self.__reduce_args__(),
        )

    def __reduce_keys__(self):
        """Keyword arguments used to reconstruct the object when unpickling."""
        return {
            'main': self.main,
            'changes':
                self._conf.changes if self.configured else self._preconf,
            'loader': self.loader_cls,
            'backend': self.backend_cls,
            'amqp': self.amqp_cls,
            'events': self.events_cls,
            'log': self.log_cls,
            'control': self.control_cls,
            'fixups': self.fixups,
            'config_source': self._config_source,
            'task_cls': self.task_cls,
            'namespace': self.namespace,
        }

    def __reduce_args__(self):
        """Deprecated method, please use :meth:`__reduce_keys__` instead."""
        return (self.main, self._conf.changes if self.configured else {},
                self.loader_cls, self.backend_cls, self.amqp_cls,
                self.events_cls, self.log_cls, self.control_cls,
                False, self._config_source)

[docs]    @cached_property
    def Worker(self):
        """Worker application.

        See Also:
            :class:`~@Worker`.
        """
        return self.subclass_with_self('celery.apps.worker:Worker')


[docs]    @cached_property
    def WorkController(self, **kwargs):
        """Embeddable worker.

        See Also:
            :class:`~@WorkController`.
        """
        return self.subclass_with_self('celery.worker:WorkController')


[docs]    @cached_property
    def Beat(self, **kwargs):
        """:program:`celery beat` scheduler application.

        See Also:
            :class:`~@Beat`.
        """
        return self.subclass_with_self('celery.apps.beat:Beat')


[docs]    @cached_property
    def Task(self):
        """Base task class for this app."""
        return self.create_task_cls()


    @cached_property
    def annotations(self):
        return prepare_annotations(self.conf.task_annotations)

[docs]    @cached_property
    def AsyncResult(self):
        """Create new result instance.

        See Also:
            :class:`celery.result.AsyncResult`.
        """
        return self.subclass_with_self('celery.result:AsyncResult')


    @cached_property
    def ResultSet(self):
        return self.subclass_with_self('celery.result:ResultSet')

[docs]    @cached_property
    def GroupResult(self):
        """Create new group result instance.

        See Also:
            :class:`celery.result.GroupResult`.
        """
        return self.subclass_with_self('celery.result:GroupResult')


    @property
    def pool(self):
        """Broker connection pool: :class:`~@pool`.

        Note:
            This attribute is not related to the workers concurrency pool.
        """
        if self._pool is None:
            self._ensure_after_fork()
            limit = self.conf.broker_pool_limit
            pools.set_limit(limit)
            self._pool = pools.connections[self.connection_for_write()]
        return self._pool

    @property
    def current_task(self):
        """Instance of task being executed, or :const:`None`."""
        return _task_stack.top

    @property
    def current_worker_task(self):
        """The task currently being executed by a worker or :const:`None`.

        Differs from :data:`current_task` in that it's not affected
        by tasks calling other tasks directly, or eagerly.
        """
        return get_current_worker_task()

[docs]    @cached_property
    def oid(self):
        """Universally unique identifier for this app."""
        # since 4.0: thread.get_ident() is not included when
        # generating the process id.  This is due to how the RPC
        # backend now dedicates a single thread to receive results,
        # which would not work if each thread has a separate id.
        return oid_from(self, threads=False)


[docs]    @cached_property
    def amqp(self):
        """AMQP related functionality: :class:`~@amqp`."""
        return instantiate(self.amqp_cls, app=self)


[docs]    @cached_property
    def backend(self):
        """Current backend instance."""
        return self._get_backend()


    @property
    def conf(self):
        """Current configuration."""
        if self._conf is None:
            self._conf = self._load_config()
        return self._conf

    @conf.setter
    def conf(self, d):  # noqa
        self._conf = d

[docs]    @cached_property
    def control(self):
        """Remote control: :class:`~@control`."""
        return instantiate(self.control_cls, app=self)


[docs]    @cached_property
    def events(self):
        """Consuming and sending events: :class:`~@events`."""
        return instantiate(self.events_cls, app=self)


[docs]    @cached_property
    def loader(self):
        """Current loader instance."""
        return get_loader_cls(self.loader_cls)(app=self)


[docs]    @cached_property
    def log(self):
        """Logging: :class:`~@log`."""
        return instantiate(self.log_cls, app=self)


    @cached_property
    def _canvas(self):
        from celery import canvas
        return canvas

[docs]    @cached_property
    def tasks(self):
        """Task registry.

        Warning:
            Accessing this attribute will also auto-finalize the app.
        """
        self.finalize(auto=True)
        return self._tasks


    @property
    def producer_pool(self):
        return self.amqp.producer_pool

    def uses_utc_timezone(self):
        """Check if the application uses the UTC timezone."""
        return self.timezone == timezone.utc

[docs]    @cached_property
    def timezone(self):
        """Current timezone for this app.

        This is a cached property taking the time zone from the
        :setting:`timezone` setting.
        """
        conf = self.conf
        if not conf.timezone:
            if conf.enable_utc:
                return timezone.utc
            else:
                return timezone.local
        return timezone.get_timezone(conf.timezone)




App = Celery  # noqa: E305 XXX compat




            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.app.builtins

"""Built-in Tasks.

The built-in tasks are always available in all app instances.
"""
from celery._state import connect_on_app_finalize
from celery.utils.log import get_logger

__all__ = ()
logger = get_logger(__name__)


[docs]@connect_on_app_finalize
def add_backend_cleanup_task(app):
    """Task used to clean up expired results.

    If the configured backend requires periodic cleanup this task is also
    automatically configured to run every day at 4am (requires
    :program:`celery beat` to be running).
    """
    @app.task(name='celery.backend_cleanup', shared=False, lazy=False)
    def backend_cleanup():
        app.backend.cleanup()
    return backend_cleanup



[docs]@connect_on_app_finalize
def add_accumulate_task(app):
    """Task used by Task.replace when replacing task with group."""
    @app.task(bind=True, name='celery.accumulate', shared=False, lazy=False)
    def accumulate(self, *args, **kwargs):
        index = kwargs.get('index')
        return args[index] if index is not None else args
    return accumulate



[docs]@connect_on_app_finalize
def add_unlock_chord_task(app):
    """Task used by result backends without native chord support.

    Will joins chord by creating a task chain polling the header
    for completion.
    """
    from celery.canvas import maybe_signature
    from celery.exceptions import ChordError
    from celery.result import allow_join_result, result_from_tuple

    @app.task(name='celery.chord_unlock', max_retries=None, shared=False,
              default_retry_delay=app.conf.result_chord_retry_interval, ignore_result=True, lazy=False, bind=True)
    def unlock_chord(self, group_id, callback, interval=None,
                     max_retries=None, result=None,
                     Result=app.AsyncResult, GroupResult=app.GroupResult,
                     result_from_tuple=result_from_tuple, **kwargs):
        if interval is None:
            interval = self.default_retry_delay

        # check if the task group is ready, and if so apply the callback.
        callback = maybe_signature(callback, app)
        deps = GroupResult(
            group_id,
            [result_from_tuple(r, app=app) for r in result],
            app=app,
        )
        j = deps.join_native if deps.supports_native_join else deps.join

        try:
            ready = deps.ready()
        except Exception as exc:
            raise self.retry(
                exc=exc, countdown=interval, max_retries=max_retries,
            )
        else:
            if not ready:
                raise self.retry(countdown=interval, max_retries=max_retries)

        callback = maybe_signature(callback, app=app)
        try:
            with allow_join_result():
                ret = j(
                    timeout=app.conf.result_chord_join_timeout,
                    propagate=True,
                )
        except Exception as exc:  # pylint: disable=broad-except
            try:
                culprit = next(deps._failed_join_report())
                reason = f'Dependency {culprit.id} raised {exc!r}'
            except StopIteration:
                reason = repr(exc)
            logger.exception('Chord %r raised: %r', group_id, exc)
            app.backend.chord_error_from_stack(callback, ChordError(reason))
        else:
            try:
                callback.delay(ret)
            except Exception as exc:  # pylint: disable=broad-except
                logger.exception('Chord %r raised: %r', group_id, exc)
                app.backend.chord_error_from_stack(
                    callback,
                    exc=ChordError(f'Callback error: {exc!r}'),
                )
    return unlock_chord



[docs]@connect_on_app_finalize
def add_map_task(app):
    from celery.canvas import signature

    @app.task(name='celery.map', shared=False, lazy=False)
    def xmap(task, it):
        task = signature(task, app=app).type
        return [task(item) for item in it]
    return xmap



[docs]@connect_on_app_finalize
def add_starmap_task(app):
    from celery.canvas import signature

    @app.task(name='celery.starmap', shared=False, lazy=False)
    def xstarmap(task, it):
        task = signature(task, app=app).type
        return [task(*item) for item in it]
    return xstarmap



[docs]@connect_on_app_finalize
def add_chunk_task(app):
    from celery.canvas import chunks as _chunks

    @app.task(name='celery.chunks', shared=False, lazy=False)
    def chunks(task, it, n):
        return _chunks.apply_chunks(task, it, n)
    return chunks



[docs]@connect_on_app_finalize
def add_group_task(app):
    """No longer used, but here for backwards compatibility."""
    from celery.canvas import maybe_signature
    from celery.result import result_from_tuple

    @app.task(name='celery.group', bind=True, shared=False, lazy=False)
    def group(self, tasks, result, group_id, partial_args, add_to_parent=True):
        app = self.app
        result = result_from_tuple(result, app)
        # any partial args are added to all tasks in the group
        taskit = (maybe_signature(task, app=app).clone(partial_args)
                  for i, task in enumerate(tasks))
        with app.producer_or_acquire() as producer:
            [stask.apply_async(group_id=group_id, producer=producer,
                               add_to_parent=False) for stask in taskit]
        parent = app.current_worker_task
        if add_to_parent and parent:
            parent.add_trail(result)
        return result
    return group



[docs]@connect_on_app_finalize
def add_chain_task(app):
    """No longer used, but here for backwards compatibility."""
    @app.task(name='celery.chain', shared=False, lazy=False)
    def chain(*args, **kwargs):
        raise NotImplementedError('chain is not a real task')
    return chain



[docs]@connect_on_app_finalize
def add_chord_task(app):
    """No longer used, but here for backwards compatibility."""
    from celery import chord as _chord
    from celery import group
    from celery.canvas import maybe_signature

    @app.task(name='celery.chord', bind=True, ignore_result=False,
              shared=False, lazy=False)
    def chord(self, header, body, partial_args=(), interval=None,
              countdown=1, max_retries=None, eager=False, **kwargs):
        app = self.app
        # - convert back to group if serialized
        tasks = header.tasks if isinstance(header, group) else header
        header = group([
            maybe_signature(s, app=app) for s in tasks
        ], app=self.app)
        body = maybe_signature(body, app=app)
        ch = _chord(header, body)
        return ch.run(header, body, partial_args, app, interval,
                      countdown, max_retries, **kwargs)
    return chord





            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.app.control

"""Worker Remote Control Client.

Client for worker remote control commands.
Server implementation is in :mod:`celery.worker.control`.
"""
import warnings

from billiard.common import TERM_SIGNAME
from kombu.matcher import match
from kombu.pidbox import Mailbox
from kombu.utils.compat import register_after_fork
from kombu.utils.functional import lazy
from kombu.utils.objects import cached_property

from celery.exceptions import DuplicateNodenameWarning
from celery.utils.log import get_logger
from celery.utils.text import pluralize

__all__ = ('Inspect', 'Control', 'flatten_reply')

logger = get_logger(__name__)

W_DUPNODE = """\
Received multiple replies from node {0}: {1}.
Please make sure you give each node a unique nodename using
the celery worker `-n` option.\
"""


[docs]def flatten_reply(reply):
    """Flatten node replies.

    Convert from a list of replies in this format::

        [{'a@example.com': reply},
         {'b@example.com': reply}]

    into this format::

        {'a@example.com': reply,
         'b@example.com': reply}
    """
    nodes, dupes = {}, set()
    for item in reply:
        [dupes.add(name) for name in item if name in nodes]
        nodes.update(item)
    if dupes:
        warnings.warn(DuplicateNodenameWarning(
            W_DUPNODE.format(
                pluralize(len(dupes), 'name'), ', '.join(sorted(dupes)),
            ),
        ))
    return nodes



def _after_fork_cleanup_control(control):
    try:
        control._after_fork()
    except Exception as exc:  # pylint: disable=broad-except
        logger.info('after fork raised exception: %r', exc, exc_info=1)


[docs]class Inspect:
    """API for app.control.inspect."""

    app = None

    def __init__(self, destination=None, timeout=1.0, callback=None,
                 connection=None, app=None, limit=None, pattern=None,
                 matcher=None):
        self.app = app or self.app
        self.destination = destination
        self.timeout = timeout
        self.callback = callback
        self.connection = connection
        self.limit = limit
        self.pattern = pattern
        self.matcher = matcher

    def _prepare(self, reply):
        if reply:
            by_node = flatten_reply(reply)
            if (self.destination and
                    not isinstance(self.destination, (list, tuple))):
                return by_node.get(self.destination)
            if self.pattern:
                pattern = self.pattern
                matcher = self.matcher
                return {node: reply for node, reply in by_node.items()
                        if match(node, pattern, matcher)}
            return by_node

    def _request(self, command, **kwargs):
        return self._prepare(self.app.control.broadcast(
            command,
            arguments=kwargs,
            destination=self.destination,
            callback=self.callback,
            connection=self.connection,
            limit=self.limit,
            timeout=self.timeout, reply=True,
            pattern=self.pattern, matcher=self.matcher,
        ))

[docs]    def report(self):
        return self._request('report')


[docs]    def clock(self):
        return self._request('clock')


[docs]    def active(self, safe=None):
        # safe is ignored since 4.0
        # as no objects will need serialization now that we
        # have argsrepr/kwargsrepr.
        return self._request('active')


[docs]    def scheduled(self, safe=None):
        return self._request('scheduled')


[docs]    def reserved(self, safe=None):
        return self._request('reserved')


[docs]    def stats(self):
        return self._request('stats')


[docs]    def revoked(self):
        return self._request('revoked')


[docs]    def registered(self, *taskinfoitems):
        return self._request('registered', taskinfoitems=taskinfoitems)

    registered_tasks = registered

[docs]    def ping(self, destination=None):
        if destination:
            self.destination = destination
        return self._request('ping')


[docs]    def active_queues(self):
        return self._request('active_queues')


[docs]    def query_task(self, *ids):
        # signature used be unary: query_task(ids=[id1, id2])
        # we need this to preserve backward compatibility.
        if len(ids) == 1 and isinstance(ids[0], (list, tuple)):
            ids = ids[0]
        return self._request('query_task', ids=ids)


[docs]    def conf(self, with_defaults=False):
        return self._request('conf', with_defaults=with_defaults)


[docs]    def hello(self, from_node, revoked=None):
        return self._request('hello', from_node=from_node, revoked=revoked)


[docs]    def memsample(self):
        return self._request('memsample')


[docs]    def memdump(self, samples=10):
        return self._request('memdump', samples=samples)


[docs]    def objgraph(self, type='Request', n=200, max_depth=10):
        return self._request('objgraph', num=n, max_depth=max_depth, type=type)




[docs]class Control:
    """Worker remote control client."""

    Mailbox = Mailbox

    def __init__(self, app=None):
        self.app = app
        self.mailbox = self.Mailbox(
            app.conf.control_exchange,
            type='fanout',
            accept=['json'],
            producer_pool=lazy(lambda: self.app.amqp.producer_pool),
            queue_ttl=app.conf.control_queue_ttl,
            reply_queue_ttl=app.conf.control_queue_ttl,
            queue_expires=app.conf.control_queue_expires,
            reply_queue_expires=app.conf.control_queue_expires,
        )
        register_after_fork(self, _after_fork_cleanup_control)

    def _after_fork(self):
        del self.mailbox.producer_pool

[docs]    @cached_property
    def inspect(self):
        return self.app.subclass_with_self(Inspect, reverse='control.inspect')


[docs]    def purge(self, connection=None):
        """Discard all waiting tasks.

        This will ignore all tasks waiting for execution, and they will
        be deleted from the messaging server.

        Arguments:
            connection (kombu.Connection): Optional specific connection
                instance to use.  If not provided a connection will
                be acquired from the connection pool.

        Returns:
            int: the number of tasks discarded.
        """
        with self.app.connection_or_acquire(connection) as conn:
            return self.app.amqp.TaskConsumer(conn).purge()

    discard_all = purge

[docs]    def election(self, id, topic, action=None, connection=None):
        self.broadcast(
            'election', connection=connection, destination=None,
            arguments={
                'id': id, 'topic': topic, 'action': action,
            },
        )


[docs]    def revoke(self, task_id, destination=None, terminate=False,
               signal=TERM_SIGNAME, **kwargs):
        """Tell all (or specific) workers to revoke a task by id (or list of ids).

        If a task is revoked, the workers will ignore the task and
        not execute it after all.

        Arguments:
            task_id (Union(str, list)): Id of the task to revoke
                (or list of ids).
            terminate (bool): Also terminate the process currently working
                on the task (if any).
            signal (str): Name of signal to send to process if terminate.
                Default is TERM.

        See Also:
            :meth:`broadcast` for supported keyword arguments.
        """
        return self.broadcast('revoke', destination=destination, arguments={
            'task_id': task_id,
            'terminate': terminate,
            'signal': signal,
        }, **kwargs)


[docs]    def terminate(self, task_id,
                  destination=None, signal=TERM_SIGNAME, **kwargs):
        """Tell all (or specific) workers to terminate a task by id (or list of ids).

        See Also:
            This is just a shortcut to :meth:`revoke` with the terminate
            argument enabled.
        """
        return self.revoke(
            task_id,
            destination=destination, terminate=True, signal=signal, **kwargs)


[docs]    def ping(self, destination=None, timeout=1.0, **kwargs):
        """Ping all (or specific) workers.

        Returns:
            List[Dict]: List of ``{'hostname': reply}`` dictionaries.

        See Also:
            :meth:`broadcast` for supported keyword arguments.
        """
        return self.broadcast(
            'ping', reply=True, arguments={}, destination=destination,
            timeout=timeout, **kwargs)


[docs]    def rate_limit(self, task_name, rate_limit, destination=None, **kwargs):
        """Tell workers to set a new rate limit for task by type.

        Arguments:
            task_name (str): Name of task to change rate limit for.
            rate_limit (int, str): The rate limit as tasks per second,
                or a rate limit string (`'100/m'`, etc.
                see :attr:`celery.task.base.Task.rate_limit` for
                more information).

        See Also:
            :meth:`broadcast` for supported keyword arguments.
        """
        return self.broadcast(
            'rate_limit',
            destination=destination,
            arguments={
                'task_name': task_name,
                'rate_limit': rate_limit,
            },
            **kwargs)


[docs]    def add_consumer(self, queue,
                     exchange=None, exchange_type='direct', routing_key=None,
                     options=None, destination=None, **kwargs):
        """Tell all (or specific) workers to start consuming from a new queue.

        Only the queue name is required as if only the queue is specified
        then the exchange/routing key will be set to the same name (
        like automatic queues do).

        Note:
            This command does not respect the default queue/exchange
            options in the configuration.

        Arguments:
            queue (str): Name of queue to start consuming from.
            exchange (str): Optional name of exchange.
            exchange_type (str): Type of exchange (defaults to 'direct')
                command to, when empty broadcast to all workers.
            routing_key (str): Optional routing key.
            options (Dict): Additional options as supported
                by :meth:`kombu.entity.Queue.from_dict`.

        See Also:
            :meth:`broadcast` for supported keyword arguments.
        """
        return self.broadcast(
            'add_consumer',
            destination=destination,
            arguments=dict({
                'queue': queue,
                'exchange': exchange,
                'exchange_type': exchange_type,
                'routing_key': routing_key,
            }, **options or {}),
            **kwargs
        )


[docs]    def cancel_consumer(self, queue, destination=None, **kwargs):
        """Tell all (or specific) workers to stop consuming from ``queue``.

        See Also:
            Supports the same arguments as :meth:`broadcast`.
        """
        return self.broadcast(
            'cancel_consumer', destination=destination,
            arguments={'queue': queue}, **kwargs)


[docs]    def time_limit(self, task_name, soft=None, hard=None,
                   destination=None, **kwargs):
        """Tell workers to set time limits for a task by type.

        Arguments:
            task_name (str): Name of task to change time limits for.
            soft (float): New soft time limit (in seconds).
            hard (float): New hard time limit (in seconds).
            **kwargs (Any): arguments passed on to :meth:`broadcast`.
        """
        return self.broadcast(
            'time_limit',
            arguments={
                'task_name': task_name,
                'hard': hard,
                'soft': soft,
            },
            destination=destination,
            **kwargs)


[docs]    def enable_events(self, destination=None, **kwargs):
        """Tell all (or specific) workers to enable events.

        See Also:
            Supports the same arguments as :meth:`broadcast`.
        """
        return self.broadcast(
            'enable_events', arguments={}, destination=destination, **kwargs)


[docs]    def disable_events(self, destination=None, **kwargs):
        """Tell all (or specific) workers to disable events.

        See Also:
            Supports the same arguments as :meth:`broadcast`.
        """
        return self.broadcast(
            'disable_events', arguments={}, destination=destination, **kwargs)


[docs]    def pool_grow(self, n=1, destination=None, **kwargs):
        """Tell all (or specific) workers to grow the pool by ``n``.

        See Also:
            Supports the same arguments as :meth:`broadcast`.
        """
        return self.broadcast(
            'pool_grow', arguments={'n': n}, destination=destination, **kwargs)


[docs]    def pool_shrink(self, n=1, destination=None, **kwargs):
        """Tell all (or specific) workers to shrink the pool by ``n``.

        See Also:
            Supports the same arguments as :meth:`broadcast`.
        """
        return self.broadcast(
            'pool_shrink', arguments={'n': n},
            destination=destination, **kwargs)


[docs]    def autoscale(self, max, min, destination=None, **kwargs):
        """Change worker(s) autoscale setting.

        See Also:
            Supports the same arguments as :meth:`broadcast`.
        """
        return self.broadcast(
            'autoscale', arguments={'max': max, 'min': min},
            destination=destination, **kwargs)


[docs]    def shutdown(self, destination=None, **kwargs):
        """Shutdown worker(s).

        See Also:
            Supports the same arguments as :meth:`broadcast`
        """
        return self.broadcast(
            'shutdown', arguments={}, destination=destination, **kwargs)


[docs]    def pool_restart(self, modules=None, reload=False, reloader=None,
                     destination=None, **kwargs):
        """Restart the execution pools of all or specific workers.

        Keyword Arguments:
            modules (Sequence[str]): List of modules to reload.
            reload (bool): Flag to enable module reloading.  Default is False.
            reloader (Any): Function to reload a module.
            destination (Sequence[str]): List of worker names to send this
                command to.

        See Also:
            Supports the same arguments as :meth:`broadcast`
        """
        return self.broadcast(
            'pool_restart',
            arguments={
                'modules': modules,
                'reload': reload,
                'reloader': reloader,
            },
            destination=destination, **kwargs)


[docs]    def heartbeat(self, destination=None, **kwargs):
        """Tell worker(s) to send a heartbeat immediately.

        See Also:
            Supports the same arguments as :meth:`broadcast`
        """
        return self.broadcast(
            'heartbeat', arguments={}, destination=destination, **kwargs)


[docs]    def broadcast(self, command, arguments=None, destination=None,
                  connection=None, reply=False, timeout=1.0, limit=None,
                  callback=None, channel=None, pattern=None, matcher=None,
                  **extra_kwargs):
        """Broadcast a control command to the celery workers.

        Arguments:
            command (str): Name of command to send.
            arguments (Dict): Keyword arguments for the command.
            destination (List): If set, a list of the hosts to send the
                command to, when empty broadcast to all workers.
            connection (kombu.Connection): Custom broker connection to use,
                if not set, a connection will be acquired from the pool.
            reply (bool): Wait for and return the reply.
            timeout (float): Timeout in seconds to wait for the reply.
            limit (int): Limit number of replies.
            callback (Callable): Callback called immediately for
                each reply received.
            pattern (str): Custom pattern string to match
            matcher (Callable): Custom matcher to run the pattern to match
        """
        with self.app.connection_or_acquire(connection) as conn:
            arguments = dict(arguments or {}, **extra_kwargs)
            if pattern and matcher:
                # tests pass easier without requiring pattern/matcher to
                # always be sent in
                return self.mailbox(conn)._broadcast(
                    command, arguments, destination, reply, timeout,
                    limit, callback, channel=channel,
                    pattern=pattern, matcher=matcher,
                )
            else:
                return self.mailbox(conn)._broadcast(
                    command, arguments, destination, reply, timeout,
                    limit, callback, channel=channel,
                )






            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.app.defaults

"""Configuration introspection and defaults."""
from collections import deque, namedtuple
from datetime import timedelta

from celery.utils.functional import memoize
from celery.utils.serialization import strtobool

__all__ = ('Option', 'NAMESPACES', 'flatten', 'find')


DEFAULT_POOL = 'prefork'

DEFAULT_ACCEPT_CONTENT = ['json']
DEFAULT_PROCESS_LOG_FMT = """
    [%(asctime)s: %(levelname)s/%(processName)s] %(message)s
""".strip()
DEFAULT_TASK_LOG_FMT = """[%(asctime)s: %(levelname)s/%(processName)s] \
%(task_name)s[%(task_id)s]: %(message)s"""

DEFAULT_SECURITY_DIGEST = 'sha256'


OLD_NS = {'celery_{0}'}
OLD_NS_BEAT = {'celerybeat_{0}'}
OLD_NS_WORKER = {'celeryd_{0}'}

searchresult = namedtuple('searchresult', ('namespace', 'key', 'type'))


def Namespace(__old__=None, **options):
    if __old__ is not None:
        for key, opt in options.items():
            if not opt.old:
                opt.old = {o.format(key) for o in __old__}
    return options


def old_ns(ns):
    return {f'{ns}_{{0}}'}


[docs]class Option:
    """Describes a Celery configuration option."""

    alt = None
    deprecate_by = None
    remove_by = None
    old = set()
    typemap = {'string': str, 'int': int, 'float': float, 'any': lambda v: v,
               'bool': strtobool, 'dict': dict, 'tuple': tuple}

    def __init__(self, default=None, *args, **kwargs):
        self.default = default
        self.type = kwargs.get('type') or 'string'
        for attr, value in kwargs.items():
            setattr(self, attr, value)

[docs]    def to_python(self, value):
        return self.typemap[self.type](value)


    def __repr__(self):
        return '<Option: type->{} default->{!r}>'.format(self.type,
                                                         self.default)



NAMESPACES = Namespace(
    accept_content=Option(DEFAULT_ACCEPT_CONTENT, type='list', old=OLD_NS),
    result_accept_content=Option(None, type='list'),
    enable_utc=Option(True, type='bool'),
    imports=Option((), type='tuple', old=OLD_NS),
    include=Option((), type='tuple', old=OLD_NS),
    timezone=Option(type='string', old=OLD_NS),
    beat=Namespace(
        __old__=OLD_NS_BEAT,

        max_loop_interval=Option(0, type='float'),
        schedule=Option({}, type='dict'),
        scheduler=Option('celery.beat:PersistentScheduler'),
        schedule_filename=Option('celerybeat-schedule'),
        sync_every=Option(0, type='int'),
    ),
    broker=Namespace(
        url=Option(None, type='string'),
        read_url=Option(None, type='string'),
        write_url=Option(None, type='string'),
        transport=Option(type='string'),
        transport_options=Option({}, type='dict'),
        connection_timeout=Option(4, type='float'),
        connection_retry=Option(True, type='bool'),
        connection_max_retries=Option(100, type='int'),
        failover_strategy=Option(None, type='string'),
        heartbeat=Option(120, type='int'),
        heartbeat_checkrate=Option(3.0, type='int'),
        login_method=Option(None, type='string'),
        pool_limit=Option(10, type='int'),
        use_ssl=Option(False, type='bool'),

        host=Option(type='string'),
        port=Option(type='int'),
        user=Option(type='string'),
        password=Option(type='string'),
        vhost=Option(type='string'),
    ),
    cache=Namespace(
        __old__=old_ns('celery_cache'),

        backend=Option(),
        backend_options=Option({}, type='dict'),
    ),
    cassandra=Namespace(
        entry_ttl=Option(type='float'),
        keyspace=Option(type='string'),
        port=Option(type='string'),
        read_consistency=Option(type='string'),
        servers=Option(type='list'),
        table=Option(type='string'),
        write_consistency=Option(type='string'),
        auth_provider=Option(type='string'),
        auth_kwargs=Option(type='string'),
        options=Option({}, type='dict'),
    ),
    s3=Namespace(
        access_key_id=Option(type='string'),
        secret_access_key=Option(type='string'),
        bucket=Option(type='string'),
        base_path=Option(type='string'),
        endpoint_url=Option(type='string'),
        region=Option(type='string'),
    ),
    azureblockblob=Namespace(
        container_name=Option('celery', type='string'),
        retry_initial_backoff_sec=Option(2, type='int'),
        retry_increment_base=Option(2, type='int'),
        retry_max_attempts=Option(3, type='int'),
    ),
    control=Namespace(
        queue_ttl=Option(300.0, type='float'),
        queue_expires=Option(10.0, type='float'),
        exchange=Option('celery', type='string'),
    ),
    couchbase=Namespace(
        __old__=old_ns('celery_couchbase'),

        backend_settings=Option(None, type='dict'),
    ),
    arangodb=Namespace(
        __old__=old_ns('celery_arangodb'),
        backend_settings=Option(None, type='dict')
    ),
    mongodb=Namespace(
        __old__=old_ns('celery_mongodb'),

        backend_settings=Option(type='dict'),
    ),
    cosmosdbsql=Namespace(
        database_name=Option('celerydb', type='string'),
        collection_name=Option('celerycol', type='string'),
        consistency_level=Option('Session', type='string'),
        max_retry_attempts=Option(9, type='int'),
        max_retry_wait_time=Option(30, type='int'),
    ),
    event=Namespace(
        __old__=old_ns('celery_event'),

        queue_expires=Option(60.0, type='float'),
        queue_ttl=Option(5.0, type='float'),
        queue_prefix=Option('celeryev'),
        serializer=Option('json'),
        exchange=Option('celeryev', type='string'),
    ),
    redis=Namespace(
        __old__=old_ns('celery_redis'),

        backend_use_ssl=Option(type='dict'),
        db=Option(type='int'),
        host=Option(type='string'),
        max_connections=Option(type='int'),
        password=Option(type='string'),
        port=Option(type='int'),
        socket_timeout=Option(120.0, type='float'),
        socket_connect_timeout=Option(None, type='float'),
        retry_on_timeout=Option(False, type='bool'),
        socket_keepalive=Option(False, type='bool'),
    ),
    result=Namespace(
        __old__=old_ns('celery_result'),

        backend=Option(type='string'),
        cache_max=Option(
            -1,
            type='int', old={'celery_max_cached_results'},
        ),
        compression=Option(type='str'),
        exchange=Option('celeryresults'),
        exchange_type=Option('direct'),
        expires=Option(
            timedelta(days=1),
            type='float', old={'celery_task_result_expires'},
        ),
        persistent=Option(None, type='bool'),
        extended=Option(False, type='bool'),
        serializer=Option('json'),
        backend_transport_options=Option({}, type='dict'),
        chord_retry_interval=Option(1.0, type='float'),
        chord_join_timeout=Option(3.0, type='float'),
        backend_max_sleep_between_retries_ms=Option(10000, type='int'),
        backend_max_retries=Option(float("inf"), type='float'),
        backend_base_sleep_between_retries_ms=Option(10, type='int'),
        backend_always_retry=Option(False, type='bool'),
    ),
    elasticsearch=Namespace(
        __old__=old_ns('celery_elasticsearch'),

        retry_on_timeout=Option(type='bool'),
        max_retries=Option(type='int'),
        timeout=Option(type='float'),
        save_meta_as_text=Option(True, type='bool'),
    ),
    security=Namespace(
        __old__=old_ns('celery_security'),

        certificate=Option(type='string'),
        cert_store=Option(type='string'),
        key=Option(type='string'),
        digest=Option(DEFAULT_SECURITY_DIGEST, type='string'),
    ),
    database=Namespace(
        url=Option(old={'celery_result_dburi'}),
        engine_options=Option(
            type='dict', old={'celery_result_engine_options'},
        ),
        short_lived_sessions=Option(
            False, type='bool', old={'celery_result_db_short_lived_sessions'},
        ),
        table_schemas=Option(type='dict'),
        table_names=Option(type='dict', old={'celery_result_db_tablenames'}),
    ),
    task=Namespace(
        __old__=OLD_NS,
        acks_late=Option(False, type='bool'),
        acks_on_failure_or_timeout=Option(True, type='bool'),
        always_eager=Option(False, type='bool'),
        annotations=Option(type='any'),
        compression=Option(type='string', old={'celery_message_compression'}),
        create_missing_queues=Option(True, type='bool'),
        inherit_parent_priority=Option(False, type='bool'),
        default_delivery_mode=Option(2, type='string'),
        default_queue=Option('celery'),
        default_exchange=Option(None, type='string'),  # taken from queue
        default_exchange_type=Option('direct'),
        default_routing_key=Option(None, type='string'),  # taken from queue
        default_rate_limit=Option(type='string'),
        default_priority=Option(None, type='string'),
        eager_propagates=Option(
            False, type='bool', old={'celery_eager_propagates_exceptions'},
        ),
        ignore_result=Option(False, type='bool'),
        protocol=Option(2, type='int', old={'celery_task_protocol'}),
        publish_retry=Option(
            True, type='bool', old={'celery_task_publish_retry'},
        ),
        publish_retry_policy=Option(
            {'max_retries': 3,
             'interval_start': 0,
             'interval_max': 1,
             'interval_step': 0.2},
            type='dict', old={'celery_task_publish_retry_policy'},
        ),
        queues=Option(type='dict'),
        queue_ha_policy=Option(None, type='string'),
        queue_max_priority=Option(None, type='int'),
        reject_on_worker_lost=Option(type='bool'),
        remote_tracebacks=Option(False, type='bool'),
        routes=Option(type='any'),
        send_sent_event=Option(
            False, type='bool', old={'celery_send_task_sent_event'},
        ),
        serializer=Option('json', old={'celery_task_serializer'}),
        soft_time_limit=Option(
            type='float', old={'celeryd_task_soft_time_limit'},
        ),
        time_limit=Option(
            type='float', old={'celeryd_task_time_limit'},
        ),
        store_errors_even_if_ignored=Option(False, type='bool'),
        track_started=Option(False, type='bool'),
    ),
    worker=Namespace(
        __old__=OLD_NS_WORKER,
        agent=Option(None, type='string'),
        autoscaler=Option('celery.worker.autoscale:Autoscaler'),
        concurrency=Option(0, type='int'),
        consumer=Option('celery.worker.consumer:Consumer', type='string'),
        direct=Option(False, type='bool', old={'celery_worker_direct'}),
        disable_rate_limits=Option(
            False, type='bool', old={'celery_disable_rate_limits'},
        ),
        enable_remote_control=Option(
            True, type='bool', old={'celery_enable_remote_control'},
        ),
        hijack_root_logger=Option(True, type='bool'),
        log_color=Option(type='bool'),
        log_format=Option(DEFAULT_PROCESS_LOG_FMT),
        lost_wait=Option(10.0, type='float', old={'celeryd_worker_lost_wait'}),
        max_memory_per_child=Option(type='int'),
        max_tasks_per_child=Option(type='int'),
        pool=Option(DEFAULT_POOL),
        pool_putlocks=Option(True, type='bool'),
        pool_restarts=Option(False, type='bool'),
        proc_alive_timeout=Option(4.0, type='float'),
        prefetch_multiplier=Option(4, type='int'),
        redirect_stdouts=Option(
            True, type='bool', old={'celery_redirect_stdouts'},
        ),
        redirect_stdouts_level=Option(
            'WARNING', old={'celery_redirect_stdouts_level'},
        ),
        send_task_events=Option(
            False, type='bool', old={'celery_send_events'},
        ),
        state_db=Option(),
        task_log_format=Option(DEFAULT_TASK_LOG_FMT),
        timer=Option(type='string'),
        timer_precision=Option(1.0, type='float'),
    ),
)


def _flatten_keys(ns, key, opt):
    return [(ns + key, opt)]


def _to_compat(ns, key, opt):
    if opt.old:
        return [
            (oldkey.format(key).upper(), ns + key, opt)
            for oldkey in opt.old
        ]
    return [((ns + key).upper(), ns + key, opt)]


[docs]def flatten(d, root='', keyfilter=_flatten_keys):
    """Flatten settings."""
    stack = deque([(root, d)])
    while stack:
        ns, options = stack.popleft()
        for key, opt in options.items():
            if isinstance(opt, dict):
                stack.append((ns + key + '_', opt))
            else:
                yield from keyfilter(ns, key, opt)



DEFAULTS = {
    key: opt.default for key, opt in flatten(NAMESPACES)
}
__compat = list(flatten(NAMESPACES, keyfilter=_to_compat))
_OLD_DEFAULTS = {old_key: opt.default for old_key, _, opt in __compat}
_TO_OLD_KEY = {new_key: old_key for old_key, new_key, _ in __compat}
_TO_NEW_KEY = {old_key: new_key for old_key, new_key, _ in __compat}
__compat = None

SETTING_KEYS = set(DEFAULTS.keys())
_OLD_SETTING_KEYS = set(_TO_NEW_KEY.keys())


def find_deprecated_settings(source):  # pragma: no cover
    from celery.utils import deprecated
    for name, opt in flatten(NAMESPACES):
        if (opt.deprecate_by or opt.remove_by) and getattr(source, name, None):
            deprecated.warn(description=f'The {name!r} setting',
                            deprecation=opt.deprecate_by,
                            removal=opt.remove_by,
                            alternative=f'Use the {opt.alt} instead')
    return source


[docs]@memoize(maxsize=None)
def find(name, namespace='celery'):
    """Find setting by name."""
    # - Try specified name-space first.
    namespace = namespace.lower()
    try:
        return searchresult(
            namespace, name.lower(), NAMESPACES[namespace][name.lower()],
        )
    except KeyError:
        # - Try all the other namespaces.
        for ns, opts in NAMESPACES.items():
            if ns.lower() == name.lower():
                return searchresult(None, ns, opts)
            elif isinstance(opts, dict):
                try:
                    return searchresult(ns, name.lower(), opts[name.lower()])
                except KeyError:
                    pass
    # - See if name is a qualname last.
    return searchresult(None, name.lower(), DEFAULTS[name.lower()])





            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.app.events

"""Implementation for the app.events shortcuts."""
from contextlib import contextmanager

from kombu.utils.objects import cached_property


[docs]class Events:
    """Implements app.events."""

    receiver_cls = 'celery.events.receiver:EventReceiver'
    dispatcher_cls = 'celery.events.dispatcher:EventDispatcher'
    state_cls = 'celery.events.state:State'

    def __init__(self, app=None):
        self.app = app

[docs]    @cached_property
    def Receiver(self):
        return self.app.subclass_with_self(
            self.receiver_cls, reverse='events.Receiver')


[docs]    @cached_property
    def Dispatcher(self):
        return self.app.subclass_with_self(
            self.dispatcher_cls, reverse='events.Dispatcher')


[docs]    @cached_property
    def State(self):
        return self.app.subclass_with_self(
            self.state_cls, reverse='events.State')


[docs]    @contextmanager
    def default_dispatcher(self, hostname=None, enabled=True,
                           buffer_while_offline=False):
        with self.app.amqp.producer_pool.acquire(block=True) as prod:
            # pylint: disable=too-many-function-args
            # This is a property pylint...
            with self.Dispatcher(prod.connection, hostname, enabled,
                                 prod.channel, buffer_while_offline) as d:
                yield d






            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.app.log

"""Logging configuration.

The Celery instances logging section: ``Celery.log``.

Sets up logging for the worker and other programs,
redirects standard outs, colors log output, patches logging
related compatibility fixes, and so on.
"""
import logging
import os
import sys
import warnings
from logging.handlers import WatchedFileHandler

from kombu.utils.encoding import set_default_encoding_file

from celery import signals
from celery._state import get_current_task
from celery.exceptions import CDeprecationWarning, CPendingDeprecationWarning
from celery.local import class_property
from celery.platforms import isatty
from celery.utils.log import (ColorFormatter, LoggingProxy, get_logger,
                              get_multiprocessing_logger, mlevel,
                              reset_multiprocessing_logger)
from celery.utils.nodenames import node_format
from celery.utils.term import colored

__all__ = ('TaskFormatter', 'Logging')

MP_LOG = os.environ.get('MP_LOG', False)


[docs]class TaskFormatter(ColorFormatter):
    """Formatter for tasks, adding the task name and id."""

[docs]    def format(self, record):
        task = get_current_task()
        if task and task.request:
            record.__dict__.update(task_id=task.request.id,
                                   task_name=task.name)
        else:
            record.__dict__.setdefault('task_name', '???')
            record.__dict__.setdefault('task_id', '???')
        return ColorFormatter.format(self, record)




[docs]class Logging:
    """Application logging setup (app.log)."""

    #: The logging subsystem is only configured once per process.
    #: setup_logging_subsystem sets this flag, and subsequent calls
    #: will do nothing.
    _setup = False

    def __init__(self, app):
        self.app = app
        self.loglevel = mlevel(logging.WARN)
        self.format = self.app.conf.worker_log_format
        self.task_format = self.app.conf.worker_task_log_format
        self.colorize = self.app.conf.worker_log_color

[docs]    def setup(self, loglevel=None, logfile=None, redirect_stdouts=False,
              redirect_level='WARNING', colorize=None, hostname=None):
        loglevel = mlevel(loglevel)
        handled = self.setup_logging_subsystem(
            loglevel, logfile, colorize=colorize, hostname=hostname,
        )
        if not handled:
            if redirect_stdouts:
                self.redirect_stdouts(redirect_level)
        os.environ.update(
            CELERY_LOG_LEVEL=str(loglevel) if loglevel else '',
            CELERY_LOG_FILE=str(logfile) if logfile else '',
        )
        warnings.filterwarnings('always', category=CDeprecationWarning)
        warnings.filterwarnings('always', category=CPendingDeprecationWarning)
        logging.captureWarnings(True)
        return handled


[docs]    def redirect_stdouts(self, loglevel=None, name='celery.redirected'):
        self.redirect_stdouts_to_logger(
            get_logger(name), loglevel=loglevel
        )
        os.environ.update(
            CELERY_LOG_REDIRECT='1',
            CELERY_LOG_REDIRECT_LEVEL=str(loglevel or ''),
        )


[docs]    def setup_logging_subsystem(self, loglevel=None, logfile=None, format=None,
                                colorize=None, hostname=None, **kwargs):
        if self.already_setup:
            return
        if logfile and hostname:
            logfile = node_format(logfile, hostname)
        Logging._setup = True
        loglevel = mlevel(loglevel or self.loglevel)
        format = format or self.format
        colorize = self.supports_color(colorize, logfile)
        reset_multiprocessing_logger()
        receivers = signals.setup_logging.send(
            sender=None, loglevel=loglevel, logfile=logfile,
            format=format, colorize=colorize,
        )

        if not receivers:
            root = logging.getLogger()

            if self.app.conf.worker_hijack_root_logger:
                root.handlers = []
                get_logger('celery').handlers = []
                get_logger('celery.task').handlers = []
                get_logger('celery.redirected').handlers = []

            # Configure root logger
            self._configure_logger(
                root, logfile, loglevel, format, colorize, **kwargs
            )

            # Configure the multiprocessing logger
            self._configure_logger(
                get_multiprocessing_logger(),
                logfile, loglevel if MP_LOG else logging.ERROR,
                format, colorize, **kwargs
            )

            signals.after_setup_logger.send(
                sender=None, logger=root,
                loglevel=loglevel, logfile=logfile,
                format=format, colorize=colorize,
            )

            # then setup the root task logger.
            self.setup_task_loggers(loglevel, logfile, colorize=colorize)

        try:
            stream = logging.getLogger().handlers[0].stream
        except (AttributeError, IndexError):
            pass
        else:
            set_default_encoding_file(stream)

        # This is a hack for multiprocessing's fork+exec, so that
        # logging before Process.run works.
        logfile_name = logfile if isinstance(logfile, str) else ''
        os.environ.update(_MP_FORK_LOGLEVEL_=str(loglevel),
                          _MP_FORK_LOGFILE_=logfile_name,
                          _MP_FORK_LOGFORMAT_=format)
        return receivers


    def _configure_logger(self, logger, logfile, loglevel,
                          format, colorize, **kwargs):
        if logger is not None:
            self.setup_handlers(logger, logfile, format,
                                colorize, **kwargs)
            if loglevel:
                logger.setLevel(loglevel)

[docs]    def setup_task_loggers(self, loglevel=None, logfile=None, format=None,
                           colorize=None, propagate=False, **kwargs):
        """Setup the task logger.

        If `logfile` is not specified, then `sys.stderr` is used.

        Will return the base task logger object.
        """
        loglevel = mlevel(loglevel or self.loglevel)
        format = format or self.task_format
        colorize = self.supports_color(colorize, logfile)

        logger = self.setup_handlers(
            get_logger('celery.task'),
            logfile, format, colorize,
            formatter=TaskFormatter, **kwargs
        )
        logger.setLevel(loglevel)
        # this is an int for some reason, better to not question why.
        logger.propagate = int(propagate)
        signals.after_setup_task_logger.send(
            sender=None, logger=logger,
            loglevel=loglevel, logfile=logfile,
            format=format, colorize=colorize,
        )
        return logger


[docs]    def redirect_stdouts_to_logger(self, logger, loglevel=None,
                                   stdout=True, stderr=True):
        """Redirect :class:`sys.stdout` and :class:`sys.stderr` to logger.

        Arguments:
            logger (logging.Logger): Logger instance to redirect to.
            loglevel (int, str): The loglevel redirected message
                will be logged as.
        """
        proxy = LoggingProxy(logger, loglevel)
        if stdout:
            sys.stdout = proxy
        if stderr:
            sys.stderr = proxy
        return proxy


[docs]    def supports_color(self, colorize=None, logfile=None):
        colorize = self.colorize if colorize is None else colorize
        if self.app.IS_WINDOWS:
            # Windows does not support ANSI color codes.
            return False
        if colorize or colorize is None:
            # Only use color if there's no active log file
            # and stderr is an actual terminal.
            return logfile is None and isatty(sys.stderr)
        return colorize


[docs]    def colored(self, logfile=None, enabled=None):
        return colored(enabled=self.supports_color(enabled, logfile))


[docs]    def setup_handlers(self, logger, logfile, format, colorize,
                       formatter=ColorFormatter, **kwargs):
        if self._is_configured(logger):
            return logger
        handler = self._detect_handler(logfile)
        handler.setFormatter(formatter(format, use_color=colorize))
        logger.addHandler(handler)
        return logger


    def _detect_handler(self, logfile=None):
        """Create handler from filename, an open stream or `None` (stderr)."""
        logfile = sys.__stderr__ if logfile is None else logfile
        if hasattr(logfile, 'write'):
            return logging.StreamHandler(logfile)
        return WatchedFileHandler(logfile, encoding='utf-8')

    def _has_handler(self, logger):
        return any(
            not isinstance(h, logging.NullHandler)
            for h in logger.handlers or []
        )

    def _is_configured(self, logger):
        return self._has_handler(logger) and not getattr(
            logger, '_rudimentary_setup', False)

[docs]    def get_default_logger(self, name='celery', **kwargs):
        return get_logger(name)


    @class_property
    def already_setup(self):
        return self._setup

    @already_setup.setter  # noqa
    def already_setup(self, was_setup):
        self._setup = was_setup





            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.app.registry

"""Registry of available tasks."""
import inspect
from importlib import import_module

from celery._state import get_current_app
from celery.app.autoretry import add_autoretry_behaviour
from celery.exceptions import InvalidTaskError, NotRegistered

__all__ = ('TaskRegistry',)


[docs]class TaskRegistry(dict):
    """Map of registered tasks."""

    NotRegistered = NotRegistered

    def __missing__(self, key):
        raise self.NotRegistered(key)

[docs]    def register(self, task):
        """Register a task in the task registry.

        The task will be automatically instantiated if not already an
        instance. Name must be configured prior to registration.
        """
        if task.name is None:
            raise InvalidTaskError(
                'Task class {!r} must specify .name attribute'.format(
                    type(task).__name__))
        task = inspect.isclass(task) and task() or task
        add_autoretry_behaviour(task)
        self[task.name] = task


[docs]    def unregister(self, name):
        """Unregister task by name.

        Arguments:
            name (str): name of the task to unregister, or a
                :class:`celery.task.base.Task` with a valid `name` attribute.

        Raises:
            celery.exceptions.NotRegistered: if the task is not registered.
        """
        try:
            self.pop(getattr(name, 'name', name))
        except KeyError:
            raise self.NotRegistered(name)


    # -- these methods are irrelevant now and will be removed in 4.0
[docs]    def regular(self):
        return self.filter_types('regular')


[docs]    def periodic(self):
        return self.filter_types('periodic')


[docs]    def filter_types(self, type):
        return {name: task for name, task in self.items()
                if getattr(task, 'type', 'regular') == type}




def _unpickle_task(name):
    return get_current_app().tasks[name]


def _unpickle_task_v2(name, module=None):
    if module:
        import_module(module)
    return get_current_app().tasks[name]




            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.app.routes

"""Task Routing.

Contains utilities for working with task routers, (:setting:`task_routes`).
"""
import re
import string
from collections import OrderedDict
from collections.abc import Mapping

from kombu import Queue

from celery.exceptions import QueueNotFound
from celery.utils.collections import lpmerge
from celery.utils.functional import maybe_evaluate, mlazy
from celery.utils.imports import symbol_by_name

try:
    Pattern = re._pattern_type
except AttributeError:  # pragma: no cover
    # for support Python 3.7
    Pattern = re.Pattern

__all__ = ('MapRoute', 'Router', 'prepare')


def glob_to_re(glob, quote=string.punctuation.replace('*', '')):
    glob = ''.join('\\' + c if c in quote else c for c in glob)
    return glob.replace('*', '.+?')


[docs]class MapRoute:
    """Creates a router out of a :class:`dict`."""

    def __init__(self, map):
        map = map.items() if isinstance(map, Mapping) else map
        self.map = {}
        self.patterns = OrderedDict()
        for k, v in map:
            if isinstance(k, Pattern):
                self.patterns[k] = v
            elif '*' in k:
                self.patterns[re.compile(glob_to_re(k))] = v
            else:
                self.map[k] = v

    def __call__(self, name, *args, **kwargs):
        try:
            return dict(self.map[name])
        except KeyError:
            pass
        except ValueError:
            return {'queue': self.map[name]}
        for regex, route in self.patterns.items():
            if regex.match(name):
                try:
                    return dict(route)
                except ValueError:
                    return {'queue': route}



[docs]class Router:
    """Route tasks based on the :setting:`task_routes` setting."""

    def __init__(self, routes=None, queues=None,
                 create_missing=False, app=None):
        self.app = app
        self.queues = {} if queues is None else queues
        self.routes = [] if routes is None else routes
        self.create_missing = create_missing

[docs]    def route(self, options, name, args=(), kwargs=None, task_type=None):
        kwargs = {} if not kwargs else kwargs
        options = self.expand_destination(options)  # expands 'queue'
        if self.routes:
            route = self.lookup_route(name, args, kwargs, options, task_type)
            if route:  # expands 'queue' in route.
                return lpmerge(self.expand_destination(route), options)
        if 'queue' not in options:
            options = lpmerge(self.expand_destination(
                self.app.conf.task_default_queue), options)
        return options


[docs]    def expand_destination(self, route):
        # Route can be a queue name: convenient for direct exchanges.
        if isinstance(route, str):
            queue, route = route, {}
        else:
            # can use defaults from configured queue, but override specific
            # things (like the routing_key): great for topic exchanges.
            queue = route.pop('queue', None)

        if queue:
            if isinstance(queue, Queue):
                route['queue'] = queue
            else:
                try:
                    route['queue'] = self.queues[queue]
                except KeyError:
                    raise QueueNotFound(
                        f'Queue {queue!r} missing from task_queues')
        return route


[docs]    def lookup_route(self, name,
                     args=None, kwargs=None, options=None, task_type=None):
        query = self.query_router
        for router in self.routes:
            route = query(router, name, args, kwargs, options, task_type)
            if route is not None:
                return route


[docs]    def query_router(self, router, task, args, kwargs, options, task_type):
        router = maybe_evaluate(router)
        if hasattr(router, 'route_for_task'):
            # pre 4.0 router class
            return router.route_for_task(task, args, kwargs)
        return router(task, args, kwargs, options, task=task_type)




def expand_router_string(router):
    router = symbol_by_name(router)
    if hasattr(router, 'route_for_task'):
        # need to instantiate pre 4.0 router classes
        router = router()
    return router


[docs]def prepare(routes):
    """Expand the :setting:`task_routes` setting."""
    def expand_route(route):
        if isinstance(route, (Mapping, list, tuple)):
            return MapRoute(route)
        if isinstance(route, str):
            return mlazy(expand_router_string, route)
        return route

    if routes is None:
        return ()
    if not isinstance(routes, (list, tuple)):
        routes = (routes,)
    return [expand_route(route) for route in routes]





            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.app.task

"""Task implementation: request context and the task base class."""
import sys

from billiard.einfo import ExceptionInfo
from kombu import serialization
from kombu.exceptions import OperationalError
from kombu.utils.uuid import uuid

from celery import current_app, group, states
from celery._state import _task_stack
from celery.canvas import signature
from celery.exceptions import (Ignore, ImproperlyConfigured,
                               MaxRetriesExceededError, Reject, Retry)
from celery.local import class_property
from celery.result import EagerResult, denied_join_result
from celery.utils import abstract
from celery.utils.functional import mattrgetter, maybe_list
from celery.utils.imports import instantiate
from celery.utils.nodenames import gethostname
from celery.utils.serialization import raise_with_context

from .annotations import resolve_all as resolve_all_annotations
from .registry import _unpickle_task_v2
from .utils import appstr

__all__ = ('Context', 'Task')

#: extracts attributes related to publishing a message from an object.
extract_exec_options = mattrgetter(
    'queue', 'routing_key', 'exchange', 'priority', 'expires',
    'serializer', 'delivery_mode', 'compression', 'time_limit',
    'soft_time_limit', 'immediate', 'mandatory',  # imm+man is deprecated
)

# We take __repr__ very seriously around here ;)
R_BOUND_TASK = '<class {0.__name__} of {app}{flags}>'
R_UNBOUND_TASK = '<unbound {0.__name__}{flags}>'
R_INSTANCE = '<@task: {0.name} of {app}{flags}>'

#: Here for backwards compatibility as tasks no longer use a custom meta-class.
TaskType = type


def _strflags(flags, default=''):
    if flags:
        return ' ({})'.format(', '.join(flags))
    return default


def _reprtask(task, fmt=None, flags=None):
    flags = list(flags) if flags is not None else []
    flags.append('v2 compatible') if task.__v2_compat__ else None
    if not fmt:
        fmt = R_BOUND_TASK if task._app else R_UNBOUND_TASK
    return fmt.format(
        task, flags=_strflags(flags),
        app=appstr(task._app) if task._app else None,
    )


[docs]class Context:
    """Task request variables (Task.request)."""

    logfile = None
    loglevel = None
    hostname = None
    id = None
    args = None
    kwargs = None
    retries = 0
    eta = None
    expires = None
    is_eager = False
    headers = None
    delivery_info = None
    reply_to = None
    root_id = None
    parent_id = None
    correlation_id = None
    taskset = None   # compat alias to group
    group = None
    group_index = None
    chord = None
    chain = None
    utc = None
    called_directly = True
    callbacks = None
    errbacks = None
    timelimit = None
    origin = None
    _children = None   # see property
    _protected = 0

    def __init__(self, *args, **kwargs):
        self.update(*args, **kwargs)

    def update(self, *args, **kwargs):
        return self.__dict__.update(*args, **kwargs)

    def clear(self):
        return self.__dict__.clear()

    def get(self, key, default=None):
        return getattr(self, key, default)

    def __repr__(self):
        return '<Context: {!r}>'.format(vars(self))

    def as_execution_options(self):
        limit_hard, limit_soft = self.timelimit or (None, None)
        return {
            'task_id': self.id,
            'root_id': self.root_id,
            'parent_id': self.parent_id,
            'group_id': self.group,
            'group_index': self.group_index,
            'chord': self.chord,
            'chain': self.chain,
            'link': self.callbacks,
            'link_error': self.errbacks,
            'expires': self.expires,
            'soft_time_limit': limit_soft,
            'time_limit': limit_hard,
            'headers': self.headers,
            'retries': self.retries,
            'reply_to': self.reply_to,
            'origin': self.origin,
        }

    @property
    def children(self):
        # children must be an empty list for every thread
        if self._children is None:
            self._children = []
        return self._children



[docs]@abstract.CallableTask.register
class Task:
    """Task base class.

    Note:
        When called tasks apply the :meth:`run` method.  This method must
        be defined by all tasks (that is unless the :meth:`__call__` method
        is overridden).
    """

    __trace__ = None
    __v2_compat__ = False  # set by old base in celery.task.base

    MaxRetriesExceededError = MaxRetriesExceededError
    OperationalError = OperationalError

    #: Execution strategy used, or the qualified name of one.
    Strategy = 'celery.worker.strategy:default'

    #: Request class used, or the qualified name of one.
    Request = 'celery.worker.request:Request'

    #: The application instance associated with this task class.
    _app = None

    #: Name of the task.
    name = None

    #: Enable argument checking.
    #: You can set this to false if you don't want the signature to be
    #: checked when calling the task.
    #: Defaults to :attr:`app.strict_typing <@Celery.strict_typing>`.
    typing = None

    #: Maximum number of retries before giving up.  If set to :const:`None`,
    #: it will **never** stop retrying.
    max_retries = 3

    #: Default time in seconds before a retry of the task should be
    #: executed.  3 minutes by default.
    default_retry_delay = 3 * 60

    #: Rate limit for this task type.  Examples: :const:`None` (no rate
    #: limit), `'100/s'` (hundred tasks a second), `'100/m'` (hundred tasks
    #: a minute),`'100/h'` (hundred tasks an hour)
    rate_limit = None

    #: If enabled the worker won't store task state and return values
    #: for this task.  Defaults to the :setting:`task_ignore_result`
    #: setting.
    ignore_result = None

    #: If enabled the request will keep track of subtasks started by
    #: this task, and this information will be sent with the result
    #: (``result.children``).
    trail = True

    #: If enabled the worker will send monitoring events related to
    #: this task (but only if the worker is configured to send
    #: task related events).
    #: Note that this has no effect on the task-failure event case
    #: where a task is not registered (as it will have no task class
    #: to check this flag).
    send_events = True

    #: When enabled errors will be stored even if the task is otherwise
    #: configured to ignore results.
    store_errors_even_if_ignored = None

    #: The name of a serializer that are registered with
    #: :mod:`kombu.serialization.registry`.  Default is `'json'`.
    serializer = None

    #: Hard time limit.
    #: Defaults to the :setting:`task_time_limit` setting.
    time_limit = None

    #: Soft time limit.
    #: Defaults to the :setting:`task_soft_time_limit` setting.
    soft_time_limit = None

    #: The result store backend used for this task.
    backend = None

    #: If disabled this task won't be registered automatically.
    autoregister = True

    #: If enabled the task will report its status as 'started' when the task
    #: is executed by a worker.  Disabled by default as the normal behavior
    #: is to not report that level of granularity.  Tasks are either pending,
    #: finished, or waiting to be retried.
    #:
    #: Having a 'started' status can be useful for when there are long
    #: running tasks and there's a need to report what task is currently
    #: running.
    #:
    #: The application default can be overridden using the
    #: :setting:`task_track_started` setting.
    track_started = None

    #: When enabled messages for this task will be acknowledged **after**
    #: the task has been executed, and not *just before* (the
    #: default behavior).
    #:
    #: Please note that this means the task may be executed twice if the
    #: worker crashes mid execution.
    #:
    #: The application default can be overridden with the
    #: :setting:`task_acks_late` setting.
    acks_late = None

    #: When enabled messages for this task will be acknowledged even if it
    #: fails or times out.
    #:
    #: Configuring this setting only applies to tasks that are
    #: acknowledged **after** they have been executed and only if
    #: :setting:`task_acks_late` is enabled.
    #:
    #: The application default can be overridden with the
    #: :setting:`task_acks_on_failure_or_timeout` setting.
    acks_on_failure_or_timeout = None

    #: Even if :attr:`acks_late` is enabled, the worker will
    #: acknowledge tasks when the worker process executing them abruptly
    #: exits or is signaled (e.g., :sig:`KILL`/:sig:`INT`, etc).
    #:
    #: Setting this to true allows the message to be re-queued instead,
    #: so that the task will execute again by the same worker, or another
    #: worker.
    #:
    #: Warning: Enabling this can cause message loops; make sure you know
    #: what you're doing.
    reject_on_worker_lost = None

    #: Tuple of expected exceptions.
    #:
    #: These are errors that are expected in normal operation
    #: and that shouldn't be regarded as a real error by the worker.
    #: Currently this means that the state will be updated to an error
    #: state, but the worker won't log the event as an error.
    throws = ()

    #: Default task expiry time.
    expires = None

    #: Default task priority.
    priority = None

    #: Max length of result representation used in logs and events.
    resultrepr_maxsize = 1024

    #: Task request stack, the current request will be the topmost.
    request_stack = None

    #: Some may expect a request to exist even if the task hasn't been
    #: called.  This should probably be deprecated.
    _default_request = None

    #: Deprecated attribute ``abstract`` here for compatibility.
    abstract = True

    _exec_options = None

    __bound__ = False

    from_config = (
        ('serializer', 'task_serializer'),
        ('rate_limit', 'task_default_rate_limit'),
        ('priority', 'task_default_priority'),
        ('track_started', 'task_track_started'),
        ('acks_late', 'task_acks_late'),
        ('acks_on_failure_or_timeout', 'task_acks_on_failure_or_timeout'),
        ('reject_on_worker_lost', 'task_reject_on_worker_lost'),
        ('ignore_result', 'task_ignore_result'),
        ('store_errors_even_if_ignored', 'task_store_errors_even_if_ignored'),
    )

    _backend = None  # set by backend property.

    # - Tasks are lazily bound, so that configuration is not set
    # - until the task is actually used

    @classmethod
    def bind(cls, app):
        was_bound, cls.__bound__ = cls.__bound__, True
        cls._app = app
        conf = app.conf
        cls._exec_options = None  # clear option cache

        if cls.typing is None:
            cls.typing = app.strict_typing

        for attr_name, config_name in cls.from_config:
            if getattr(cls, attr_name, None) is None:
                setattr(cls, attr_name, conf[config_name])

        # decorate with annotations from config.
        if not was_bound:
            cls.annotate()

            from celery.utils.threads import LocalStack
            cls.request_stack = LocalStack()

        # PeriodicTask uses this to add itself to the PeriodicTask schedule.
        cls.on_bound(app)

        return app

[docs]    @classmethod
    def on_bound(cls, app):
        """Called when the task is bound to an app.

        Note:
            This class method can be defined to do additional actions when
            the task class is bound to an app.
        """


    @classmethod
    def _get_app(cls):
        if cls._app is None:
            cls._app = current_app
        if not cls.__bound__:
            # The app property's __set__  method is not called
            # if Task.app is set (on the class), so must bind on use.
            cls.bind(cls._app)
        return cls._app
    app = class_property(_get_app, bind)

    @classmethod
    def annotate(cls):
        for d in resolve_all_annotations(cls.app.annotations, cls):
            for key, value in d.items():
                if key.startswith('@'):
                    cls.add_around(key[1:], value)
                else:
                    setattr(cls, key, value)

    @classmethod
    def add_around(cls, attr, around):
        orig = getattr(cls, attr)
        if getattr(orig, '__wrapped__', None):
            orig = orig.__wrapped__
        meth = around(orig)
        meth.__wrapped__ = orig
        setattr(cls, attr, meth)

    def __call__(self, *args, **kwargs):
        _task_stack.push(self)
        self.push_request(args=args, kwargs=kwargs)
        try:
            return self.run(*args, **kwargs)
        finally:
            self.pop_request()
            _task_stack.pop()

    def __reduce__(self):
        # - tasks are pickled into the name of the task only, and the receiver
        # - simply grabs it from the local registry.
        # - in later versions the module of the task is also included,
        # - and the receiving side tries to import that module so that
        # - it will work even if the task hasn't been registered.
        mod = type(self).__module__
        mod = mod if mod and mod in sys.modules else None
        return (_unpickle_task_v2, (self.name, mod), None)

[docs]    def run(self, *args, **kwargs):
        """The body of the task executed by workers."""
        raise NotImplementedError('Tasks must define the run method.')


    def start_strategy(self, app, consumer, **kwargs):
        return instantiate(self.Strategy, self, app, consumer, **kwargs)

[docs]    def delay(self, *args, **kwargs):
        """Star argument version of :meth:`apply_async`.

        Does not support the extra options enabled by :meth:`apply_async`.

        Arguments:
            *args (Any): Positional arguments passed on to the task.
            **kwargs (Any): Keyword arguments passed on to the task.
        Returns:
            celery.result.AsyncResult: Future promise.
        """
        return self.apply_async(args, kwargs)


[docs]    def apply_async(self, args=None, kwargs=None, task_id=None, producer=None,
                    link=None, link_error=None, shadow=None, **options):
        """Apply tasks asynchronously by sending a message.

        Arguments:
            args (Tuple): The positional arguments to pass on to the task.

            kwargs (Dict): The keyword arguments to pass on to the task.

            countdown (float): Number of seconds into the future that the
                task should execute.  Defaults to immediate execution.

            eta (~datetime.datetime): Absolute time and date of when the task
                should be executed.  May not be specified if `countdown`
                is also supplied.

            expires (float, ~datetime.datetime): Datetime or
                seconds in the future for the task should expire.
                The task won't be executed after the expiration time.

            shadow (str): Override task name used in logs/monitoring.
                Default is retrieved from :meth:`shadow_name`.

            connection (kombu.Connection): Re-use existing broker connection
                instead of acquiring one from the connection pool.

            retry (bool): If enabled sending of the task message will be
                retried in the event of connection loss or failure.
                Default is taken from the :setting:`task_publish_retry`
                setting.  Note that you need to handle the
                producer/connection manually for this to work.

            retry_policy (Mapping): Override the retry policy used.
                See the :setting:`task_publish_retry_policy` setting.

            queue (str, kombu.Queue): The queue to route the task to.
                This must be a key present in :setting:`task_queues`, or
                :setting:`task_create_missing_queues` must be
                enabled.  See :ref:`guide-routing` for more
                information.

            exchange (str, kombu.Exchange): Named custom exchange to send the
                task to.  Usually not used in combination with the ``queue``
                argument.

            routing_key (str): Custom routing key used to route the task to a
                worker server.  If in combination with a ``queue`` argument
                only used to specify custom routing keys to topic exchanges.

            priority (int): The task priority, a number between 0 and 9.
                Defaults to the :attr:`priority` attribute.

            serializer (str): Serialization method to use.
                Can be `pickle`, `json`, `yaml`, `msgpack` or any custom
                serialization method that's been registered
                with :mod:`kombu.serialization.registry`.
                Defaults to the :attr:`serializer` attribute.

            compression (str): Optional compression method
                to use.  Can be one of ``zlib``, ``bzip2``,
                or any custom compression methods registered with
                :func:`kombu.compression.register`.
                Defaults to the :setting:`task_compression` setting.

            link (Signature): A single, or a list of tasks signatures
                to apply if the task returns successfully.

            link_error (Signature): A single, or a list of task signatures
                to apply if an error occurs while executing the task.

            producer (kombu.Producer): custom producer to use when publishing
                the task.

            add_to_parent (bool): If set to True (default) and the task
                is applied while executing another task, then the result
                will be appended to the parent tasks ``request.children``
                attribute.  Trailing can also be disabled by default using the
                :attr:`trail` attribute

            publisher (kombu.Producer): Deprecated alias to ``producer``.

            headers (Dict): Message headers to be included in the message.

        Returns:
            celery.result.AsyncResult: Promise of future evaluation.

        Raises:
            TypeError: If not enough arguments are passed, or too many
                arguments are passed.  Note that signature checks may
                be disabled by specifying ``@task(typing=False)``.
            kombu.exceptions.OperationalError: If a connection to the
               transport cannot be made, or if the connection is lost.

        Note:
            Also supports all keyword arguments supported by
            :meth:`kombu.Producer.publish`.
        """
        if self.typing:
            try:
                check_arguments = self.__header__
            except AttributeError:  # pragma: no cover
                pass
            else:
                check_arguments(*(args or ()), **(kwargs or {}))

        if self.__v2_compat__:
            shadow = shadow or self.shadow_name(self(), args, kwargs, options)
        else:
            shadow = shadow or self.shadow_name(args, kwargs, options)

        preopts = self._get_exec_options()
        options = dict(preopts, **options) if options else preopts

        options.setdefault('ignore_result', self.ignore_result)
        if self.priority:
            options.setdefault('priority', self.priority)

        app = self._get_app()
        if app.conf.task_always_eager:
            with app.producer_or_acquire(producer) as eager_producer:
                serializer = options.get('serializer')
                if serializer is None:
                    if eager_producer.serializer:
                        serializer = eager_producer.serializer
                    else:
                        serializer = app.conf.task_serializer
                body = args, kwargs
                content_type, content_encoding, data = serialization.dumps(
                    body, serializer,
                )
                args, kwargs = serialization.loads(
                    data, content_type, content_encoding,
                    accept=[content_type]
                )
            with denied_join_result():
                return self.apply(args, kwargs, task_id=task_id or uuid(),
                                  link=link, link_error=link_error, **options)
        else:
            return app.send_task(
                self.name, args, kwargs, task_id=task_id, producer=producer,
                link=link, link_error=link_error, result_cls=self.AsyncResult,
                shadow=shadow, task_type=self,
                **options
            )


[docs]    def shadow_name(self, args, kwargs, options):
        """Override for custom task name in worker logs/monitoring.

        Example:
            .. code-block:: python

                from celery.utils.imports import qualname

                def shadow_name(task, args, kwargs, options):
                    return qualname(args[0])

                @app.task(shadow_name=shadow_name, serializer='pickle')
                def apply_function_async(fun, *args, **kwargs):
                    return fun(*args, **kwargs)

        Arguments:
            args (Tuple): Task positional arguments.
            kwargs (Dict): Task keyword arguments.
            options (Dict): Task execution options.
        """


    def signature_from_request(self, request=None, args=None, kwargs=None,
                               queue=None, **extra_options):
        request = self.request if request is None else request
        args = request.args if args is None else args
        kwargs = request.kwargs if kwargs is None else kwargs
        options = request.as_execution_options()
        delivery_info = request.delivery_info or {}
        priority = delivery_info.get('priority')
        if priority is not None:
            options['priority'] = priority
        if queue:
            options['queue'] = queue
        else:
            exchange = delivery_info.get('exchange')
            routing_key = delivery_info.get('routing_key')
            if exchange == '' and routing_key:
                # sent to anon-exchange
                options['queue'] = routing_key
            else:
                options.update(delivery_info)
        return self.signature(
            args, kwargs, options, type=self, **extra_options
        )
    subtask_from_request = signature_from_request  # XXX compat

[docs]    def retry(self, args=None, kwargs=None, exc=None, throw=True,
              eta=None, countdown=None, max_retries=None, **options):
        """Retry the task, adding it to the back of the queue.

        Example:
            >>> from imaginary_twitter_lib import Twitter
            >>> from proj.celery import app

            >>> @app.task(bind=True)
            ... def tweet(self, auth, message):
            ...     twitter = Twitter(oauth=auth)
            ...     try:
            ...         twitter.post_status_update(message)
            ...     except twitter.FailWhale as exc:
            ...         # Retry in 5 minutes.
            ...         self.retry(countdown=60 * 5, exc=exc)

        Note:
            Although the task will never return above as `retry` raises an
            exception to notify the worker, we use `raise` in front of the
            retry to convey that the rest of the block won't be executed.

        Arguments:
            args (Tuple): Positional arguments to retry with.
            kwargs (Dict): Keyword arguments to retry with.
            exc (Exception): Custom exception to report when the max retry
                limit has been exceeded (default:
                :exc:`~@MaxRetriesExceededError`).

                If this argument is set and retry is called while
                an exception was raised (``sys.exc_info()`` is set)
                it will attempt to re-raise the current exception.

                If no exception was raised it will raise the ``exc``
                argument provided.
            countdown (float): Time in seconds to delay the retry for.
            eta (~datetime.datetime): Explicit time and date to run the
                retry at.
            max_retries (int): If set, overrides the default retry limit for
                this execution.  Changes to this parameter don't propagate to
                subsequent task retry attempts.  A value of :const:`None`,
                means "use the default", so if you want infinite retries you'd
                have to set the :attr:`max_retries` attribute of the task to
                :const:`None` first.
            time_limit (int): If set, overrides the default time limit.
            soft_time_limit (int): If set, overrides the default soft
                time limit.
            throw (bool): If this is :const:`False`, don't raise the
                :exc:`~@Retry` exception, that tells the worker to mark
                the task as being retried.  Note that this means the task
                will be marked as failed if the task raises an exception,
                or successful if it returns after the retry call.
            **options (Any): Extra options to pass on to :meth:`apply_async`.

        Raises:

            celery.exceptions.Retry:
                To tell the worker that the task has been re-sent for retry.
                This always happens, unless the `throw` keyword argument
                has been explicitly set to :const:`False`, and is considered
                normal operation.
        """
        request = self.request
        retries = request.retries + 1
        max_retries = self.max_retries if max_retries is None else max_retries

        # Not in worker or emulated by (apply/always_eager),
        # so just raise the original exception.
        if request.called_directly:
            # raises orig stack if PyErr_Occurred,
            # and augments with exc' if that argument is defined.
            raise_with_context(exc or Retry('Task can be retried', None))

        if not eta and countdown is None:
            countdown = self.default_retry_delay

        is_eager = request.is_eager
        S = self.signature_from_request(
            request, args, kwargs,
            countdown=countdown, eta=eta, retries=retries,
            **options
        )

        if max_retries is not None and retries > max_retries:
            if exc:
                # On Py3: will augment any current exception with
                # the exc' argument provided (raise exc from orig)
                raise_with_context(exc)
            raise self.MaxRetriesExceededError(
                "Can't retry {}[{}] args:{} kwargs:{}".format(
                    self.name, request.id, S.args, S.kwargs
                ), task_args=S.args, task_kwargs=S.kwargs
            )

        ret = Retry(exc=exc, when=eta or countdown, is_eager=is_eager, sig=S)

        if is_eager:
            # if task was executed eagerly using apply(),
            # then the retry must also be executed eagerly in apply method
            if throw:
                raise ret
            return ret

        try:
            S.apply_async()
        except Exception as exc:
            raise Reject(exc, requeue=False)
        if throw:
            raise ret
        return ret


[docs]    def apply(self, args=None, kwargs=None,
              link=None, link_error=None,
              task_id=None, retries=None, throw=None,
              logfile=None, loglevel=None, headers=None, **options):
        """Execute this task locally, by blocking until the task returns.

        Arguments:
            args (Tuple): positional arguments passed on to the task.
            kwargs (Dict): keyword arguments passed on to the task.
            throw (bool): Re-raise task exceptions.
                Defaults to the :setting:`task_eager_propagates` setting.

        Returns:
            celery.result.EagerResult: pre-evaluated result.
        """
        # trace imports Task, so need to import inline.
        from celery.app.trace import build_tracer

        app = self._get_app()
        args = args or ()
        kwargs = kwargs or {}
        task_id = task_id or uuid()
        retries = retries or 0
        if throw is None:
            throw = app.conf.task_eager_propagates

        # Make sure we get the task instance, not class.
        task = app._tasks[self.name]

        request = {
            'id': task_id,
            'retries': retries,
            'is_eager': True,
            'logfile': logfile,
            'loglevel': loglevel or 0,
            'hostname': gethostname(),
            'callbacks': maybe_list(link),
            'errbacks': maybe_list(link_error),
            'headers': headers,
            'delivery_info': {'is_eager': True},
        }
        tb = None
        tracer = build_tracer(
            task.name, task, eager=True,
            propagate=throw, app=self._get_app(),
        )
        ret = tracer(task_id, args, kwargs, request)
        retval = ret.retval
        if isinstance(retval, ExceptionInfo):
            retval, tb = retval.exception, retval.traceback
        if isinstance(retval, Retry) and retval.sig is not None:
            return retval.sig.apply(retries=retries + 1)
        state = states.SUCCESS if ret.info is None else ret.info.state
        return EagerResult(task_id, retval, state, traceback=tb)


[docs]    def AsyncResult(self, task_id, **kwargs):
        """Get AsyncResult instance for the specified task.

        Arguments:
            task_id (str): Task id to get result for.
        """
        return self._get_app().AsyncResult(task_id, backend=self.backend,
                                           task_name=self.name, **kwargs)


[docs]    def signature(self, args=None, *starargs, **starkwargs):
        """Create signature.

        Returns:
            :class:`~celery.signature`:  object for
                this task, wrapping arguments and execution options
                for a single task invocation.
        """
        starkwargs.setdefault('app', self.app)
        return signature(self, args, *starargs, **starkwargs)

    subtask = signature

[docs]    def s(self, *args, **kwargs):
        """Create signature.

        Shortcut for ``.s(*a, **k) -> .signature(a, k)``.
        """
        return self.signature(args, kwargs)


[docs]    def si(self, *args, **kwargs):
        """Create immutable signature.

        Shortcut for ``.si(*a, **k) -> .signature(a, k, immutable=True)``.
        """
        return self.signature(args, kwargs, immutable=True)


[docs]    def chunks(self, it, n):
        """Create a :class:`~celery.canvas.chunks` task for this task."""
        from celery import chunks
        return chunks(self.s(), it, n, app=self.app)


[docs]    def map(self, it):
        """Create a :class:`~celery.canvas.xmap` task from ``it``."""
        from celery import xmap
        return xmap(self.s(), it, app=self.app)


[docs]    def starmap(self, it):
        """Create a :class:`~celery.canvas.xstarmap` task from ``it``."""
        from celery import xstarmap
        return xstarmap(self.s(), it, app=self.app)


[docs]    def send_event(self, type_, retry=True, retry_policy=None, **fields):
        """Send monitoring event message.

        This can be used to add custom event types in :pypi:`Flower`
        and other monitors.

        Arguments:
            type_ (str):  Type of event, e.g. ``"task-failed"``.

        Keyword Arguments:
            retry (bool):  Retry sending the message
                if the connection is lost.  Default is taken from the
                :setting:`task_publish_retry` setting.
            retry_policy (Mapping): Retry settings.  Default is taken
                from the :setting:`task_publish_retry_policy` setting.
            **fields (Any): Map containing information about the event.
                Must be JSON serializable.
        """
        req = self.request
        if retry_policy is None:
            retry_policy = self.app.conf.task_publish_retry_policy
        with self.app.events.default_dispatcher(hostname=req.hostname) as d:
            return d.send(
                type_,
                uuid=req.id, retry=retry, retry_policy=retry_policy, **fields)


[docs]    def replace(self, sig):
        """Replace this task, with a new task inheriting the task id.

        Execution of the host task ends immediately and no subsequent statements
        will be run.

        .. versionadded:: 4.0

        Arguments:
            sig (~@Signature): signature to replace with.

        Raises:
            ~@Ignore: This is always raised when called in asynchronous context.
            It is best to always use ``return self.replace(...)`` to convey
            to the reader that the task won't continue after being replaced.
        """
        chord = self.request.chord
        if 'chord' in sig.options:
            raise ImproperlyConfigured(
                "A signature replacing a task must not be part of a chord"
            )

        if isinstance(sig, group):
            sig |= self.app.tasks['celery.accumulate'].s(index=0).set(
                link=self.request.callbacks,
                link_error=self.request.errbacks,
            )

        if self.request.chain:
            for t in reversed(self.request.chain):
                sig |= signature(t, app=self.app)

        sig.set(
            chord=chord,
            group_id=self.request.group,
            group_index=self.request.group_index,
            root_id=self.request.root_id,
        )
        sig.freeze(self.request.id)

        if self.request.is_eager:
            return sig.apply().get()
        else:
            sig.delay()
            raise Ignore('Replaced by new task')


[docs]    def add_to_chord(self, sig, lazy=False):
        """Add signature to the chord the current task is a member of.

        .. versionadded:: 4.0

        Currently only supported by the Redis result backend.

        Arguments:
            sig (~@Signature): Signature to extend chord with.
            lazy (bool): If enabled the new task won't actually be called,
                and ``sig.delay()`` must be called manually.
        """
        if not self.request.chord:
            raise ValueError('Current task is not member of any chord')
        sig.set(
            group_id=self.request.group,
            group_index=self.request.group_index,
            chord=self.request.chord,
            root_id=self.request.root_id,
        )
        result = sig.freeze()
        self.backend.add_to_chord(self.request.group, result)
        return sig.delay() if not lazy else sig


[docs]    def update_state(self, task_id=None, state=None, meta=None, **kwargs):
        """Update task state.

        Arguments:
            task_id (str): Id of the task to update.
                Defaults to the id of the current task.
            state (str): New state.
            meta (Dict): State meta-data.
        """
        if task_id is None:
            task_id = self.request.id
        self.backend.store_result(task_id, meta, state, request=self.request, **kwargs)


[docs]    def on_success(self, retval, task_id, args, kwargs):
        """Success handler.

        Run by the worker if the task executes successfully.

        Arguments:
            retval (Any): The return value of the task.
            task_id (str): Unique id of the executed task.
            args (Tuple): Original arguments for the executed task.
            kwargs (Dict): Original keyword arguments for the executed task.

        Returns:
            None: The return value of this handler is ignored.
        """


[docs]    def on_retry(self, exc, task_id, args, kwargs, einfo):
        """Retry handler.

        This is run by the worker when the task is to be retried.

        Arguments:
            exc (Exception): The exception sent to :meth:`retry`.
            task_id (str): Unique id of the retried task.
            args (Tuple): Original arguments for the retried task.
            kwargs (Dict): Original keyword arguments for the retried task.
            einfo (~billiard.einfo.ExceptionInfo): Exception information.

        Returns:
            None: The return value of this handler is ignored.
        """


[docs]    def on_failure(self, exc, task_id, args, kwargs, einfo):
        """Error handler.

        This is run by the worker when the task fails.

        Arguments:
            exc (Exception): The exception raised by the task.
            task_id (str): Unique id of the failed task.
            args (Tuple): Original arguments for the task that failed.
            kwargs (Dict): Original keyword arguments for the task that failed.
            einfo (~billiard.einfo.ExceptionInfo): Exception information.

        Returns:
            None: The return value of this handler is ignored.
        """


[docs]    def after_return(self, status, retval, task_id, args, kwargs, einfo):
        """Handler called after the task returns.

        Arguments:
            status (str): Current task state.
            retval (Any): Task return value/exception.
            task_id (str): Unique id of the task.
            args (Tuple): Original arguments for the task.
            kwargs (Dict): Original keyword arguments for the task.
            einfo (~billiard.einfo.ExceptionInfo): Exception information.

        Returns:
            None: The return value of this handler is ignored.
        """


    def add_trail(self, result):
        if self.trail:
            self.request.children.append(result)
        return result

    def push_request(self, *args, **kwargs):
        self.request_stack.push(Context(*args, **kwargs))

    def pop_request(self):
        self.request_stack.pop()

    def __repr__(self):
        """``repr(task)``."""
        return _reprtask(self, R_INSTANCE)

    def _get_request(self):
        """Get current request object."""
        req = self.request_stack.top
        if req is None:
            # task was not called, but some may still expect a request
            # to be there, perhaps that should be deprecated.
            if self._default_request is None:
                self._default_request = Context()
            return self._default_request
        return req
    request = property(_get_request)

    def _get_exec_options(self):
        if self._exec_options is None:
            self._exec_options = extract_exec_options(self)
        return self._exec_options

    @property
    def backend(self):
        backend = self._backend
        if backend is None:
            return self.app.backend
        return backend

    @backend.setter
    def backend(self, value):  # noqa
        self._backend = value

    @property
    def __name__(self):
        return self.__class__.__name__



BaseTask = Task  # noqa: E305 XXX compat alias




            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.app.trace

"""Trace task execution.

This module defines how the task execution is traced:
errors are recorded, handlers are applied and so on.
"""
import logging
import os
import sys
import time
from collections import namedtuple
from warnings import warn

from billiard.einfo import ExceptionInfo
from kombu.exceptions import EncodeError
from kombu.serialization import loads as loads_message
from kombu.serialization import prepare_accept_content
from kombu.utils.encoding import safe_repr, safe_str

from celery import current_app, group, signals, states
from celery._state import _task_stack
from celery.app.task import Context
from celery.app.task import Task as BaseTask
from celery.exceptions import Ignore, InvalidTaskError, Reject, Retry
from celery.utils.log import get_logger
from celery.utils.nodenames import gethostname
from celery.utils.objects import mro_lookup
from celery.utils.saferepr import saferepr
from celery.utils.serialization import (get_pickleable_etype,
                                        get_pickleable_exception,
                                        get_pickled_exception)

# ## ---
# This is the heart of the worker, the inner loop so to speak.
# It used to be split up into nice little classes and methods,
# but in the end it only resulted in bad performance and horrible tracebacks,
# so instead we now use one closure per task class.

# pylint: disable=redefined-outer-name
# We cache globals and attribute lookups, so disable this warning.
# pylint: disable=broad-except
# We know what we're doing...


__all__ = (
    'TraceInfo', 'build_tracer', 'trace_task',
    'setup_worker_optimizations', 'reset_worker_optimizations',
)

logger = get_logger(__name__)

#: Format string used to log task success.
LOG_SUCCESS = """\
Task %(name)s[%(id)s] succeeded in %(runtime)ss: %(return_value)s\
"""

#: Format string used to log task failure.
LOG_FAILURE = """\
Task %(name)s[%(id)s] %(description)s: %(exc)s\
"""

#: Format string used to log task internal error.
LOG_INTERNAL_ERROR = """\
Task %(name)s[%(id)s] %(description)s: %(exc)s\
"""

#: Format string used to log task ignored.
LOG_IGNORED = """\
Task %(name)s[%(id)s] %(description)s\
"""

#: Format string used to log task rejected.
LOG_REJECTED = """\
Task %(name)s[%(id)s] %(exc)s\
"""

#: Format string used to log task retry.
LOG_RETRY = """\
Task %(name)s[%(id)s] retry: %(exc)s\
"""

log_policy_t = namedtuple(
    'log_policy_t',
    ('format', 'description', 'severity', 'traceback', 'mail'),
)

log_policy_reject = log_policy_t(LOG_REJECTED, 'rejected', logging.WARN, 1, 1)
log_policy_ignore = log_policy_t(LOG_IGNORED, 'ignored', logging.INFO, 0, 0)
log_policy_internal = log_policy_t(
    LOG_INTERNAL_ERROR, 'INTERNAL ERROR', logging.CRITICAL, 1, 1,
)
log_policy_expected = log_policy_t(
    LOG_FAILURE, 'raised expected', logging.INFO, 0, 0,
)
log_policy_unexpected = log_policy_t(
    LOG_FAILURE, 'raised unexpected', logging.ERROR, 1, 1,
)

send_prerun = signals.task_prerun.send
send_postrun = signals.task_postrun.send
send_success = signals.task_success.send
STARTED = states.STARTED
SUCCESS = states.SUCCESS
IGNORED = states.IGNORED
REJECTED = states.REJECTED
RETRY = states.RETRY
FAILURE = states.FAILURE
EXCEPTION_STATES = states.EXCEPTION_STATES
IGNORE_STATES = frozenset({IGNORED, RETRY, REJECTED})

#: set by :func:`setup_worker_optimizations`
_localized = []
_patched = {}

trace_ok_t = namedtuple('trace_ok_t', ('retval', 'info', 'runtime', 'retstr'))


def info(fmt, context):
    """Log 'fmt % context' with severity 'INFO'.

    'context' is also passed in extra with key 'data' for custom handlers.
    """
    logger.info(fmt, context, extra={'data': context})


def task_has_custom(task, attr):
    """Return true if the task overrides ``attr``."""
    return mro_lookup(task.__class__, attr, stop={BaseTask, object},
                      monkey_patched=['celery.app.task'])


def get_log_policy(task, einfo, exc):
    if isinstance(exc, Reject):
        return log_policy_reject
    elif isinstance(exc, Ignore):
        return log_policy_ignore
    elif einfo.internal:
        return log_policy_internal
    else:
        if task.throws and isinstance(exc, task.throws):
            return log_policy_expected
        return log_policy_unexpected


def get_task_name(request, default):
    """Use 'shadow' in request for the task name if applicable."""
    # request.shadow could be None or an empty string.
    # If so, we should use default.
    return getattr(request, 'shadow', None) or default


[docs]class TraceInfo:
    """Information about task execution."""

    __slots__ = ('state', 'retval')

    def __init__(self, state, retval=None):
        self.state = state
        self.retval = retval

[docs]    def handle_error_state(self, task, req,
                           eager=False, call_errbacks=True):
        store_errors = not eager
        if task.ignore_result:
            store_errors = task.store_errors_even_if_ignored
        return {
            RETRY: self.handle_retry,
            FAILURE: self.handle_failure,
        }[self.state](task, req,
                      store_errors=store_errors,
                      call_errbacks=call_errbacks)


[docs]    def handle_reject(self, task, req, **kwargs):
        self._log_error(task, req, ExceptionInfo())


[docs]    def handle_ignore(self, task, req, **kwargs):
        self._log_error(task, req, ExceptionInfo())


[docs]    def handle_retry(self, task, req, store_errors=True, **kwargs):
        """Handle retry exception."""
        # the exception raised is the Retry semi-predicate,
        # and it's exc' attribute is the original exception raised (if any).
        type_, _, tb = sys.exc_info()
        try:
            reason = self.retval
            einfo = ExceptionInfo((type_, reason, tb))
            if store_errors:
                task.backend.mark_as_retry(
                    req.id, reason.exc, einfo.traceback, request=req,
                )
            task.on_retry(reason.exc, req.id, req.args, req.kwargs, einfo)
            signals.task_retry.send(sender=task, request=req,
                                    reason=reason, einfo=einfo)
            info(LOG_RETRY, {
                'id': req.id,
                'name': get_task_name(req, task.name),
                'exc': str(reason),
            })
            return einfo
        finally:
            del tb


[docs]    def handle_failure(self, task, req, store_errors=True, call_errbacks=True):
        """Handle exception."""
        _, _, tb = sys.exc_info()
        try:
            exc = self.retval
            # make sure we only send pickleable exceptions back to parent.
            einfo = ExceptionInfo()
            einfo.exception = get_pickleable_exception(einfo.exception)
            einfo.type = get_pickleable_etype(einfo.type)

            task.backend.mark_as_failure(
                req.id, exc, einfo.traceback,
                request=req, store_result=store_errors,
                call_errbacks=call_errbacks,
            )

            task.on_failure(exc, req.id, req.args, req.kwargs, einfo)
            signals.task_failure.send(sender=task, task_id=req.id,
                                      exception=exc, args=req.args,
                                      kwargs=req.kwargs,
                                      traceback=tb,
                                      einfo=einfo)
            self._log_error(task, req, einfo)
            return einfo
        finally:
            del tb


    def _log_error(self, task, req, einfo):
        eobj = einfo.exception = get_pickled_exception(einfo.exception)
        exception, traceback, exc_info, sargs, skwargs = (
            safe_repr(eobj),
            safe_str(einfo.traceback),
            einfo.exc_info,
            safe_repr(req.args),
            safe_repr(req.kwargs),
        )
        policy = get_log_policy(task, einfo, eobj)

        context = {
            'hostname': req.hostname,
            'id': req.id,
            'name': get_task_name(req, task.name),
            'exc': exception,
            'traceback': traceback,
            'args': sargs,
            'kwargs': skwargs,
            'description': policy.description,
            'internal': einfo.internal,
        }

        logger.log(policy.severity, policy.format.strip(), context,
                   exc_info=exc_info if policy.traceback else None,
                   extra={'data': context})



def traceback_clear(exc=None):
    # Cleared Tb, but einfo still has a reference to Traceback.
    # exc cleans up the Traceback at the last moment that can be revealed.
    tb = None
    if exc is not None:
        if hasattr(exc, '__traceback__'):
            tb = exc.__traceback__
        else:
            _, _, tb = sys.exc_info()
    else:
        _, _, tb = sys.exc_info()

    if sys.version_info >= (3, 5, 0):
        while tb is not None:
            try:
                tb.tb_frame.clear()
                tb.tb_frame.f_locals
            except RuntimeError:
                # Ignore the exception raised if the frame is still executing.
                pass
            tb = tb.tb_next

    elif (2, 7, 0) <= sys.version_info < (3, 0, 0):
        sys.exc_clear()


[docs]def build_tracer(name, task, loader=None, hostname=None, store_errors=True,
                 Info=TraceInfo, eager=False, propagate=False, app=None,
                 monotonic=time.monotonic, trace_ok_t=trace_ok_t,
                 IGNORE_STATES=IGNORE_STATES):
    """Return a function that traces task execution.

    Catches all exceptions and updates result backend with the
    state and result.

    If the call was successful, it saves the result to the task result
    backend, and sets the task status to `"SUCCESS"`.

    If the call raises :exc:`~@Retry`, it extracts
    the original exception, uses that as the result and sets the task state
    to `"RETRY"`.

    If the call results in an exception, it saves the exception as the task
    result, and sets the task state to `"FAILURE"`.

    Return a function that takes the following arguments:

        :param uuid: The id of the task.
        :param args: List of positional args to pass on to the function.
        :param kwargs: Keyword arguments mapping to pass on to the function.
        :keyword request: Request dict.

    """
    # noqa: C901
    # pylint: disable=too-many-statements

    # If the task doesn't define a custom __call__ method
    # we optimize it away by simply calling the run method directly,
    # saving the extra method call and a line less in the stack trace.
    fun = task if task_has_custom(task, '__call__') else task.run

    loader = loader or app.loader
    backend = task.backend
    ignore_result = task.ignore_result
    track_started = task.track_started
    track_started = not eager and (task.track_started and not ignore_result)
    publish_result = not eager and not ignore_result
    hostname = hostname or gethostname()
    inherit_parent_priority = app.conf.task_inherit_parent_priority

    loader_task_init = loader.on_task_init
    loader_cleanup = loader.on_process_cleanup

    task_on_success = None
    task_after_return = None
    if task_has_custom(task, 'on_success'):
        task_on_success = task.on_success
    if task_has_custom(task, 'after_return'):
        task_after_return = task.after_return

    store_result = backend.store_result
    mark_as_done = backend.mark_as_done
    backend_cleanup = backend.process_cleanup

    pid = os.getpid()

    request_stack = task.request_stack
    push_request = request_stack.push
    pop_request = request_stack.pop
    push_task = _task_stack.push
    pop_task = _task_stack.pop
    _does_info = logger.isEnabledFor(logging.INFO)
    resultrepr_maxsize = task.resultrepr_maxsize

    prerun_receivers = signals.task_prerun.receivers
    postrun_receivers = signals.task_postrun.receivers
    success_receivers = signals.task_success.receivers

    from celery import canvas
    signature = canvas.maybe_signature  # maybe_ does not clone if already

    def on_error(request, exc, uuid, state=FAILURE, call_errbacks=True):
        if propagate:
            raise
        I = Info(state, exc)
        R = I.handle_error_state(
            task, request, eager=eager, call_errbacks=call_errbacks,
        )
        return I, R, I.state, I.retval

    def trace_task(uuid, args, kwargs, request=None):
        # R      - is the possibly prepared return value.
        # I      - is the Info object.
        # T      - runtime
        # Rstr   - textual representation of return value
        # retval - is the always unmodified return value.
        # state  - is the resulting task state.

        # This function is very long because we've unrolled all the calls
        # for performance reasons, and because the function is so long
        # we want the main variables (I, and R) to stand out visually from the
        # the rest of the variables, so breaking PEP8 is worth it ;)
        R = I = T = Rstr = retval = state = None
        task_request = None
        time_start = monotonic()
        try:
            try:
                kwargs.items
            except AttributeError:
                raise InvalidTaskError(
                    'Task keyword arguments is not a mapping')
            push_task(task)
            task_request = Context(request or {}, args=args,
                                   called_directly=False, kwargs=kwargs)
            root_id = task_request.root_id or uuid
            task_priority = task_request.delivery_info.get('priority') if \
                inherit_parent_priority else None
            push_request(task_request)
            try:
                # -*- PRE -*-
                if prerun_receivers:
                    send_prerun(sender=task, task_id=uuid, task=task,
                                args=args, kwargs=kwargs)
                loader_task_init(uuid, task)
                if track_started:
                    store_result(
                        uuid, {'pid': pid, 'hostname': hostname}, STARTED,
                        request=task_request,
                    )

                # -*- TRACE -*-
                try:
                    R = retval = fun(*args, **kwargs)
                    state = SUCCESS
                except Reject as exc:
                    I, R = Info(REJECTED, exc), ExceptionInfo(internal=True)
                    state, retval = I.state, I.retval
                    I.handle_reject(task, task_request)
                    traceback_clear(exc)
                except Ignore as exc:
                    I, R = Info(IGNORED, exc), ExceptionInfo(internal=True)
                    state, retval = I.state, I.retval
                    I.handle_ignore(task, task_request)
                    traceback_clear(exc)
                except Retry as exc:
                    I, R, state, retval = on_error(
                        task_request, exc, uuid, RETRY, call_errbacks=False)
                    traceback_clear(exc)
                except Exception as exc:
                    I, R, state, retval = on_error(task_request, exc, uuid)
                    traceback_clear(exc)
                except BaseException:
                    raise
                else:
                    try:
                        # callback tasks must be applied before the result is
                        # stored, so that result.children is populated.

                        # groups are called inline and will store trail
                        # separately, so need to call them separately
                        # so that the trail's not added multiple times :(
                        # (Issue #1936)
                        callbacks = task.request.callbacks
                        if callbacks:
                            if len(task.request.callbacks) > 1:
                                sigs, groups = [], []
                                for sig in callbacks:
                                    sig = signature(sig, app=app)
                                    if isinstance(sig, group):
                                        groups.append(sig)
                                    else:
                                        sigs.append(sig)
                                for group_ in groups:
                                    group_.apply_async(
                                        (retval,),
                                        parent_id=uuid, root_id=root_id,
                                        priority=task_priority
                                    )
                                if sigs:
                                    group(sigs, app=app).apply_async(
                                        (retval,),
                                        parent_id=uuid, root_id=root_id,
                                        priority=task_priority
                                    )
                            else:
                                signature(callbacks[0], app=app).apply_async(
                                    (retval,), parent_id=uuid, root_id=root_id,
                                    priority=task_priority
                                )

                        # execute first task in chain
                        chain = task_request.chain
                        if chain:
                            _chsig = signature(chain.pop(), app=app)
                            _chsig.apply_async(
                                (retval,), chain=chain,
                                parent_id=uuid, root_id=root_id,
                                priority=task_priority
                            )
                        mark_as_done(
                            uuid, retval, task_request, publish_result,
                        )
                    except EncodeError as exc:
                        I, R, state, retval = on_error(task_request, exc, uuid)
                    else:
                        Rstr = saferepr(R, resultrepr_maxsize)
                        T = monotonic() - time_start
                        if task_on_success:
                            task_on_success(retval, uuid, args, kwargs)
                        if success_receivers:
                            send_success(sender=task, result=retval)
                        if _does_info:
                            info(LOG_SUCCESS, {
                                'id': uuid,
                                'name': get_task_name(task_request, name),
                                'return_value': Rstr,
                                'runtime': T,
                            })

                # -* POST *-
                if state not in IGNORE_STATES:
                    if task_after_return:
                        task_after_return(
                            state, retval, uuid, args, kwargs, None,
                        )
            finally:
                try:
                    if postrun_receivers:
                        send_postrun(sender=task, task_id=uuid, task=task,
                                     args=args, kwargs=kwargs,
                                     retval=retval, state=state)
                finally:
                    pop_task()
                    pop_request()
                    if not eager:
                        try:
                            backend_cleanup()
                            loader_cleanup()
                        except (KeyboardInterrupt, SystemExit, MemoryError):
                            raise
                        except Exception as exc:
                            logger.error('Process cleanup failed: %r', exc,
                                         exc_info=True)
        except MemoryError:
            raise
        except Exception as exc:
            _signal_internal_error(task, uuid, args, kwargs, request, exc)
            if eager:
                raise
            R = report_internal_error(task, exc)
            if task_request is not None:
                I, _, _, _ = on_error(task_request, exc, uuid)
        return trace_ok_t(R, I, T, Rstr)

    return trace_task



[docs]def trace_task(task, uuid, args, kwargs, request=None, **opts):
    """Trace task execution."""
    request = {} if not request else request
    try:
        if task.__trace__ is None:
            task.__trace__ = build_tracer(task.name, task, **opts)
        return task.__trace__(uuid, args, kwargs, request)
    except Exception as exc:
        _signal_internal_error(task, uuid, args, kwargs, request, exc)
        return trace_ok_t(report_internal_error(task, exc), TraceInfo(FAILURE, exc), 0.0, None)



def _signal_internal_error(task, uuid, args, kwargs, request, exc):
    """Send a special `internal_error` signal to the app for outside body errors."""
    try:
        _, _, tb = sys.exc_info()
        einfo = ExceptionInfo()
        einfo.exception = get_pickleable_exception(einfo.exception)
        einfo.type = get_pickleable_etype(einfo.type)
        signals.task_internal_error.send(
            sender=task,
            task_id=uuid,
            args=args,
            kwargs=kwargs,
            request=request,
            exception=exc,
            traceback=tb,
            einfo=einfo,
        )
    finally:
        del tb


def _trace_task_ret(name, uuid, request, body, content_type,
                    content_encoding, loads=loads_message, app=None,
                    **extra_request):
    app = app or current_app._get_current_object()
    embed = None
    if content_type:
        accept = prepare_accept_content(app.conf.accept_content)
        args, kwargs, embed = loads(
            body, content_type, content_encoding, accept=accept,
        )
    else:
        args, kwargs, embed = body
    hostname = gethostname()
    request.update({
        'args': args, 'kwargs': kwargs,
        'hostname': hostname, 'is_eager': False,
    }, **embed or {})
    R, I, T, Rstr = trace_task(app.tasks[name],
                               uuid, args, kwargs, request, app=app)
    return (1, R, T) if I else (0, Rstr, T)


trace_task_ret = _trace_task_ret  # noqa: E305


def _fast_trace_task(task, uuid, request, body, content_type,
                     content_encoding, loads=loads_message, _loc=None,
                     hostname=None, **_):
    _loc = _localized if not _loc else _loc
    embed = None
    tasks, accept, hostname = _loc
    if content_type:
        args, kwargs, embed = loads(
            body, content_type, content_encoding, accept=accept,
        )
    else:
        args, kwargs, embed = body
    request.update({
        'args': args, 'kwargs': kwargs,
        'hostname': hostname, 'is_eager': False,
    }, **embed or {})
    R, I, T, Rstr = tasks[task].__trace__(
        uuid, args, kwargs, request,
    )
    return (1, R, T) if I else (0, Rstr, T)


def report_internal_error(task, exc):
    _type, _value, _tb = sys.exc_info()
    try:
        _value = task.backend.prepare_exception(exc, 'pickle')
        exc_info = ExceptionInfo((_type, _value, _tb), internal=True)
        warn(RuntimeWarning(
            'Exception raised outside body: {!r}:\n{}'.format(
                exc, exc_info.traceback)))
        return exc_info
    finally:
        del _tb


[docs]def setup_worker_optimizations(app, hostname=None):
    """Setup worker related optimizations."""
    global trace_task_ret

    hostname = hostname or gethostname()

    # make sure custom Task.__call__ methods that calls super
    # won't mess up the request/task stack.
    _install_stack_protection()

    # all new threads start without a current app, so if an app is not
    # passed on to the thread it will fall back to the "default app",
    # which then could be the wrong app.  So for the worker
    # we set this to always return our app.  This is a hack,
    # and means that only a single app can be used for workers
    # running in the same process.
    app.set_current()
    app.set_default()

    # evaluate all task classes by finalizing the app.
    app.finalize()

    # set fast shortcut to task registry
    _localized[:] = [
        app._tasks,
        prepare_accept_content(app.conf.accept_content),
        hostname,
    ]

    trace_task_ret = _fast_trace_task
    from celery.worker import request as request_module
    request_module.trace_task_ret = _fast_trace_task
    request_module.__optimize__()



[docs]def reset_worker_optimizations():
    """Reset previously configured optimizations."""
    global trace_task_ret
    trace_task_ret = _trace_task_ret
    try:
        delattr(BaseTask, '_stackprotected')
    except AttributeError:
        pass
    try:
        BaseTask.__call__ = _patched.pop('BaseTask.__call__')
    except KeyError:
        pass
    from celery.worker import request as request_module
    request_module.trace_task_ret = _trace_task_ret



def _install_stack_protection():
    # Patches BaseTask.__call__ in the worker to handle the edge case
    # where people override it and also call super.
    #
    # - The worker optimizes away BaseTask.__call__ and instead
    #   calls task.run directly.
    # - so with the addition of current_task and the request stack
    #   BaseTask.__call__ now pushes to those stacks so that
    #   they work when tasks are called directly.
    #
    # The worker only optimizes away __call__ in the case
    # where it hasn't been overridden, so the request/task stack
    # will blow if a custom task class defines __call__ and also
    # calls super().
    if not getattr(BaseTask, '_stackprotected', False):
        _patched['BaseTask.__call__'] = orig = BaseTask.__call__

        def __protected_call__(self, *args, **kwargs):
            stack = self.request_stack
            req = stack.top
            if req and not req._protected and \
                    len(stack) == 1 and not req.called_directly:
                req._protected = 1
                return self.run(*args, **kwargs)
            return orig(self, *args, **kwargs)
        BaseTask.__call__ = __protected_call__
        BaseTask._stackprotected = True




            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.app.utils

"""App utilities: Compat settings, bug-report tool, pickling apps."""
import os
import platform as _platform
import re
from collections import namedtuple
from collections.abc import Mapping
from copy import deepcopy
from types import ModuleType

from kombu.utils.url import maybe_sanitize_url

from celery.exceptions import ImproperlyConfigured
from celery.platforms import pyimplementation
from celery.utils.collections import ConfigurationView
from celery.utils.imports import import_from_cwd, qualname, symbol_by_name
from celery.utils.text import pretty

from .defaults import (_OLD_DEFAULTS, _OLD_SETTING_KEYS, _TO_NEW_KEY,
                       _TO_OLD_KEY, DEFAULTS, SETTING_KEYS, find)

__all__ = (
    'Settings', 'appstr', 'bugreport',
    'filter_hidden_settings', 'find_app',
)

#: Format used to generate bug-report information.
BUGREPORT_INFO = """
software -> celery:{celery_v} kombu:{kombu_v} py:{py_v}
            billiard:{billiard_v} {driver_v}
platform -> system:{system} arch:{arch}
            kernel version:{kernel_version} imp:{py_i}
loader   -> {loader}
settings -> transport:{transport} results:{results}

{human_settings}
"""

HIDDEN_SETTINGS = re.compile(
    'API|TOKEN|KEY|SECRET|PASS|PROFANITIES_LIST|SIGNATURE|DATABASE',
    re.IGNORECASE,
)

E_MIX_OLD_INTO_NEW = """

Cannot mix new and old setting keys, please rename the
following settings to the new format:

{renames}

"""

E_MIX_NEW_INTO_OLD = """

Cannot mix new setting names with old setting names, please
rename the following settings to use the old format:

{renames}

Or change all of the settings to use the new format :)

"""

FMT_REPLACE_SETTING = '{replace:<36} -> {with_}'


[docs]def appstr(app):
    """String used in __repr__ etc, to id app instances."""
    return f'{app.main or "__main__"} at {id(app):#x}'



[docs]class Settings(ConfigurationView):
    """Celery settings object.

    .. seealso:

        :ref:`configuration` for a full list of configuration keys.

    """

    def __init__(self, *args, deprecated_settings=None, **kwargs):
        super().__init__(*args, **kwargs)

        self.deprecated_settings = deprecated_settings

    @property
    def broker_read_url(self):
        return (
            os.environ.get('CELERY_BROKER_READ_URL') or
            self.get('broker_read_url') or
            self.broker_url
        )

    @property
    def broker_write_url(self):
        return (
            os.environ.get('CELERY_BROKER_WRITE_URL') or
            self.get('broker_write_url') or
            self.broker_url
        )

    @property
    def broker_url(self):
        return (
            os.environ.get('CELERY_BROKER_URL') or
            self.first('broker_url', 'broker_host')
        )

    @property
    def result_backend(self):
        return (
            os.environ.get('CELERY_RESULT_BACKEND') or
            self.first('result_backend', 'CELERY_RESULT_BACKEND')
        )

    @property
    def task_default_exchange(self):
        return self.first(
            'task_default_exchange',
            'task_default_queue',
        )

    @property
    def task_default_routing_key(self):
        return self.first(
            'task_default_routing_key',
            'task_default_queue',
        )

    @property
    def timezone(self):
        # this way we also support django's time zone.
        return self.first('timezone', 'time_zone')

[docs]    def without_defaults(self):
        """Return the current configuration, but without defaults."""
        # the last stash is the default settings, so just skip that
        return Settings({}, self.maps[:-1])


[docs]    def value_set_for(self, key):
        return key in self.without_defaults()


[docs]    def find_option(self, name, namespace=''):
        """Search for option by name.

        Example:
            >>> from proj.celery import app
            >>> app.conf.find_option('disable_rate_limits')
            ('worker', 'prefetch_multiplier',
             <Option: type->bool default->False>))

        Arguments:
            name (str): Name of option, cannot be partial.
            namespace (str): Preferred name-space (``None`` by default).
        Returns:
            Tuple: of ``(namespace, key, type)``.
        """
        return find(name, namespace)


[docs]    def find_value_for_key(self, name, namespace='celery'):
        """Shortcut to ``get_by_parts(*find_option(name)[:-1])``."""
        return self.get_by_parts(*self.find_option(name, namespace)[:-1])


[docs]    def get_by_parts(self, *parts):
        """Return the current value for setting specified as a path.

        Example:
            >>> from proj.celery import app
            >>> app.conf.get_by_parts('worker', 'disable_rate_limits')
            False
        """
        return self['_'.join(part for part in parts if part)]


[docs]    def finalize(self):
        # See PendingConfiguration in celery/app/base.py
        # first access will read actual configuration.
        try:
            self['__bogus__']
        except KeyError:
            pass
        return self


[docs]    def table(self, with_defaults=False, censored=True):
        filt = filter_hidden_settings if censored else lambda v: v
        dict_members = dir(dict)
        self.finalize()
        settings = self if with_defaults else self.without_defaults()
        return filt({
            k: v for k, v in settings.items()
            if not k.startswith('_') and k not in dict_members
        })


[docs]    def humanize(self, with_defaults=False, censored=True):
        """Return a human readable text showing configuration changes."""
        return '\n'.join(
            f'{key}: {pretty(value, width=50)}'
            for key, value in self.table(with_defaults, censored).items())


[docs]    def maybe_warn_deprecated_settings(self):
        # TODO: Remove this method in Celery 6.0
        if self.deprecated_settings:
            from celery.app.defaults import _TO_NEW_KEY
            from celery.utils import deprecated
            for setting in self.deprecated_settings:
                deprecated.warn(description=f'The {setting!r} setting',
                                removal='6.0.0',
                                alternative=f'Use the {_TO_NEW_KEY[setting]} instead')

            return True

        return False




def _new_key_to_old(key, convert=_TO_OLD_KEY.get):
    return convert(key, key)


def _old_key_to_new(key, convert=_TO_NEW_KEY.get):
    return convert(key, key)


_settings_info_t = namedtuple('settings_info_t', (
    'defaults', 'convert', 'key_t', 'mix_error',
))

_settings_info = _settings_info_t(
    DEFAULTS, _TO_NEW_KEY, _old_key_to_new, E_MIX_OLD_INTO_NEW,
)
_old_settings_info = _settings_info_t(
    _OLD_DEFAULTS, _TO_OLD_KEY, _new_key_to_old, E_MIX_NEW_INTO_OLD,
)


def detect_settings(conf, preconf=None, ignore_keys=None, prefix=None,
                    all_keys=None, old_keys=None):
    preconf = {} if not preconf else preconf
    ignore_keys = set() if not ignore_keys else ignore_keys
    all_keys = SETTING_KEYS if not all_keys else all_keys
    old_keys = _OLD_SETTING_KEYS if not old_keys else old_keys

    source = conf
    if conf is None:
        source, conf = preconf, {}
    have = set(source.keys()) - ignore_keys
    is_in_new = have.intersection(all_keys)
    is_in_old = have.intersection(old_keys)

    info = None
    if is_in_new:
        # have new setting names
        info, left = _settings_info, is_in_old
        if is_in_old and len(is_in_old) > len(is_in_new):
            # Majority of the settings are old.
            info, left = _old_settings_info, is_in_new
    if is_in_old:
        # have old setting names, or a majority of the names are old.
        if not info:
            info, left = _old_settings_info, is_in_new
        if is_in_new and len(is_in_new) > len(is_in_old):
            # Majority of the settings are new
            info, left = _settings_info, is_in_old
    else:
        # no settings, just use new format.
        info, left = _settings_info, is_in_old

    if prefix:
        # always use new format if prefix is used.
        info, left = _settings_info, set()

    # only raise error for keys that the user didn't provide two keys
    # for (e.g., both ``result_expires`` and ``CELERY_TASK_RESULT_EXPIRES``).
    really_left = {key for key in left if info.convert[key] not in have}
    if really_left:
        # user is mixing old/new, or new/old settings, give renaming
        # suggestions.
        raise ImproperlyConfigured(info.mix_error.format(renames='\n'.join(
            FMT_REPLACE_SETTING.format(replace=key, with_=info.convert[key])
            for key in sorted(really_left)
        )))

    preconf = {info.convert.get(k, k): v for k, v in preconf.items()}
    defaults = dict(deepcopy(info.defaults), **preconf)
    return Settings(
        preconf, [conf, defaults],
        (_old_key_to_new, _new_key_to_old),
        deprecated_settings=is_in_old,
        prefix=prefix,
    )


class AppPickler:
    """Old application pickler/unpickler (< 3.1)."""

    def __call__(self, cls, *args):
        kwargs = self.build_kwargs(*args)
        app = self.construct(cls, **kwargs)
        self.prepare(app, **kwargs)
        return app

    def prepare(self, app, **kwargs):
        app.conf.update(kwargs['changes'])

    def build_kwargs(self, *args):
        return self.build_standard_kwargs(*args)

    def build_standard_kwargs(self, main, changes, loader, backend, amqp,
                              events, log, control, accept_magic_kwargs,
                              config_source=None):
        return {'main': main, 'loader': loader, 'backend': backend,
                'amqp': amqp, 'changes': changes, 'events': events,
                'log': log, 'control': control, 'set_as_current': False,
                'config_source': config_source}

    def construct(self, cls, **kwargs):
        return cls(**kwargs)


def _unpickle_app(cls, pickler, *args):
    """Rebuild app for versions 2.5+."""
    return pickler()(cls, *args)


def _unpickle_app_v2(cls, kwargs):
    """Rebuild app for versions 3.1+."""
    kwargs['set_as_current'] = False
    return cls(**kwargs)


[docs]def filter_hidden_settings(conf):
    """Filter sensitive settings."""
    def maybe_censor(key, value, mask='*' * 8):
        if isinstance(value, Mapping):
            return filter_hidden_settings(value)
        if isinstance(key, str):
            if HIDDEN_SETTINGS.search(key):
                return mask
            elif 'broker_url' in key.lower():
                from kombu import Connection
                return Connection(value).as_uri(mask=mask)
            elif 'backend' in key.lower():
                return maybe_sanitize_url(value, mask=mask)

        return value

    return {k: maybe_censor(k, v) for k, v in conf.items()}



[docs]def bugreport(app):
    """Return a string containing information useful in bug-reports."""
    import billiard
    import kombu

    import celery

    try:
        conn = app.connection()
        driver_v = '{}:{}'.format(conn.transport.driver_name,
                                  conn.transport.driver_version())
        transport = conn.transport_cls
    except Exception:  # pylint: disable=broad-except
        transport = driver_v = ''

    return BUGREPORT_INFO.format(
        system=_platform.system(),
        arch=', '.join(x for x in _platform.architecture() if x),
        kernel_version=_platform.release(),
        py_i=pyimplementation(),
        celery_v=celery.VERSION_BANNER,
        kombu_v=kombu.__version__,
        billiard_v=billiard.__version__,
        py_v=_platform.python_version(),
        driver_v=driver_v,
        transport=transport,
        results=maybe_sanitize_url(app.conf.result_backend or 'disabled'),
        human_settings=app.conf.humanize(),
        loader=qualname(app.loader.__class__),
    )



[docs]def find_app(app, symbol_by_name=symbol_by_name, imp=import_from_cwd):
    """Find app by name."""
    from .base import Celery

    try:
        sym = symbol_by_name(app, imp=imp)
    except AttributeError:
        # last part was not an attribute, but a module
        sym = imp(app)
    if isinstance(sym, ModuleType) and ':' not in app:
        try:
            found = sym.app
            if isinstance(found, ModuleType):
                raise AttributeError()
        except AttributeError:
            try:
                found = sym.celery
                if isinstance(found, ModuleType):
                    raise AttributeError("attribute 'celery' is the celery module not the instance of celery")
            except AttributeError:
                if getattr(sym, '__path__', None):
                    try:
                        return find_app(
                            f'{app}.celery',
                            symbol_by_name=symbol_by_name, imp=imp,
                        )
                    except ImportError:
                        pass
                for suspect in vars(sym).values():
                    if isinstance(suspect, Celery):
                        return suspect
                raise
            else:
                return found
        else:
            return found
    return sym





            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.apps.beat

"""Beat command-line program.

This module is the 'program-version' of :mod:`celery.beat`.

It does everything necessary to run that module
as an actual application, like installing signal handlers
and so on.
"""
import numbers
import socket
import sys
from datetime import datetime

from celery import VERSION_BANNER, beat, platforms
from celery.utils.imports import qualname
from celery.utils.log import LOG_LEVELS, get_logger
from celery.utils.time import humanize_seconds

__all__ = ('Beat',)

STARTUP_INFO_FMT = """
LocalTime -> {timestamp}
Configuration ->
    . broker -> {conninfo}
    . loader -> {loader}
    . scheduler -> {scheduler}
{scheduler_info}
    . logfile -> {logfile}@%{loglevel}
    . maxinterval -> {hmax_interval} ({max_interval}s)
""".strip()

logger = get_logger('celery.beat')


[docs]class Beat:
    """Beat as a service."""

    Service = beat.Service
    app = None

    def __init__(self, max_interval=None, app=None,
                 socket_timeout=30, pidfile=None, no_color=None,
                 loglevel='WARN', logfile=None, schedule=None,
                 scheduler=None,
                 scheduler_cls=None,  # XXX use scheduler
                 redirect_stdouts=None,
                 redirect_stdouts_level=None, **kwargs):
        self.app = app = app or self.app
        either = self.app.either
        self.loglevel = loglevel
        self.logfile = logfile
        self.schedule = either('beat_schedule_filename', schedule)
        self.scheduler_cls = either(
            'beat_scheduler', scheduler, scheduler_cls)
        self.redirect_stdouts = either(
            'worker_redirect_stdouts', redirect_stdouts)
        self.redirect_stdouts_level = either(
            'worker_redirect_stdouts_level', redirect_stdouts_level)

        self.max_interval = max_interval
        self.socket_timeout = socket_timeout
        self.no_color = no_color
        self.colored = app.log.colored(
            self.logfile,
            enabled=not no_color if no_color is not None else no_color,
        )
        self.pidfile = pidfile

        if not isinstance(self.loglevel, numbers.Integral):
            self.loglevel = LOG_LEVELS[self.loglevel.upper()]

[docs]    def run(self):
        print(str(self.colored.cyan(
            f'celery beat v{VERSION_BANNER} is starting.')))
        self.init_loader()
        self.set_process_title()
        self.start_scheduler()


[docs]    def setup_logging(self, colorize=None):
        if colorize is None and self.no_color is not None:
            colorize = not self.no_color
        self.app.log.setup(self.loglevel, self.logfile,
                           self.redirect_stdouts, self.redirect_stdouts_level,
                           colorize=colorize)


[docs]    def start_scheduler(self):
        if self.pidfile:
            platforms.create_pidlock(self.pidfile)
        service = self.Service(
            app=self.app,
            max_interval=self.max_interval,
            scheduler_cls=self.scheduler_cls,
            schedule_filename=self.schedule,
        )

        print(self.banner(service))

        self.setup_logging()
        if self.socket_timeout:
            logger.debug('Setting default socket timeout to %r',
                         self.socket_timeout)
            socket.setdefaulttimeout(self.socket_timeout)
        try:
            self.install_sync_handler(service)
            service.start()
        except Exception as exc:
            logger.critical('beat raised exception %s: %r',
                            exc.__class__, exc,
                            exc_info=True)
            raise


[docs]    def banner(self, service):
        c = self.colored
        return str(  # flake8: noqa
            c.blue('__    ', c.magenta('-'),
                   c.blue('    ... __   '), c.magenta('-'),
                   c.blue('        _\n'),
                   c.reset(self.startup_info(service))),
        )


[docs]    def init_loader(self):
        # Run the worker init handler.
        # (Usually imports task modules and such.)
        self.app.loader.init_worker()
        self.app.finalize()


[docs]    def startup_info(self, service):
        scheduler = service.get_scheduler(lazy=True)
        return STARTUP_INFO_FMT.format(
            conninfo=self.app.connection().as_uri(),
            timestamp=datetime.now().replace(microsecond=0),
            logfile=self.logfile or '[stderr]',
            loglevel=LOG_LEVELS[self.loglevel],
            loader=qualname(self.app.loader),
            scheduler=qualname(scheduler),
            scheduler_info=scheduler.info,
            hmax_interval=humanize_seconds(scheduler.max_interval),
            max_interval=scheduler.max_interval,
        )


[docs]    def set_process_title(self):
        arg_start = 'manage' in sys.argv[0] and 2 or 1
        platforms.set_process_title(
            'celery beat', info=' '.join(sys.argv[arg_start:]),
        )


[docs]    def install_sync_handler(self, service):
        """Install a `SIGTERM` + `SIGINT` handler saving the schedule."""
        def _sync(signum, frame):
            service.sync()
            raise SystemExit()
        platforms.signals.update(SIGTERM=_sync, SIGINT=_sync)






            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.apps.multi

"""Start/stop/manage workers."""
import errno
import os
import shlex
import signal
import sys
from collections import OrderedDict, UserList, defaultdict
from functools import partial
from subprocess import Popen
from time import sleep

from kombu.utils.encoding import from_utf8
from kombu.utils.objects import cached_property

from celery.platforms import IS_WINDOWS, Pidfile, signal_name
from celery.utils.nodenames import (gethostname, host_format, node_format,
                                    nodesplit)
from celery.utils.saferepr import saferepr

__all__ = ('Cluster', 'Node')

CELERY_EXE = 'celery'


def celery_exe(*args):
    return ' '.join((CELERY_EXE,) + args)


def build_nodename(name, prefix, suffix):
    hostname = suffix
    if '@' in name:
        nodename = host_format(name)
        shortname, hostname = nodesplit(nodename)
        name = shortname
    else:
        shortname = f'{prefix}{name}'
        nodename = host_format(
            f'{shortname}@{hostname}',
        )
    return name, nodename, hostname


def build_expander(nodename, shortname, hostname):
    return partial(
        node_format,
        name=nodename,
        N=shortname,
        d=hostname,
        h=nodename,
        i='%i',
        I='%I',
    )


def format_opt(opt, value):
    if not value:
        return opt
    if opt.startswith('--'):
        return f'{opt}={value}'
    return f'{opt} {value}'


def _kwargs_to_command_line(kwargs):
    return {
        ('--{}'.format(k.replace('_', '-'))
         if len(k) > 1 else f'-{k}'): f'{v}'
        for k, v in kwargs.items()
    }


class NamespacedOptionParser:

    def __init__(self, args):
        self.args = args
        self.options = OrderedDict()
        self.values = []
        self.passthrough = ''
        self.namespaces = defaultdict(lambda: OrderedDict())

    def parse(self):
        rargs = [arg for arg in self.args if arg]
        pos = 0
        while pos < len(rargs):
            arg = rargs[pos]
            if arg == '--':
                self.passthrough = ' '.join(rargs[pos:])
                break
            elif arg[0] == '-':
                if arg[1] == '-':
                    self.process_long_opt(arg[2:])
                else:
                    value = None
                    if len(rargs) > pos + 1 and rargs[pos + 1][0] != '-':
                        value = rargs[pos + 1]
                        pos += 1
                    self.process_short_opt(arg[1:], value)
            else:
                self.values.append(arg)
            pos += 1

    def process_long_opt(self, arg, value=None):
        if '=' in arg:
            arg, value = arg.split('=', 1)
        self.add_option(arg, value, short=False)

    def process_short_opt(self, arg, value=None):
        self.add_option(arg, value, short=True)

    def optmerge(self, ns, defaults=None):
        if defaults is None:
            defaults = self.options
        return OrderedDict(defaults, **self.namespaces[ns])

    def add_option(self, name, value, short=False, ns=None):
        prefix = short and '-' or '--'
        dest = self.options
        if ':' in name:
            name, ns = name.split(':')
            dest = self.namespaces[ns]
        dest[prefix + name] = value


[docs]class Node:
    """Represents a node in a cluster."""

    def __init__(self, name,
                 cmd=None, append=None, options=None, extra_args=None):
        self.name = name
        self.cmd = cmd or f"-m {celery_exe('worker', '--detach')}"
        self.append = append
        self.extra_args = extra_args or ''
        self.options = self._annotate_with_default_opts(
            options or OrderedDict())
        self.expander = self._prepare_expander()
        self.argv = self._prepare_argv()
        self._pid = None

    def _annotate_with_default_opts(self, options):
        options['-n'] = self.name
        self._setdefaultopt(options, ['--pidfile', '-p'], '/var/run/celery/%n.pid')
        self._setdefaultopt(options, ['--logfile', '-f'], '/var/log/celery/%n%I.log')
        self._setdefaultopt(options, ['--executable'], sys.executable)
        return options

    def _setdefaultopt(self, d, alt, value):
        for opt in alt[1:]:
            try:
                return d[opt]
            except KeyError:
                pass
        value = d.setdefault(alt[0], os.path.normpath(value))
        dir_path = os.path.dirname(value)
        if dir_path and not os.path.exists(dir_path):
            os.makedirs(dir_path)
        return value

    def _prepare_expander(self):
        shortname, hostname = self.name.split('@', 1)
        return build_expander(
            self.name, shortname, hostname)

    def _prepare_argv(self):
        cmd = self.expander(self.cmd).split(' ')
        i = cmd.index('celery') + 1

        options = self.options.copy()
        for opt, value in self.options.items():
            if opt in (
                '-A', '--app',
                '-b', '--broker',
                '--result-backend',
                '--loader',
                '--config',
                '--workdir',
                '-C', '--no-color',
                '-q', '--quiet',
            ):
                cmd.insert(i, format_opt(opt, self.expander(value)))

                options.pop(opt)

        cmd = [' '.join(cmd)]
        argv = tuple(
            cmd +
            [format_opt(opt, self.expander(value))
             for opt, value in options.items()] +
            [self.extra_args]
        )
        if self.append:
            argv += (self.expander(self.append),)
        return argv

[docs]    def alive(self):
        return self.send(0)


[docs]    def send(self, sig, on_error=None):
        pid = self.pid
        if pid:
            try:
                os.kill(pid, sig)
            except OSError as exc:
                if exc.errno != errno.ESRCH:
                    raise
                maybe_call(on_error, self)
                return False
            return True
        maybe_call(on_error, self)


[docs]    def start(self, env=None, **kwargs):
        return self._waitexec(
            self.argv, path=self.executable, env=env, **kwargs)


    def _waitexec(self, argv, path=sys.executable, env=None,
                  on_spawn=None, on_signalled=None, on_failure=None):
        argstr = self.prepare_argv(argv, path)
        maybe_call(on_spawn, self, argstr=' '.join(argstr), env=env)
        pipe = Popen(argstr, env=env)
        return self.handle_process_exit(
            pipe.wait(),
            on_signalled=on_signalled,
            on_failure=on_failure,
        )

[docs]    def handle_process_exit(self, retcode, on_signalled=None, on_failure=None):
        if retcode < 0:
            maybe_call(on_signalled, self, -retcode)
            return -retcode
        elif retcode > 0:
            maybe_call(on_failure, self, retcode)
        return retcode


[docs]    def prepare_argv(self, argv, path):
        args = ' '.join([path] + list(argv))
        return shlex.split(from_utf8(args), posix=not IS_WINDOWS)


[docs]    def getopt(self, *alt):
        for opt in alt:
            try:
                return self.options[opt]
            except KeyError:
                pass
        raise KeyError(alt[0])


    def __repr__(self):
        return '<{name}: {0.name}>'.format(self, name=type(self).__name__)

[docs]    @cached_property
    def pidfile(self):
        return self.expander(self.getopt('--pidfile', '-p'))


[docs]    @cached_property
    def logfile(self):
        return self.expander(self.getopt('--logfile', '-f'))


    @property
    def pid(self):
        if self._pid is not None:
            return self._pid
        try:
            return Pidfile(self.pidfile).read_pid()
        except ValueError:
            pass

    @pid.setter
    def pid(self, value):
        self._pid = value

[docs]    @cached_property
    def executable(self):
        return self.options['--executable']


[docs]    @cached_property
    def argv_with_executable(self):
        return (self.executable,) + self.argv


[docs]    @classmethod
    def from_kwargs(cls, name, **kwargs):
        return cls(name, options=_kwargs_to_command_line(kwargs))




def maybe_call(fun, *args, **kwargs):
    if fun is not None:
        fun(*args, **kwargs)


class MultiParser:
    Node = Node

    def __init__(self, cmd='celery worker',
                 append='', prefix='', suffix='',
                 range_prefix='celery'):
        self.cmd = cmd
        self.append = append
        self.prefix = prefix
        self.suffix = suffix
        self.range_prefix = range_prefix

    def parse(self, p):
        names = p.values
        options = dict(p.options)
        ranges = len(names) == 1
        prefix = self.prefix
        cmd = options.pop('--cmd', self.cmd)
        append = options.pop('--append', self.append)
        hostname = options.pop('--hostname', options.pop('-n', gethostname()))
        prefix = options.pop('--prefix', prefix) or ''
        suffix = options.pop('--suffix', self.suffix) or hostname
        suffix = '' if suffix in ('""', "''") else suffix
        range_prefix = options.pop('--range-prefix', '') or self.range_prefix
        if ranges:
            try:
                names, prefix = self._get_ranges(names), range_prefix
            except ValueError:
                pass
        self._update_ns_opts(p, names)
        self._update_ns_ranges(p, ranges)

        return (
            self._node_from_options(
                p, name, prefix, suffix, cmd, append, options)
            for name in names
        )

    def _node_from_options(self, p, name, prefix,
                           suffix, cmd, append, options):
        namespace, nodename, _ = build_nodename(name, prefix, suffix)
        namespace = nodename if nodename in p.namespaces else namespace
        return Node(nodename, cmd, append,
                    p.optmerge(namespace, options), p.passthrough)

    def _get_ranges(self, names):
        noderange = int(names[0])
        return [str(n) for n in range(1, noderange + 1)]

    def _update_ns_opts(self, p, names):
        # Numbers in args always refers to the index in the list of names.
        # (e.g., `start foo bar baz -c:1` where 1 is foo, 2 is bar, and so on).
        for ns_name, ns_opts in list(p.namespaces.items()):
            if ns_name.isdigit():
                ns_index = int(ns_name) - 1
                if ns_index < 0:
                    raise KeyError(f'Indexes start at 1 got: {ns_name!r}')
                try:
                    p.namespaces[names[ns_index]].update(ns_opts)
                except IndexError:
                    raise KeyError(f'No node at index {ns_name!r}')

    def _update_ns_ranges(self, p, ranges):
        for ns_name, ns_opts in list(p.namespaces.items()):
            if ',' in ns_name or (ranges and '-' in ns_name):
                for subns in self._parse_ns_range(ns_name, ranges):
                    p.namespaces[subns].update(ns_opts)
                p.namespaces.pop(ns_name)

    def _parse_ns_range(self, ns, ranges=False):
        ret = []
        for space in ',' in ns and ns.split(',') or [ns]:
            if ranges and '-' in space:
                start, stop = space.split('-')
                ret.extend(
                    str(n) for n in range(int(start), int(stop) + 1)
                )
            else:
                ret.append(space)
        return ret


[docs]class Cluster(UserList):
    """Represent a cluster of workers."""

    def __init__(self, nodes, cmd=None, env=None,
                 on_stopping_preamble=None,
                 on_send_signal=None,
                 on_still_waiting_for=None,
                 on_still_waiting_progress=None,
                 on_still_waiting_end=None,
                 on_node_start=None,
                 on_node_restart=None,
                 on_node_shutdown_ok=None,
                 on_node_status=None,
                 on_node_signal=None,
                 on_node_signal_dead=None,
                 on_node_down=None,
                 on_child_spawn=None,
                 on_child_signalled=None,
                 on_child_failure=None):
        self.nodes = nodes
        self.cmd = cmd or celery_exe('worker')
        self.env = env

        self.on_stopping_preamble = on_stopping_preamble
        self.on_send_signal = on_send_signal
        self.on_still_waiting_for = on_still_waiting_for
        self.on_still_waiting_progress = on_still_waiting_progress
        self.on_still_waiting_end = on_still_waiting_end
        self.on_node_start = on_node_start
        self.on_node_restart = on_node_restart
        self.on_node_shutdown_ok = on_node_shutdown_ok
        self.on_node_status = on_node_status
        self.on_node_signal = on_node_signal
        self.on_node_signal_dead = on_node_signal_dead
        self.on_node_down = on_node_down
        self.on_child_spawn = on_child_spawn
        self.on_child_signalled = on_child_signalled
        self.on_child_failure = on_child_failure

[docs]    def start(self):
        return [self.start_node(node) for node in self]


[docs]    def start_node(self, node):
        maybe_call(self.on_node_start, node)
        retcode = self._start_node(node)
        maybe_call(self.on_node_status, node, retcode)
        return retcode


    def _start_node(self, node):
        return node.start(
            self.env,
            on_spawn=self.on_child_spawn,
            on_signalled=self.on_child_signalled,
            on_failure=self.on_child_failure,
        )

[docs]    def send_all(self, sig):
        for node in self.getpids(on_down=self.on_node_down):
            maybe_call(self.on_node_signal, node, signal_name(sig))
            node.send(sig, self.on_node_signal_dead)


[docs]    def kill(self):
        return self.send_all(signal.SIGKILL)


[docs]    def restart(self, sig=signal.SIGTERM):
        retvals = []

        def restart_on_down(node):
            maybe_call(self.on_node_restart, node)
            retval = self._start_node(node)
            maybe_call(self.on_node_status, node, retval)
            retvals.append(retval)

        self._stop_nodes(retry=2, on_down=restart_on_down, sig=sig)
        return retvals


[docs]    def stop(self, retry=None, callback=None, sig=signal.SIGTERM):
        return self._stop_nodes(retry=retry, on_down=callback, sig=sig)


[docs]    def stopwait(self, retry=2, callback=None, sig=signal.SIGTERM):
        return self._stop_nodes(retry=retry, on_down=callback, sig=sig)


    def _stop_nodes(self, retry=None, on_down=None, sig=signal.SIGTERM):
        on_down = on_down if on_down is not None else self.on_node_down
        nodes = list(self.getpids(on_down=on_down))
        if nodes:
            for node in self.shutdown_nodes(nodes, sig=sig, retry=retry):
                maybe_call(on_down, node)

[docs]    def shutdown_nodes(self, nodes, sig=signal.SIGTERM, retry=None):
        P = set(nodes)
        maybe_call(self.on_stopping_preamble, nodes)
        to_remove = set()
        for node in P:
            maybe_call(self.on_send_signal, node, signal_name(sig))
            if not node.send(sig, self.on_node_signal_dead):
                to_remove.add(node)
                yield node
        P -= to_remove
        if retry:
            maybe_call(self.on_still_waiting_for, P)
            its = 0
            while P:
                to_remove = set()
                for node in P:
                    its += 1
                    maybe_call(self.on_still_waiting_progress, P)
                    if not node.alive():
                        maybe_call(self.on_node_shutdown_ok, node)
                        to_remove.add(node)
                        yield node
                        maybe_call(self.on_still_waiting_for, P)
                        break
                P -= to_remove
                if P and not its % len(P):
                    sleep(float(retry))
            maybe_call(self.on_still_waiting_end)


[docs]    def find(self, name):
        for node in self:
            if node.name == name:
                return node
        raise KeyError(name)


[docs]    def getpids(self, on_down=None):
        for node in self:
            if node.pid:
                yield node
            else:
                maybe_call(on_down, node)


    def __repr__(self):
        return '<{name}({0}): {1}>'.format(
            len(self), saferepr([n.name for n in self]),
            name=type(self).__name__,
        )

    @property
    def data(self):
        return self.nodes





            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.apps.worker

"""Worker command-line program.

This module is the 'program-version' of :mod:`celery.worker`.

It does everything necessary to run that module
as an actual application, like installing signal handlers,
platform tweaks, and so on.
"""
import logging
import os
import platform as _platform
import sys
from datetime import datetime
from functools import partial

from billiard.common import REMAP_SIGTERM
from billiard.process import current_process
from kombu.utils.encoding import safe_str

from celery import VERSION_BANNER, platforms, signals
from celery.app import trace
from celery.exceptions import WorkerShutdown, WorkerTerminate
from celery.loaders.app import AppLoader
from celery.platforms import EX_FAILURE, EX_OK, check_privileges, isatty
from celery.utils import static, term
from celery.utils.debug import cry
from celery.utils.imports import qualname
from celery.utils.log import get_logger, in_sighandler, set_in_sighandler
from celery.utils.text import pluralize
from celery.worker import WorkController

__all__ = ('Worker',)

logger = get_logger(__name__)
is_jython = sys.platform.startswith('java')
is_pypy = hasattr(sys, 'pypy_version_info')

ARTLINES = [
    ' --------------',
    '--- ***** -----',
    '-- ******* ----',
    '- *** --- * ---',
    '- ** ----------',
    '- ** ----------',
    '- ** ----------',
    '- ** ----------',
    '- *** --- * ---',
    '-- ******* ----',
    '--- ***** -----',
    ' --------------',
]

BANNER = """\
{hostname} v{version}

{platform} {timestamp}

[config]
.> app:         {app}
.> transport:   {conninfo}
.> results:     {results}
.> concurrency: {concurrency}
.> task events: {events}

[queues]
{queues}
"""

EXTRA_INFO_FMT = """
[tasks]
{tasks}
"""


def active_thread_count():
    from threading import enumerate
    return sum(1 for t in enumerate()
               if not t.name.startswith('Dummy-'))


def safe_say(msg):
    print(f'\n{msg}', file=sys.__stderr__)


[docs]class Worker(WorkController):
    """Worker as a program."""

[docs]    def on_before_init(self, quiet=False, **kwargs):
        self.quiet = quiet
        trace.setup_worker_optimizations(self.app, self.hostname)

        # this signal can be used to set up configuration for
        # workers by name.
        signals.celeryd_init.send(
            sender=self.hostname, instance=self,
            conf=self.app.conf, options=kwargs,
        )
        check_privileges(self.app.conf.accept_content)


[docs]    def on_after_init(self, purge=False, no_color=None,
                      redirect_stdouts=None, redirect_stdouts_level=None,
                      **kwargs):
        self.redirect_stdouts = self.app.either(
            'worker_redirect_stdouts', redirect_stdouts)
        self.redirect_stdouts_level = self.app.either(
            'worker_redirect_stdouts_level', redirect_stdouts_level)
        super().setup_defaults(**kwargs)
        self.purge = purge
        self.no_color = no_color
        self._isatty = isatty(sys.stdout)
        self.colored = self.app.log.colored(
            self.logfile,
            enabled=not no_color if no_color is not None else no_color
        )


[docs]    def on_init_blueprint(self):
        self._custom_logging = self.setup_logging()
        # apply task execution optimizations
        # -- This will finalize the app!
        trace.setup_worker_optimizations(self.app, self.hostname)


[docs]    def on_start(self):
        app = self.app
        WorkController.on_start(self)

        # this signal can be used to, for example, change queues after
        # the -Q option has been applied.
        signals.celeryd_after_setup.send(
            sender=self.hostname, instance=self, conf=app.conf,
        )

        if self.purge:
            self.purge_messages()

        if not self.quiet:
            self.emit_banner()

        self.set_process_status('-active-')
        self.install_platform_tweaks(self)
        if not self._custom_logging and self.redirect_stdouts:
            app.log.redirect_stdouts(self.redirect_stdouts_level)

        # TODO: Remove the following code in Celery 6.0
        # This qualifies as a hack for issue #6366.
        warn_deprecated = True
        config_source = app._config_source
        if isinstance(config_source, str):
            # Don't raise the warning when the settings originate from
            # django.conf:settings
            warn_deprecated = config_source.lower() not in [
                'django.conf:settings',
            ]

        if warn_deprecated:
            if app.conf.maybe_warn_deprecated_settings():
                logger.warning(
                    "Please run `celery upgrade settings path/to/settings.py` "
                    "to avoid these warnings and to allow a smoother upgrade "
                    "to Celery 6.0."
                )


[docs]    def emit_banner(self):
        # Dump configuration to screen so we have some basic information
        # for when users sends bug reports.
        use_image = term.supports_images()
        if use_image:
            print(term.imgcat(static.logo()))
        print(safe_str(''.join([
            str(self.colored.cyan(
                ' \n', self.startup_info(artlines=not use_image))),
            str(self.colored.reset(self.extra_info() or '')),
        ])), file=sys.__stdout__)


[docs]    def on_consumer_ready(self, consumer):
        signals.worker_ready.send(sender=consumer)
        logger.info('%s ready.', safe_str(self.hostname))


[docs]    def setup_logging(self, colorize=None):
        if colorize is None and self.no_color is not None:
            colorize = not self.no_color
        return self.app.log.setup(
            self.loglevel, self.logfile,
            redirect_stdouts=False, colorize=colorize, hostname=self.hostname,
        )


[docs]    def purge_messages(self):
        with self.app.connection_for_write() as connection:
            count = self.app.control.purge(connection=connection)
            if count:  # pragma: no cover
                print(f"purge: Erased {count} {pluralize(count, 'message')} from the queue.\n")


[docs]    def tasklist(self, include_builtins=True, sep='\n', int_='celery.'):
        return sep.join(
            f'  . {task}' for task in sorted(self.app.tasks)
            if (not task.startswith(int_) if not include_builtins else task)
        )


[docs]    def extra_info(self):
        if self.loglevel is None:
            return
        if self.loglevel <= logging.INFO:
            include_builtins = self.loglevel <= logging.DEBUG
            tasklist = self.tasklist(include_builtins=include_builtins)
            return EXTRA_INFO_FMT.format(tasks=tasklist)


[docs]    def startup_info(self, artlines=True):
        app = self.app
        concurrency = str(self.concurrency)
        appr = '{}:{:#x}'.format(app.main or '__main__', id(app))
        if not isinstance(app.loader, AppLoader):
            loader = qualname(app.loader)
            if loader.startswith('celery.loaders'):  # pragma: no cover
                loader = loader[14:]
            appr += f' ({loader})'
        if self.autoscale:
            max, min = self.autoscale
            concurrency = f'{{min={min}, max={max}}}'
        pool = self.pool_cls
        if not isinstance(pool, str):
            pool = pool.__module__
        concurrency += f" ({pool.split('.')[-1]})"
        events = 'ON'
        if not self.task_events:
            events = 'OFF (enable -E to monitor tasks in this worker)'

        banner = BANNER.format(
            app=appr,
            hostname=safe_str(self.hostname),
            timestamp=datetime.now().replace(microsecond=0),
            version=VERSION_BANNER,
            conninfo=self.app.connection().as_uri(),
            results=self.app.backend.as_uri(),
            concurrency=concurrency,
            platform=safe_str(_platform.platform()),
            events=events,
            queues=app.amqp.queues.format(indent=0, indent_first=False),
        ).splitlines()

        # integrate the ASCII art.
        if artlines:
            for i, _ in enumerate(banner):
                try:
                    banner[i] = ' '.join([ARTLINES[i], banner[i]])
                except IndexError:
                    banner[i] = ' ' * 16 + banner[i]
        return '\n'.join(banner) + '\n'


[docs]    def install_platform_tweaks(self, worker):
        """Install platform specific tweaks and workarounds."""
        if self.app.IS_macOS:
            self.macOS_proxy_detection_workaround()

        # Install signal handler so SIGHUP restarts the worker.
        if not self._isatty:
            # only install HUP handler if detached from terminal,
            # so closing the terminal window doesn't restart the worker
            # into the background.
            if self.app.IS_macOS:
                # macOS can't exec from a process using threads.
                # See https://github.com/celery/celery/issues#issue/152
                install_HUP_not_supported_handler(worker)
            else:
                install_worker_restart_handler(worker)
        install_worker_term_handler(worker)
        install_worker_term_hard_handler(worker)
        install_worker_int_handler(worker)
        install_cry_handler()
        install_rdb_handler()


[docs]    def macOS_proxy_detection_workaround(self):
        """See https://github.com/celery/celery/issues#issue/161."""
        os.environ.setdefault('celery_dummy_proxy', 'set_by_celeryd')


[docs]    def set_process_status(self, info):
        return platforms.set_mp_process_title(
            'celeryd',
            info=f'{info} ({platforms.strargv(sys.argv)})',
            hostname=self.hostname,
        )




def _shutdown_handler(worker, sig='TERM', how='Warm',
                      exc=WorkerShutdown, callback=None, exitcode=EX_OK):
    def _handle_request(*args):
        with in_sighandler():
            from celery.worker import state
            if current_process()._name == 'MainProcess':
                if callback:
                    callback(worker)
                safe_say(f'worker: {how} shutdown (MainProcess)')
                signals.worker_shutting_down.send(
                    sender=worker.hostname, sig=sig, how=how,
                    exitcode=exitcode,
                )
            if active_thread_count() > 1:
                setattr(state, {'Warm': 'should_stop',
                                'Cold': 'should_terminate'}[how], exitcode)
            else:
                raise exc(exitcode)
    _handle_request.__name__ = str(f'worker_{how}')
    platforms.signals[sig] = _handle_request


if REMAP_SIGTERM == "SIGQUIT":
    install_worker_term_handler = partial(
        _shutdown_handler, sig='SIGTERM', how='Cold', exc=WorkerTerminate, exitcode=EX_FAILURE,
    )
else:
    install_worker_term_handler = partial(
        _shutdown_handler, sig='SIGTERM', how='Warm', exc=WorkerShutdown,
    )

if not is_jython:  # pragma: no cover
    install_worker_term_hard_handler = partial(
        _shutdown_handler, sig='SIGQUIT', how='Cold', exc=WorkerTerminate,
        exitcode=EX_FAILURE,
    )
else:  # pragma: no cover
    install_worker_term_handler = \
        install_worker_term_hard_handler = lambda *a, **kw: None


def on_SIGINT(worker):
    safe_say('worker: Hitting Ctrl+C again will terminate all running tasks!')
    install_worker_term_hard_handler(worker, sig='SIGINT')


if not is_jython:  # pragma: no cover
    install_worker_int_handler = partial(
        _shutdown_handler, sig='SIGINT', callback=on_SIGINT,
        exitcode=EX_FAILURE,
    )
else:  # pragma: no cover
    def install_worker_int_handler(*args, **kwargs):
        pass


def _reload_current_worker():
    platforms.close_open_fds([
        sys.__stdin__, sys.__stdout__, sys.__stderr__,
    ])
    os.execv(sys.executable, [sys.executable] + sys.argv)


def install_worker_restart_handler(worker, sig='SIGHUP'):

    def restart_worker_sig_handler(*args):
        """Signal handler restarting the current python program."""
        set_in_sighandler(True)
        safe_say(f"Restarting celery worker ({' '.join(sys.argv)})")
        import atexit
        atexit.register(_reload_current_worker)
        from celery.worker import state
        state.should_stop = EX_OK
    platforms.signals[sig] = restart_worker_sig_handler


def install_cry_handler(sig='SIGUSR1'):
    # PyPy does not have sys._current_frames
    if is_pypy:  # pragma: no cover
        return

    def cry_handler(*args):
        """Signal handler logging the stack-trace of all active threads."""
        with in_sighandler():
            safe_say(cry())
    platforms.signals[sig] = cry_handler


def install_rdb_handler(envvar='CELERY_RDBSIG',
                        sig='SIGUSR2'):  # pragma: no cover

    def rdb_handler(*args):
        """Signal handler setting a rdb breakpoint at the current frame."""
        with in_sighandler():
            from celery.contrib.rdb import _frame, set_trace

            # gevent does not pass standard signal handler args
            frame = args[1] if args else _frame().f_back
            set_trace(frame)
    if os.environ.get(envvar):
        platforms.signals[sig] = rdb_handler


def install_HUP_not_supported_handler(worker, sig='SIGHUP'):

    def warn_on_HUP_handler(signum, frame):
        with in_sighandler():
            safe_say('{sig} not supported: Restarting with {sig} is '
                     'unstable on this platform!'.format(sig=sig))
    platforms.signals[sig] = warn_on_HUP_handler




            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.backends.arangodb

"""ArangoDb result store backend."""

# pylint: disable=W1202,W0703

import json
import logging
from datetime import timedelta

from kombu.utils.objects import cached_property
from kombu.utils.url import _parse_url

from celery.exceptions import ImproperlyConfigured

from .base import KeyValueStoreBackend

try:
    from pyArango import connection as py_arango_connection
    from pyArango.theExceptions import AQLQueryError
except ImportError:
    py_arango_connection = AQLQueryError = None   # noqa

__all__ = ('ArangoDbBackend',)


[docs]class ArangoDbBackend(KeyValueStoreBackend):
    """ArangoDb backend.

    Sample url
    "arangodb://username:password@host:port/database/collection"
    *arangodb_backend_settings* is where the settings are present
    (in the app.conf)
    Settings should contain the host, port, username, password, database name,
    collection name else the default will be chosen.
    Default database name and collection name is celery.

    Raises
    ------
    celery.exceptions.ImproperlyConfigured:
        if module :pypi:`pyArango` is not available.

    """

    host = '127.0.0.1'
    port = '8529'
    database = 'celery'
    collection = 'celery'
    username = None
    password = None
    # protocol is not supported in backend url (http is taken as default)
    http_protocol = 'http'

    # Use str as arangodb key not bytes
    key_t = str

    def __init__(self, url=None, *args, **kwargs):
        """Parse the url or load the settings from settings object."""
        super().__init__(*args, **kwargs)

        if py_arango_connection is None:
            raise ImproperlyConfigured(
                'You need to install the pyArango library to use the '
                'ArangoDb backend.',
            )

        self.url = url

        if url is None:
            host = port = database = collection = username = password = None
        else:
            (
                _schema, host, port, username, password,
                database_collection, _query
            ) = _parse_url(url)
            if database_collection is None:
                database = collection = None
            else:
                database, collection = database_collection.split('/')

        config = self.app.conf.get('arangodb_backend_settings', None)
        if config is not None:
            if not isinstance(config, dict):
                raise ImproperlyConfigured(
                    'ArangoDb backend settings should be grouped in a dict',
                )
        else:
            config = {}

        self.host = host or config.get('host', self.host)
        self.port = int(port or config.get('port', self.port))
        self.http_protocol = config.get('http_protocol', self.http_protocol)
        self.database = database or config.get('database', self.database)
        self.collection = \
            collection or config.get('collection', self.collection)
        self.username = username or config.get('username', self.username)
        self.password = password or config.get('password', self.password)
        self.arangodb_url = "{http_protocol}://{host}:{port}".format(
            http_protocol=self.http_protocol, host=self.host, port=self.port
        )
        self._connection = None

    @property
    def connection(self):
        """Connect to the arangodb server."""
        if self._connection is None:
            self._connection = py_arango_connection.Connection(
                arangoURL=self.arangodb_url, username=self.username,
                password=self.password
            )
        return self._connection

    @property
    def db(self):
        """Database Object to the given database."""
        return self.connection[self.database]

[docs]    @cached_property
    def expires_delta(self):
        return timedelta(seconds=self.expires)


[docs]    def get(self, key):
        try:
            logging.debug(
                'RETURN DOCUMENT("{collection}/{key}").task'.format(
                    collection=self.collection, key=key
                )
            )
            query = self.db.AQLQuery(
                'RETURN DOCUMENT("{collection}/{key}").task'.format(
                    collection=self.collection, key=key
                )
            )
            result = query.response["result"][0]
            if result is None:
                return None
            return json.dumps(result)
        except AQLQueryError as aql_err:
            logging.error(aql_err)
            return None
        except Exception as err:
            logging.error(err)
            return None


[docs]    def set(self, key, value):
        """Insert a doc with value into task attribute and _key as key."""
        try:
            logging.debug(
                'INSERT {{ task: {task}, _key: "{key}" }} INTO {collection}'
                .format(
                    collection=self.collection, key=key, task=value
                )
            )
            self.db.AQLQuery(
                'INSERT {{ task: {task}, _key: "{key}" }} INTO {collection}'
                .format(
                    collection=self.collection, key=key, task=value
                )
            )
        except AQLQueryError as aql_err:
            logging.error(aql_err)
        except Exception as err:
            logging.error(err)


[docs]    def mget(self, keys):
        try:
            json_keys = json.dumps(keys)
            logging.debug(
                """
                FOR key in {keys}
                    RETURN DOCUMENT(CONCAT("{collection}/", key).task
                """.format(
                    collection=self.collection, keys=json_keys
                )
            )
            query = self.db.AQLQuery(
                """
                FOR key in {keys}
                    RETURN DOCUMENT(CONCAT("{collection}/", key).task
                """.format(
                    collection=self.collection, keys=json_keys
                )
            )
            results = []
            while True:
                results.extend(query.response['result'])
                query.nextBatch()
        except StopIteration:
            values = [
                result if result is None else json.dumps(result)
                for result in results
            ]
            return values
        except AQLQueryError as aql_err:
            logging.error(aql_err)
            return [None] * len(keys)
        except Exception as err:
            logging.error(err)
            return [None] * len(keys)


[docs]    def delete(self, key):
        try:
            logging.debug(
                'REMOVE {{ _key: "{key}" }} IN {collection}'.format(
                    key=key, collection=self.collection
                )
            )
            self.db.AQLQuery(
                'REMOVE {{ _key: "{key}" }} IN {collection}'.format(
                    key=key, collection=self.collection
                )
            )
        except AQLQueryError as aql_err:
            logging.error(aql_err)
        except Exception as err:
            logging.error(err)


[docs]    def cleanup(self):
        """Delete expired meta-data."""
        remove_before = (self.app.now() - self.expires_delta).isoformat()
        try:
            query = (
                'FOR item IN {collection} '
                'FILTER item.task.date_done < "{remove_before}" '
                'REMOVE item IN {collection}'
            ).format(collection=self.collection, remove_before=remove_before)
            logging.debug(query)
            self.db.AQLQuery(query)
        except AQLQueryError as aql_err:
            logging.error(aql_err)
        except Exception as err:
            logging.error(err)






            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.backends.asynchronous

"""Async I/O backend support utilities."""
import socket
import threading
import time
from collections import deque
from queue import Empty
from time import sleep
from weakref import WeakKeyDictionary

from kombu.utils.compat import detect_environment

from celery import states
from celery.exceptions import TimeoutError
from celery.utils.threads import THREAD_TIMEOUT_MAX

__all__ = (
    'AsyncBackendMixin', 'BaseResultConsumer', 'Drainer',
    'register_drainer',
)

drainers = {}


[docs]def register_drainer(name):
    """Decorator used to register a new result drainer type."""
    def _inner(cls):
        drainers[name] = cls
        return cls
    return _inner



[docs]@register_drainer('default')
class Drainer:
    """Result draining service."""

    def __init__(self, result_consumer):
        self.result_consumer = result_consumer

[docs]    def start(self):
        pass


[docs]    def stop(self):
        pass


[docs]    def drain_events_until(self, p, timeout=None, interval=1, on_interval=None, wait=None):
        wait = wait or self.result_consumer.drain_events
        time_start = time.monotonic()

        while 1:
            # Total time spent may exceed a single call to wait()
            if timeout and time.monotonic() - time_start >= timeout:
                raise socket.timeout()
            try:
                yield self.wait_for(p, wait, timeout=interval)
            except socket.timeout:
                pass
            if on_interval:
                on_interval()
            if p.ready:  # got event on the wanted channel.
                break


[docs]    def wait_for(self, p, wait, timeout=None):
        wait(timeout=timeout)




class greenletDrainer(Drainer):
    spawn = None
    _g = None

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self._started = threading.Event()
        self._stopped = threading.Event()
        self._shutdown = threading.Event()

    def run(self):
        self._started.set()
        while not self._stopped.is_set():
            try:
                self.result_consumer.drain_events(timeout=1)
            except socket.timeout:
                pass
        self._shutdown.set()

    def start(self):
        if not self._started.is_set():
            self._g = self.spawn(self.run)
            self._started.wait()

    def stop(self):
        self._stopped.set()
        self._shutdown.wait(THREAD_TIMEOUT_MAX)


@register_drainer('eventlet')
class eventletDrainer(greenletDrainer):

    def spawn(self, func):
        from eventlet import sleep, spawn
        g = spawn(func)
        sleep(0)
        return g

    def wait_for(self, p, wait, timeout=None):
        self.start()
        if not p.ready:
            self._g._exit_event.wait(timeout=timeout)


@register_drainer('gevent')
class geventDrainer(greenletDrainer):

    def spawn(self, func):
        import gevent
        g = gevent.spawn(func)
        gevent.sleep(0)
        return g

    def wait_for(self, p, wait, timeout=None):
        import gevent
        self.start()
        if not p.ready:
            gevent.wait([self._g], timeout=timeout)


[docs]class AsyncBackendMixin:
    """Mixin for backends that enables the async API."""

    def _collect_into(self, result, bucket):
        self.result_consumer.buckets[result] = bucket

[docs]    def iter_native(self, result, no_ack=True, **kwargs):
        self._ensure_not_eager()

        results = result.results
        if not results:
            raise StopIteration()

        # we tell the result consumer to put consumed results
        # into these buckets.
        bucket = deque()
        for node in results:
            if not hasattr(node, '_cache'):
                bucket.append(node)
            elif node._cache:
                bucket.append(node)
            else:
                self._collect_into(node, bucket)

        for _ in self._wait_for_pending(result, no_ack=no_ack, **kwargs):
            while bucket:
                node = bucket.popleft()
                if not hasattr(node, '_cache'):
                    yield node.id, node.children
                else:
                    yield node.id, node._cache
        while bucket:
            node = bucket.popleft()
            yield node.id, node._cache


[docs]    def add_pending_result(self, result, weak=False, start_drainer=True):
        if start_drainer:
            self.result_consumer.drainer.start()
        try:
            self._maybe_resolve_from_buffer(result)
        except Empty:
            self._add_pending_result(result.id, result, weak=weak)
        return result


    def _maybe_resolve_from_buffer(self, result):
        result._maybe_set_cache(self._pending_messages.take(result.id))

    def _add_pending_result(self, task_id, result, weak=False):
        concrete, weak_ = self._pending_results
        if task_id not in weak_ and result.id not in concrete:
            (weak_ if weak else concrete)[task_id] = result
            self.result_consumer.consume_from(task_id)

[docs]    def add_pending_results(self, results, weak=False):
        self.result_consumer.drainer.start()
        return [self.add_pending_result(result, weak=weak, start_drainer=False)
                for result in results]


[docs]    def remove_pending_result(self, result):
        self._remove_pending_result(result.id)
        self.on_result_fulfilled(result)
        return result


    def _remove_pending_result(self, task_id):
        for mapping in self._pending_results:
            mapping.pop(task_id, None)

[docs]    def on_result_fulfilled(self, result):
        self.result_consumer.cancel_for(result.id)


[docs]    def wait_for_pending(self, result,
                         callback=None, propagate=True, **kwargs):
        self._ensure_not_eager()
        for _ in self._wait_for_pending(result, **kwargs):
            pass
        return result.maybe_throw(callback=callback, propagate=propagate)


    def _wait_for_pending(self, result,
                          timeout=None, on_interval=None, on_message=None,
                          **kwargs):
        return self.result_consumer._wait_for_pending(
            result, timeout=timeout,
            on_interval=on_interval, on_message=on_message,
            **kwargs
        )

    @property
    def is_async(self):
        return True



[docs]class BaseResultConsumer:
    """Manager responsible for consuming result messages."""

    def __init__(self, backend, app, accept,
                 pending_results, pending_messages):
        self.backend = backend
        self.app = app
        self.accept = accept
        self._pending_results = pending_results
        self._pending_messages = pending_messages
        self.on_message = None
        self.buckets = WeakKeyDictionary()
        self.drainer = drainers[detect_environment()](self)

[docs]    def start(self, initial_task_id, **kwargs):
        raise NotImplementedError()


[docs]    def stop(self):
        pass


[docs]    def drain_events(self, timeout=None):
        raise NotImplementedError()


[docs]    def consume_from(self, task_id):
        raise NotImplementedError()


[docs]    def cancel_for(self, task_id):
        raise NotImplementedError()


    def _after_fork(self):
        self.buckets.clear()
        self.buckets = WeakKeyDictionary()
        self.on_message = None
        self.on_after_fork()

[docs]    def on_after_fork(self):
        pass


[docs]    def drain_events_until(self, p, timeout=None, on_interval=None):
        return self.drainer.drain_events_until(
            p, timeout=timeout, on_interval=on_interval)


    def _wait_for_pending(self, result,
                          timeout=None, on_interval=None, on_message=None,
                          **kwargs):
        self.on_wait_for_pending(result, timeout=timeout, **kwargs)
        prev_on_m, self.on_message = self.on_message, on_message
        try:
            for _ in self.drain_events_until(
                    result.on_ready, timeout=timeout,
                    on_interval=on_interval):
                yield
                sleep(0)
        except socket.timeout:
            raise TimeoutError('The operation timed out.')
        finally:
            self.on_message = prev_on_m

[docs]    def on_wait_for_pending(self, result, timeout=None, **kwargs):
        pass


[docs]    def on_out_of_band_result(self, message):
        self.on_state_change(message.payload, message)


    def _get_pending_result(self, task_id):
        for mapping in self._pending_results:
            try:
                return mapping[task_id]
            except KeyError:
                pass
        raise KeyError(task_id)

[docs]    def on_state_change(self, meta, message):
        if self.on_message:
            self.on_message(meta)
        if meta['status'] in states.READY_STATES:
            task_id = meta['task_id']
            try:
                result = self._get_pending_result(task_id)
            except KeyError:
                # send to buffer in case we received this result
                # before it was added to _pending_results.
                self._pending_messages.put(task_id, meta)
            else:
                result._maybe_set_cache(meta)
                buckets = self.buckets
                try:
                    # remove bucket for this result, since it's fulfilled
                    bucket = buckets.pop(result)
                except KeyError:
                    pass
                else:
                    # send to waiter via bucket
                    bucket.append(result)
        sleep(0)






            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.backends.azureblockblob

"""The Azure Storage Block Blob backend for Celery."""
from kombu.utils import cached_property
from kombu.utils.encoding import bytes_to_str

from celery.exceptions import ImproperlyConfigured
from celery.utils.log import get_logger

from .base import KeyValueStoreBackend

try:
    from azure import storage as azurestorage
    from azure.common import AzureMissingResourceHttpError
    from azure.storage.blob import BlockBlobService
    from azure.storage.common.retry import ExponentialRetry
except ImportError:  # pragma: no cover
    azurestorage = BlockBlobService = ExponentialRetry = \
        AzureMissingResourceHttpError = None  # noqa

__all__ = ("AzureBlockBlobBackend",)

LOGGER = get_logger(__name__)


[docs]class AzureBlockBlobBackend(KeyValueStoreBackend):
    """Azure Storage Block Blob backend for Celery."""

    def __init__(self,
                 url=None,
                 container_name=None,
                 retry_initial_backoff_sec=None,
                 retry_increment_base=None,
                 retry_max_attempts=None,
                 *args,
                 **kwargs):
        super().__init__(*args, **kwargs)

        if azurestorage is None:
            raise ImproperlyConfigured(
                "You need to install the azure-storage library to use the "
                "AzureBlockBlob backend")

        conf = self.app.conf

        self._connection_string = self._parse_url(url)

        self._container_name = (
            container_name or
            conf["azureblockblob_container_name"])

        self._retry_initial_backoff_sec = (
            retry_initial_backoff_sec or
            conf["azureblockblob_retry_initial_backoff_sec"])

        self._retry_increment_base = (
            retry_increment_base or
            conf["azureblockblob_retry_increment_base"])

        self._retry_max_attempts = (
            retry_max_attempts or
            conf["azureblockblob_retry_max_attempts"])

    @classmethod
    def _parse_url(cls, url, prefix="azureblockblob://"):
        connection_string = url[len(prefix):]
        if not connection_string:
            raise ImproperlyConfigured("Invalid URL")

        return connection_string

    @cached_property
    def _client(self):
        """Return the Azure Storage Block Blob service.

        If this is the first call to the property, the client is created and
        the container is created if it doesn't yet exist.

        """
        client = BlockBlobService(connection_string=self._connection_string)

        created = client.create_container(
            container_name=self._container_name, fail_on_exist=False)

        if created:
            LOGGER.info("Created Azure Blob Storage container %s",
                        self._container_name)

        client.retry = ExponentialRetry(
            initial_backoff=self._retry_initial_backoff_sec,
            increment_base=self._retry_increment_base,
            max_attempts=self._retry_max_attempts).retry

        return client

[docs]    def get(self, key):
        """Read the value stored at the given key.

        Args:
              key: The key for which to read the value.

        """
        key = bytes_to_str(key)
        LOGGER.debug("Getting Azure Block Blob %s/%s",
                     self._container_name, key)

        try:
            return self._client.get_blob_to_text(
                self._container_name, key).content
        except AzureMissingResourceHttpError:
            return None


[docs]    def set(self, key, value):
        """Store a value for a given key.

        Args:
              key: The key at which to store the value.
              value: The value to store.

        """
        key = bytes_to_str(key)
        LOGGER.debug("Creating Azure Block Blob at %s/%s",
                     self._container_name, key)

        return self._client.create_blob_from_text(
            self._container_name, key, value)


[docs]    def mget(self, keys):
        """Read all the values for the provided keys.

        Args:
              keys: The list of keys to read.

        """
        return [self.get(key) for key in keys]


[docs]    def delete(self, key):
        """Delete the value at a given key.

        Args:
              key: The key of the value to delete.

        """
        key = bytes_to_str(key)
        LOGGER.debug("Deleting Azure Block Blob at %s/%s",
                     self._container_name, key)

        self._client.delete_blob(self._container_name, key)






            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.backends.base

"""Result backend base classes.

- :class:`BaseBackend` defines the interface.

- :class:`KeyValueStoreBackend` is a common base class
    using K/V semantics like _get and _put.
"""
import sys
import time
import warnings
from collections import namedtuple
from datetime import datetime, timedelta
from functools import partial
from weakref import WeakValueDictionary

from billiard.einfo import ExceptionInfo
from kombu.serialization import dumps, loads, prepare_accept_content
from kombu.serialization import registry as serializer_registry
from kombu.utils.encoding import bytes_to_str, ensure_bytes, from_utf8
from kombu.utils.url import maybe_sanitize_url

import celery.exceptions
from celery import current_app, group, maybe_signature, states
from celery._state import get_current_task
from celery.exceptions import (BackendGetMetaError, BackendStoreError,
                               ChordError, ImproperlyConfigured,
                               NotRegistered, TaskRevokedError, TimeoutError)
from celery.result import (GroupResult, ResultBase, ResultSet,
                           allow_join_result, result_from_tuple)
from celery.utils.collections import BufferMap
from celery.utils.functional import LRUCache, arity_greater
from celery.utils.log import get_logger
from celery.utils.serialization import (create_exception_cls,
                                        ensure_serializable,
                                        get_pickleable_exception,
                                        get_pickled_exception,
                                        raise_with_context)
from celery.utils.time import get_exponential_backoff_interval

__all__ = ('BaseBackend', 'KeyValueStoreBackend', 'DisabledBackend')

EXCEPTION_ABLE_CODECS = frozenset({'pickle'})

logger = get_logger(__name__)

MESSAGE_BUFFER_MAX = 8192

pending_results_t = namedtuple('pending_results_t', (
    'concrete', 'weak',
))

E_NO_BACKEND = """
No result backend is configured.
Please see the documentation for more information.
"""

E_CHORD_NO_BACKEND = """
Starting chords requires a result backend to be configured.

Note that a group chained with a task is also upgraded to be a chord,
as this pattern requires synchronization.

Result backends that supports chords: Redis, Database, Memcached, and more.
"""


def unpickle_backend(cls, args, kwargs):
    """Return an unpickled backend."""
    return cls(*args, app=current_app._get_current_object(), **kwargs)


class _nulldict(dict):
    def ignore(self, *a, **kw):
        pass

    __setitem__ = update = setdefault = ignore


class Backend:
    READY_STATES = states.READY_STATES
    UNREADY_STATES = states.UNREADY_STATES
    EXCEPTION_STATES = states.EXCEPTION_STATES

    TimeoutError = TimeoutError

    #: Time to sleep between polling each individual item
    #: in `ResultSet.iterate`. as opposed to the `interval`
    #: argument which is for each pass.
    subpolling_interval = None

    #: If true the backend must implement :meth:`get_many`.
    supports_native_join = False

    #: If true the backend must automatically expire results.
    #: The daily backend_cleanup periodic task won't be triggered
    #: in this case.
    supports_autoexpire = False

    #: Set to true if the backend is persistent by default.
    persistent = True

    retry_policy = {
        'max_retries': 20,
        'interval_start': 0,
        'interval_step': 1,
        'interval_max': 1,
    }

    def __init__(self, app,
                 serializer=None, max_cached_results=None, accept=None,
                 expires=None, expires_type=None, url=None, **kwargs):
        self.app = app
        conf = self.app.conf
        self.serializer = serializer or conf.result_serializer
        (self.content_type,
         self.content_encoding,
         self.encoder) = serializer_registry._encoders[self.serializer]
        cmax = max_cached_results or conf.result_cache_max
        self._cache = _nulldict() if cmax == -1 else LRUCache(limit=cmax)

        self.expires = self.prepare_expires(expires, expires_type)

        # precedence: accept, conf.result_accept_content, conf.accept_content
        self.accept = conf.result_accept_content if accept is None else accept
        self.accept = conf.accept_content if self.accept is None else self.accept  # noqa: E501
        self.accept = prepare_accept_content(self.accept)

        self.always_retry = conf.get('result_backend_always_retry', False)
        self.max_sleep_between_retries_ms = conf.get('result_backend_max_sleep_between_retries_ms', 10000)
        self.base_sleep_between_retries_ms = conf.get('result_backend_base_sleep_between_retries_ms', 10)
        self.max_retries = conf.get('result_backend_max_retries', float("inf"))

        self._pending_results = pending_results_t({}, WeakValueDictionary())
        self._pending_messages = BufferMap(MESSAGE_BUFFER_MAX)
        self.url = url

    def as_uri(self, include_password=False):
        """Return the backend as an URI, sanitizing the password or not."""
        # when using maybe_sanitize_url(), "/" is added
        # we're stripping it for consistency
        if include_password:
            return self.url
        url = maybe_sanitize_url(self.url or '')
        return url[:-1] if url.endswith(':///') else url

    def mark_as_started(self, task_id, **meta):
        """Mark a task as started."""
        return self.store_result(task_id, meta, states.STARTED)

    def mark_as_done(self, task_id, result,
                     request=None, store_result=True, state=states.SUCCESS):
        """Mark task as successfully executed."""
        if store_result:
            self.store_result(task_id, result, state, request=request)
        if request and request.chord:
            self.on_chord_part_return(request, state, result)

    def mark_as_failure(self, task_id, exc,
                        traceback=None, request=None,
                        store_result=True, call_errbacks=True,
                        state=states.FAILURE):
        """Mark task as executed with failure."""
        if store_result:
            self.store_result(task_id, exc, state,
                              traceback=traceback, request=request)
        if request:
            if request.chord:
                self.on_chord_part_return(request, state, exc)
            if call_errbacks and request.errbacks:
                self._call_task_errbacks(request, exc, traceback)

    def _call_task_errbacks(self, request, exc, traceback):
        old_signature = []
        for errback in request.errbacks:
            errback = self.app.signature(errback)
            if not errback._app:
                # Ensure all signatures have an application
                errback._app = self.app
            try:
                if (
                        # Celery tasks type created with the @task decorator have
                        # the __header__ property, but Celery task created from
                        # Task class do not have this property.
                        # That's why we have to check if this property exists
                        # before checking is it partial function.
                        hasattr(errback.type, '__header__') and

                        # workaround to support tasks with bind=True executed as
                        # link errors. Otherwise retries can't be used
                        not isinstance(errback.type.__header__, partial) and
                        arity_greater(errback.type.__header__, 1)
                ):
                    errback(request, exc, traceback)
                else:
                    old_signature.append(errback)
            except NotRegistered:
                # Task may not be present in this worker.
                # We simply send it forward for another worker to consume.
                # If the task is not registered there, the worker will raise
                # NotRegistered.
                old_signature.append(errback)

        if old_signature:
            # Previously errback was called as a task so we still
            # need to do so if the errback only takes a single task_id arg.
            task_id = request.id
            root_id = request.root_id or task_id
            g = group(old_signature, app=self.app)
            if self.app.conf.task_always_eager or request.delivery_info.get('is_eager', False):
                g.apply(
                    (task_id,), parent_id=task_id, root_id=root_id
                )
            else:
                g.apply_async(
                    (task_id,), parent_id=task_id, root_id=root_id
                )

    def mark_as_revoked(self, task_id, reason='',
                        request=None, store_result=True, state=states.REVOKED):
        exc = TaskRevokedError(reason)
        if store_result:
            self.store_result(task_id, exc, state,
                              traceback=None, request=request)
        if request and request.chord:
            self.on_chord_part_return(request, state, exc)

    def mark_as_retry(self, task_id, exc, traceback=None,
                      request=None, store_result=True, state=states.RETRY):
        """Mark task as being retries.

        Note:
            Stores the current exception (if any).
        """
        return self.store_result(task_id, exc, state,
                                 traceback=traceback, request=request)

    def chord_error_from_stack(self, callback, exc=None):
        # need below import for test for some crazy reason
        from celery import group  # pylint: disable
        app = self.app
        try:
            backend = app._tasks[callback.task].backend
        except KeyError:
            backend = self
        try:
            group(
                [app.signature(errback)
                 for errback in callback.options.get('link_error') or []],
                app=app,
            ).apply_async((callback.id,))
        except Exception as eb_exc:  # pylint: disable=broad-except
            return backend.fail_from_current_stack(callback.id, exc=eb_exc)
        else:
            return backend.fail_from_current_stack(callback.id, exc=exc)

    def fail_from_current_stack(self, task_id, exc=None):
        type_, real_exc, tb = sys.exc_info()
        try:
            exc = real_exc if exc is None else exc
            exception_info = ExceptionInfo((type_, exc, tb))
            self.mark_as_failure(task_id, exc, exception_info.traceback)
            return exception_info
        finally:
            if sys.version_info >= (3, 5, 0):
                while tb is not None:
                    try:
                        tb.tb_frame.clear()
                        tb.tb_frame.f_locals
                    except RuntimeError:
                        # Ignore the exception raised if the frame is still executing.
                        pass
                    tb = tb.tb_next

            elif (2, 7, 0) <= sys.version_info < (3, 0, 0):
                sys.exc_clear()

            del tb

    def prepare_exception(self, exc, serializer=None):
        """Prepare exception for serialization."""
        serializer = self.serializer if serializer is None else serializer
        if serializer in EXCEPTION_ABLE_CODECS:
            return get_pickleable_exception(exc)
        exctype = type(exc)
        return {'exc_type': getattr(exctype, '__qualname__', exctype.__name__),
                'exc_message': ensure_serializable(exc.args, self.encode),
                'exc_module': exctype.__module__}

    def exception_to_python(self, exc):
        """Convert serialized exception to Python exception."""
        if exc:
            if not isinstance(exc, BaseException):
                exc_module = exc.get('exc_module')
                if exc_module is None:
                    cls = create_exception_cls(
                        from_utf8(exc['exc_type']), __name__)
                else:
                    exc_module = from_utf8(exc_module)
                    exc_type = from_utf8(exc['exc_type'])
                    try:
                        # Load module and find exception class in that
                        cls = sys.modules[exc_module]
                        # The type can contain qualified name with parent classes
                        for name in exc_type.split('.'):
                            cls = getattr(cls, name)
                    except (KeyError, AttributeError):
                        cls = create_exception_cls(exc_type,
                                                   celery.exceptions.__name__)
                exc_msg = exc['exc_message']
                try:
                    if isinstance(exc_msg, (tuple, list)):
                        exc = cls(*exc_msg)
                    else:
                        exc = cls(exc_msg)
                except Exception as err:  # noqa
                    exc = Exception(f'{cls}({exc_msg})')
            if self.serializer in EXCEPTION_ABLE_CODECS:
                exc = get_pickled_exception(exc)
        return exc

    def prepare_value(self, result):
        """Prepare value for storage."""
        if self.serializer != 'pickle' and isinstance(result, ResultBase):
            return result.as_tuple()
        return result

    def encode(self, data):
        _, _, payload = self._encode(data)
        return payload

    def _encode(self, data):
        return dumps(data, serializer=self.serializer)

    def meta_from_decoded(self, meta):
        if meta['status'] in self.EXCEPTION_STATES:
            meta['result'] = self.exception_to_python(meta['result'])
        return meta

    def decode_result(self, payload):
        return self.meta_from_decoded(self.decode(payload))

    def decode(self, payload):
        if payload is None:
            return payload
        payload = payload or str(payload)
        return loads(payload,
                     content_type=self.content_type,
                     content_encoding=self.content_encoding,
                     accept=self.accept)

    def prepare_expires(self, value, type=None):
        if value is None:
            value = self.app.conf.result_expires
        if isinstance(value, timedelta):
            value = value.total_seconds()
        if value is not None and type:
            return type(value)
        return value

    def prepare_persistent(self, enabled=None):
        if enabled is not None:
            return enabled
        persistent = self.app.conf.result_persistent
        return self.persistent if persistent is None else persistent

    def encode_result(self, result, state):
        if state in self.EXCEPTION_STATES and isinstance(result, Exception):
            return self.prepare_exception(result)
        return self.prepare_value(result)

    def is_cached(self, task_id):
        return task_id in self._cache

    def _get_result_meta(self, result,
                         state, traceback, request, format_date=True,
                         encode=False):
        if state in self.READY_STATES:
            date_done = datetime.utcnow()
            if format_date:
                date_done = date_done.isoformat()
        else:
            date_done = None

        meta = {
            'status': state,
            'result': result,
            'traceback': traceback,
            'children': self.current_task_children(request),
            'date_done': date_done,
        }

        if request and getattr(request, 'group', None):
            meta['group_id'] = request.group
        if request and getattr(request, 'parent_id', None):
            meta['parent_id'] = request.parent_id

        if self.app.conf.find_value_for_key('extended', 'result'):
            if request:
                request_meta = {
                    'name': getattr(request, 'task', None),
                    'args': getattr(request, 'args', None),
                    'kwargs': getattr(request, 'kwargs', None),
                    'worker': getattr(request, 'hostname', None),
                    'retries': getattr(request, 'retries', None),
                    'queue': request.delivery_info.get('routing_key')
                    if hasattr(request, 'delivery_info') and
                    request.delivery_info else None
                }

                if encode:
                    # args and kwargs need to be encoded properly before saving
                    encode_needed_fields = {"args", "kwargs"}
                    for field in encode_needed_fields:
                        value = request_meta[field]
                        encoded_value = self.encode(value)
                        request_meta[field] = ensure_bytes(encoded_value)

                meta.update(request_meta)

        return meta

    def _sleep(self, amount):
        time.sleep(amount)

    def store_result(self, task_id, result, state,
                     traceback=None, request=None, **kwargs):
        """Update task state and result.

        if always_retry_backend_operation is activated, in the event of a recoverable exception,
        then retry operation with an exponential backoff until a limit has been reached.
        """
        result = self.encode_result(result, state)

        retries = 0

        while True:
            try:
                self._store_result(task_id, result, state, traceback,
                                   request=request, **kwargs)
                return result
            except Exception as exc:
                if self.always_retry and self.exception_safe_to_retry(exc):
                    if retries < self.max_retries:
                        retries += 1

                        # get_exponential_backoff_interval computes integers
                        # and time.sleep accept floats for sub second sleep
                        sleep_amount = get_exponential_backoff_interval(
                            self.base_sleep_between_retries_ms, retries,
                            self.max_sleep_between_retries_ms, True) / 1000
                        self._sleep(sleep_amount)
                    else:
                        raise_with_context(
                            BackendStoreError("failed to store result on the backend", task_id=task_id, state=state),
                        )
                else:
                    raise

    def forget(self, task_id):
        self._cache.pop(task_id, None)
        self._forget(task_id)

    def _forget(self, task_id):
        raise NotImplementedError('backend does not implement forget.')

    def get_state(self, task_id):
        """Get the state of a task."""
        return self.get_task_meta(task_id)['status']

    get_status = get_state  # XXX compat

    def get_traceback(self, task_id):
        """Get the traceback for a failed task."""
        return self.get_task_meta(task_id).get('traceback')

    def get_result(self, task_id):
        """Get the result of a task."""
        return self.get_task_meta(task_id).get('result')

    def get_children(self, task_id):
        """Get the list of subtasks sent by a task."""
        try:
            return self.get_task_meta(task_id)['children']
        except KeyError:
            pass

    def _ensure_not_eager(self):
        if self.app.conf.task_always_eager:
            warnings.warn(
                "Shouldn't retrieve result with task_always_eager enabled.",
                RuntimeWarning
            )

    def exception_safe_to_retry(self, exc):
        """Check if an exception is safe to retry.

        Backends have to overload this method with correct predicates dealing with their exceptions.

        By default no exception is safe to retry, it's up to backend implementation
        to define which exceptions are safe.
        """
        return False

    def get_task_meta(self, task_id, cache=True):
        """Get task meta from backend.

        if always_retry_backend_operation is activated, in the event of a recoverable exception,
        then retry operation with an exponential backoff until a limit has been reached.
        """
        self._ensure_not_eager()
        if cache:
            try:
                return self._cache[task_id]
            except KeyError:
                pass
        retries = 0
        while True:
            try:
                meta = self._get_task_meta_for(task_id)
                break
            except Exception as exc:
                if self.always_retry and self.exception_safe_to_retry(exc):
                    if retries < self.max_retries:
                        retries += 1

                        # get_exponential_backoff_interval computes integers
                        # and time.sleep accept floats for sub second sleep
                        sleep_amount = get_exponential_backoff_interval(
                            self.base_sleep_between_retries_ms, retries,
                            self.max_sleep_between_retries_ms, True) / 1000
                        self._sleep(sleep_amount)
                    else:
                        raise_with_context(
                            BackendGetMetaError("failed to get meta", task_id=task_id),
                        )
                else:
                    raise

        if cache and meta.get('status') == states.SUCCESS:
            self._cache[task_id] = meta
        return meta

    def reload_task_result(self, task_id):
        """Reload task result, even if it has been previously fetched."""
        self._cache[task_id] = self.get_task_meta(task_id, cache=False)

    def reload_group_result(self, group_id):
        """Reload group result, even if it has been previously fetched."""
        self._cache[group_id] = self.get_group_meta(group_id, cache=False)

    def get_group_meta(self, group_id, cache=True):
        self._ensure_not_eager()
        if cache:
            try:
                return self._cache[group_id]
            except KeyError:
                pass

        meta = self._restore_group(group_id)
        if cache and meta is not None:
            self._cache[group_id] = meta
        return meta

    def restore_group(self, group_id, cache=True):
        """Get the result for a group."""
        meta = self.get_group_meta(group_id, cache=cache)
        if meta:
            return meta['result']

    def save_group(self, group_id, result):
        """Store the result of an executed group."""
        return self._save_group(group_id, result)

    def delete_group(self, group_id):
        self._cache.pop(group_id, None)
        return self._delete_group(group_id)

    def cleanup(self):
        """Backend cleanup.

        Note:
            This is run by :class:`celery.task.DeleteExpiredTaskMetaTask`.
        """

    def process_cleanup(self):
        """Cleanup actions to do at the end of a task worker process."""

    def on_task_call(self, producer, task_id):
        return {}

    def add_to_chord(self, chord_id, result):
        raise NotImplementedError('Backend does not support add_to_chord')

    def on_chord_part_return(self, request, state, result, **kwargs):
        pass

    def fallback_chord_unlock(self, header_result, body, countdown=1,
                              **kwargs):
        kwargs['result'] = [r.as_tuple() for r in header_result]
        queue = body.options.get('queue', getattr(body.type, 'queue', None))
        priority = body.options.get('priority', getattr(body.type, 'priority', 0))
        self.app.tasks['celery.chord_unlock'].apply_async(
            (header_result.id, body,), kwargs,
            countdown=countdown,
            queue=queue,
            priority=priority,
        )

    def ensure_chords_allowed(self):
        pass

    def apply_chord(self, header_result, body, **kwargs):
        self.ensure_chords_allowed()
        self.fallback_chord_unlock(header_result, body, **kwargs)

    def current_task_children(self, request=None):
        request = request or getattr(get_current_task(), 'request', None)
        if request:
            return [r.as_tuple() for r in getattr(request, 'children', [])]

    def __reduce__(self, args=(), kwargs=None):
        kwargs = {} if not kwargs else kwargs
        return (unpickle_backend, (self.__class__, args, kwargs))


class SyncBackendMixin:
    def iter_native(self, result, timeout=None, interval=0.5, no_ack=True,
                    on_message=None, on_interval=None):
        self._ensure_not_eager()
        results = result.results
        if not results:
            return

        task_ids = set()
        for result in results:
            if isinstance(result, ResultSet):
                yield result.id, result.results
            else:
                task_ids.add(result.id)

        yield from self.get_many(
            task_ids,
            timeout=timeout, interval=interval, no_ack=no_ack,
            on_message=on_message, on_interval=on_interval,
        )

    def wait_for_pending(self, result, timeout=None, interval=0.5,
                         no_ack=True, on_message=None, on_interval=None,
                         callback=None, propagate=True):
        self._ensure_not_eager()
        if on_message is not None:
            raise ImproperlyConfigured(
                'Backend does not support on_message callback')

        meta = self.wait_for(
            result.id, timeout=timeout,
            interval=interval,
            on_interval=on_interval,
            no_ack=no_ack,
        )
        if meta:
            result._maybe_set_cache(meta)
            return result.maybe_throw(propagate=propagate, callback=callback)

    def wait_for(self, task_id,
                 timeout=None, interval=0.5, no_ack=True, on_interval=None):
        """Wait for task and return its result.

        If the task raises an exception, this exception
        will be re-raised by :func:`wait_for`.

        Raises:
            celery.exceptions.TimeoutError:
                If `timeout` is not :const:`None`, and the operation
                takes longer than `timeout` seconds.
        """
        self._ensure_not_eager()

        time_elapsed = 0.0

        while 1:
            meta = self.get_task_meta(task_id)
            if meta['status'] in states.READY_STATES:
                return meta
            if on_interval:
                on_interval()
            # avoid hammering the CPU checking status.
            time.sleep(interval)
            time_elapsed += interval
            if timeout and time_elapsed >= timeout:
                raise TimeoutError('The operation timed out.')

    def add_pending_result(self, result, weak=False):
        return result

    def remove_pending_result(self, result):
        return result

    @property
    def is_async(self):
        return False


[docs]class BaseBackend(Backend, SyncBackendMixin):
    """Base (synchronous) result backend."""



BaseDictBackend = BaseBackend  # noqa: E305 XXX compat


class BaseKeyValueStoreBackend(Backend):
    key_t = ensure_bytes
    task_keyprefix = 'celery-task-meta-'
    group_keyprefix = 'celery-taskset-meta-'
    chord_keyprefix = 'chord-unlock-'
    implements_incr = False

    def __init__(self, *args, **kwargs):
        if hasattr(self.key_t, '__func__'):  # pragma: no cover
            self.key_t = self.key_t.__func__  # remove binding
        self._encode_prefixes()
        super().__init__(*args, **kwargs)
        if self.implements_incr:
            self.apply_chord = self._apply_chord_incr

    def _encode_prefixes(self):
        self.task_keyprefix = self.key_t(self.task_keyprefix)
        self.group_keyprefix = self.key_t(self.group_keyprefix)
        self.chord_keyprefix = self.key_t(self.chord_keyprefix)

    def get(self, key):
        raise NotImplementedError('Must implement the get method.')

    def mget(self, keys):
        raise NotImplementedError('Does not support get_many')

    def _set_with_state(self, key, value, state):
        return self.set(key, value)

    def set(self, key, value):
        raise NotImplementedError('Must implement the set method.')

    def delete(self, key):
        raise NotImplementedError('Must implement the delete method')

    def incr(self, key):
        raise NotImplementedError('Does not implement incr')

    def expire(self, key, value):
        pass

    def get_key_for_task(self, task_id, key=''):
        """Get the cache key for a task by id."""
        key_t = self.key_t
        return key_t('').join([
            self.task_keyprefix, key_t(task_id), key_t(key),
        ])

    def get_key_for_group(self, group_id, key=''):
        """Get the cache key for a group by id."""
        key_t = self.key_t
        return key_t('').join([
            self.group_keyprefix, key_t(group_id), key_t(key),
        ])

    def get_key_for_chord(self, group_id, key=''):
        """Get the cache key for the chord waiting on group with given id."""
        key_t = self.key_t
        return key_t('').join([
            self.chord_keyprefix, key_t(group_id), key_t(key),
        ])

    def _strip_prefix(self, key):
        """Take bytes: emit string."""
        key = self.key_t(key)
        for prefix in self.task_keyprefix, self.group_keyprefix:
            if key.startswith(prefix):
                return bytes_to_str(key[len(prefix):])
        return bytes_to_str(key)

    def _filter_ready(self, values, READY_STATES=states.READY_STATES):
        for k, value in values:
            if value is not None:
                value = self.decode_result(value)
                if value['status'] in READY_STATES:
                    yield k, value

    def _mget_to_results(self, values, keys, READY_STATES=states.READY_STATES):
        if hasattr(values, 'items'):
            # client returns dict so mapping preserved.
            return {
                self._strip_prefix(k): v
                for k, v in self._filter_ready(values.items(), READY_STATES)
            }
        else:
            # client returns list so need to recreate mapping.
            return {
                bytes_to_str(keys[i]): v
                for i, v in self._filter_ready(enumerate(values), READY_STATES)
            }

    def get_many(self, task_ids, timeout=None, interval=0.5, no_ack=True,
                 on_message=None, on_interval=None, max_iterations=None,
                 READY_STATES=states.READY_STATES):
        interval = 0.5 if interval is None else interval
        ids = task_ids if isinstance(task_ids, set) else set(task_ids)
        cached_ids = set()
        cache = self._cache
        for task_id in ids:
            try:
                cached = cache[task_id]
            except KeyError:
                pass
            else:
                if cached['status'] in READY_STATES:
                    yield bytes_to_str(task_id), cached
                    cached_ids.add(task_id)

        ids.difference_update(cached_ids)
        iterations = 0
        while ids:
            keys = list(ids)
            r = self._mget_to_results(self.mget([self.get_key_for_task(k)
                                                 for k in keys]), keys, READY_STATES)
            cache.update(r)
            ids.difference_update({bytes_to_str(v) for v in r})
            for key, value in r.items():
                if on_message is not None:
                    on_message(value)
                yield bytes_to_str(key), value
            if timeout and iterations * interval >= timeout:
                raise TimeoutError(f'Operation timed out ({timeout})')
            if on_interval:
                on_interval()
            time.sleep(interval)  # don't busy loop.
            iterations += 1
            if max_iterations and iterations >= max_iterations:
                break

    def _forget(self, task_id):
        self.delete(self.get_key_for_task(task_id))

    def _store_result(self, task_id, result, state,
                      traceback=None, request=None, **kwargs):
        meta = self._get_result_meta(result=result, state=state,
                                     traceback=traceback, request=request)
        meta['task_id'] = bytes_to_str(task_id)

        # Retrieve metadata from the backend, if the status
        # is a success then we ignore any following update to the state.
        # This solves a task deduplication issue because of network
        # partitioning or lost workers. This issue involved a race condition
        # making a lost task overwrite the last successful result in the
        # result backend.
        current_meta = self._get_task_meta_for(task_id)

        if current_meta['status'] == states.SUCCESS:
            return result

        self._set_with_state(self.get_key_for_task(task_id), self.encode(meta), state)
        return result

    def _save_group(self, group_id, result):
        self._set_with_state(self.get_key_for_group(group_id),
                             self.encode({'result': result.as_tuple()}), states.SUCCESS)
        return result

    def _delete_group(self, group_id):
        self.delete(self.get_key_for_group(group_id))

    def _get_task_meta_for(self, task_id):
        """Get task meta-data for a task by id."""
        meta = self.get(self.get_key_for_task(task_id))
        if not meta:
            return {'status': states.PENDING, 'result': None}
        return self.decode_result(meta)

    def _restore_group(self, group_id):
        """Get task meta-data for a task by id."""
        meta = self.get(self.get_key_for_group(group_id))
        # previously this was always pickled, but later this
        # was extended to support other serializers, so the
        # structure is kind of weird.
        if meta:
            meta = self.decode(meta)
            result = meta['result']
            meta['result'] = result_from_tuple(result, self.app)
            return meta

    def _apply_chord_incr(self, header_result, body, **kwargs):
        self.ensure_chords_allowed()
        header_result.save(backend=self)

    def on_chord_part_return(self, request, state, result, **kwargs):
        if not self.implements_incr:
            return
        app = self.app
        gid = request.group
        if not gid:
            return
        key = self.get_key_for_chord(gid)
        try:
            deps = GroupResult.restore(gid, backend=self)
        except Exception as exc:  # pylint: disable=broad-except
            callback = maybe_signature(request.chord, app=app)
            logger.exception('Chord %r raised: %r', gid, exc)
            return self.chord_error_from_stack(
                callback,
                ChordError(f'Cannot restore group: {exc!r}'),
            )
        if deps is None:
            try:
                raise ValueError(gid)
            except ValueError as exc:
                callback = maybe_signature(request.chord, app=app)
                logger.exception('Chord callback %r raised: %r', gid, exc)
                return self.chord_error_from_stack(
                    callback,
                    ChordError(f'GroupResult {gid} no longer exists'),
                )
        val = self.incr(key)
        # Set the chord size to the value defined in the request, or fall back
        # to the number of dependencies we can see from the restored result
        size = request.chord.get("chord_size")
        if size is None:
            size = len(deps)
        if val > size:  # pragma: no cover
            logger.warning('Chord counter incremented too many times for %r',
                           gid)
        elif val == size:
            callback = maybe_signature(request.chord, app=app)
            j = deps.join_native if deps.supports_native_join else deps.join
            try:
                with allow_join_result():
                    ret = j(timeout=3.0, propagate=True)
            except Exception as exc:  # pylint: disable=broad-except
                try:
                    culprit = next(deps._failed_join_report())
                    reason = 'Dependency {0.id} raised {1!r}'.format(
                        culprit, exc,
                    )
                except StopIteration:
                    reason = repr(exc)

                logger.exception('Chord %r raised: %r', gid, reason)
                self.chord_error_from_stack(callback, ChordError(reason))
            else:
                try:
                    callback.delay(ret)
                except Exception as exc:  # pylint: disable=broad-except
                    logger.exception('Chord %r raised: %r', gid, exc)
                    self.chord_error_from_stack(
                        callback,
                        ChordError(f'Callback error: {exc!r}'),
                    )
            finally:
                deps.delete()
                self.client.delete(key)
        else:
            self.expire(key, self.expires)


[docs]class KeyValueStoreBackend(BaseKeyValueStoreBackend, SyncBackendMixin):
    """Result backend base class for key/value stores."""



[docs]class DisabledBackend(BaseBackend):
    """Dummy result backend."""

    _cache = {}  # need this attribute to reset cache in tests.

[docs]    def store_result(self, *args, **kwargs):
        pass


[docs]    def ensure_chords_allowed(self):
        raise NotImplementedError(E_CHORD_NO_BACKEND.strip())


    def _is_disabled(self, *args, **kwargs):
        raise NotImplementedError(E_NO_BACKEND.strip())

[docs]    def as_uri(self, *args, **kwargs):
        return 'disabled://'


    get_state = get_status = get_result = get_traceback = _is_disabled
    get_task_meta_for = wait_for = get_many = _is_disabled





            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.backends.cache

"""Memcached and in-memory cache result backend."""
from kombu.utils.encoding import bytes_to_str, ensure_bytes
from kombu.utils.objects import cached_property

from celery.exceptions import ImproperlyConfigured
from celery.utils.functional import LRUCache

from .base import KeyValueStoreBackend

__all__ = ('CacheBackend',)

_imp = [None]

REQUIRES_BACKEND = """\
The Memcached backend requires either pylibmc or python-memcached.\
"""

UNKNOWN_BACKEND = """\
The cache backend {0!r} is unknown,
Please use one of the following backends instead: {1}\
"""


def import_best_memcache():
    if _imp[0] is None:
        is_pylibmc, memcache_key_t = False, bytes_to_str
        try:
            import pylibmc as memcache
            is_pylibmc = True
        except ImportError:
            try:
                import memcache  # noqa
            except ImportError:
                raise ImproperlyConfigured(REQUIRES_BACKEND)
        _imp[0] = (is_pylibmc, memcache, memcache_key_t)
    return _imp[0]


def get_best_memcache(*args, **kwargs):
    # pylint: disable=unpacking-non-sequence
    #   This is most definitely a sequence, but pylint thinks it's not.
    is_pylibmc, memcache, key_t = import_best_memcache()
    Client = _Client = memcache.Client

    if not is_pylibmc:
        def Client(*args, **kwargs):  # noqa
            kwargs.pop('behaviors', None)
            return _Client(*args, **kwargs)

    return Client, key_t


class DummyClient:

    def __init__(self, *args, **kwargs):
        self.cache = LRUCache(limit=5000)

    def get(self, key, *args, **kwargs):
        return self.cache.get(key)

    def get_multi(self, keys):
        cache = self.cache
        return {k: cache[k] for k in keys if k in cache}

    def set(self, key, value, *args, **kwargs):
        self.cache[key] = value

    def delete(self, key, *args, **kwargs):
        self.cache.pop(key, None)

    def incr(self, key, delta=1):
        return self.cache.incr(key, delta)

    def touch(self, key, expire):
        pass


backends = {
    'memcache': get_best_memcache,
    'memcached': get_best_memcache,
    'pylibmc': get_best_memcache,
    'memory': lambda: (DummyClient, ensure_bytes),
}


[docs]class CacheBackend(KeyValueStoreBackend):
    """Cache result backend."""

    servers = None
    supports_autoexpire = True
    supports_native_join = True
    implements_incr = True

    def __init__(self, app, expires=None, backend=None,
                 options=None, url=None, **kwargs):
        options = {} if not options else options
        super().__init__(app, **kwargs)
        self.url = url

        self.options = dict(self.app.conf.cache_backend_options,
                            **options)

        self.backend = url or backend or self.app.conf.cache_backend
        if self.backend:
            self.backend, _, servers = self.backend.partition('://')
            self.servers = servers.rstrip('/').split(';')
        self.expires = self.prepare_expires(expires, type=int)
        try:
            self.Client, self.key_t = backends[self.backend]()
        except KeyError:
            raise ImproperlyConfigured(UNKNOWN_BACKEND.format(
                self.backend, ', '.join(backends)))
        self._encode_prefixes()  # rencode the keyprefixes

[docs]    def get(self, key):
        return self.client.get(key)


[docs]    def mget(self, keys):
        return self.client.get_multi(keys)


[docs]    def set(self, key, value):
        return self.client.set(key, value, self.expires)


[docs]    def delete(self, key):
        return self.client.delete(key)


    def _apply_chord_incr(self, header_result, body, **kwargs):
        chord_key = self.get_key_for_chord(header_result.id)
        self.client.set(chord_key, 0, time=self.expires)
        return super()._apply_chord_incr(
            header_result, body, **kwargs)

[docs]    def incr(self, key):
        return self.client.incr(key)


[docs]    def expire(self, key, value):
        return self.client.touch(key, value)


[docs]    @cached_property
    def client(self):
        return self.Client(self.servers, **self.options)


    def __reduce__(self, args=(), kwargs=None):
        kwargs = {} if not kwargs else kwargs
        servers = ';'.join(self.servers)
        backend = f'{self.backend}://{servers}/'
        kwargs.update(
            {'backend': backend,
             'expires': self.expires,
             'options': self.options})
        return super().__reduce__(args, kwargs)

[docs]    def as_uri(self, *args, **kwargs):
        """Return the backend as an URI.

        This properly handles the case of multiple servers.
        """
        servers = ';'.join(self.servers)
        return f'{self.backend}://{servers}/'






            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.backends.cassandra

"""Apache Cassandra result store backend using the DataStax driver."""
import sys
import threading

from celery import states
from celery.exceptions import ImproperlyConfigured
from celery.utils.log import get_logger

from .base import BaseBackend

try:  # pragma: no cover
    import cassandra
    import cassandra.auth
    import cassandra.cluster
    import cassandra.query
except ImportError:  # pragma: no cover
    cassandra = None   # noqa


__all__ = ('CassandraBackend',)

logger = get_logger(__name__)

E_NO_CASSANDRA = """
You need to install the cassandra-driver library to
use the Cassandra backend.  See https://github.com/datastax/python-driver
"""

E_NO_SUCH_CASSANDRA_AUTH_PROVIDER = """
CASSANDRA_AUTH_PROVIDER you provided is not a valid auth_provider class.
See https://datastax.github.io/python-driver/api/cassandra/auth.html.
"""

Q_INSERT_RESULT = """
INSERT INTO {table} (
    task_id, status, result, date_done, traceback, children) VALUES (
        %s, %s, %s, %s, %s, %s) {expires};
"""

Q_SELECT_RESULT = """
SELECT status, result, date_done, traceback, children
FROM {table}
WHERE task_id=%s
LIMIT 1
"""

Q_CREATE_RESULT_TABLE = """
CREATE TABLE {table} (
    task_id text,
    status text,
    result blob,
    date_done timestamp,
    traceback blob,
    children blob,
    PRIMARY KEY ((task_id), date_done)
) WITH CLUSTERING ORDER BY (date_done DESC);
"""

Q_EXPIRES = """
    USING TTL {0}
"""

if sys.version_info[0] == 3:
    def buf_t(x):
        return bytes(x, 'utf8')
else:
    buf_t = buffer  # noqa


[docs]class CassandraBackend(BaseBackend):
    """Cassandra backend utilizing DataStax driver.

    Raises:
        celery.exceptions.ImproperlyConfigured:
            if module :pypi:`cassandra-driver` is not available,
            or if the :setting:`cassandra_servers` setting is not set.
    """

    #: List of Cassandra servers with format: ``hostname``.
    servers = None

    supports_autoexpire = True      # autoexpire supported via entry_ttl

    def __init__(self, servers=None, keyspace=None, table=None, entry_ttl=None,
                 port=9042, **kwargs):
        super().__init__(**kwargs)

        if not cassandra:
            raise ImproperlyConfigured(E_NO_CASSANDRA)

        conf = self.app.conf
        self.servers = servers or conf.get('cassandra_servers', None)
        self.port = port or conf.get('cassandra_port', None)
        self.keyspace = keyspace or conf.get('cassandra_keyspace', None)
        self.table = table or conf.get('cassandra_table', None)
        self.cassandra_options = conf.get('cassandra_options', {})

        if not self.servers or not self.keyspace or not self.table:
            raise ImproperlyConfigured('Cassandra backend not configured.')

        expires = entry_ttl or conf.get('cassandra_entry_ttl', None)

        self.cqlexpires = (
            Q_EXPIRES.format(expires) if expires is not None else '')

        read_cons = conf.get('cassandra_read_consistency') or 'LOCAL_QUORUM'
        write_cons = conf.get('cassandra_write_consistency') or 'LOCAL_QUORUM'

        self.read_consistency = getattr(
            cassandra.ConsistencyLevel, read_cons,
            cassandra.ConsistencyLevel.LOCAL_QUORUM)
        self.write_consistency = getattr(
            cassandra.ConsistencyLevel, write_cons,
            cassandra.ConsistencyLevel.LOCAL_QUORUM)

        self.auth_provider = None
        auth_provider = conf.get('cassandra_auth_provider', None)
        auth_kwargs = conf.get('cassandra_auth_kwargs', None)
        if auth_provider and auth_kwargs:
            auth_provider_class = getattr(cassandra.auth, auth_provider, None)
            if not auth_provider_class:
                raise ImproperlyConfigured(E_NO_SUCH_CASSANDRA_AUTH_PROVIDER)
            self.auth_provider = auth_provider_class(**auth_kwargs)

        self._cluster = None
        self._session = None
        self._write_stmt = None
        self._read_stmt = None
        self._lock = threading.RLock()

    def _get_connection(self, write=False):
        """Prepare the connection for action.

        Arguments:
            write (bool): are we a writer?
        """
        if self._session is not None:
            return
        self._lock.acquire()
        try:
            if self._session is not None:
                return
            self._cluster = cassandra.cluster.Cluster(
                self.servers, port=self.port,
                auth_provider=self.auth_provider,
                **self.cassandra_options)
            self._session = self._cluster.connect(self.keyspace)

            # We're forced to do concatenation below, as formatting would
            # blow up on superficial %s that'll be processed by Cassandra
            self._write_stmt = cassandra.query.SimpleStatement(
                Q_INSERT_RESULT.format(
                    table=self.table, expires=self.cqlexpires),
            )
            self._write_stmt.consistency_level = self.write_consistency

            self._read_stmt = cassandra.query.SimpleStatement(
                Q_SELECT_RESULT.format(table=self.table),
            )
            self._read_stmt.consistency_level = self.read_consistency

            if write:
                # Only possible writers "workers" are allowed to issue
                # CREATE TABLE.  This is to prevent conflicting situations
                # where both task-creator and task-executor would issue it
                # at the same time.

                # Anyway; if you're doing anything critical, you should
                # have created this table in advance, in which case
                # this query will be a no-op (AlreadyExists)
                make_stmt = cassandra.query.SimpleStatement(
                    Q_CREATE_RESULT_TABLE.format(table=self.table),
                )
                make_stmt.consistency_level = self.write_consistency

                try:
                    self._session.execute(make_stmt)
                except cassandra.AlreadyExists:
                    pass

        except cassandra.OperationTimedOut:
            # a heavily loaded or gone Cassandra cluster failed to respond.
            # leave this class in a consistent state
            if self._cluster is not None:
                self._cluster.shutdown()     # also shuts down _session

            self._cluster = None
            self._session = None
            raise   # we did fail after all - reraise
        finally:
            self._lock.release()

    def _store_result(self, task_id, result, state,
                      traceback=None, request=None, **kwargs):
        """Store return value and state of an executed task."""
        self._get_connection(write=True)

        self._session.execute(self._write_stmt, (
            task_id,
            state,
            buf_t(self.encode(result)),
            self.app.now(),
            buf_t(self.encode(traceback)),
            buf_t(self.encode(self.current_task_children(request)))
        ))

[docs]    def as_uri(self, include_password=True):
        return 'cassandra://'


    def _get_task_meta_for(self, task_id):
        """Get task meta-data for a task by id."""
        self._get_connection()

        res = self._session.execute(self._read_stmt, (task_id, )).one()
        if not res:
            return {'status': states.PENDING, 'result': None}

        status, result, date_done, traceback, children = res

        return self.meta_from_decoded({
            'task_id': task_id,
            'status': status,
            'result': self.decode(result),
            'date_done': date_done,
            'traceback': self.decode(traceback),
            'children': self.decode(children),
        })

    def __reduce__(self, args=(), kwargs=None):
        kwargs = {} if not kwargs else kwargs
        kwargs.update(
            {'servers': self.servers,
             'keyspace': self.keyspace,
             'table': self.table})
        return super().__reduce__(args, kwargs)





            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.backends.consul

"""Consul result store backend.

- :class:`ConsulBackend` implements KeyValueStoreBackend to store results
    in the key-value store of Consul.
"""
from kombu.utils.encoding import bytes_to_str
from kombu.utils.url import parse_url

from celery.backends.base import KeyValueStoreBackend
from celery.exceptions import ImproperlyConfigured
from celery.utils.log import get_logger

try:
    import consul
except ImportError:
    consul = None

logger = get_logger(__name__)

__all__ = ('ConsulBackend',)

CONSUL_MISSING = """\
You need to install the python-consul library in order to use \
the Consul result store backend."""


[docs]class ConsulBackend(KeyValueStoreBackend):
    """Consul.io K/V store backend for Celery."""

    consul = consul

    supports_autoexpire = True

    client = None
    consistency = 'consistent'
    path = None

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        if self.consul is None:
            raise ImproperlyConfigured(CONSUL_MISSING)

        self._init_from_params(**parse_url(self.url))

    def _init_from_params(self, hostname, port, virtual_host, **params):
        logger.debug('Setting on Consul client to connect to %s:%d',
                     hostname, port)
        self.path = virtual_host
        self.client = consul.Consul(host=hostname, port=port,
                                    consistency=self.consistency)

    def _key_to_consul_key(self, key):
        key = bytes_to_str(key)
        return key if self.path is None else f'{self.path}/{key}'

[docs]    def get(self, key):
        key = self._key_to_consul_key(key)
        logger.debug('Trying to fetch key %s from Consul', key)
        try:
            _, data = self.client.kv.get(key)
            return data['Value']
        except TypeError:
            pass


[docs]    def mget(self, keys):
        for key in keys:
            yield self.get(key)


[docs]    def set(self, key, value):
        """Set a key in Consul.

        Before creating the key it will create a session inside Consul
        where it creates a session with a TTL

        The key created afterwards will reference to the session's ID.

        If the session expires it will remove the key so that results
        can auto expire from the K/V store
        """
        session_name = bytes_to_str(key)

        key = self._key_to_consul_key(key)

        logger.debug('Trying to create Consul session %s with TTL %d',
                     session_name, self.expires)
        session_id = self.client.session.create(name=session_name,
                                                behavior='delete',
                                                ttl=self.expires)
        logger.debug('Created Consul session %s', session_id)

        logger.debug('Writing key %s to Consul', key)
        return self.client.kv.put(key=key,
                                  value=value,
                                  acquire=session_id)


[docs]    def delete(self, key):
        key = self._key_to_consul_key(key)
        logger.debug('Removing key %s from Consul', key)
        return self.client.kv.delete(key)






            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.backends.cosmosdbsql

"""The CosmosDB/SQL backend for Celery (experimental)."""
from kombu.utils import cached_property
from kombu.utils.encoding import bytes_to_str
from kombu.utils.url import _parse_url

from celery.exceptions import ImproperlyConfigured
from celery.utils.log import get_logger

from .base import KeyValueStoreBackend

try:
    import pydocumentdb
    from pydocumentdb.document_client import DocumentClient
    from pydocumentdb.documents import (ConnectionPolicy, ConsistencyLevel,
                                        PartitionKind)
    from pydocumentdb.errors import HTTPFailure
    from pydocumentdb.retry_options import RetryOptions
except ImportError:  # pragma: no cover
    pydocumentdb = DocumentClient = ConsistencyLevel = PartitionKind = \
        HTTPFailure = ConnectionPolicy = RetryOptions = None  # noqa

__all__ = ("CosmosDBSQLBackend",)


ERROR_NOT_FOUND = 404
ERROR_EXISTS = 409

LOGGER = get_logger(__name__)


[docs]class CosmosDBSQLBackend(KeyValueStoreBackend):
    """CosmosDB/SQL backend for Celery."""

    def __init__(self,
                 url=None,
                 database_name=None,
                 collection_name=None,
                 consistency_level=None,
                 max_retry_attempts=None,
                 max_retry_wait_time=None,
                 *args,
                 **kwargs):
        super().__init__(*args, **kwargs)

        if pydocumentdb is None:
            raise ImproperlyConfigured(
                "You need to install the pydocumentdb library to use the "
                "CosmosDB backend.")

        conf = self.app.conf

        self._endpoint, self._key = self._parse_url(url)

        self._database_name = (
            database_name or
            conf["cosmosdbsql_database_name"])

        self._collection_name = (
            collection_name or
            conf["cosmosdbsql_collection_name"])

        try:
            self._consistency_level = getattr(
                ConsistencyLevel,
                consistency_level or
                conf["cosmosdbsql_consistency_level"])
        except AttributeError:
            raise ImproperlyConfigured("Unknown CosmosDB consistency level")

        self._max_retry_attempts = (
            max_retry_attempts or
            conf["cosmosdbsql_max_retry_attempts"])

        self._max_retry_wait_time = (
            max_retry_wait_time or
            conf["cosmosdbsql_max_retry_wait_time"])

    @classmethod
    def _parse_url(cls, url):
        _, host, port, _, password, _, _ = _parse_url(url)

        if not host or not password:
            raise ImproperlyConfigured("Invalid URL")

        if not port:
            port = 443

        scheme = "https" if port == 443 else "http"
        endpoint = f"{scheme}://{host}:{port}"
        return endpoint, password

    @cached_property
    def _client(self):
        """Return the CosmosDB/SQL client.

        If this is the first call to the property, the client is created and
        the database and collection are initialized if they don't yet exist.

        """
        connection_policy = ConnectionPolicy()
        connection_policy.RetryOptions = RetryOptions(
            max_retry_attempt_count=self._max_retry_attempts,
            max_wait_time_in_seconds=self._max_retry_wait_time)

        client = DocumentClient(
            self._endpoint,
            {"masterKey": self._key},
            connection_policy=connection_policy,
            consistency_level=self._consistency_level)

        self._create_database_if_not_exists(client)
        self._create_collection_if_not_exists(client)

        return client

    def _create_database_if_not_exists(self, client):
        try:
            client.CreateDatabase({"id": self._database_name})
        except HTTPFailure as ex:
            if ex.status_code != ERROR_EXISTS:
                raise
        else:
            LOGGER.info("Created CosmosDB database %s",
                        self._database_name)

    def _create_collection_if_not_exists(self, client):
        try:
            client.CreateCollection(
                self._database_link,
                {"id": self._collection_name,
                 "partitionKey": {"paths": ["/id"],
                                  "kind": PartitionKind.Hash}})
        except HTTPFailure as ex:
            if ex.status_code != ERROR_EXISTS:
                raise
        else:
            LOGGER.info("Created CosmosDB collection %s/%s",
                        self._database_name, self._collection_name)

    @cached_property
    def _database_link(self):
        return "dbs/" + self._database_name

    @cached_property
    def _collection_link(self):
        return self._database_link + "/colls/" + self._collection_name

    def _get_document_link(self, key):
        return self._collection_link + "/docs/" + key

    @classmethod
    def _get_partition_key(cls, key):
        if not key or key.isspace():
            raise ValueError("Key cannot be none, empty or whitespace.")

        return {"partitionKey": key}

[docs]    def get(self, key):
        """Read the value stored at the given key.

        Args:
              key: The key for which to read the value.

        """
        key = bytes_to_str(key)
        LOGGER.debug("Getting CosmosDB document %s/%s/%s",
                     self._database_name, self._collection_name, key)

        try:
            document = self._client.ReadDocument(
                self._get_document_link(key),
                self._get_partition_key(key))
        except HTTPFailure as ex:
            if ex.status_code != ERROR_NOT_FOUND:
                raise
            return None
        else:
            return document.get("value")


[docs]    def set(self, key, value):
        """Store a value for a given key.

        Args:
              key: The key at which to store the value.
              value: The value to store.

        """
        key = bytes_to_str(key)
        LOGGER.debug("Creating CosmosDB document %s/%s/%s",
                     self._database_name, self._collection_name, key)

        self._client.CreateDocument(
            self._collection_link,
            {"id": key, "value": value},
            self._get_partition_key(key))


[docs]    def mget(self, keys):
        """Read all the values for the provided keys.

        Args:
              keys: The list of keys to read.

        """
        return [self.get(key) for key in keys]


[docs]    def delete(self, key):
        """Delete the value at a given key.

        Args:
              key: The key of the value to delete.

        """
        key = bytes_to_str(key)
        LOGGER.debug("Deleting CosmosDB document %s/%s/%s",
                     self._database_name, self._collection_name, key)

        self._client.DeleteDocument(
            self._get_document_link(key),
            self._get_partition_key(key))






            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.backends.couchbase

"""Couchbase result store backend."""

from kombu.utils.url import _parse_url

from celery.exceptions import ImproperlyConfigured

from .base import KeyValueStoreBackend

try:
    from couchbase.auth import PasswordAuthenticator
    from couchbase.cluster import Cluster, ClusterOptions
    from couchbase_core._libcouchbase import FMT_AUTO
except ImportError:
    Cluster = PasswordAuthenticator = ClusterOptions = None

__all__ = ('CouchbaseBackend',)


[docs]class CouchbaseBackend(KeyValueStoreBackend):
    """Couchbase backend.

    Raises:
        celery.exceptions.ImproperlyConfigured:
            if module :pypi:`couchbase` is not available.
    """

    bucket = 'default'
    host = 'localhost'
    port = 8091
    username = None
    password = None
    quiet = False
    supports_autoexpire = True

    timeout = 2.5

    # Use str as couchbase key not bytes
    key_t = str

    def __init__(self, url=None, *args, **kwargs):
        kwargs.setdefault('expires_type', int)
        super().__init__(*args, **kwargs)
        self.url = url

        if Cluster is None:
            raise ImproperlyConfigured(
                'You need to install the couchbase library to use the '
                'Couchbase backend.',
            )

        uhost = uport = uname = upass = ubucket = None
        if url:
            _, uhost, uport, uname, upass, ubucket, _ = _parse_url(url)
            ubucket = ubucket.strip('/') if ubucket else None

        config = self.app.conf.get('couchbase_backend_settings', None)
        if config is not None:
            if not isinstance(config, dict):
                raise ImproperlyConfigured(
                    'Couchbase backend settings should be grouped in a dict',
                )
        else:
            config = {}

        self.host = uhost or config.get('host', self.host)
        self.port = int(uport or config.get('port', self.port))
        self.bucket = ubucket or config.get('bucket', self.bucket)
        self.username = uname or config.get('username', self.username)
        self.password = upass or config.get('password', self.password)

        self._connection = None

    def _get_connection(self):
        """Connect to the Couchbase server."""
        if self._connection is None:
            if self.host and self.port:
                uri = f"couchbase://{self.host}:{self.port}"
            else:
                uri = f"couchbase://{self.host}"
            if self.username and self.password:
                opt = PasswordAuthenticator(self.username, self.password)
            else:
                opt = None

            cluster = Cluster(uri, opt)

            bucket = cluster.bucket(self.bucket)

            self._connection = bucket.default_collection()
        return self._connection

    @property
    def connection(self):
        return self._get_connection()

[docs]    def get(self, key):
        return self.connection.get(key).content


[docs]    def set(self, key, value):
        self.connection.upsert(key, value, ttl=self.expires, format=FMT_AUTO)


[docs]    def mget(self, keys):
        return self.connection.get_multi(keys)


[docs]    def delete(self, key):
        self.connection.remove(key)






            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.backends.couchdb

"""CouchDB result store backend."""
from kombu.utils.encoding import bytes_to_str
from kombu.utils.url import _parse_url

from celery.exceptions import ImproperlyConfigured

from .base import KeyValueStoreBackend

try:
    import pycouchdb
except ImportError:
    pycouchdb = None  # noqa

__all__ = ('CouchBackend',)

ERR_LIB_MISSING = """\
You need to install the pycouchdb library to use the CouchDB result backend\
"""


[docs]class CouchBackend(KeyValueStoreBackend):
    """CouchDB backend.

    Raises:
        celery.exceptions.ImproperlyConfigured:
            if module :pypi:`pycouchdb` is not available.
    """

    container = 'default'
    scheme = 'http'
    host = 'localhost'
    port = 5984
    username = None
    password = None

    def __init__(self, url=None, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.url = url

        if pycouchdb is None:
            raise ImproperlyConfigured(ERR_LIB_MISSING)

        uscheme = uhost = uport = uname = upass = ucontainer = None
        if url:
            _, uhost, uport, uname, upass, ucontainer, _ = _parse_url(url)  # noqa
            ucontainer = ucontainer.strip('/') if ucontainer else None

        self.scheme = uscheme or self.scheme
        self.host = uhost or self.host
        self.port = int(uport or self.port)
        self.container = ucontainer or self.container
        self.username = uname or self.username
        self.password = upass or self.password

        self._connection = None

    def _get_connection(self):
        """Connect to the CouchDB server."""
        if self.username and self.password:
            conn_string = f'{self.scheme}://{self.username}:{self.password}@{self.host}:{self.port}'
            server = pycouchdb.Server(conn_string, authmethod='basic')
        else:
            conn_string = f'{self.scheme}://{self.host}:{self.port}'
            server = pycouchdb.Server(conn_string)

        try:
            return server.database(self.container)
        except pycouchdb.exceptions.NotFound:
            return server.create(self.container)

    @property
    def connection(self):
        if self._connection is None:
            self._connection = self._get_connection()
        return self._connection

[docs]    def get(self, key):
        try:
            return self.connection.get(key)['value']
        except pycouchdb.exceptions.NotFound:
            return None


[docs]    def set(self, key, value):
        key = bytes_to_str(key)
        data = {'_id': key, 'value': value}
        try:
            self.connection.save(data)
        except pycouchdb.exceptions.Conflict:
            # document already exists, update it
            data = self.connection.get(key)
            data['value'] = value
            self.connection.save(data)


[docs]    def mget(self, keys):
        return [self.get(key) for key in keys]


[docs]    def delete(self, key):
        self.connection.delete(key)






            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.backends.database

"""SQLAlchemy result store backend."""
import logging
from contextlib import contextmanager

from vine.utils import wraps

from celery import states
from celery.backends.base import BaseBackend
from celery.exceptions import ImproperlyConfigured
from celery.utils.time import maybe_timedelta

from .models import Task, TaskExtended, TaskSet
from .session import SessionManager

try:
    from sqlalchemy.exc import DatabaseError, InvalidRequestError
    from sqlalchemy.orm.exc import StaleDataError
except ImportError:  # pragma: no cover
    raise ImproperlyConfigured(
        'The database result backend requires SQLAlchemy to be installed.'
        'See https://pypi.org/project/SQLAlchemy/')

logger = logging.getLogger(__name__)

__all__ = ('DatabaseBackend',)


@contextmanager
def session_cleanup(session):
    try:
        yield
    except Exception:
        session.rollback()
        raise
    finally:
        session.close()


def retry(fun):

    @wraps(fun)
    def _inner(*args, **kwargs):
        max_retries = kwargs.pop('max_retries', 3)

        for retries in range(max_retries):
            try:
                return fun(*args, **kwargs)
            except (DatabaseError, InvalidRequestError, StaleDataError):
                logger.warning(
                    'Failed operation %s.  Retrying %s more times.',
                    fun.__name__, max_retries - retries - 1,
                    exc_info=True)
                if retries + 1 >= max_retries:
                    raise

    return _inner


[docs]class DatabaseBackend(BaseBackend):
    """The database result backend."""

    # ResultSet.iterate should sleep this much between each pool,
    # to not bombard the database with queries.
    subpolling_interval = 0.5

    task_cls = Task
    taskset_cls = TaskSet

    def __init__(self, dburi=None, engine_options=None, url=None, **kwargs):
        # The `url` argument was added later and is used by
        # the app to set backend by url (celery.app.backends.by_url)
        super().__init__(expires_type=maybe_timedelta,
                         url=url, **kwargs)
        conf = self.app.conf

        if self.extended_result:
            self.task_cls = TaskExtended

        self.url = url or dburi or conf.database_url
        self.engine_options = dict(
            engine_options or {},
            **conf.database_engine_options or {})
        self.short_lived_sessions = kwargs.get(
            'short_lived_sessions',
            conf.database_short_lived_sessions)

        schemas = conf.database_table_schemas or {}
        tablenames = conf.database_table_names or {}
        self.task_cls.configure(
            schema=schemas.get('task'),
            name=tablenames.get('task'))
        self.taskset_cls.configure(
            schema=schemas.get('group'),
            name=tablenames.get('group'))

        if not self.url:
            raise ImproperlyConfigured(
                'Missing connection string! Do you have the'
                ' database_url setting set to a real value?')

    @property
    def extended_result(self):
        return self.app.conf.find_value_for_key('extended', 'result')

[docs]    def ResultSession(self, session_manager=SessionManager()):
        return session_manager.session_factory(
            dburi=self.url,
            short_lived_sessions=self.short_lived_sessions,
            **self.engine_options)


    @retry
    def _store_result(self, task_id, result, state, traceback=None,
                      request=None, **kwargs):
        """Store return value and state of an executed task."""
        session = self.ResultSession()
        with session_cleanup(session):
            task = list(session.query(self.task_cls).filter(self.task_cls.task_id == task_id))
            task = task and task[0]
            if not task:
                task = self.task_cls(task_id)
                task.task_id = task_id
                session.add(task)
                session.flush()

            self._update_result(task, result, state, traceback=traceback, request=request)
            session.commit()

    def _update_result(self, task, result, state, traceback=None,
                       request=None):

        meta = self._get_result_meta(result=result, state=state,
                                     traceback=traceback, request=request,
                                     format_date=False, encode=True)

        # Exclude the primary key id and task_id columns
        # as we should not set it None
        columns = [column.name for column in self.task_cls.__table__.columns
                   if column.name not in {'id', 'task_id'}]

        # Iterate through the columns name of the table
        # to set the value from meta.
        # If the value is not present in meta, set None
        for column in columns:
            value = meta.get(column)
            setattr(task, column, value)

    @retry
    def _get_task_meta_for(self, task_id):
        """Get task meta-data for a task by id."""
        session = self.ResultSession()
        with session_cleanup(session):
            task = list(session.query(self.task_cls).filter(self.task_cls.task_id == task_id))
            task = task and task[0]
            if not task:
                task = self.task_cls(task_id)
                task.status = states.PENDING
                task.result = None
            data = task.to_dict()
            if data.get('args', None) is not None:
                data['args'] = self.decode(data['args'])
            if data.get('kwargs', None) is not None:
                data['kwargs'] = self.decode(data['kwargs'])
            return self.meta_from_decoded(data)

    @retry
    def _save_group(self, group_id, result):
        """Store the result of an executed group."""
        session = self.ResultSession()
        with session_cleanup(session):
            group = self.taskset_cls(group_id, result)
            session.add(group)
            session.flush()
            session.commit()
            return result

    @retry
    def _restore_group(self, group_id):
        """Get meta-data for group by id."""
        session = self.ResultSession()
        with session_cleanup(session):
            group = session.query(self.taskset_cls).filter(
                self.taskset_cls.taskset_id == group_id).first()
            if group:
                return group.to_dict()

    @retry
    def _delete_group(self, group_id):
        """Delete meta-data for group by id."""
        session = self.ResultSession()
        with session_cleanup(session):
            session.query(self.taskset_cls).filter(
                self.taskset_cls.taskset_id == group_id).delete()
            session.flush()
            session.commit()

    @retry
    def _forget(self, task_id):
        """Forget about result."""
        session = self.ResultSession()
        with session_cleanup(session):
            session.query(self.task_cls).filter(self.task_cls.task_id == task_id).delete()
            session.commit()

[docs]    def cleanup(self):
        """Delete expired meta-data."""
        session = self.ResultSession()
        expires = self.expires
        now = self.app.now()
        with session_cleanup(session):
            session.query(self.task_cls).filter(
                self.task_cls.date_done < (now - expires)).delete()
            session.query(self.taskset_cls).filter(
                self.taskset_cls.date_done < (now - expires)).delete()
            session.commit()


    def __reduce__(self, args=(), kwargs=None):
        kwargs = {} if not kwargs else kwargs
        kwargs.update(
            {'dburi': self.url,
             'expires': self.expires,
             'engine_options': self.engine_options})
        return super().__reduce__(args, kwargs)





            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.backends.dynamodb

"""AWS DynamoDB result store backend."""
from collections import namedtuple
from time import sleep, time

from kombu.utils.url import _parse_url as parse_url

from celery.exceptions import ImproperlyConfigured
from celery.utils.log import get_logger

from .base import KeyValueStoreBackend

try:
    import boto3
    from botocore.exceptions import ClientError
except ImportError:  # pragma: no cover
    boto3 = ClientError = None  # noqa

__all__ = ('DynamoDBBackend',)


# Helper class that describes a DynamoDB attribute
DynamoDBAttribute = namedtuple('DynamoDBAttribute', ('name', 'data_type'))

logger = get_logger(__name__)


[docs]class DynamoDBBackend(KeyValueStoreBackend):
    """AWS DynamoDB result backend.

    Raises:
        celery.exceptions.ImproperlyConfigured:
            if module :pypi:`boto3` is not available.
    """

    #: default DynamoDB table name (`default`)
    table_name = 'celery'

    #: Read Provisioned Throughput (`default`)
    read_capacity_units = 1

    #: Write Provisioned Throughput (`default`)
    write_capacity_units = 1

    #: AWS region (`default`)
    aws_region = None

    #: The endpoint URL that is passed to boto3 (local DynamoDB) (`default`)
    endpoint_url = None

    #: Item time-to-live in seconds (`default`)
    time_to_live_seconds = None

    # DynamoDB supports Time to Live as an auto-expiry mechanism.
    supports_autoexpire = True

    _key_field = DynamoDBAttribute(name='id', data_type='S')
    _value_field = DynamoDBAttribute(name='result', data_type='B')
    _timestamp_field = DynamoDBAttribute(name='timestamp', data_type='N')
    _ttl_field = DynamoDBAttribute(name='ttl', data_type='N')
    _available_fields = None

    def __init__(self, url=None, table_name=None, *args, **kwargs):
        super().__init__(*args, **kwargs)

        self.url = url
        self.table_name = table_name or self.table_name

        if not boto3:
            raise ImproperlyConfigured(
                'You need to install the boto3 library to use the '
                'DynamoDB backend.')

        aws_credentials_given = False
        aws_access_key_id = None
        aws_secret_access_key = None

        if url is not None:
            scheme, region, port, username, password, table, query = \
                parse_url(url)

            aws_access_key_id = username
            aws_secret_access_key = password

            access_key_given = aws_access_key_id is not None
            secret_key_given = aws_secret_access_key is not None

            if access_key_given != secret_key_given:
                raise ImproperlyConfigured(
                    'You need to specify both the Access Key ID '
                    'and Secret.')

            aws_credentials_given = access_key_given

            if region == 'localhost':
                # We are using the downloadable, local version of DynamoDB
                self.endpoint_url = f'http://localhost:{port}'
                self.aws_region = 'us-east-1'
                logger.warning(
                    'Using local-only DynamoDB endpoint URL: {}'.format(
                        self.endpoint_url
                    )
                )
            else:
                self.aws_region = region

            # If endpoint_url is explicitly set use it instead
            _get = self.app.conf.get
            config_endpoint_url = _get('dynamodb_endpoint_url')
            if config_endpoint_url:
                self.endpoint_url = config_endpoint_url

            self.read_capacity_units = int(
                query.get(
                    'read',
                    self.read_capacity_units
                )
            )
            self.write_capacity_units = int(
                query.get(
                    'write',
                    self.write_capacity_units
                )
            )

            ttl = query.get('ttl_seconds', self.time_to_live_seconds)
            if ttl:
                try:
                    self.time_to_live_seconds = int(ttl)
                except ValueError as e:
                    logger.error(
                        'TTL must be a number; got "{ttl}"',
                        exc_info=e
                    )
                    raise e

            self.table_name = table or self.table_name

        self._available_fields = (
            self._key_field,
            self._value_field,
            self._timestamp_field
        )

        self._client = None
        if aws_credentials_given:
            self._get_client(
                access_key_id=aws_access_key_id,
                secret_access_key=aws_secret_access_key
            )

    def _get_client(self, access_key_id=None, secret_access_key=None):
        """Get client connection."""
        if self._client is None:
            client_parameters = {
                'region_name': self.aws_region
            }
            if access_key_id is not None:
                client_parameters.update({
                    'aws_access_key_id': access_key_id,
                    'aws_secret_access_key': secret_access_key
                })

            if self.endpoint_url is not None:
                client_parameters['endpoint_url'] = self.endpoint_url

            self._client = boto3.client(
                'dynamodb',
                **client_parameters
            )
            self._get_or_create_table()

            if self._has_ttl() is not None:
                self._validate_ttl_methods()
                self._set_table_ttl()

        return self._client

    def _get_table_schema(self):
        """Get the boto3 structure describing the DynamoDB table schema."""
        return {
            'AttributeDefinitions': [
                {
                    'AttributeName': self._key_field.name,
                    'AttributeType': self._key_field.data_type
                }
            ],
            'TableName': self.table_name,
            'KeySchema': [
                {
                    'AttributeName': self._key_field.name,
                    'KeyType': 'HASH'
                }
            ],
            'ProvisionedThroughput': {
                'ReadCapacityUnits': self.read_capacity_units,
                'WriteCapacityUnits': self.write_capacity_units
            }
        }

    def _get_or_create_table(self):
        """Create table if not exists, otherwise return the description."""
        table_schema = self._get_table_schema()
        try:
            table_description = self._client.create_table(**table_schema)
            logger.info(
                'DynamoDB Table {} did not exist, creating.'.format(
                    self.table_name
                )
            )
            # In case we created the table, wait until it becomes available.
            self._wait_for_table_status('ACTIVE')
            logger.info(
                'DynamoDB Table {} is now available.'.format(
                    self.table_name
                )
            )
            return table_description
        except ClientError as e:
            error_code = e.response['Error'].get('Code', 'Unknown')

            # If table exists, do not fail, just return the description.
            if error_code == 'ResourceInUseException':
                return self._client.describe_table(
                    TableName=self.table_name
                )
            else:
                raise e

    def _has_ttl(self):
        """Return the desired Time to Live config.

        - True:  Enable TTL on the table; use expiry.
        - False: Disable TTL on the table; don't use expiry.
        - None:  Ignore TTL on the table; don't use expiry.
        """
        return None if self.time_to_live_seconds is None \
            else self.time_to_live_seconds >= 0

    def _validate_ttl_methods(self):
        """Verify boto support for the DynamoDB Time to Live methods."""
        # Required TTL methods.
        required_methods = (
            'update_time_to_live',
            'describe_time_to_live',
        )

        # Find missing methods.
        missing_methods = []
        for method in list(required_methods):
            if not hasattr(self._client, method):
                missing_methods.append(method)

        if missing_methods:
            logger.error(
                (
                    'boto3 method(s) {methods} not found; ensure that '
                    'boto3>=1.9.178 and botocore>=1.12.178 are installed'
                ).format(
                    methods=','.join(missing_methods)
                )
            )
            raise AttributeError(
                'boto3 method(s) {methods} not found'.format(
                    methods=','.join(missing_methods)
                )
            )

    def _get_ttl_specification(self, ttl_attr_name):
        """Get the boto3 structure describing the DynamoDB TTL specification."""
        return {
            'TableName': self.table_name,
            'TimeToLiveSpecification': {
                'Enabled': self._has_ttl(),
                'AttributeName': ttl_attr_name
            }
        }

    def _get_table_ttl_description(self):
        # Get the current TTL description.
        try:
            description = self._client.describe_time_to_live(
                TableName=self.table_name
            )
        except ClientError as e:
            error_code = e.response['Error'].get('Code', 'Unknown')
            error_message = e.response['Error'].get('Message', 'Unknown')
            logger.error((
                'Error describing Time to Live on DynamoDB table {table}: '
                '{code}: {message}'
            ).format(
                table=self.table_name,
                code=error_code,
                message=error_message,
            ))
            raise e

        return description

    def _set_table_ttl(self):
        """Enable or disable Time to Live on the table."""
        # Get the table TTL description, and return early when possible.
        description = self._get_table_ttl_description()
        status = description['TimeToLiveDescription']['TimeToLiveStatus']
        if status in ('ENABLED', 'ENABLING'):
            cur_attr_name = \
                description['TimeToLiveDescription']['AttributeName']
            if self._has_ttl():
                if cur_attr_name == self._ttl_field.name:
                    # We want TTL enabled, and it is currently enabled or being
                    # enabled, and on the correct attribute.
                    logger.debug((
                        'DynamoDB Time to Live is {situation} '
                        'on table {table}'
                    ).format(
                        situation='already enabled'
                        if status == 'ENABLED'
                        else 'currently being enabled',
                        table=self.table_name
                    ))
                    return description

        elif status in ('DISABLED', 'DISABLING'):
            if not self._has_ttl():
                # We want TTL disabled, and it is currently disabled or being
                # disabled.
                logger.debug((
                    'DynamoDB Time to Live is {situation} '
                    'on table {table}'
                ).format(
                    situation='already disabled'
                    if status == 'DISABLED'
                    else 'currently being disabled',
                    table=self.table_name
                ))
                return description

        # The state shouldn't ever have any value beyond the four handled
        # above, but to ease troubleshooting of potential future changes, emit
        # a log showing the unknown state.
        else:  # pragma: no cover
            logger.warning((
                'Unknown DynamoDB Time to Live status {status} '
                'on table {table}. Attempting to continue.'
            ).format(
                status=status,
                table=self.table_name
            ))

        # At this point, we have one of the following situations:
        #
        # We want TTL enabled,
        #
        # - and it's currently disabled: Try to enable.
        #
        # - and it's being disabled: Try to enable, but this is almost sure to
        #   raise ValidationException with message:
        #
        #     Time to live has been modified multiple times within a fixed
        #     interval
        #
        # - and it's currently enabling or being enabled, but on the wrong
        #   attribute: Try to enable, but this will raise ValidationException
        #   with message:
        #
        #     TimeToLive is active on a different AttributeName: current
        #     AttributeName is ttlx
        #
        # We want TTL disabled,
        #
        # - and it's currently enabled: Try to disable.
        #
        # - and it's being enabled: Try to disable, but this is almost sure to
        #   raise ValidationException with message:
        #
        #     Time to live has been modified multiple times within a fixed
        #     interval
        #
        attr_name = \
            cur_attr_name if status == 'ENABLED' else self._ttl_field.name
        try:
            specification = self._client.update_time_to_live(
                **self._get_ttl_specification(
                    ttl_attr_name=attr_name
                )
            )
            logger.info(
                (
                    'DynamoDB table Time to Live updated: '
                    'table={table} enabled={enabled} attribute={attr}'
                ).format(
                    table=self.table_name,
                    enabled=self._has_ttl(),
                    attr=self._ttl_field.name
                )
            )
            return specification
        except ClientError as e:
            error_code = e.response['Error'].get('Code', 'Unknown')
            error_message = e.response['Error'].get('Message', 'Unknown')
            logger.error((
                'Error {action} Time to Live on DynamoDB table {table}: '
                '{code}: {message}'
            ).format(
                action='enabling' if self._has_ttl() else 'disabling',
                table=self.table_name,
                code=error_code,
                message=error_message,
            ))
            raise e

    def _wait_for_table_status(self, expected='ACTIVE'):
        """Poll for the expected table status."""
        achieved_state = False
        while not achieved_state:
            table_description = self.client.describe_table(
                TableName=self.table_name
            )
            logger.debug(
                'Waiting for DynamoDB table {} to become {}.'.format(
                    self.table_name,
                    expected
                )
            )
            current_status = table_description['Table']['TableStatus']
            achieved_state = current_status == expected
            sleep(1)

    def _prepare_get_request(self, key):
        """Construct the item retrieval request parameters."""
        return {
            'TableName': self.table_name,
            'Key': {
                self._key_field.name: {
                    self._key_field.data_type: key
                }
            }
        }

    def _prepare_put_request(self, key, value):
        """Construct the item creation request parameters."""
        timestamp = time()
        put_request = {
            'TableName': self.table_name,
            'Item': {
                self._key_field.name: {
                    self._key_field.data_type: key
                },
                self._value_field.name: {
                    self._value_field.data_type: value
                },
                self._timestamp_field.name: {
                    self._timestamp_field.data_type: str(timestamp)
                }
            }
        }
        if self._has_ttl():
            put_request['Item'].update({
                self._ttl_field.name: {
                    self._ttl_field.data_type:
                        str(int(timestamp + self.time_to_live_seconds))
                }
            })
        return put_request

    def _item_to_dict(self, raw_response):
        """Convert get_item() response to field-value pairs."""
        if 'Item' not in raw_response:
            return {}
        return {
            field.name: raw_response['Item'][field.name][field.data_type]
            for field in self._available_fields
        }

    @property
    def client(self):
        return self._get_client()

[docs]    def get(self, key):
        key = str(key)
        request_parameters = self._prepare_get_request(key)
        item_response = self.client.get_item(**request_parameters)
        item = self._item_to_dict(item_response)
        return item.get(self._value_field.name)


[docs]    def set(self, key, value):
        key = str(key)
        request_parameters = self._prepare_put_request(key, value)
        self.client.put_item(**request_parameters)


[docs]    def mget(self, keys):
        return [self.get(key) for key in keys]


[docs]    def delete(self, key):
        key = str(key)
        request_parameters = self._prepare_get_request(key)
        self.client.delete_item(**request_parameters)






            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.backends.elasticsearch

"""Elasticsearch result store backend."""
from datetime import datetime

from kombu.utils.encoding import bytes_to_str
from kombu.utils.url import _parse_url

from celery import states
from celery.exceptions import ImproperlyConfigured

from .base import KeyValueStoreBackend

try:
    import elasticsearch
except ImportError:  # pragma: no cover
    elasticsearch = None  # noqa

__all__ = ('ElasticsearchBackend',)

E_LIB_MISSING = """\
You need to install the elasticsearch library to use the Elasticsearch \
result backend.\
"""


[docs]class ElasticsearchBackend(KeyValueStoreBackend):
    """Elasticsearch Backend.

    Raises:
        celery.exceptions.ImproperlyConfigured:
            if module :pypi:`elasticsearch` is not available.
    """

    index = 'celery'
    doc_type = 'backend'
    scheme = 'http'
    host = 'localhost'
    port = 9200
    username = None
    password = None
    es_retry_on_timeout = False
    es_timeout = 10
    es_max_retries = 3

    def __init__(self, url=None, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.url = url
        _get = self.app.conf.get

        if elasticsearch is None:
            raise ImproperlyConfigured(E_LIB_MISSING)

        index = doc_type = scheme = host = port = username = password = None

        if url:
            scheme, host, port, username, password, path, _ = _parse_url(url)  # noqa
            if scheme == 'elasticsearch':
                scheme = None
            if path:
                path = path.strip('/')
                index, _, doc_type = path.partition('/')

        self.index = index or self.index
        self.doc_type = doc_type or self.doc_type
        self.scheme = scheme or self.scheme
        self.host = host or self.host
        self.port = port or self.port
        self.username = username or self.username
        self.password = password or self.password

        self.es_retry_on_timeout = (
            _get('elasticsearch_retry_on_timeout') or self.es_retry_on_timeout
        )

        es_timeout = _get('elasticsearch_timeout')
        if es_timeout is not None:
            self.es_timeout = es_timeout

        es_max_retries = _get('elasticsearch_max_retries')
        if es_max_retries is not None:
            self.es_max_retries = es_max_retries

        self.es_save_meta_as_text = _get('elasticsearch_save_meta_as_text', True)
        self._server = None

[docs]    def exception_safe_to_retry(self, exc):
        if isinstance(exc, (elasticsearch.exceptions.TransportError)):
            # 401: Unauthorized
            # 409: Conflict
            # 429: Too Many Requests
            # 500: Internal Server Error
            # 502: Bad Gateway
            # 503: Service Unavailable
            # 504: Gateway Timeout
            # N/A: Low level exception (i.e. socket exception)
            if exc.status_code in {401, 409, 429, 500, 502, 503, 504, 'N/A'}:
                return True
        return False


[docs]    def get(self, key):
        try:
            res = self._get(key)
            try:
                if res['found']:
                    return res['_source']['result']
            except (TypeError, KeyError):
                pass
        except elasticsearch.exceptions.NotFoundError:
            pass


    def _get(self, key):
        return self.server.get(
            index=self.index,
            doc_type=self.doc_type,
            id=key,
        )

    def _set_with_state(self, key, value, state):
        body = {
            'result': value,
            '@timestamp': '{}Z'.format(
                datetime.utcnow().isoformat()[:-3]
            ),
        }
        try:
            self._index(
                id=key,
                body=body,
            )
        except elasticsearch.exceptions.ConflictError:
            # document already exists, update it
            self._update(key, body, state)

[docs]    def set(self, key, value):
        return self._set_with_state(key, value, None)


    def _index(self, id, body, **kwargs):
        body = {bytes_to_str(k): v for k, v in body.items()}
        return self.server.index(
            id=bytes_to_str(id),
            index=self.index,
            doc_type=self.doc_type,
            body=body,
            params={'op_type': 'create'},
            **kwargs
        )

    def _update(self, id, body, state, **kwargs):
        """Update state in a conflict free manner.

        If state is defined (not None), this will not update ES server if either:
        * existing state is success
        * existing state is a ready state and current state in not a ready state

        This way, a Retry state cannot override a Success or Failure, and chord_unlock
        will not retry indefinitely.
        """
        body = {bytes_to_str(k): v for k, v in body.items()}

        try:
            res_get = self._get(key=id)
            if not res_get.get('found'):
                return self._index(id, body, **kwargs)
            # document disappeared between index and get calls.
        except elasticsearch.exceptions.NotFoundError:
            return self._index(id, body, **kwargs)

        try:
            meta_present_on_backend = self.decode_result(res_get['_source']['result'])
        except (TypeError, KeyError):
            pass
        else:
            if meta_present_on_backend['status'] == states.SUCCESS:
                # if stored state is already in success, do nothing
                return {'result': 'noop'}
            elif meta_present_on_backend['status'] in states.READY_STATES and state in states.UNREADY_STATES:
                # if stored state is in ready state and current not, do nothing
                return {'result': 'noop'}

        # get current sequence number and primary term
        # https://www.elastic.co/guide/en/elasticsearch/reference/current/optimistic-concurrency-control.html
        seq_no = res_get.get('_seq_no', 1)
        prim_term = res_get.get('_primary_term', 1)

        # try to update document with current seq_no and primary_term
        res = self.server.update(
            id=bytes_to_str(id),
            index=self.index,
            doc_type=self.doc_type,
            body={'doc': body},
            params={'if_primary_term': prim_term, 'if_seq_no': seq_no},
            **kwargs
        )
        # result is elastic search update query result
        # noop = query did not update any document
        # updated = at least one document got updated
        if res['result'] == 'noop':
            raise elasticsearch.exceptions.ConflictError(409, 'conflicting update occurred concurrently', {})
        return res

[docs]    def encode(self, data):
        if self.es_save_meta_as_text:
            return KeyValueStoreBackend.encode(self, data)
        else:
            if not isinstance(data, dict):
                return KeyValueStoreBackend.encode(self, data)
            if data.get("result"):
                data["result"] = self._encode(data["result"])[2]
            if data.get("traceback"):
                data["traceback"] = self._encode(data["traceback"])[2]
            return data


[docs]    def decode(self, payload):
        if self.es_save_meta_as_text:
            return KeyValueStoreBackend.decode(self, payload)
        else:
            if not isinstance(payload, dict):
                return KeyValueStoreBackend.decode(self, payload)
            if payload.get("result"):
                payload["result"] = KeyValueStoreBackend.decode(self, payload["result"])
            if payload.get("traceback"):
                payload["traceback"] = KeyValueStoreBackend.decode(self, payload["traceback"])
            return payload


[docs]    def mget(self, keys):
        return [self.get(key) for key in keys]


[docs]    def delete(self, key):
        self.server.delete(index=self.index, doc_type=self.doc_type, id=key)


    def _get_server(self):
        """Connect to the Elasticsearch server."""
        http_auth = None
        if self.username and self.password:
            http_auth = (self.username, self.password)
        return elasticsearch.Elasticsearch(
            f'{self.host}:{self.port}',
            retry_on_timeout=self.es_retry_on_timeout,
            max_retries=self.es_max_retries,
            timeout=self.es_timeout,
            scheme=self.scheme,
            http_auth=http_auth,
        )

    @property
    def server(self):
        if self._server is None:
            self._server = self._get_server()
        return self._server





            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.backends.filesystem

"""File-system result store backend."""
import locale
import os

from kombu.utils.encoding import ensure_bytes

from celery import uuid
from celery.backends.base import KeyValueStoreBackend
from celery.exceptions import ImproperlyConfigured

default_encoding = locale.getpreferredencoding(False)

E_NO_PATH_SET = 'You need to configure a path for the file-system backend'
E_PATH_NON_CONFORMING_SCHEME = (
    'A path for the file-system backend should conform to the file URI scheme'
)
E_PATH_INVALID = """\
The configured path for the file-system backend does not
work correctly, please make sure that it exists and has
the correct permissions.\
"""


[docs]class FilesystemBackend(KeyValueStoreBackend):
    """File-system result backend.

    Arguments:
        url (str):  URL to the directory we should use
        open (Callable): open function to use when opening files
        unlink (Callable): unlink function to use when deleting files
        sep (str): directory separator (to join the directory with the key)
        encoding (str): encoding used on the file-system
    """

    def __init__(self, url=None, open=open, unlink=os.unlink, sep=os.sep,
                 encoding=default_encoding, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.url = url
        path = self._find_path(url)

        # We need the path and separator as bytes objects
        self.path = path.encode(encoding)
        self.sep = sep.encode(encoding)

        self.open = open
        self.unlink = unlink

        # Lets verify that we've everything setup right
        self._do_directory_test(b'.fs-backend-' + uuid().encode(encoding))

    def __reduce__(self, args=(), kwargs={}):
        kwargs.update(
            dict(url=self.url))
        return super().__reduce__(args, kwargs)

    def _find_path(self, url):
        if not url:
            raise ImproperlyConfigured(E_NO_PATH_SET)
        if url.startswith('file://localhost/'):
            return url[16:]
        if url.startswith('file://'):
            return url[7:]
        raise ImproperlyConfigured(E_PATH_NON_CONFORMING_SCHEME)

    def _do_directory_test(self, key):
        try:
            self.set(key, b'test value')
            assert self.get(key) == b'test value'
            self.delete(key)
        except OSError:
            raise ImproperlyConfigured(E_PATH_INVALID)

    def _filename(self, key):
        return self.sep.join((self.path, key))

[docs]    def get(self, key):
        try:
            with self.open(self._filename(key), 'rb') as infile:
                return infile.read()
        except FileNotFoundError:
            pass


[docs]    def set(self, key, value):
        with self.open(self._filename(key), 'wb') as outfile:
            outfile.write(ensure_bytes(value))


[docs]    def mget(self, keys):
        for key in keys:
            yield self.get(key)


[docs]    def delete(self, key):
        self.unlink(self._filename(key))






            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.backends.mongodb

"""MongoDB result store backend."""
from datetime import datetime, timedelta

from kombu.exceptions import EncodeError
from kombu.utils.objects import cached_property
from kombu.utils.url import maybe_sanitize_url, urlparse

from celery import states
from celery.exceptions import ImproperlyConfigured

from .base import BaseBackend

try:
    import pymongo
except ImportError:  # pragma: no cover
    pymongo = None   # noqa

if pymongo:
    try:
        from bson.binary import Binary
    except ImportError:                     # pragma: no cover
        from pymongo.binary import Binary  # noqa
    from pymongo.errors import InvalidDocument  # noqa
else:                                       # pragma: no cover
    Binary = None                           # noqa

    class InvalidDocument(Exception):       # noqa
        pass

__all__ = ('MongoBackend',)

BINARY_CODECS = frozenset(['pickle', 'msgpack'])


[docs]class MongoBackend(BaseBackend):
    """MongoDB result backend.

    Raises:
        celery.exceptions.ImproperlyConfigured:
            if module :pypi:`pymongo` is not available.
    """

    mongo_host = None
    host = 'localhost'
    port = 27017
    user = None
    password = None
    database_name = 'celery'
    taskmeta_collection = 'celery_taskmeta'
    groupmeta_collection = 'celery_groupmeta'
    max_pool_size = 10
    options = None

    supports_autoexpire = False

    _connection = None

    def __init__(self, app=None, **kwargs):
        self.options = {}

        super().__init__(app, **kwargs)

        if not pymongo:
            raise ImproperlyConfigured(
                'You need to install the pymongo library to use the '
                'MongoDB backend.')

        # Set option defaults
        for key, value in self._prepare_client_options().items():
            self.options.setdefault(key, value)

        # update conf with mongo uri data, only if uri was given
        if self.url:
            self.url = self._ensure_mongodb_uri_compliance(self.url)

            uri_data = pymongo.uri_parser.parse_uri(self.url)
            # build the hosts list to create a mongo connection
            hostslist = [
                f'{x[0]}:{x[1]}' for x in uri_data['nodelist']
            ]
            self.user = uri_data['username']
            self.password = uri_data['password']
            self.mongo_host = hostslist
            if uri_data['database']:
                # if no database is provided in the uri, use default
                self.database_name = uri_data['database']

            self.options.update(uri_data['options'])

        # update conf with specific settings
        config = self.app.conf.get('mongodb_backend_settings')
        if config is not None:
            if not isinstance(config, dict):
                raise ImproperlyConfigured(
                    'MongoDB backend settings should be grouped in a dict')
            config = dict(config)  # don't modify original

            if 'host' in config or 'port' in config:
                # these should take over uri conf
                self.mongo_host = None

            self.host = config.pop('host', self.host)
            self.port = config.pop('port', self.port)
            self.mongo_host = config.pop('mongo_host', self.mongo_host)
            self.user = config.pop('user', self.user)
            self.password = config.pop('password', self.password)
            self.database_name = config.pop('database', self.database_name)
            self.taskmeta_collection = config.pop(
                'taskmeta_collection', self.taskmeta_collection,
            )
            self.groupmeta_collection = config.pop(
                'groupmeta_collection', self.groupmeta_collection,
            )

            self.options.update(config.pop('options', {}))
            self.options.update(config)

    @staticmethod
    def _ensure_mongodb_uri_compliance(url):
        parsed_url = urlparse(url)
        if not parsed_url.scheme.startswith('mongodb'):
            url = f'mongodb+{url}'

        if url == 'mongodb://':
            url += 'localhost'

        return url

    def _prepare_client_options(self):
        if pymongo.version_tuple >= (3,):
            return {'maxPoolSize': self.max_pool_size}
        else:  # pragma: no cover
            return {'max_pool_size': self.max_pool_size,
                    'auto_start_request': False}

    def _get_connection(self):
        """Connect to the MongoDB server."""
        if self._connection is None:
            from pymongo import MongoClient

            host = self.mongo_host
            if not host:
                # The first pymongo.Connection() argument (host) can be
                # a list of ['host:port'] elements or a mongodb connection
                # URI.  If this is the case, don't use self.port
                # but let pymongo get the port(s) from the URI instead.
                # This enables the use of replica sets and sharding.
                # See pymongo.Connection() for more info.
                host = self.host
                if isinstance(host, str) \
                   and not host.startswith('mongodb://'):
                    host = f'mongodb://{host}:{self.port}'
            # don't change self.options
            conf = dict(self.options)
            conf['host'] = host
            if self.user:
                conf['username'] = self.user
            if self.password:
                conf['password'] = self.password

            self._connection = MongoClient(**conf)

        return self._connection

[docs]    def encode(self, data):
        if self.serializer == 'bson':
            # mongodb handles serialization
            return data
        payload = super().encode(data)

        # serializer which are in a unsupported format (pickle/binary)
        if self.serializer in BINARY_CODECS:
            payload = Binary(payload)
        return payload


[docs]    def decode(self, data):
        if self.serializer == 'bson':
            return data
        return super().decode(data)


    def _store_result(self, task_id, result, state,
                      traceback=None, request=None, **kwargs):
        """Store return value and state of an executed task."""
        meta = self._get_result_meta(result=self.encode(result), state=state,
                                     traceback=traceback, request=request)
        # Add the _id for mongodb
        meta['_id'] = task_id

        try:
            self.collection.replace_one({'_id': task_id}, meta, upsert=True)
        except InvalidDocument as exc:
            raise EncodeError(exc)

        return result

    def _get_task_meta_for(self, task_id):
        """Get task meta-data for a task by id."""
        obj = self.collection.find_one({'_id': task_id})
        if obj:
            return self.meta_from_decoded({
                'task_id': obj['_id'],
                'status': obj['status'],
                'result': self.decode(obj['result']),
                'date_done': obj['date_done'],
                'traceback': self.decode(obj['traceback']),
                'children': self.decode(obj['children']),
            })
        return {'status': states.PENDING, 'result': None}

    def _save_group(self, group_id, result):
        """Save the group result."""
        meta = {
            '_id': group_id,
            'result': self.encode([i.id for i in result]),
            'date_done': datetime.utcnow(),
        }
        self.group_collection.replace_one({'_id': group_id}, meta, upsert=True)
        return result

    def _restore_group(self, group_id):
        """Get the result for a group by id."""
        obj = self.group_collection.find_one({'_id': group_id})
        if obj:
            return {
                'task_id': obj['_id'],
                'date_done': obj['date_done'],
                'result': [
                    self.app.AsyncResult(task)
                    for task in self.decode(obj['result'])
                ],
            }

    def _delete_group(self, group_id):
        """Delete a group by id."""
        self.group_collection.delete_one({'_id': group_id})

    def _forget(self, task_id):
        """Remove result from MongoDB.

        Raises:
            pymongo.exceptions.OperationsError:
                if the task_id could not be removed.
        """
        # By using safe=True, this will wait until it receives a response from
        # the server.  Likewise, it will raise an OperationsError if the
        # response was unable to be completed.
        self.collection.delete_one({'_id': task_id})

[docs]    def cleanup(self):
        """Delete expired meta-data."""
        self.collection.delete_many(
            {'date_done': {'$lt': self.app.now() - self.expires_delta}},
        )
        self.group_collection.delete_many(
            {'date_done': {'$lt': self.app.now() - self.expires_delta}},
        )


    def __reduce__(self, args=(), kwargs=None):
        kwargs = {} if not kwargs else kwargs
        return super().__reduce__(
            args, dict(kwargs, expires=self.expires, url=self.url))

    def _get_database(self):
        conn = self._get_connection()
        db = conn[self.database_name]
        if self.user and self.password:
            source = self.options.get(
                'authsource',
                self.database_name or 'admin'
            )
            if not db.authenticate(self.user, self.password, source=source):
                raise ImproperlyConfigured(
                    'Invalid MongoDB username or password.')
        return db

[docs]    @cached_property
    def database(self):
        """Get database from MongoDB connection.

        performs authentication if necessary.
        """
        return self._get_database()


[docs]    @cached_property
    def collection(self):
        """Get the meta-data task collection."""
        collection = self.database[self.taskmeta_collection]

        # Ensure an index on date_done is there, if not process the index
        # in the background.  Once completed cleanup will be much faster
        collection.create_index('date_done', background=True)
        return collection


[docs]    @cached_property
    def group_collection(self):
        """Get the meta-data task collection."""
        collection = self.database[self.groupmeta_collection]

        # Ensure an index on date_done is there, if not process the index
        # in the background.  Once completed cleanup will be much faster
        collection.create_index('date_done', background=True)
        return collection


[docs]    @cached_property
    def expires_delta(self):
        return timedelta(seconds=self.expires)


[docs]    def as_uri(self, include_password=False):
        """Return the backend as an URI.

        Arguments:
            include_password (bool): Password censored if disabled.
        """
        if not self.url:
            return 'mongodb://'
        if include_password:
            return self.url

        if ',' not in self.url:
            return maybe_sanitize_url(self.url)

        uri1, remainder = self.url.split(',', 1)
        return ','.join([maybe_sanitize_url(uri1), remainder])






            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.backends.redis

"""Redis result store backend."""
import time
from contextlib import contextmanager
from functools import partial
from ssl import CERT_NONE, CERT_OPTIONAL, CERT_REQUIRED
from urllib.parse import unquote

from kombu.utils.functional import retry_over_time
from kombu.utils.objects import cached_property
from kombu.utils.url import _parse_url

from celery import states
from celery._state import task_join_will_block
from celery.canvas import maybe_signature
from celery.exceptions import ChordError, ImproperlyConfigured
from celery.result import GroupResult, allow_join_result
from celery.utils.functional import dictfilter
from celery.utils.log import get_logger
from celery.utils.time import humanize_seconds

from .asynchronous import AsyncBackendMixin, BaseResultConsumer
from .base import BaseKeyValueStoreBackend

try:
    import redis.connection
    from kombu.transport.redis import get_redis_error_classes
except ImportError:  # pragma: no cover
    redis = None  # noqa
    get_redis_error_classes = None  # noqa

try:
    import redis.sentinel
except ImportError:
    pass

__all__ = ('RedisBackend', 'SentinelBackend')

E_REDIS_MISSING = """
You need to install the redis library in order to use \
the Redis result store backend.
"""

E_REDIS_SENTINEL_MISSING = """
You need to install the redis library with support of \
sentinel in order to use the Redis result store backend.
"""

W_REDIS_SSL_CERT_OPTIONAL = """
Setting ssl_cert_reqs=CERT_OPTIONAL when connecting to redis means that \
celery might not valdate the identity of the redis broker when connecting. \
This leaves you vulnerable to man in the middle attacks.
"""

W_REDIS_SSL_CERT_NONE = """
Setting ssl_cert_reqs=CERT_NONE when connecting to redis means that celery \
will not valdate the identity of the redis broker when connecting. This \
leaves you vulnerable to man in the middle attacks.
"""

E_REDIS_SSL_PARAMS_AND_SCHEME_MISMATCH = """
SSL connection parameters have been provided but the specified URL scheme \
is redis://. A Redis SSL connection URL should use the scheme rediss://.
"""

E_REDIS_SSL_CERT_REQS_MISSING_INVALID = """
A rediss:// URL must have parameter ssl_cert_reqs and this must be set to \
CERT_REQUIRED, CERT_OPTIONAL, or CERT_NONE
"""

E_LOST = 'Connection to Redis lost: Retry (%s/%s) %s.'

E_RETRY_LIMIT_EXCEEDED = """
Retry limit exceeded while trying to reconnect to the Celery redis result \
store backend. The Celery application must be restarted.
"""

logger = get_logger(__name__)


class ResultConsumer(BaseResultConsumer):
    _pubsub = None

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self._get_key_for_task = self.backend.get_key_for_task
        self._decode_result = self.backend.decode_result
        self._ensure = self.backend.ensure
        self._connection_errors = self.backend.connection_errors
        self.subscribed_to = set()

    def on_after_fork(self):
        try:
            self.backend.client.connection_pool.reset()
            if self._pubsub is not None:
                self._pubsub.close()
        except KeyError as e:
            logger.warning(str(e))
        super().on_after_fork()

    def _reconnect_pubsub(self):
        self._pubsub = None
        self.backend.client.connection_pool.reset()
        # task state might have changed when the connection was down so we
        # retrieve meta for all subscribed tasks before going into pubsub mode
        metas = self.backend.client.mget(self.subscribed_to)
        metas = [meta for meta in metas if meta]
        for meta in metas:
            self.on_state_change(self._decode_result(meta), None)
        self._pubsub = self.backend.client.pubsub(
            ignore_subscribe_messages=True,
        )
        self._pubsub.subscribe(*self.subscribed_to)

    @contextmanager
    def reconnect_on_error(self):
        try:
            yield
        except self._connection_errors:
            try:
                self._ensure(self._reconnect_pubsub, ())
            except self._connection_errors:
                logger.critical(E_RETRY_LIMIT_EXCEEDED)
                raise

    def _maybe_cancel_ready_task(self, meta):
        if meta['status'] in states.READY_STATES:
            self.cancel_for(meta['task_id'])

    def on_state_change(self, meta, message):
        super().on_state_change(meta, message)
        self._maybe_cancel_ready_task(meta)

    def start(self, initial_task_id, **kwargs):
        self._pubsub = self.backend.client.pubsub(
            ignore_subscribe_messages=True,
        )
        self._consume_from(initial_task_id)

    def on_wait_for_pending(self, result, **kwargs):
        for meta in result._iter_meta(**kwargs):
            if meta is not None:
                self.on_state_change(meta, None)

    def stop(self):
        if self._pubsub is not None:
            self._pubsub.close()

    def drain_events(self, timeout=None):
        if self._pubsub:
            with self.reconnect_on_error():
                message = self._pubsub.get_message(timeout=timeout)
                if message and message['type'] == 'message':
                    self.on_state_change(self._decode_result(message['data']), message)
        elif timeout:
            time.sleep(timeout)

    def consume_from(self, task_id):
        if self._pubsub is None:
            return self.start(task_id)
        self._consume_from(task_id)

    def _consume_from(self, task_id):
        key = self._get_key_for_task(task_id)
        if key not in self.subscribed_to:
            self.subscribed_to.add(key)
            with self.reconnect_on_error():
                self._pubsub.subscribe(key)

    def cancel_for(self, task_id):
        key = self._get_key_for_task(task_id)
        self.subscribed_to.discard(key)
        if self._pubsub:
            with self.reconnect_on_error():
                self._pubsub.unsubscribe(key)


[docs]class RedisBackend(BaseKeyValueStoreBackend, AsyncBackendMixin):
    """Redis task result store.

    It makes use of the following commands:
    GET, MGET, DEL, INCRBY, EXPIRE, SET, SETEX
    """

    ResultConsumer = ResultConsumer

    #: :pypi:`redis` client module.
    redis = redis

    #: Maximum number of connections in the pool.
    max_connections = None

    supports_autoexpire = True
    supports_native_join = True

    def __init__(self, host=None, port=None, db=None, password=None,
                 max_connections=None, url=None,
                 connection_pool=None, **kwargs):
        super().__init__(expires_type=int, **kwargs)
        _get = self.app.conf.get
        if self.redis is None:
            raise ImproperlyConfigured(E_REDIS_MISSING.strip())

        if host and '://' in host:
            url, host = host, None

        self.max_connections = (
            max_connections or
            _get('redis_max_connections') or
            self.max_connections)
        self._ConnectionPool = connection_pool

        socket_timeout = _get('redis_socket_timeout')
        socket_connect_timeout = _get('redis_socket_connect_timeout')
        retry_on_timeout = _get('redis_retry_on_timeout')
        socket_keepalive = _get('redis_socket_keepalive')

        self.connparams = {
            'host': _get('redis_host') or 'localhost',
            'port': _get('redis_port') or 6379,
            'db': _get('redis_db') or 0,
            'password': _get('redis_password'),
            'max_connections': self.max_connections,
            'socket_timeout': socket_timeout and float(socket_timeout),
            'retry_on_timeout': retry_on_timeout or False,
            'socket_connect_timeout':
                socket_connect_timeout and float(socket_connect_timeout),
        }

        # absent in redis.connection.UnixDomainSocketConnection
        if socket_keepalive:
            self.connparams['socket_keepalive'] = socket_keepalive

        # "redis_backend_use_ssl" must be a dict with the keys:
        # 'ssl_cert_reqs', 'ssl_ca_certs', 'ssl_certfile', 'ssl_keyfile'
        # (the same as "broker_use_ssl")
        ssl = _get('redis_backend_use_ssl')
        if ssl:
            self.connparams.update(ssl)
            self.connparams['connection_class'] = redis.SSLConnection

        if url:
            self.connparams = self._params_from_url(url, self.connparams)

        # If we've received SSL parameters via query string or the
        # redis_backend_use_ssl dict, check ssl_cert_reqs is valid. If set
        # via query string ssl_cert_reqs will be a string so convert it here
        if ('connection_class' in self.connparams and
                self.connparams['connection_class'] is redis.SSLConnection):
            ssl_cert_reqs_missing = 'MISSING'
            ssl_string_to_constant = {'CERT_REQUIRED': CERT_REQUIRED,
                                      'CERT_OPTIONAL': CERT_OPTIONAL,
                                      'CERT_NONE': CERT_NONE,
                                      'required': CERT_REQUIRED,
                                      'optional': CERT_OPTIONAL,
                                      'none': CERT_NONE}
            ssl_cert_reqs = self.connparams.get('ssl_cert_reqs', ssl_cert_reqs_missing)
            ssl_cert_reqs = ssl_string_to_constant.get(ssl_cert_reqs, ssl_cert_reqs)
            if ssl_cert_reqs not in ssl_string_to_constant.values():
                raise ValueError(E_REDIS_SSL_CERT_REQS_MISSING_INVALID)

            if ssl_cert_reqs == CERT_OPTIONAL:
                logger.warning(W_REDIS_SSL_CERT_OPTIONAL)
            elif ssl_cert_reqs == CERT_NONE:
                logger.warning(W_REDIS_SSL_CERT_NONE)
            self.connparams['ssl_cert_reqs'] = ssl_cert_reqs

        self.url = url

        self.connection_errors, self.channel_errors = (
            get_redis_error_classes() if get_redis_error_classes
            else ((), ()))
        self.result_consumer = self.ResultConsumer(
            self, self.app, self.accept,
            self._pending_results, self._pending_messages,
        )

    def _params_from_url(self, url, defaults):
        scheme, host, port, _, password, path, query = _parse_url(url)
        connparams = dict(
            defaults, **dictfilter({
                'host': host, 'port': port, 'password': password,
                'db': query.pop('virtual_host', None)})
        )

        if scheme == 'socket':
            # use 'path' as path to the socket… in this case
            # the database number should be given in 'query'
            connparams.update({
                'connection_class': self.redis.UnixDomainSocketConnection,
                'path': '/' + path,
            })
            # host+port are invalid options when using this connection type.
            connparams.pop('host', None)
            connparams.pop('port', None)
            connparams.pop('socket_connect_timeout')
        else:
            connparams['db'] = path

        ssl_param_keys = ['ssl_ca_certs', 'ssl_certfile', 'ssl_keyfile',
                          'ssl_cert_reqs']

        if scheme == 'redis':
            # If connparams or query string contain ssl params, raise error
            if (any(key in connparams for key in ssl_param_keys) or
                    any(key in query for key in ssl_param_keys)):
                raise ValueError(E_REDIS_SSL_PARAMS_AND_SCHEME_MISMATCH)

        if scheme == 'rediss':
            connparams['connection_class'] = redis.SSLConnection
            # The following parameters, if present in the URL, are encoded. We
            # must add the decoded values to connparams.
            for ssl_setting in ssl_param_keys:
                ssl_val = query.pop(ssl_setting, None)
                if ssl_val:
                    connparams[ssl_setting] = unquote(ssl_val)

        # db may be string and start with / like in kombu.
        db = connparams.get('db') or 0
        db = db.strip('/') if isinstance(db, str) else db
        connparams['db'] = int(db)

        for key, value in query.items():
            if key in redis.connection.URL_QUERY_ARGUMENT_PARSERS:
                query[key] = redis.connection.URL_QUERY_ARGUMENT_PARSERS[key](
                    value
                )

        # Query parameters override other parameters
        connparams.update(query)
        return connparams

[docs]    @cached_property
    def retry_policy(self):
        retry_policy = super().retry_policy
        if "retry_policy" in self._transport_options:
            retry_policy = retry_policy.copy()
            retry_policy.update(self._transport_options['retry_policy'])

        return retry_policy


[docs]    def on_task_call(self, producer, task_id):
        if not task_join_will_block():
            self.result_consumer.consume_from(task_id)


[docs]    def get(self, key):
        return self.client.get(key)


[docs]    def mget(self, keys):
        return self.client.mget(keys)


[docs]    def ensure(self, fun, args, **policy):
        retry_policy = dict(self.retry_policy, **policy)
        max_retries = retry_policy.get('max_retries')
        return retry_over_time(
            fun, self.connection_errors, args, {},
            partial(self.on_connection_error, max_retries),
            **retry_policy)


[docs]    def on_connection_error(self, max_retries, exc, intervals, retries):
        tts = next(intervals)
        logger.error(
            E_LOST.strip(),
            retries, max_retries or 'Inf', humanize_seconds(tts, 'in '))
        return tts


[docs]    def set(self, key, value, **retry_policy):
        return self.ensure(self._set, (key, value), **retry_policy)


    def _set(self, key, value):
        with self.client.pipeline() as pipe:
            if self.expires:
                pipe.setex(key, self.expires, value)
            else:
                pipe.set(key, value)
            pipe.publish(key, value)
            pipe.execute()

[docs]    def forget(self, task_id):
        super().forget(task_id)
        self.result_consumer.cancel_for(task_id)


[docs]    def delete(self, key):
        self.client.delete(key)


[docs]    def incr(self, key):
        return self.client.incr(key)


[docs]    def expire(self, key, value):
        return self.client.expire(key, value)


[docs]    def add_to_chord(self, group_id, result):
        self.client.incr(self.get_key_for_group(group_id, '.t'), 1)


    def _unpack_chord_result(self, tup, decode,
                             EXCEPTION_STATES=states.EXCEPTION_STATES,
                             PROPAGATE_STATES=states.PROPAGATE_STATES):
        _, tid, state, retval = decode(tup)
        if state in EXCEPTION_STATES:
            retval = self.exception_to_python(retval)
        if state in PROPAGATE_STATES:
            raise ChordError(f'Dependency {tid} raised {retval!r}')
        return retval

[docs]    def apply_chord(self, header_result, body, **kwargs):
        # If any of the child results of this chord are complex (ie. group
        # results themselves), we need to save `header_result` to ensure that
        # the expected structure is retained when we finish the chord and pass
        # the results onward to the body in `on_chord_part_return()`. We don't
        # do this is all cases to retain an optimisation in the common case
        # where a chord header is comprised of simple result objects.
        if any(isinstance(nr, GroupResult) for nr in header_result.results):
            header_result.save(backend=self)


    @cached_property
    def _chord_zset(self):
        return self._transport_options.get('result_chord_ordered', True)

    @cached_property
    def _transport_options(self):
        return self.app.conf.get('result_backend_transport_options', {})

[docs]    def on_chord_part_return(self, request, state, result,
                             propagate=None, **kwargs):
        app = self.app
        tid, gid, group_index = request.id, request.group, request.group_index
        if not gid or not tid:
            return
        if group_index is None:
            group_index = '+inf'

        client = self.client
        jkey = self.get_key_for_group(gid, '.j')
        tkey = self.get_key_for_group(gid, '.t')
        result = self.encode_result(result, state)
        encoded = self.encode([1, tid, state, result])
        with client.pipeline() as pipe:
            pipeline = (
                pipe.zadd(jkey, {encoded: group_index}).zcount(jkey, "-inf", "+inf")
                if self._chord_zset
                else pipe.rpush(jkey, encoded).llen(jkey)
            ).get(tkey)
            if self.expires:
                pipeline = pipeline \
                    .expire(jkey, self.expires) \
                    .expire(tkey, self.expires)

            _, readycount, totaldiff = pipeline.execute()[:3]

        totaldiff = int(totaldiff or 0)

        try:
            callback = maybe_signature(request.chord, app=app)
            total = callback['chord_size'] + totaldiff
            if readycount == total:
                header_result = GroupResult.restore(gid)
                if header_result is not None:
                    # If we manage to restore a `GroupResult`, then it must
                    # have been complex and saved by `apply_chord()` earlier.
                    #
                    # Before we can join the `GroupResult`, it needs to be
                    # manually marked as ready to avoid blocking
                    header_result.on_ready()
                    # We'll `join()` it to get the results and ensure they are
                    # structured as intended rather than the flattened version
                    # we'd construct without any other information.
                    join_func = (
                        header_result.join_native
                        if header_result.supports_native_join
                        else header_result.join
                    )
                    with allow_join_result():
                        resl = join_func(timeout=3.0, propagate=True)
                else:
                    # Otherwise simply extract and decode the results we
                    # stashed along the way, which should be faster for large
                    # numbers of simple results in the chord header.
                    decode, unpack = self.decode, self._unpack_chord_result
                    with client.pipeline() as pipe:
                        if self._chord_zset:
                            pipeline = pipe.zrange(jkey, 0, -1)
                        else:
                            pipeline = pipe.lrange(jkey, 0, total)
                        resl, = pipeline.execute()
                    resl = [unpack(tup, decode) for tup in resl]
                try:
                    callback.delay(resl)
                except Exception as exc:  # pylint: disable=broad-except
                    logger.exception(
                        'Chord callback for %r raised: %r', request.group, exc)
                    return self.chord_error_from_stack(
                        callback,
                        ChordError(f'Callback error: {exc!r}'),
                    )
                finally:
                    with client.pipeline() as pipe:
                        _, _ = pipe \
                            .delete(jkey) \
                            .delete(tkey) \
                            .execute()
        except ChordError as exc:
            logger.exception('Chord %r raised: %r', request.group, exc)
            return self.chord_error_from_stack(callback, exc)
        except Exception as exc:  # pylint: disable=broad-except
            logger.exception('Chord %r raised: %r', request.group, exc)
            return self.chord_error_from_stack(
                callback,
                ChordError(f'Join error: {exc!r}'),
            )


    def _create_client(self, **params):
        return self._get_client()(
            connection_pool=self._get_pool(**params),
        )

    def _get_client(self):
        return self.redis.StrictRedis

    def _get_pool(self, **params):
        return self.ConnectionPool(**params)

    @property
    def ConnectionPool(self):
        if self._ConnectionPool is None:
            self._ConnectionPool = self.redis.ConnectionPool
        return self._ConnectionPool

[docs]    @cached_property
    def client(self):
        return self._create_client(**self.connparams)


    def __reduce__(self, args=(), kwargs=None):
        kwargs = {} if not kwargs else kwargs
        return super().__reduce__(
            (self.url,), {'expires': self.expires},
        )



[docs]class SentinelBackend(RedisBackend):
    """Redis sentinel task result store."""

    sentinel = getattr(redis, "sentinel", None)

    def __init__(self, *args, **kwargs):
        if self.sentinel is None:
            raise ImproperlyConfigured(E_REDIS_SENTINEL_MISSING.strip())

        super().__init__(*args, **kwargs)

    def _params_from_url(self, url, defaults):
        # URL looks like sentinel://0.0.0.0:26347/3;sentinel://0.0.0.0:26348/3.
        chunks = url.split(";")
        connparams = dict(defaults, hosts=[])
        for chunk in chunks:
            data = super()._params_from_url(
                url=chunk, defaults=defaults)
            connparams['hosts'].append(data)
        for param in ("host", "port", "db", "password"):
            connparams.pop(param)

        # Adding db/password in connparams to connect to the correct instance
        for param in ("db", "password"):
            if connparams['hosts'] and param in connparams['hosts'][0]:
                connparams[param] = connparams['hosts'][0].get(param)
        return connparams

    def _get_sentinel_instance(self, **params):
        connparams = params.copy()

        hosts = connparams.pop("hosts")
        min_other_sentinels = self._transport_options.get("min_other_sentinels", 0)
        sentinel_kwargs = self._transport_options.get("sentinel_kwargs", {})

        sentinel_instance = self.sentinel.Sentinel(
            [(cp['host'], cp['port']) for cp in hosts],
            min_other_sentinels=min_other_sentinels,
            sentinel_kwargs=sentinel_kwargs,
            **connparams)

        return sentinel_instance

    def _get_pool(self, **params):
        sentinel_instance = self._get_sentinel_instance(**params)

        master_name = self._transport_options.get("master_name", None)

        return sentinel_instance.master_for(
            service_name=master_name,
            redis_class=self._get_client(),
        ).connection_pool





            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.backends.rpc

"""The ``RPC`` result backend for AMQP brokers.

RPC-style result backend, using reply-to and one queue per client.
"""
import time

import kombu
from kombu.common import maybe_declare
from kombu.utils.compat import register_after_fork
from kombu.utils.objects import cached_property

from celery import states
from celery._state import current_task, task_join_will_block

from . import base
from .asynchronous import AsyncBackendMixin, BaseResultConsumer

__all__ = ('BacklogLimitExceeded', 'RPCBackend')

E_NO_CHORD_SUPPORT = """
The "rpc" result backend does not support chords!

Note that a group chained with a task is also upgraded to be a chord,
as this pattern requires synchronization.

Result backends that supports chords: Redis, Database, Memcached, and more.
"""


[docs]class BacklogLimitExceeded(Exception):
    """Too much state history to fast-forward."""



def _on_after_fork_cleanup_backend(backend):
    backend._after_fork()


class ResultConsumer(BaseResultConsumer):
    Consumer = kombu.Consumer

    _connection = None
    _consumer = None

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self._create_binding = self.backend._create_binding

    def start(self, initial_task_id, no_ack=True, **kwargs):
        self._connection = self.app.connection()
        initial_queue = self._create_binding(initial_task_id)
        self._consumer = self.Consumer(
            self._connection.default_channel, [initial_queue],
            callbacks=[self.on_state_change], no_ack=no_ack,
            accept=self.accept)
        self._consumer.consume()

    def drain_events(self, timeout=None):
        if self._connection:
            return self._connection.drain_events(timeout=timeout)
        elif timeout:
            time.sleep(timeout)

    def stop(self):
        try:
            self._consumer.cancel()
        finally:
            self._connection.close()

    def on_after_fork(self):
        self._consumer = None
        if self._connection is not None:
            self._connection.collect()
            self._connection = None

    def consume_from(self, task_id):
        if self._consumer is None:
            return self.start(task_id)
        queue = self._create_binding(task_id)
        if not self._consumer.consuming_from(queue):
            self._consumer.add_queue(queue)
            self._consumer.consume()

    def cancel_for(self, task_id):
        if self._consumer:
            self._consumer.cancel_by_queue(self._create_binding(task_id).name)


[docs]class RPCBackend(base.Backend, AsyncBackendMixin):
    """Base class for the RPC result backend."""

    Exchange = kombu.Exchange
    Producer = kombu.Producer
    ResultConsumer = ResultConsumer

    #: Exception raised when there are too many messages for a task id.
    BacklogLimitExceeded = BacklogLimitExceeded

    persistent = False
    supports_autoexpire = True
    supports_native_join = True

    retry_policy = {
        'max_retries': 20,
        'interval_start': 0,
        'interval_step': 1,
        'interval_max': 1,
    }

[docs]    class Consumer(kombu.Consumer):
        """Consumer that requires manual declaration of queues."""

        auto_declare = False


[docs]    class Queue(kombu.Queue):
        """Queue that never caches declaration."""

        can_cache_declaration = False


    def __init__(self, app, connection=None, exchange=None, exchange_type=None,
                 persistent=None, serializer=None, auto_delete=True, **kwargs):
        super().__init__(app, **kwargs)
        conf = self.app.conf
        self._connection = connection
        self._out_of_band = {}
        self.persistent = self.prepare_persistent(persistent)
        self.delivery_mode = 2 if self.persistent else 1
        exchange = exchange or conf.result_exchange
        exchange_type = exchange_type or conf.result_exchange_type
        self.exchange = self._create_exchange(
            exchange, exchange_type, self.delivery_mode,
        )
        self.serializer = serializer or conf.result_serializer
        self.auto_delete = auto_delete
        self.result_consumer = self.ResultConsumer(
            self, self.app, self.accept,
            self._pending_results, self._pending_messages,
        )
        if register_after_fork is not None:
            register_after_fork(self, _on_after_fork_cleanup_backend)

    def _after_fork(self):
        # clear state for child processes.
        self._pending_results.clear()
        self.result_consumer._after_fork()

    def _create_exchange(self, name, type='direct', delivery_mode=2):
        # uses direct to queue routing (anon exchange).
        return self.Exchange(None)

    def _create_binding(self, task_id):
        """Create new binding for task with id."""
        # RPC backend caches the binding, as one queue is used for all tasks.
        return self.binding

[docs]    def ensure_chords_allowed(self):
        raise NotImplementedError(E_NO_CHORD_SUPPORT.strip())


[docs]    def on_task_call(self, producer, task_id):
        # Called every time a task is sent when using this backend.
        # We declare the queue we receive replies on in advance of sending
        # the message, but we skip this if running in the prefork pool
        # (task_join_will_block), as we know the queue is already declared.
        if not task_join_will_block():
            maybe_declare(self.binding(producer.channel), retry=True)


[docs]    def destination_for(self, task_id, request):
        """Get the destination for result by task id.

        Returns:
            Tuple[str, str]: tuple of ``(reply_to, correlation_id)``.
        """
        # Backends didn't always receive the `request`, so we must still
        # support old code that relies on current_task.
        try:
            request = request or current_task.request
        except AttributeError:
            raise RuntimeError(
                f'RPC backend missing task request for {task_id!r}')
        return request.reply_to, request.correlation_id or task_id


[docs]    def on_reply_declare(self, task_id):
        # Return value here is used as the `declare=` argument
        # for Producer.publish.
        # By default we don't have to declare anything when sending a result.
        pass


[docs]    def on_result_fulfilled(self, result):
        # This usually cancels the queue after the result is received,
        # but we don't have to cancel since we have one queue per process.
        pass


[docs]    def as_uri(self, include_password=True):
        return 'rpc://'


[docs]    def store_result(self, task_id, result, state,
                     traceback=None, request=None, **kwargs):
        """Send task return value and state."""
        routing_key, correlation_id = self.destination_for(task_id, request)
        if not routing_key:
            return
        with self.app.amqp.producer_pool.acquire(block=True) as producer:
            producer.publish(
                self._to_result(task_id, state, result, traceback, request),
                exchange=self.exchange,
                routing_key=routing_key,
                correlation_id=correlation_id,
                serializer=self.serializer,
                retry=True, retry_policy=self.retry_policy,
                declare=self.on_reply_declare(task_id),
                delivery_mode=self.delivery_mode,
            )
        return result


    def _to_result(self, task_id, state, result, traceback, request):
        return {
            'task_id': task_id,
            'status': state,
            'result': self.encode_result(result, state),
            'traceback': traceback,
            'children': self.current_task_children(request),
        }

[docs]    def on_out_of_band_result(self, task_id, message):
        # Callback called when a reply for a task is received,
        # but we have no idea what do do with it.
        # Since the result is not pending, we put it in a separate
        # buffer: probably it will become pending later.
        if self.result_consumer:
            self.result_consumer.on_out_of_band_result(message)
        self._out_of_band[task_id] = message


[docs]    def get_task_meta(self, task_id, backlog_limit=1000):
        buffered = self._out_of_band.pop(task_id, None)
        if buffered:
            return self._set_cache_by_message(task_id, buffered)

        # Polling and using basic_get
        latest_by_id = {}
        prev = None
        for acc in self._slurp_from_queue(task_id, self.accept, backlog_limit):
            tid = self._get_message_task_id(acc)
            prev, latest_by_id[tid] = latest_by_id.get(tid), acc
            if prev:
                # backends aren't expected to keep history,
                # so we delete everything except the most recent state.
                prev.ack()
                prev = None

        latest = latest_by_id.pop(task_id, None)
        for tid, msg in latest_by_id.items():
            self.on_out_of_band_result(tid, msg)

        if latest:
            latest.requeue()
            return self._set_cache_by_message(task_id, latest)
        else:
            # no new state, use previous
            try:
                return self._cache[task_id]
            except KeyError:
                # result probably pending.
                return {'status': states.PENDING, 'result': None}

    poll = get_task_meta  # XXX compat

    def _set_cache_by_message(self, task_id, message):
        payload = self._cache[task_id] = self.meta_from_decoded(
            message.payload)
        return payload

    def _slurp_from_queue(self, task_id, accept,
                          limit=1000, no_ack=False):
        with self.app.pool.acquire_channel(block=True) as (_, channel):
            binding = self._create_binding(task_id)(channel)
            binding.declare()

            for _ in range(limit):
                msg = binding.get(accept=accept, no_ack=no_ack)
                if not msg:
                    break
                yield msg
            else:
                raise self.BacklogLimitExceeded(task_id)

    def _get_message_task_id(self, message):
        try:
            # try property first so we don't have to deserialize
            # the payload.
            return message.properties['correlation_id']
        except (AttributeError, KeyError):
            # message sent by old Celery version, need to deserialize.
            return message.payload['task_id']

[docs]    def revive(self, channel):
        pass


[docs]    def reload_task_result(self, task_id):
        raise NotImplementedError(
            'reload_task_result is not supported by this backend.')


[docs]    def reload_group_result(self, task_id):
        """Reload group result, even if it has been previously fetched."""
        raise NotImplementedError(
            'reload_group_result is not supported by this backend.')


[docs]    def save_group(self, group_id, result):
        raise NotImplementedError(
            'save_group is not supported by this backend.')


[docs]    def restore_group(self, group_id, cache=True):
        raise NotImplementedError(
            'restore_group is not supported by this backend.')


[docs]    def delete_group(self, group_id):
        raise NotImplementedError(
            'delete_group is not supported by this backend.')


    def __reduce__(self, args=(), kwargs=None):
        kwargs = {} if not kwargs else kwargs
        return super().__reduce__(args, dict(
            kwargs,
            connection=self._connection,
            exchange=self.exchange.name,
            exchange_type=self.exchange.type,
            persistent=self.persistent,
            serializer=self.serializer,
            auto_delete=self.auto_delete,
            expires=self.expires,
        ))

    @property
    def binding(self):
        return self.Queue(
            self.oid, self.exchange, self.oid,
            durable=False,
            auto_delete=True,
            expires=self.expires,
        )

[docs]    @cached_property
    def oid(self):
        # cached here is the app OID: name of queue we receive results on.
        return self.app.oid






            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.backends.s3

"""s3 result store backend."""

from kombu.utils.encoding import bytes_to_str

from celery.exceptions import ImproperlyConfigured

from .base import KeyValueStoreBackend

try:
    import boto3
    import botocore
except ImportError:
    boto3 = None
    botocore = None


__all__ = ('S3Backend',)


[docs]class S3Backend(KeyValueStoreBackend):
    """An S3 task result store.

    Raises:
        celery.exceptions.ImproperlyConfigured:
            if module :pypi:`boto3` is not available,
            if the :setting:`aws_access_key_id` or
            setting:`aws_secret_access_key` are not set,
            or it the :setting:`bucket` is not set.
    """

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        if not boto3 or not botocore:
            raise ImproperlyConfigured('You must install boto3'
                                       'to use s3 backend')
        conf = self.app.conf

        self.endpoint_url = conf.get('s3_endpoint_url', None)
        self.aws_region = conf.get('s3_region', None)

        self.aws_access_key_id = conf.get('s3_access_key_id', None)
        self.aws_secret_access_key = conf.get('s3_secret_access_key', None)

        self.bucket_name = conf.get('s3_bucket', None)
        if not self.bucket_name:
            raise ImproperlyConfigured('Missing bucket name')

        self.base_path = conf.get('s3_base_path', None)

        self._s3_resource = self._connect_to_s3()

    def _get_s3_object(self, key):
        key_bucket_path = self.base_path + key if self.base_path else key
        return self._s3_resource.Object(self.bucket_name, key_bucket_path)

[docs]    def get(self, key):
        key = bytes_to_str(key)
        s3_object = self._get_s3_object(key)
        try:
            s3_object.load()
            data = s3_object.get()['Body'].read()
            return data if self.content_encoding == 'binary' else data.decode('utf-8')
        except botocore.exceptions.ClientError as error:
            if error.response['Error']['Code'] == "404":
                return None
            raise error


[docs]    def set(self, key, value):
        key = bytes_to_str(key)
        s3_object = self._get_s3_object(key)
        s3_object.put(Body=value)


[docs]    def delete(self, key):
        s3_object = self._get_s3_object(key)
        s3_object.delete()


    def _connect_to_s3(self):
        session = boto3.Session(
            aws_access_key_id=self.aws_access_key_id,
            aws_secret_access_key=self.aws_secret_access_key,
            region_name=self.aws_region
        )
        if session.get_credentials() is None:
            raise ImproperlyConfigured('Missing aws s3 creds')
        return session.resource('s3', endpoint_url=self.endpoint_url)





            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.backends.database.models

"""Database models used by the SQLAlchemy result store backend."""
from datetime import datetime

import sqlalchemy as sa
from sqlalchemy.types import PickleType

from celery import states

from .session import ResultModelBase

__all__ = ('Task', 'TaskExtended', 'TaskSet')


[docs]class Task(ResultModelBase):
    """Task result/status."""

    __tablename__ = 'celery_taskmeta'
    __table_args__ = {'sqlite_autoincrement': True}

    id = sa.Column(sa.Integer, sa.Sequence('task_id_sequence'),
                   primary_key=True, autoincrement=True)
    task_id = sa.Column(sa.String(155), unique=True)
    status = sa.Column(sa.String(50), default=states.PENDING)
    result = sa.Column(PickleType, nullable=True)
    date_done = sa.Column(sa.DateTime, default=datetime.utcnow,
                          onupdate=datetime.utcnow, nullable=True)
    traceback = sa.Column(sa.Text, nullable=True)

    def __init__(self, task_id):
        self.task_id = task_id

[docs]    def to_dict(self):
        return {
            'task_id': self.task_id,
            'status': self.status,
            'result': self.result,
            'traceback': self.traceback,
            'date_done': self.date_done,
        }


    def __repr__(self):
        return '<Task {0.task_id} state: {0.status}>'.format(self)

[docs]    @classmethod
    def configure(cls, schema=None, name=None):
        cls.__table__.schema = schema
        cls.id.default.schema = schema
        cls.__table__.name = name or cls.__tablename__




[docs]class TaskExtended(Task):
    """For the extend result."""

    __tablename__ = 'celery_taskmeta'
    __table_args__ = {'sqlite_autoincrement': True, 'extend_existing': True}

    name = sa.Column(sa.String(155), nullable=True)
    args = sa.Column(sa.LargeBinary, nullable=True)
    kwargs = sa.Column(sa.LargeBinary, nullable=True)
    worker = sa.Column(sa.String(155), nullable=True)
    retries = sa.Column(sa.Integer, nullable=True)
    queue = sa.Column(sa.String(155), nullable=True)

[docs]    def to_dict(self):
        task_dict = super().to_dict()
        task_dict.update({
            'name': self.name,
            'args': self.args,
            'kwargs': self.kwargs,
            'worker': self.worker,
            'retries': self.retries,
            'queue': self.queue,
        })
        return task_dict




[docs]class TaskSet(ResultModelBase):
    """TaskSet result."""

    __tablename__ = 'celery_tasksetmeta'
    __table_args__ = {'sqlite_autoincrement': True}

    id = sa.Column(sa.Integer, sa.Sequence('taskset_id_sequence'),
                   autoincrement=True, primary_key=True)
    taskset_id = sa.Column(sa.String(155), unique=True)
    result = sa.Column(PickleType, nullable=True)
    date_done = sa.Column(sa.DateTime, default=datetime.utcnow,
                          nullable=True)

    def __init__(self, taskset_id, result):
        self.taskset_id = taskset_id
        self.result = result

[docs]    def to_dict(self):
        return {
            'taskset_id': self.taskset_id,
            'result': self.result,
            'date_done': self.date_done,
        }


    def __repr__(self):
        return f'<TaskSet: {self.taskset_id}>'

[docs]    @classmethod
    def configure(cls, schema=None, name=None):
        cls.__table__.schema = schema
        cls.id.default.schema = schema
        cls.__table__.name = name or cls.__tablename__






            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.backends.database.session

"""SQLAlchemy session."""
import time

from kombu.utils.compat import register_after_fork
from sqlalchemy import create_engine
from sqlalchemy.exc import DatabaseError
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker
from sqlalchemy.pool import NullPool

from celery.utils.time import get_exponential_backoff_interval

ResultModelBase = declarative_base()

__all__ = ('SessionManager',)

PREPARE_MODELS_MAX_RETRIES = 10


def _after_fork_cleanup_session(session):
    session._after_fork()


[docs]class SessionManager:
    """Manage SQLAlchemy sessions."""

    def __init__(self):
        self._engines = {}
        self._sessions = {}
        self.forked = False
        self.prepared = False
        if register_after_fork is not None:
            register_after_fork(self, _after_fork_cleanup_session)

    def _after_fork(self):
        self.forked = True

[docs]    def get_engine(self, dburi, **kwargs):
        if self.forked:
            try:
                return self._engines[dburi]
            except KeyError:
                engine = self._engines[dburi] = create_engine(dburi, **kwargs)
                return engine
        else:
            kwargs = {k: v for k, v in kwargs.items() if
                      not k.startswith('pool')}
            return create_engine(dburi, poolclass=NullPool, **kwargs)


[docs]    def create_session(self, dburi, short_lived_sessions=False, **kwargs):
        engine = self.get_engine(dburi, **kwargs)
        if self.forked:
            if short_lived_sessions or dburi not in self._sessions:
                self._sessions[dburi] = sessionmaker(bind=engine)
            return engine, self._sessions[dburi]
        return engine, sessionmaker(bind=engine)


[docs]    def prepare_models(self, engine):
        if not self.prepared:
            # SQLAlchemy will check if the items exist before trying to
            # create them, which is a race condition. If it raises an error
            # in one iteration, the next may pass all the existence checks
            # and the call will succeed.
            retries = 0
            while True:
                try:
                    ResultModelBase.metadata.create_all(engine)
                except DatabaseError:
                    if retries < PREPARE_MODELS_MAX_RETRIES:
                        sleep_amount_ms = get_exponential_backoff_interval(
                            10, retries, 1000, True
                        )
                        time.sleep(sleep_amount_ms / 1000)
                        retries += 1
                    else:
                        raise
                else:
                    break
            self.prepared = True


[docs]    def session_factory(self, dburi, **kwargs):
        engine, session = self.create_session(dburi, **kwargs)
        self.prepare_models(engine)
        return session()






            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.bin.base

"""Click customizations for Celery."""
import json
from collections import OrderedDict
from pprint import pformat

import click
from click import ParamType
from kombu.utils.objects import cached_property

from celery._state import get_current_app
from celery.utils import text
from celery.utils.log import mlevel
from celery.utils.time import maybe_iso8601

try:
    from pygments import highlight
    from pygments.formatters import Terminal256Formatter
    from pygments.lexers import PythonLexer
except ImportError:
    def highlight(s, *args, **kwargs):
        """Place holder function in case pygments is missing."""
        return s
    LEXER = None
    FORMATTER = None
else:
    LEXER = PythonLexer()
    FORMATTER = Terminal256Formatter()


[docs]class CLIContext:
    """Context Object for the CLI."""

    def __init__(self, app, no_color, workdir, quiet=False):
        """Initialize the CLI context."""
        self.app = app or get_current_app()
        self.no_color = no_color
        self.quiet = quiet
        self.workdir = workdir

[docs]    @cached_property
    def OK(self):
        return self.style("OK", fg="green", bold=True)


[docs]    @cached_property
    def ERROR(self):
        return self.style("ERROR", fg="red", bold=True)


[docs]    def style(self, message=None, **kwargs):
        if self.no_color:
            return message
        else:
            return click.style(message, **kwargs)


[docs]    def secho(self, message=None, **kwargs):
        if self.no_color:
            kwargs['color'] = False
            click.echo(message, **kwargs)
        else:
            click.secho(message, **kwargs)


[docs]    def echo(self, message=None, **kwargs):
        if self.no_color:
            kwargs['color'] = False
            click.echo(message, **kwargs)
        else:
            click.echo(message, **kwargs)


[docs]    def error(self, message=None, **kwargs):
        kwargs['err'] = True
        if self.no_color:
            kwargs['color'] = False
            click.echo(message, **kwargs)
        else:
            click.secho(message, **kwargs)


[docs]    def pretty(self, n):
        if isinstance(n, list):
            return self.OK, self.pretty_list(n)
        if isinstance(n, dict):
            if 'ok' in n or 'error' in n:
                return self.pretty_dict_ok_error(n)
            else:
                s = json.dumps(n, sort_keys=True, indent=4)
                if not self.no_color:
                    s = highlight(s, LEXER, FORMATTER)
                return self.OK, s
        if isinstance(n, str):
            return self.OK, n
        return self.OK, pformat(n)


[docs]    def pretty_list(self, n):
        if not n:
            return '- empty -'
        return '\n'.join(
            f'{self.style("*", fg="white")} {item}' for item in n
        )


[docs]    def pretty_dict_ok_error(self, n):
        try:
            return (self.OK,
                    text.indent(self.pretty(n['ok'])[1], 4))
        except KeyError:
            pass
        return (self.ERROR,
                text.indent(self.pretty(n['error'])[1], 4))


[docs]    def say_chat(self, direction, title, body='', show_body=False):
        if direction == '<-' and self.quiet:
            return
        dirstr = not self.quiet and f'{self.style(direction, fg="white", bold=True)} ' or ''
        self.echo(f'{dirstr} {title}')
        if body and show_body:
            self.echo(body)




[docs]class CeleryOption(click.Option):
    """Customized option for Celery."""

[docs]    def get_default(self, ctx):
        if self.default_value_from_context:
            self.default = ctx.obj[self.default_value_from_context]
        return super().get_default(ctx)


    def __init__(self, *args, **kwargs):
        """Initialize a Celery option."""
        self.help_group = kwargs.pop('help_group', None)
        self.default_value_from_context = kwargs.pop('default_value_from_context', None)
        super().__init__(*args, **kwargs)



[docs]class CeleryCommand(click.Command):
    """Customized command for Celery."""

[docs]    def format_options(self, ctx, formatter):
        """Write all the options into the formatter if they exist."""
        opts = OrderedDict()
        for param in self.get_params(ctx):
            rv = param.get_help_record(ctx)
            if rv is not None:
                if hasattr(param, 'help_group') and param.help_group:
                    opts.setdefault(str(param.help_group), []).append(rv)
                else:
                    opts.setdefault('Options', []).append(rv)

        for name, opts_group in opts.items():
            with formatter.section(name):
                formatter.write_dl(opts_group)




[docs]class CeleryDaemonCommand(CeleryCommand):
    """Daemon commands."""

    def __init__(self, *args, **kwargs):
        """Initialize a Celery command with common daemon options."""
        super().__init__(*args, **kwargs)
        self.params.append(CeleryOption(('-f', '--logfile'), help_group="Daemonization Options"))
        self.params.append(CeleryOption(('--pidfile',), help_group="Daemonization Options"))
        self.params.append(CeleryOption(('--uid',), help_group="Daemonization Options"))
        self.params.append(CeleryOption(('--uid',), help_group="Daemonization Options"))
        self.params.append(CeleryOption(('--gid',), help_group="Daemonization Options"))
        self.params.append(CeleryOption(('--umask',), help_group="Daemonization Options"))
        self.params.append(CeleryOption(('--executable',), help_group="Daemonization Options"))



[docs]class CommaSeparatedList(ParamType):
    """Comma separated list argument."""

    name = "comma separated list"

[docs]    def convert(self, value, param, ctx):
        return text.str_to_list(value)




[docs]class Json(ParamType):
    """JSON formatted argument."""

    name = "json"

[docs]    def convert(self, value, param, ctx):
        try:
            return json.loads(value)
        except ValueError as e:
            self.fail(str(e))




[docs]class ISO8601DateTime(ParamType):
    """ISO 8601 Date Time argument."""

    name = "iso-86091"

[docs]    def convert(self, value, param, ctx):
        try:
            return maybe_iso8601(value)
        except (TypeError, ValueError) as e:
            self.fail(e)




[docs]class ISO8601DateTimeOrFloat(ParamType):
    """ISO 8601 Date Time or float argument."""

    name = "iso-86091 or float"

[docs]    def convert(self, value, param, ctx):
        try:
            return float(value)
        except (TypeError, ValueError):
            pass

        try:
            return maybe_iso8601(value)
        except (TypeError, ValueError) as e:
            self.fail(e)




[docs]class LogLevel(click.Choice):
    """Log level option."""

    def __init__(self):
        """Initialize the log level option with the relevant choices."""
        super().__init__(('DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL', 'FATAL'))

[docs]    def convert(self, value, param, ctx):
        value = value.upper()
        value = super().convert(value, param, ctx)
        return mlevel(value)




JSON = Json()
ISO8601 = ISO8601DateTime()
ISO8601_OR_FLOAT = ISO8601DateTimeOrFloat()
LOG_LEVEL = LogLevel()
COMMA_SEPARATED_LIST = CommaSeparatedList()




            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.bin.celery

"""Celery Command Line Interface."""
import os
import traceback

import click
import click.exceptions
from click.types import ParamType
from click_didyoumean import DYMGroup

from celery import VERSION_BANNER
from celery.app.utils import find_app
from celery.bin.amqp import amqp
from celery.bin.base import CeleryCommand, CeleryOption, CLIContext
from celery.bin.beat import beat
from celery.bin.call import call
from celery.bin.control import control, inspect, status
from celery.bin.events import events
from celery.bin.graph import graph
from celery.bin.list import list_
from celery.bin.logtool import logtool
from celery.bin.migrate import migrate
from celery.bin.multi import multi
from celery.bin.purge import purge
from celery.bin.result import result
from celery.bin.shell import shell
from celery.bin.upgrade import upgrade
from celery.bin.worker import worker

UNABLE_TO_LOAD_APP_MODULE_NOT_FOUND = click.style("""
Unable to load celery application.
The module {0} was not found.""", fg='red')

UNABLE_TO_LOAD_APP_ERROR_OCCURRED = click.style("""
Unable to load celery application.
While trying to load the module {0} the following error occurred:
{1}""", fg='red')

UNABLE_TO_LOAD_APP_APP_MISSING = click.style("""
Unable to load celery application.
{0}""")


[docs]class App(ParamType):
    """Application option."""

    name = "application"

[docs]    def convert(self, value, param, ctx):
        try:
            return find_app(value)
        except ModuleNotFoundError as e:
            if e.name != value:
                exc = traceback.format_exc()
                self.fail(
                    UNABLE_TO_LOAD_APP_ERROR_OCCURRED.format(value, exc)
                )
            self.fail(UNABLE_TO_LOAD_APP_MODULE_NOT_FOUND.format(e.name))
        except AttributeError as e:
            attribute_name = e.args[0].capitalize()
            self.fail(UNABLE_TO_LOAD_APP_APP_MISSING.format(attribute_name))
        except Exception:
            exc = traceback.format_exc()
            self.fail(
                UNABLE_TO_LOAD_APP_ERROR_OCCURRED.format(value, exc)
            )




APP = App()


@click.group(cls=DYMGroup, invoke_without_command=True)
@click.option('-A',
              '--app',
              envvar='APP',
              cls=CeleryOption,
              type=APP,
              help_group="Global Options")
@click.option('-b',
              '--broker',
              envvar='BROKER_URL',
              cls=CeleryOption,
              help_group="Global Options")
@click.option('--result-backend',
              envvar='RESULT_BACKEND',
              cls=CeleryOption,
              help_group="Global Options")
@click.option('--loader',
              envvar='LOADER',
              cls=CeleryOption,
              help_group="Global Options")
@click.option('--config',
              envvar='CONFIG_MODULE',
              cls=CeleryOption,
              help_group="Global Options")
@click.option('--workdir',
              cls=CeleryOption,
              help_group="Global Options")
@click.option('-C',
              '--no-color',
              envvar='NO_COLOR',
              is_flag=True,
              cls=CeleryOption,
              help_group="Global Options")
@click.option('-q',
              '--quiet',
              is_flag=True,
              cls=CeleryOption,
              help_group="Global Options")
@click.option('--version',
              cls=CeleryOption,
              is_flag=True,
              help_group="Global Options")
@click.pass_context
def celery(ctx, app, broker, result_backend, loader, config, workdir,
           no_color, quiet, version):
    """Celery command entrypoint."""
    if version:
        click.echo(VERSION_BANNER)
        ctx.exit()
    elif ctx.invoked_subcommand is None:
        click.echo(ctx.get_help())
        ctx.exit()

    if workdir:
        os.chdir(workdir)
    if loader:
        # Default app takes loader from this env (Issue #1066).
        os.environ['CELERY_LOADER'] = loader
    if broker:
        os.environ['CELERY_BROKER_URL'] = broker
    if result_backend:
        os.environ['CELERY_RESULT_BACKEND'] = result_backend
    if config:
        os.environ['CELERY_CONFIG_MODULE'] = config
    ctx.obj = CLIContext(app=app, no_color=no_color, workdir=workdir,
                         quiet=quiet)

    # User options
    worker.params.extend(ctx.obj.app.user_options.get('worker', []))
    beat.params.extend(ctx.obj.app.user_options.get('beat', []))
    events.params.extend(ctx.obj.app.user_options.get('events', []))


@celery.command(cls=CeleryCommand)
@click.pass_context
def report(ctx):
    """Shows information useful to include in bug-reports."""
    app = ctx.obj.app
    app.loader.import_default_modules()
    ctx.obj.echo(app.bugreport())


celery.add_command(purge)
celery.add_command(call)
celery.add_command(beat)
celery.add_command(list_)
celery.add_command(result)
celery.add_command(migrate)
celery.add_command(status)
celery.add_command(worker)
celery.add_command(events)
celery.add_command(inspect)
celery.add_command(control)
celery.add_command(graph)
celery.add_command(upgrade)
celery.add_command(logtool)
celery.add_command(amqp)
celery.add_command(shell)
celery.add_command(multi)

# Monkey-patch click to display a custom error
# when -A or --app are used as sub-command options instead of as options
# of the global command.

previous_show_implementation = click.exceptions.NoSuchOption.show

WRONG_APP_OPTION_USAGE_MESSAGE = """You are using `{option_name}` as an option of the {info_name} sub-command:
celery {info_name} {option_name} celeryapp <...>

The support for this usage was removed in Celery 5.0. Instead you should use `{option_name}` as a global option:
celery {option_name} celeryapp {info_name} <...>"""


def _show(self, file=None):
    if self.option_name in ('-A', '--app'):
        self.ctx.obj.error(
            WRONG_APP_OPTION_USAGE_MESSAGE.format(
                option_name=self.option_name,
                info_name=self.ctx.info_name),
            fg='red'
        )
    previous_show_implementation(self, file=file)


click.exceptions.NoSuchOption.show = _show


[docs]def main() -> int:
    """Start celery umbrella command.

    This function is the main entrypoint for the CLI.

    :return: The exit code of the CLI.
    """
    return celery(auto_envvar_prefix="CELERY")





            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.bin.multi

"""Start multiple worker instances from the command-line.

.. program:: celery multi

Examples
========

.. code-block:: console

    $ # Single worker with explicit name and events enabled.
    $ celery multi start Leslie -E

    $ # Pidfiles and logfiles are stored in the current directory
    $ # by default.  Use --pidfile and --logfile argument to change
    $ # this.  The abbreviation %n will be expanded to the current
    $ # node name.
    $ celery multi start Leslie -E --pidfile=/var/run/celery/%n.pid
                                   --logfile=/var/log/celery/%n%I.log


    $ # You need to add the same arguments when you restart,
    $ # as these aren't persisted anywhere.
    $ celery multi restart Leslie -E --pidfile=/var/run/celery/%n.pid
                                     --logfile=/var/log/celery/%n%I.log

    $ # To stop the node, you need to specify the same pidfile.
    $ celery multi stop Leslie --pidfile=/var/run/celery/%n.pid

    $ # 3 workers, with 3 processes each
    $ celery multi start 3 -c 3
    celery worker -n celery1@myhost -c 3
    celery worker -n celery2@myhost -c 3
    celery worker -n celery3@myhost -c 3

    $ # override name prefix when using range
    $ celery multi start 3 --range-prefix=worker -c 3
    celery worker -n worker1@myhost -c 3
    celery worker -n worker2@myhost -c 3
    celery worker -n worker3@myhost -c 3

    $ # start 3 named workers
    $ celery multi start image video data -c 3
    celery worker -n image@myhost -c 3
    celery worker -n video@myhost -c 3
    celery worker -n data@myhost -c 3

    $ # specify custom hostname
    $ celery multi start 2 --hostname=worker.example.com -c 3
    celery worker -n celery1@worker.example.com -c 3
    celery worker -n celery2@worker.example.com -c 3

    $ # specify fully qualified nodenames
    $ celery multi start foo@worker.example.com bar@worker.example.com -c 3

    $ # fully qualified nodenames but using the current hostname
    $ celery multi start foo@%h bar@%h

    $ # Advanced example starting 10 workers in the background:
    $ #   * Three of the workers processes the images and video queue
    $ #   * Two of the workers processes the data queue with loglevel DEBUG
    $ #   * the rest processes the default' queue.
    $ celery multi start 10 -l INFO -Q:1-3 images,video -Q:4,5 data
        -Q default -L:4,5 DEBUG

    $ # You can show the commands necessary to start the workers with
    $ # the 'show' command:
    $ celery multi show 10 -l INFO -Q:1-3 images,video -Q:4,5 data
        -Q default -L:4,5 DEBUG

    $ # Additional options are added to each celery worker' comamnd,
    $ # but you can also modify the options for ranges of, or specific workers

    $ # 3 workers: Two with 3 processes, and one with 10 processes.
    $ celery multi start 3 -c 3 -c:1 10
    celery worker -n celery1@myhost -c 10
    celery worker -n celery2@myhost -c 3
    celery worker -n celery3@myhost -c 3

    $ # can also specify options for named workers
    $ celery multi start image video data -c 3 -c:image 10
    celery worker -n image@myhost -c 10
    celery worker -n video@myhost -c 3
    celery worker -n data@myhost -c 3

    $ # ranges and lists of workers in options is also allowed:
    $ # (-c:1-3 can also be written as -c:1,2,3)
    $ celery multi start 5 -c 3  -c:1-3 10
    celery worker -n celery1@myhost -c 10
    celery worker -n celery2@myhost -c 10
    celery worker -n celery3@myhost -c 10
    celery worker -n celery4@myhost -c 3
    celery worker -n celery5@myhost -c 3

    $ # lists also works with named workers
    $ celery multi start foo bar baz xuzzy -c 3 -c:foo,bar,baz 10
    celery worker -n foo@myhost -c 10
    celery worker -n bar@myhost -c 10
    celery worker -n baz@myhost -c 10
    celery worker -n xuzzy@myhost -c 3
"""
import os
import signal
import sys
from functools import wraps

import click
from kombu.utils.objects import cached_property

from celery import VERSION_BANNER
from celery.apps.multi import Cluster, MultiParser, NamespacedOptionParser
from celery.bin.base import CeleryCommand
from celery.platforms import EX_FAILURE, EX_OK, signals
from celery.utils import term
from celery.utils.text import pluralize

__all__ = ('MultiTool',)

USAGE = """\
usage: {prog_name} start <node1 node2 nodeN|range> [worker options]
       {prog_name} stop <n1 n2 nN|range> [-SIG (default: -TERM)]
       {prog_name} restart <n1 n2 nN|range> [-SIG] [worker options]
       {prog_name} kill <n1 n2 nN|range>

       {prog_name} show <n1 n2 nN|range> [worker options]
       {prog_name} get hostname <n1 n2 nN|range> [-qv] [worker options]
       {prog_name} names <n1 n2 nN|range>
       {prog_name} expand template <n1 n2 nN|range>
       {prog_name} help

additional options (must appear after command name):

    * --nosplash:   Don't display program info.
    * --quiet:      Don't show as much output.
    * --verbose:    Show more output.
    * --no-color:   Don't display colors.
"""


def main():
    sys.exit(MultiTool().execute_from_commandline(sys.argv))


def splash(fun):

    @wraps(fun)
    def _inner(self, *args, **kwargs):
        self.splash()
        return fun(self, *args, **kwargs)
    return _inner


def using_cluster(fun):

    @wraps(fun)
    def _inner(self, *argv, **kwargs):
        return fun(self, self.cluster_from_argv(argv), **kwargs)
    return _inner


def using_cluster_and_sig(fun):

    @wraps(fun)
    def _inner(self, *argv, **kwargs):
        p, cluster = self._cluster_from_argv(argv)
        sig = self._find_sig_argument(p)
        return fun(self, cluster, sig, **kwargs)
    return _inner


class TermLogger:

    splash_text = 'celery multi v{version}'
    splash_context = {'version': VERSION_BANNER}

    #: Final exit code.
    retcode = 0

    def setup_terminal(self, stdout, stderr,
                       nosplash=False, quiet=False, verbose=False,
                       no_color=False, **kwargs):
        self.stdout = stdout or sys.stdout
        self.stderr = stderr or sys.stderr
        self.nosplash = nosplash
        self.quiet = quiet
        self.verbose = verbose
        self.no_color = no_color

    def ok(self, m, newline=True, file=None):
        self.say(m, newline=newline, file=file)
        return EX_OK

    def say(self, m, newline=True, file=None):
        print(m, file=file or self.stdout, end='\n' if newline else '')

    def carp(self, m, newline=True, file=None):
        return self.say(m, newline, file or self.stderr)

    def error(self, msg=None):
        if msg:
            self.carp(msg)
        self.usage()
        return EX_FAILURE

    def info(self, msg, newline=True):
        if self.verbose:
            self.note(msg, newline=newline)

    def note(self, msg, newline=True):
        if not self.quiet:
            self.say(str(msg), newline=newline)

    @splash
    def usage(self):
        self.say(USAGE.format(prog_name=self.prog_name))

    def splash(self):
        if not self.nosplash:
            self.note(self.colored.cyan(
                self.splash_text.format(**self.splash_context)))

    @cached_property
    def colored(self):
        return term.colored(enabled=not self.no_color)


[docs]class MultiTool(TermLogger):
    """The ``celery multi`` program."""

    MultiParser = MultiParser
    OptionParser = NamespacedOptionParser

    reserved_options = [
        ('--nosplash', 'nosplash'),
        ('--quiet', 'quiet'),
        ('-q', 'quiet'),
        ('--verbose', 'verbose'),
        ('--no-color', 'no_color'),
    ]

    def __init__(self, env=None, cmd=None,
                 fh=None, stdout=None, stderr=None, **kwargs):
        # fh is an old alias to stdout.
        self.env = env
        self.cmd = cmd
        self.setup_terminal(stdout or fh, stderr, **kwargs)
        self.fh = self.stdout
        self.prog_name = 'celery multi'
        self.commands = {
            'start': self.start,
            'show': self.show,
            'stop': self.stop,
            'stopwait': self.stopwait,
            'stop_verify': self.stopwait,  # compat alias
            'restart': self.restart,
            'kill': self.kill,
            'names': self.names,
            'expand': self.expand,
            'get': self.get,
            'help': self.help,
        }

[docs]    def execute_from_commandline(self, argv, cmd=None):
        # Reserve the --nosplash|--quiet|-q/--verbose options.
        argv = self._handle_reserved_options(argv)
        self.cmd = cmd if cmd is not None else self.cmd
        self.prog_name = os.path.basename(argv.pop(0))

        if not self.validate_arguments(argv):
            return self.error()

        return self.call_command(argv[0], argv[1:])


[docs]    def validate_arguments(self, argv):
        return argv and argv[0][0] != '-'


[docs]    def call_command(self, command, argv):
        try:
            return self.commands[command](*argv) or EX_OK
        except KeyError:
            return self.error(f'Invalid command: {command}')


    def _handle_reserved_options(self, argv):
        argv = list(argv)  # don't modify callers argv.
        for arg, attr in self.reserved_options:
            if arg in argv:
                setattr(self, attr, bool(argv.pop(argv.index(arg))))
        return argv

[docs]    @splash
    @using_cluster
    def start(self, cluster):
        self.note('> Starting nodes...')
        return int(any(cluster.start()))


[docs]    @splash
    @using_cluster_and_sig
    def stop(self, cluster, sig, **kwargs):
        return cluster.stop(sig=sig, **kwargs)


[docs]    @splash
    @using_cluster_and_sig
    def stopwait(self, cluster, sig, **kwargs):
        return cluster.stopwait(sig=sig, **kwargs)

    stop_verify = stopwait  # compat

[docs]    @splash
    @using_cluster_and_sig
    def restart(self, cluster, sig, **kwargs):
        return int(any(cluster.restart(sig=sig, **kwargs)))


[docs]    @using_cluster
    def names(self, cluster):
        self.say('\n'.join(n.name for n in cluster))


[docs]    def get(self, wanted, *argv):
        try:
            node = self.cluster_from_argv(argv).find(wanted)
        except KeyError:
            return EX_FAILURE
        else:
            return self.ok(' '.join(node.argv))


[docs]    @using_cluster
    def show(self, cluster):
        return self.ok('\n'.join(
            ' '.join(node.argv_with_executable)
            for node in cluster
        ))


[docs]    @splash
    @using_cluster
    def kill(self, cluster):
        return cluster.kill()


[docs]    def expand(self, template, *argv):
        return self.ok('\n'.join(
            node.expander(template)
            for node in self.cluster_from_argv(argv)
        ))


[docs]    def help(self, *argv):
        self.say(__doc__)


    def _find_sig_argument(self, p, default=signal.SIGTERM):
        args = p.args[len(p.values):]
        for arg in reversed(args):
            if len(arg) == 2 and arg[0] == '-':
                try:
                    return int(arg[1])
                except ValueError:
                    pass
            if arg[0] == '-':
                try:
                    return signals.signum(arg[1:])
                except (AttributeError, TypeError):
                    pass
        return default

    def _nodes_from_argv(self, argv, cmd=None):
        cmd = cmd if cmd is not None else self.cmd
        p = self.OptionParser(argv)
        p.parse()
        return p, self.MultiParser(cmd=cmd).parse(p)

[docs]    def cluster_from_argv(self, argv, cmd=None):
        _, cluster = self._cluster_from_argv(argv, cmd=cmd)
        return cluster


    def _cluster_from_argv(self, argv, cmd=None):
        p, nodes = self._nodes_from_argv(argv, cmd=cmd)
        return p, self.Cluster(list(nodes), cmd=cmd)

[docs]    def Cluster(self, nodes, cmd=None):
        return Cluster(
            nodes,
            cmd=cmd,
            env=self.env,
            on_stopping_preamble=self.on_stopping_preamble,
            on_send_signal=self.on_send_signal,
            on_still_waiting_for=self.on_still_waiting_for,
            on_still_waiting_progress=self.on_still_waiting_progress,
            on_still_waiting_end=self.on_still_waiting_end,
            on_node_start=self.on_node_start,
            on_node_restart=self.on_node_restart,
            on_node_shutdown_ok=self.on_node_shutdown_ok,
            on_node_status=self.on_node_status,
            on_node_signal_dead=self.on_node_signal_dead,
            on_node_signal=self.on_node_signal,
            on_node_down=self.on_node_down,
            on_child_spawn=self.on_child_spawn,
            on_child_signalled=self.on_child_signalled,
            on_child_failure=self.on_child_failure,
        )


[docs]    def on_stopping_preamble(self, nodes):
        self.note(self.colored.blue('> Stopping nodes...'))


[docs]    def on_send_signal(self, node, sig):
        self.note('\t> {0.name}: {1} -> {0.pid}'.format(node, sig))


[docs]    def on_still_waiting_for(self, nodes):
        num_left = len(nodes)
        if num_left:
            self.note(self.colored.blue(
                '> Waiting for {} {} -> {}...'.format(
                    num_left, pluralize(num_left, 'node'),
                    ', '.join(str(node.pid) for node in nodes)),
            ), newline=False)


[docs]    def on_still_waiting_progress(self, nodes):
        self.note('.', newline=False)


[docs]    def on_still_waiting_end(self):
        self.note('')


[docs]    def on_node_signal_dead(self, node):
        self.note(
            'Could not signal {0.name} ({0.pid}): No such process'.format(
                node))


[docs]    def on_node_start(self, node):
        self.note(f'\t> {node.name}: ', newline=False)


[docs]    def on_node_restart(self, node):
        self.note(self.colored.blue(
            f'> Restarting node {node.name}: '), newline=False)


[docs]    def on_node_down(self, node):
        self.note(f'> {node.name}: {self.DOWN}')


[docs]    def on_node_shutdown_ok(self, node):
        self.note(f'\n\t> {node.name}: {self.OK}')


[docs]    def on_node_status(self, node, retval):
        self.note(retval and self.FAILED or self.OK)


[docs]    def on_node_signal(self, node, sig):
        self.note('Sending {sig} to node {0.name} ({0.pid})'.format(
            node, sig=sig))


[docs]    def on_child_spawn(self, node, argstr, env):
        self.info(f'  {argstr}')


[docs]    def on_child_signalled(self, node, signum):
        self.note(f'* Child was terminated by signal {signum}')


[docs]    def on_child_failure(self, node, retcode):
        self.note(f'* Child terminated with exit code {retcode}')


[docs]    @cached_property
    def OK(self):
        return str(self.colored.green('OK'))


[docs]    @cached_property
    def FAILED(self):
        return str(self.colored.red('FAILED'))


[docs]    @cached_property
    def DOWN(self):
        return str(self.colored.magenta('DOWN'))




@click.command(
    cls=CeleryCommand,
    context_settings={
        'allow_extra_args': True,
        'ignore_unknown_options': True
    }
)
@click.pass_context
def multi(ctx):
    """Start multiple worker instances."""
    cmd = MultiTool(quiet=ctx.obj.quiet, no_color=ctx.obj.no_color)
    # In 4.x, celery multi ignores the global --app option.
    # Since in 5.0 the --app option is global only we
    # rearrange the arguments so that the MultiTool will parse them correctly.
    args = sys.argv[1:]
    args = args[args.index('multi'):] + args[:args.index('multi')]
    return cmd.execute_from_commandline(args)




            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.bin.worker

"""Program used to start a Celery worker instance."""

import os
import sys

import click
from click import ParamType
from click.types import StringParamType

from celery import concurrency
from celery.bin.base import (COMMA_SEPARATED_LIST, LOG_LEVEL,
                             CeleryDaemonCommand, CeleryOption)
from celery.platforms import (EX_FAILURE, EX_OK, detached,
                              maybe_drop_privileges)
from celery.utils.log import get_logger
from celery.utils.nodenames import default_nodename, host_format, node_format

logger = get_logger(__name__)


[docs]class CeleryBeat(ParamType):
    """Celery Beat flag."""

    name = "beat"

[docs]    def convert(self, value, param, ctx):
        if ctx.obj.app.IS_WINDOWS and value:
            self.fail('-B option does not work on Windows.  '
                      'Please run celery beat as a separate service.')

        return value




[docs]class WorkersPool(click.Choice):
    """Workers pool option."""

    name = "pool"

    def __init__(self):
        """Initialize the workers pool option with the relevant choices."""
        super().__init__(('prefork', 'eventlet', 'gevent', 'solo'))

[docs]    def convert(self, value, param, ctx):
        # Pools like eventlet/gevent needs to patch libs as early
        # as possible.
        return concurrency.get_implementation(
            value) or ctx.obj.app.conf.worker_pool




[docs]class Hostname(StringParamType):
    """Hostname option."""

    name = "hostname"

[docs]    def convert(self, value, param, ctx):
        return host_format(default_nodename(value))




[docs]class Autoscale(ParamType):
    """Autoscaling parameter."""

    name = "<min workers>, <max workers>"

[docs]    def convert(self, value, param, ctx):
        value = value.split(',')

        if len(value) > 2:
            self.fail("Expected two comma separated integers or one integer."
                      f"Got {len(value)} instead.")

        if len(value) == 1:
            try:
                value = (int(value[0]), 0)
            except ValueError:
                self.fail(f"Expected an integer. Got {value} instead.")

        try:
            return tuple(reversed(sorted(map(int, value))))
        except ValueError:
            self.fail("Expected two comma separated integers."
                      f"Got {value.join(',')} instead.")




CELERY_BEAT = CeleryBeat()
WORKERS_POOL = WorkersPool()
HOSTNAME = Hostname()
AUTOSCALE = Autoscale()

C_FAKEFORK = os.environ.get('C_FAKEFORK')


[docs]def detach(path, argv, logfile=None, pidfile=None, uid=None,
           gid=None, umask=None, workdir=None, fake=False, app=None,
           executable=None, hostname=None):
    """Detach program by argv."""
    fake = 1 if C_FAKEFORK else fake
    with detached(logfile, pidfile, uid, gid, umask, workdir, fake,
                  after_forkers=False):
        try:
            if executable is not None:
                path = executable
            os.execv(path, [path] + argv)
            return EX_OK
        except Exception:  # pylint: disable=broad-except
            if app is None:
                from celery import current_app
                app = current_app
            app.log.setup_logging_subsystem(
                'ERROR', logfile, hostname=hostname)
            logger.critical("Can't exec %r", ' '.join([path] + argv),
                            exc_info=True)
            return EX_FAILURE



@click.command(cls=CeleryDaemonCommand,
               context_settings={'allow_extra_args': True})
@click.option('-n',
              '--hostname',
              default=host_format(default_nodename(None)),
              cls=CeleryOption,
              type=HOSTNAME,
              help_group="Worker Options",
              help="Set custom hostname (e.g., 'w1@%%h').  "
                   "Expands: %%h (hostname), %%n (name) and %%d, (domain).")
@click.option('-D',
              '--detach',
              cls=CeleryOption,
              is_flag=True,
              default=False,
              help_group="Worker Options",
              help="Start worker as a background process.")
@click.option('-S',
              '--statedb',
              cls=CeleryOption,
              type=click.Path(),
              callback=lambda ctx, _, value: value or ctx.obj.app.conf.worker_state_db,
              help_group="Worker Options",
              help="Path to the state database. The extension '.db' may be"
                   "appended to the filename.")
@click.option('-l',
              '--loglevel',
              default='WARNING',
              cls=CeleryOption,
              type=LOG_LEVEL,
              help_group="Worker Options",
              help="Logging level.")
@click.option('optimization',
              '-O',
              default='default',
              cls=CeleryOption,
              type=click.Choice(('default', 'fair')),
              help_group="Worker Options",
              help="Apply optimization profile.")
@click.option('--prefetch-multiplier',
              type=int,
              metavar="<prefetch multiplier>",
              callback=lambda ctx, _, value: value or ctx.obj.app.conf.worker_prefetch_multiplier,
              cls=CeleryOption,
              help_group="Worker Options",
              help="Set custom prefetch multiplier value"
                   "for this worker instance.")
@click.option('-c',
              '--concurrency',
              type=int,
              metavar="<concurrency>",
              callback=lambda ctx, _, value: value or ctx.obj.app.conf.worker_concurrency,
              cls=CeleryOption,
              help_group="Pool Options",
              help="Number of child processes processing the queue.  "
                   "The default is the number of CPUs available"
                   "on your system.")
@click.option('-P',
              '--pool',
              default='prefork',
              type=WORKERS_POOL,
              cls=CeleryOption,
              help_group="Pool Options",
              help="Pool implementation.")
@click.option('-E',
              '--task-events',
              '--events',
              is_flag=True,
              cls=CeleryOption,
              help_group="Pool Options",
              help="Send task-related events that can be captured by monitors"
                   " like celery events, celerymon, and others.")
@click.option('--time-limit',
              type=float,
              cls=CeleryOption,
              help_group="Pool Options",
              help="Enables a hard time limit "
                   "(in seconds int/float) for tasks.")
@click.option('--soft-time-limit',
              type=float,
              cls=CeleryOption,
              help_group="Pool Options",
              help="Enables a soft time limit "
                   "(in seconds int/float) for tasks.")
@click.option('--max-tasks-per-child',
              type=int,
              cls=CeleryOption,
              help_group="Pool Options",
              help="Maximum number of tasks a pool worker can execute before "
                   "it's terminated and replaced by a new worker.")
@click.option('--max-memory-per-child',
              type=int,
              cls=CeleryOption,
              help_group="Pool Options",
              help="Maximum amount of resident memory, in KiB, that may be "
                   "consumed by a child process before it will be replaced "
                   "by a new one.  If a single task causes a child process "
                   "to exceed this limit, the task will be completed and "
                   "the child process will be replaced afterwards.\n"
                   "Default: no limit.")
@click.option('--purge',
              '--discard',
              is_flag=True,
              cls=CeleryOption,
              help_group="Queue Options")
@click.option('--queues',
              '-Q',
              type=COMMA_SEPARATED_LIST,
              cls=CeleryOption,
              help_group="Queue Options")
@click.option('--exclude-queues',
              '-X',
              type=COMMA_SEPARATED_LIST,
              cls=CeleryOption,
              help_group="Queue Options")
@click.option('--include',
              '-I',
              type=COMMA_SEPARATED_LIST,
              cls=CeleryOption,
              help_group="Queue Options")
@click.option('--without-gossip',
              is_flag=True,
              cls=CeleryOption,
              help_group="Features")
@click.option('--without-mingle',
              is_flag=True,
              cls=CeleryOption,
              help_group="Features")
@click.option('--without-heartbeat',
              is_flag=True,
              cls=CeleryOption,
              help_group="Features", )
@click.option('--heartbeat-interval',
              type=int,
              cls=CeleryOption,
              help_group="Features", )
@click.option('--autoscale',
              type=AUTOSCALE,
              cls=CeleryOption,
              help_group="Features", )
@click.option('-B',
              '--beat',
              type=CELERY_BEAT,
              cls=CeleryOption,
              is_flag=True,
              help_group="Embedded Beat Options")
@click.option('-s',
              '--schedule-filename',
              '--schedule',
              callback=lambda ctx, _, value: value or ctx.obj.app.conf.beat_schedule_filename,
              cls=CeleryOption,
              help_group="Embedded Beat Options")
@click.option('--scheduler',
              cls=CeleryOption,
              help_group="Embedded Beat Options")
@click.pass_context
def worker(ctx, hostname=None, pool_cls=None, app=None, uid=None, gid=None,
           loglevel=None, logfile=None, pidfile=None, statedb=None,
           **kwargs):
    """Start worker instance.

    Examples
    --------
    $ celery --app=proj worker -l INFO
    $ celery -A proj worker -l INFO -Q hipri,lopri
    $ celery -A proj worker --concurrency=4
    $ celery -A proj worker --concurrency=1000 -P eventlet
    $ celery worker --autoscale=10,0

    """
    app = ctx.obj.app
    if ctx.args:
        try:
            app.config_from_cmdline(ctx.args, namespace='worker')
        except (KeyError, ValueError) as e:
            # TODO: Improve the error messages
            raise click.UsageError(
                "Unable to parse extra configuration from command line.\n"
                f"Reason: {e}", ctx=ctx)
    if kwargs.get('detach', False):
        argv = ['-m', 'celery'] + sys.argv[1:]
        if '--detach' in argv:
            argv.remove('--detach')
        if '-D' in argv:
            argv.remove('-D')

        return detach(sys.executable,
                      argv,
                      logfile=logfile,
                      pidfile=pidfile,
                      uid=uid, gid=gid,
                      umask=kwargs.get('umask', None),
                      workdir=kwargs.get('workdir', None),
                      app=app,
                      executable=kwargs.get('executable', None),
                      hostname=hostname)

    maybe_drop_privileges(uid=uid, gid=gid)
    worker = app.Worker(
        hostname=hostname, pool_cls=pool_cls, loglevel=loglevel,
        logfile=logfile,  # node format handled by celery.app.log.setup
        pidfile=node_format(pidfile, hostname),
        statedb=node_format(statedb, hostname),
        no_color=ctx.obj.no_color,
        **kwargs)
    worker.start()
    return worker.exitcode




            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.concurrency.asynpool

"""Version of multiprocessing.Pool using Async I/O.

.. note::

    This module will be moved soon, so don't use it directly.

This is a non-blocking version of :class:`multiprocessing.Pool`.

This code deals with three major challenges:

#. Starting up child processes and keeping them running.
#. Sending jobs to the processes and receiving results back.
#. Safely shutting down this system.
"""
import errno
import gc
import os
import select
import sys
import time
from collections import Counter, deque, namedtuple
from io import BytesIO
from numbers import Integral
from pickle import HIGHEST_PROTOCOL
from time import sleep
from weakref import WeakValueDictionary, ref

from billiard import pool as _pool
from billiard.compat import buf_t, isblocking, setblocking
from billiard.pool import ACK, NACK, RUN, TERMINATE, WorkersJoined
from billiard.queues import _SimpleQueue
from kombu.asynchronous import ERR, WRITE
from kombu.serialization import pickle as _pickle
from kombu.utils.eventio import SELECT_BAD_FD
from kombu.utils.functional import fxrange
from vine import promise

from celery.platforms import pack, unpack, unpack_from
from celery.utils.functional import noop
from celery.utils.log import get_logger
from celery.worker import state as worker_state

# pylint: disable=redefined-outer-name
# We cache globals and attribute lookups, so disable this warning.

try:
    from _billiard import read as __read__
    readcanbuf = True

    # unpack_from supports memoryview in 2.7.6 and 3.3+
    if sys.version_info[0] == 2 and sys.version_info < (2, 7, 6):

        def unpack_from(fmt, view, _unpack_from=unpack_from):  # noqa
            return _unpack_from(fmt, view.tobytes())  # <- memoryview

except ImportError:  # pragma: no cover

    def __read__(fd, buf, size, read=os.read):  # noqa
        chunk = read(fd, size)
        n = len(chunk)
        if n != 0:
            buf.write(chunk)
        return n
    readcanbuf = False  # noqa

    def unpack_from(fmt, iobuf, unpack=unpack):  # noqa
        return unpack(fmt, iobuf.getvalue())  # <-- BytesIO

__all__ = ('AsynPool',)

logger = get_logger(__name__)
error, debug = logger.error, logger.debug

UNAVAIL = frozenset({errno.EAGAIN, errno.EINTR})

#: Constant sent by child process when started (ready to accept work)
WORKER_UP = 15

#: A process must've started before this timeout (in secs.) expires.
PROC_ALIVE_TIMEOUT = 4.0

SCHED_STRATEGY_FCFS = 1
SCHED_STRATEGY_FAIR = 4

SCHED_STRATEGIES = {
    None: SCHED_STRATEGY_FAIR,
    'fast': SCHED_STRATEGY_FCFS,
    'fcfs': SCHED_STRATEGY_FCFS,
    'fair': SCHED_STRATEGY_FAIR,
}
SCHED_STRATEGY_TO_NAME = {v: k for k, v in SCHED_STRATEGIES.items()}

Ack = namedtuple('Ack', ('id', 'fd', 'payload'))


def gen_not_started(gen):
    """Return true if generator is not started."""
    # gi_frame is None when generator stopped.
    return gen.gi_frame and gen.gi_frame.f_lasti == -1


def _get_job_writer(job):
    try:
        writer = job._writer
    except AttributeError:
        pass
    else:
        return writer()  # is a weakref


if hasattr(select, 'poll'):
    def _select_imp(readers=None, writers=None, err=None, timeout=0,
                    poll=select.poll, POLLIN=select.POLLIN,
                    POLLOUT=select.POLLOUT, POLLERR=select.POLLERR):
        poller = poll()
        register = poller.register

        if readers:
            [register(fd, POLLIN) for fd in readers]
        if writers:
            [register(fd, POLLOUT) for fd in writers]
        if err:
            [register(fd, POLLERR) for fd in err]

        R, W = set(), set()
        timeout = 0 if timeout and timeout < 0 else round(timeout * 1e3)
        events = poller.poll(timeout)
        for fd, event in events:
            if not isinstance(fd, Integral):
                fd = fd.fileno()
            if event & POLLIN:
                R.add(fd)
            if event & POLLOUT:
                W.add(fd)
            if event & POLLERR:
                R.add(fd)
        return R, W, 0
else:
    def _select_imp(readers=None, writers=None, err=None, timeout=0):
        r, w, e = select.select(readers, writers, err, timeout)
        if e:
            r = list(set(r) | set(e))
        return r, w, 0


def _select(readers=None, writers=None, err=None, timeout=0,
            poll=_select_imp):
    """Simple wrapper to :class:`~select.select`, using :`~select.poll`.

    Arguments:
        readers (Set[Fd]): Set of reader fds to test if readable.
        writers (Set[Fd]): Set of writer fds to test if writable.
        err (Set[Fd]): Set of fds to test for error condition.

    All fd sets passed must be mutable as this function
    will remove non-working fds from them, this also means
    the caller must make sure there are still fds in the sets
    before calling us again.

    Returns:
        Tuple[Set, Set, Set]: of ``(readable, writable, again)``, where
        ``readable`` is a set of fds that have data available for read,
        ``writable`` is a set of fds that's ready to be written to
        and ``again`` is a flag that if set means the caller must
        throw away the result and call us again.
    """
    readers = set() if readers is None else readers
    writers = set() if writers is None else writers
    err = set() if err is None else err
    try:
        return poll(readers, writers, err, timeout)
    except OSError as exc:
        _errno = exc.errno

        if _errno == errno.EINTR:
            return set(), set(), 1
        elif _errno in SELECT_BAD_FD:
            for fd in readers | writers | err:
                try:
                    select.select([fd], [], [], 0)
                except OSError as exc:
                    _errno = exc.errno

                    if _errno not in SELECT_BAD_FD:
                        raise
                    readers.discard(fd)
                    writers.discard(fd)
                    err.discard(fd)
            return set(), set(), 1
        else:
            raise


def iterate_file_descriptors_safely(fds_iter, source_data,
                                    hub_method, *args, **kwargs):
    """Apply hub method to fds in iter, remove from list if failure.

    Some file descriptors may become stale through OS reasons
    or possibly other reasons, so safely manage our lists of FDs.
    :param fds_iter: the file descriptors to iterate and apply hub_method
    :param source_data: data source to remove FD if it renders OSError
    :param hub_method: the method to call with with each fd and kwargs
    :*args to pass through to the hub_method;
    with a special syntax string '*fd*' represents a substitution
    for the current fd object in the iteration (for some callers).
    :**kwargs to pass through to the hub method (no substitutions needed)
    """
    def _meta_fd_argument_maker():
        # uses the current iterations value for fd
        call_args = args
        if "*fd*" in call_args:
            call_args = [fd if arg == "*fd*" else arg for arg in args]
        return call_args
    # Track stale FDs for cleanup possibility
    stale_fds = []
    for fd in fds_iter:
        # Handle using the correct arguments to the hub method
        hub_args, hub_kwargs = _meta_fd_argument_maker(), kwargs
        try:  # Call the hub method
            hub_method(fd, *hub_args, **hub_kwargs)
        except (OSError, FileNotFoundError):
            logger.warning(
                "Encountered OSError when accessing fd %s ",
                fd, exc_info=True)
            stale_fds.append(fd)  # take note of stale fd
    # Remove now defunct fds from the managed list
    if source_data:
        for fd in stale_fds:
            try:
                if hasattr(source_data, 'remove'):
                    source_data.remove(fd)
                else:  # then not a list/set ... try dict
                    source_data.pop(fd, None)
            except ValueError:
                logger.warning("ValueError trying to invalidate %s from %s",
                               fd, source_data)


class Worker(_pool.Worker):
    """Pool worker process."""

    def on_loop_start(self, pid):
        # our version sends a WORKER_UP message when the process is ready
        # to accept work, this will tell the parent that the inqueue fd
        # is writable.
        self.outq.put((WORKER_UP, (pid,)))


class ResultHandler(_pool.ResultHandler):
    """Handles messages from the pool processes."""

    def __init__(self, *args, **kwargs):
        self.fileno_to_outq = kwargs.pop('fileno_to_outq')
        self.on_process_alive = kwargs.pop('on_process_alive')
        super().__init__(*args, **kwargs)
        # add our custom message handler
        self.state_handlers[WORKER_UP] = self.on_process_alive

    def _recv_message(self, add_reader, fd, callback,
                      __read__=__read__, readcanbuf=readcanbuf,
                      BytesIO=BytesIO, unpack_from=unpack_from,
                      load=_pickle.load):
        Hr = Br = 0
        if readcanbuf:
            buf = bytearray(4)
            bufv = memoryview(buf)
        else:
            buf = bufv = BytesIO()
        # header

        while Hr < 4:
            try:
                n = __read__(
                    fd, bufv[Hr:] if readcanbuf else bufv, 4 - Hr,
                )
            except OSError as exc:
                if exc.errno not in UNAVAIL:
                    raise
                yield
            else:
                if n == 0:
                    raise (OSError('End of file during message') if Hr
                           else EOFError())
                Hr += n

        body_size, = unpack_from('>i', bufv)
        if readcanbuf:
            buf = bytearray(body_size)
            bufv = memoryview(buf)
        else:
            buf = bufv = BytesIO()

        while Br < body_size:
            try:
                n = __read__(
                    fd, bufv[Br:] if readcanbuf else bufv, body_size - Br,
                )
            except OSError as exc:
                if exc.errno not in UNAVAIL:
                    raise
                yield
            else:
                if n == 0:
                    raise (OSError('End of file during message') if Br
                           else EOFError())
                Br += n
        add_reader(fd, self.handle_event, fd)
        if readcanbuf:
            message = load(BytesIO(bufv))
        else:
            bufv.seek(0)
            message = load(bufv)
        if message:
            callback(message)

    def _make_process_result(self, hub):
        """Coroutine reading messages from the pool processes."""
        fileno_to_outq = self.fileno_to_outq
        on_state_change = self.on_state_change
        add_reader = hub.add_reader
        remove_reader = hub.remove_reader
        recv_message = self._recv_message

        def on_result_readable(fileno):
            try:
                fileno_to_outq[fileno]
            except KeyError:  # process gone
                return remove_reader(fileno)
            it = recv_message(add_reader, fileno, on_state_change)
            try:
                next(it)
            except StopIteration:
                pass
            except (OSError, EOFError):
                remove_reader(fileno)
            else:
                add_reader(fileno, it)
        return on_result_readable

    def register_with_event_loop(self, hub):
        self.handle_event = self._make_process_result(hub)

    def handle_event(self, *args):
        # pylint: disable=method-hidden
        #   register_with_event_loop overrides this
        raise RuntimeError('Not registered with event loop')

    def on_stop_not_started(self):
        # This is always used, since we do not start any threads.
        cache = self.cache
        check_timeouts = self.check_timeouts
        fileno_to_outq = self.fileno_to_outq
        on_state_change = self.on_state_change
        join_exited_workers = self.join_exited_workers

        # flush the processes outqueues until they've all terminated.
        outqueues = set(fileno_to_outq)
        while cache and outqueues and self._state != TERMINATE:
            if check_timeouts is not None:
                # make sure tasks with a time limit will time out.
                check_timeouts()
            # cannot iterate and remove at the same time
            pending_remove_fd = set()
            for fd in outqueues:
                iterate_file_descriptors_safely(
                    [fd], self.fileno_to_outq, self._flush_outqueue,
                    pending_remove_fd.add, fileno_to_outq, on_state_change
                )
                try:
                    join_exited_workers(shutdown=True)
                except WorkersJoined:
                    debug('result handler: all workers terminated')
                    return
            outqueues.difference_update(pending_remove_fd)

    def _flush_outqueue(self, fd, remove, process_index, on_state_change):
        try:
            proc = process_index[fd]
        except KeyError:
            # process already found terminated
            # this means its outqueue has already been processed
            # by the worker lost handler.
            return remove(fd)

        reader = proc.outq._reader
        try:
            setblocking(reader, 1)
        except OSError:
            return remove(fd)
        try:
            if reader.poll(0):
                task = reader.recv()
            else:
                task = None
                sleep(0.5)
        except (OSError, EOFError):
            return remove(fd)
        else:
            if task:
                on_state_change(task)
        finally:
            try:
                setblocking(reader, 0)
            except OSError:
                return remove(fd)


class AsynPool(_pool.Pool):
    """AsyncIO Pool (no threads)."""

    ResultHandler = ResultHandler
    Worker = Worker

    def WorkerProcess(self, worker):
        worker = super().WorkerProcess(worker)
        worker.dead = False
        return worker

    def __init__(self, processes=None, synack=False,
                 sched_strategy=None, proc_alive_timeout=None,
                 *args, **kwargs):
        self.sched_strategy = SCHED_STRATEGIES.get(sched_strategy,
                                                   sched_strategy)
        processes = self.cpu_count() if processes is None else processes
        self.synack = synack
        # create queue-pairs for all our processes in advance.
        self._queues = {
            self.create_process_queues(): None for _ in range(processes)
        }

        # inqueue fileno -> process mapping
        self._fileno_to_inq = {}
        # outqueue fileno -> process mapping
        self._fileno_to_outq = {}
        # synqueue fileno -> process mapping
        self._fileno_to_synq = {}

        # We keep track of processes that haven't yet
        # sent a WORKER_UP message.  If a process fails to send
        # this message within _proc_alive_timeout we terminate it
        # and hope the next process will recover.
        self._proc_alive_timeout = (
            PROC_ALIVE_TIMEOUT if proc_alive_timeout is None
            else proc_alive_timeout
        )
        self._waiting_to_start = set()

        # denormalized set of all inqueues.
        self._all_inqueues = set()

        # Set of fds being written to (busy)
        self._active_writes = set()

        # Set of active co-routines currently writing jobs.
        self._active_writers = set()

        # Set of fds that are busy (executing task)
        self._busy_workers = set()
        self._mark_worker_as_available = self._busy_workers.discard

        # Holds jobs waiting to be written to child processes.
        self.outbound_buffer = deque()

        self.write_stats = Counter()

        super().__init__(processes, *args, **kwargs)

        for proc in self._pool:
            # create initial mappings, these will be updated
            # as processes are recycled, or found lost elsewhere.
            self._fileno_to_outq[proc.outqR_fd] = proc
            self._fileno_to_synq[proc.synqW_fd] = proc

        self.on_soft_timeout = getattr(
            self._timeout_handler, 'on_soft_timeout', noop,
        )
        self.on_hard_timeout = getattr(
            self._timeout_handler, 'on_hard_timeout', noop,
        )

    def _create_worker_process(self, i):
        gc.collect()  # Issue #2927
        return super()._create_worker_process(i)

    def _event_process_exit(self, hub, proc):
        # This method is called whenever the process sentinel is readable.
        self._untrack_child_process(proc, hub)
        self.maintain_pool()

    def _track_child_process(self, proc, hub):
        """Helper method determines appropriate fd for process."""
        try:
            fd = proc._sentinel_poll
        except AttributeError:
            # we need to duplicate the fd here to carefully
            # control when the fd is removed from the process table,
            # as once the original fd is closed we cannot unregister
            # the fd from epoll(7) anymore, causing a 100% CPU poll loop.
            fd = proc._sentinel_poll = os.dup(proc._popen.sentinel)
        # Safely call hub.add_reader for the determined fd
        iterate_file_descriptors_safely(
            [fd], None, hub.add_reader,
            self._event_process_exit, hub, proc)

    def _untrack_child_process(self, proc, hub):
        if proc._sentinel_poll is not None:
            fd, proc._sentinel_poll = proc._sentinel_poll, None
            hub.remove(fd)
            os.close(fd)

    def register_with_event_loop(self, hub):
        """Register the async pool with the current event loop."""
        self._result_handler.register_with_event_loop(hub)
        self.handle_result_event = self._result_handler.handle_event
        self._create_timelimit_handlers(hub)
        self._create_process_handlers(hub)
        self._create_write_handlers(hub)

        # Add handler for when a process exits (calls maintain_pool)
        [self._track_child_process(w, hub) for w in self._pool]
        # Handle_result_event is called whenever one of the
        # result queues are readable.
        iterate_file_descriptors_safely(
            self._fileno_to_outq, self._fileno_to_outq, hub.add_reader,
            self.handle_result_event, '*fd*')

        # Timers include calling maintain_pool at a regular interval
        # to be certain processes are restarted.
        for handler, interval in self.timers.items():
            hub.call_repeatedly(interval, handler)

        hub.on_tick.add(self.on_poll_start)

    def _create_timelimit_handlers(self, hub):
        """Create handlers used to implement time limits."""
        call_later = hub.call_later
        trefs = self._tref_for_id = WeakValueDictionary()

        def on_timeout_set(R, soft, hard):
            if soft:
                trefs[R._job] = call_later(
                    soft, self._on_soft_timeout, R._job, soft, hard, hub,
                )
            elif hard:
                trefs[R._job] = call_later(
                    hard, self._on_hard_timeout, R._job,
                )
        self.on_timeout_set = on_timeout_set

        def _discard_tref(job):
            try:
                tref = trefs.pop(job)
                tref.cancel()
                del tref
            except (KeyError, AttributeError):
                pass  # out of scope
        self._discard_tref = _discard_tref

        def on_timeout_cancel(R):
            _discard_tref(R._job)
        self.on_timeout_cancel = on_timeout_cancel

    def _on_soft_timeout(self, job, soft, hard, hub):
        # only used by async pool.
        if hard:
            self._tref_for_id[job] = hub.call_later(
                hard - soft, self._on_hard_timeout, job,
            )
        try:
            result = self._cache[job]
        except KeyError:
            pass  # job ready
        else:
            self.on_soft_timeout(result)
        finally:
            if not hard:
                # remove tref
                self._discard_tref(job)

    def _on_hard_timeout(self, job):
        # only used by async pool.
        try:
            result = self._cache[job]
        except KeyError:
            pass  # job ready
        else:
            self.on_hard_timeout(result)
        finally:
            # remove tref
            self._discard_tref(job)

    def on_job_ready(self, job, i, obj, inqW_fd):
        self._mark_worker_as_available(inqW_fd)

    def _create_process_handlers(self, hub):
        """Create handlers called on process up/down, etc."""
        add_reader, remove_reader, remove_writer = (
            hub.add_reader, hub.remove_reader, hub.remove_writer,
        )
        cache = self._cache
        all_inqueues = self._all_inqueues
        fileno_to_inq = self._fileno_to_inq
        fileno_to_outq = self._fileno_to_outq
        fileno_to_synq = self._fileno_to_synq
        busy_workers = self._busy_workers
        handle_result_event = self.handle_result_event
        process_flush_queues = self.process_flush_queues
        waiting_to_start = self._waiting_to_start

        def verify_process_alive(proc):
            proc = proc()  # is a weakref
            if (proc is not None and proc._is_alive() and
                    proc in waiting_to_start):
                assert proc.outqR_fd in fileno_to_outq
                assert fileno_to_outq[proc.outqR_fd] is proc
                assert proc.outqR_fd in hub.readers
                error('Timed out waiting for UP message from %r', proc)
                os.kill(proc.pid, 9)

        def on_process_up(proc):
            """Called when a process has started."""
            # If we got the same fd as a previous process then we'll also
            # receive jobs in the old buffer, so we need to reset the
            # job._write_to and job._scheduled_for attributes used to recover
            # message boundaries when processes exit.
            infd = proc.inqW_fd
            for job in cache.values():
                if job._write_to and job._write_to.inqW_fd == infd:
                    job._write_to = proc
                if job._scheduled_for and job._scheduled_for.inqW_fd == infd:
                    job._scheduled_for = proc
            fileno_to_outq[proc.outqR_fd] = proc

            # maintain_pool is called whenever a process exits.
            self._track_child_process(proc, hub)

            assert not isblocking(proc.outq._reader)

            # handle_result_event is called when the processes outqueue is
            # readable.
            add_reader(proc.outqR_fd, handle_result_event, proc.outqR_fd)

            waiting_to_start.add(proc)
            hub.call_later(
                self._proc_alive_timeout, verify_process_alive, ref(proc),
            )

        self.on_process_up = on_process_up

        def _remove_from_index(obj, proc, index, remove_fun, callback=None):
            # this remove the file descriptors for a process from
            # the indices.  we have to make sure we don't overwrite
            # another processes fds, as the fds may be reused.
            try:
                fd = obj.fileno()
            except OSError:
                return

            try:
                if index[fd] is proc:
                    # fd hasn't been reused so we can remove it from index.
                    index.pop(fd, None)
            except KeyError:
                pass
            else:
                remove_fun(fd)
                if callback is not None:
                    callback(fd)
            return fd

        def on_process_down(proc):
            """Called when a worker process exits."""
            if getattr(proc, 'dead', None):
                return
            process_flush_queues(proc)
            _remove_from_index(
                proc.outq._reader, proc, fileno_to_outq, remove_reader,
            )
            if proc.synq:
                _remove_from_index(
                    proc.synq._writer, proc, fileno_to_synq, remove_writer,
                )
            inq = _remove_from_index(
                proc.inq._writer, proc, fileno_to_inq, remove_writer,
                callback=all_inqueues.discard,
            )
            if inq:
                busy_workers.discard(inq)
            self._untrack_child_process(proc, hub)
            waiting_to_start.discard(proc)
            self._active_writes.discard(proc.inqW_fd)
            remove_writer(proc.inq._writer)
            remove_reader(proc.outq._reader)
            if proc.synqR_fd:
                remove_reader(proc.synq._reader)
            if proc.synqW_fd:
                self._active_writes.discard(proc.synqW_fd)
                remove_reader(proc.synq._writer)
        self.on_process_down = on_process_down

    def _create_write_handlers(self, hub,
                               pack=pack, dumps=_pickle.dumps,
                               protocol=HIGHEST_PROTOCOL):
        """Create handlers used to write data to child processes."""
        fileno_to_inq = self._fileno_to_inq
        fileno_to_synq = self._fileno_to_synq
        outbound = self.outbound_buffer
        pop_message = outbound.popleft
        put_message = outbound.append
        all_inqueues = self._all_inqueues
        active_writes = self._active_writes
        active_writers = self._active_writers
        busy_workers = self._busy_workers
        diff = all_inqueues.difference
        add_writer = hub.add_writer
        hub_add, hub_remove = hub.add, hub.remove
        mark_write_fd_as_active = active_writes.add
        mark_write_gen_as_active = active_writers.add
        mark_worker_as_busy = busy_workers.add
        write_generator_done = active_writers.discard
        get_job = self._cache.__getitem__
        write_stats = self.write_stats
        is_fair_strategy = self.sched_strategy == SCHED_STRATEGY_FAIR
        revoked_tasks = worker_state.revoked
        getpid = os.getpid

        precalc = {ACK: self._create_payload(ACK, (0,)),
                   NACK: self._create_payload(NACK, (0,))}

        def _put_back(job, _time=time.time):
            # puts back at the end of the queue
            if job._terminated is not None or \
                    job.correlation_id in revoked_tasks:
                if not job._accepted:
                    job._ack(None, _time(), getpid(), None)
                job._set_terminated(job._terminated)
            else:
                # XXX linear lookup, should find a better way,
                # but this happens rarely and is here to protect against races.
                if job not in outbound:
                    outbound.appendleft(job)
        self._put_back = _put_back

        # called for every event loop iteration, and if there
        # are messages pending this will schedule writing one message
        # by registering the 'schedule_writes' function for all currently
        # inactive inqueues (not already being written to)

        # consolidate means the event loop will merge them
        # and call the callback once with the list writable fds as
        # argument.  Using this means we minimize the risk of having
        # the same fd receive every task if the pipe read buffer is not
        # full.

        def on_poll_start():
            # Determine which io descriptors are not busy
            inactive = diff(active_writes)

            # Determine hub_add vs hub_remove strategy conditional
            if is_fair_strategy:
                # outbound buffer present and idle workers exist
                add_cond = outbound and len(busy_workers) < len(all_inqueues)
            else:  # default is add when data exists in outbound buffer
                add_cond = outbound

            if add_cond:  # calling hub_add vs hub_remove
                iterate_file_descriptors_safely(
                    inactive, all_inqueues, hub_add,
                    None, WRITE | ERR, consolidate=True)
            else:
                iterate_file_descriptors_safely(
                    inactive, all_inqueues, hub_remove)
        self.on_poll_start = on_poll_start

        def on_inqueue_close(fd, proc):
            # Makes sure the fd is removed from tracking when
            # the connection is closed, this is essential as fds may be reused.
            busy_workers.discard(fd)
            try:
                if fileno_to_inq[fd] is proc:
                    fileno_to_inq.pop(fd, None)
                    active_writes.discard(fd)
                    all_inqueues.discard(fd)
            except KeyError:
                pass
        self.on_inqueue_close = on_inqueue_close
        self.hub_remove = hub_remove

        def schedule_writes(ready_fds, total_write_count=None):
            if not total_write_count:
                total_write_count = [0]
            # Schedule write operation to ready file descriptor.
            # The file descriptor is writable, but that does not
            # mean the process is currently reading from the socket.
            # The socket is buffered so writable simply means that
            # the buffer can accept at least 1 byte of data.

            # This means we have to cycle between the ready fds.
            # the first version used shuffle, but this version
            # using `total_writes % ready_fds` is about 30% faster
            # with many processes, and also leans more towards fairness
            # in write stats when used with many processes
            # [XXX On macOS, this may vary depending
            # on event loop implementation (i.e, select/poll vs epoll), so
            # have to test further]
            num_ready = len(ready_fds)

            for _ in range(num_ready):
                ready_fd = ready_fds[total_write_count[0] % num_ready]
                total_write_count[0] += 1
                if ready_fd in active_writes:
                    # already writing to this fd
                    continue
                if is_fair_strategy and ready_fd in busy_workers:
                    # worker is already busy with another task
                    continue
                if ready_fd not in all_inqueues:
                    hub_remove(ready_fd)
                    continue
                try:
                    job = pop_message()
                except IndexError:
                    # no more messages, remove all inactive fds from the hub.
                    # this is important since the fds are always writable
                    # as long as there's 1 byte left in the buffer, and so
                    # this may create a spinloop where the event loop
                    # always wakes up.
                    for inqfd in diff(active_writes):
                        hub_remove(inqfd)
                    break

                else:
                    if not job._accepted:  # job not accepted by another worker
                        try:
                            # keep track of what process the write operation
                            # was scheduled for.
                            proc = job._scheduled_for = fileno_to_inq[ready_fd]
                        except KeyError:
                            # write was scheduled for this fd but the process
                            # has since exited and the message must be sent to
                            # another process.
                            put_message(job)
                            continue
                        cor = _write_job(proc, ready_fd, job)
                        job._writer = ref(cor)
                        mark_write_gen_as_active(cor)
                        mark_write_fd_as_active(ready_fd)
                        mark_worker_as_busy(ready_fd)

                        # Try to write immediately, in case there's an error.
                        try:
                            next(cor)
                        except StopIteration:
                            pass
                        except OSError as exc:
                            if exc.errno != errno.EBADF:
                                raise
                        else:
                            add_writer(ready_fd, cor)
        hub.consolidate_callback = schedule_writes

        def send_job(tup):
            # Schedule writing job request for when one of the process
            # inqueues are writable.
            body = dumps(tup, protocol=protocol)
            body_size = len(body)
            header = pack('>I', body_size)
            # index 1,0 is the job ID.
            job = get_job(tup[1][0])
            job._payload = buf_t(header), buf_t(body), body_size
            put_message(job)
        self._quick_put = send_job

        def on_not_recovering(proc, fd, job, exc):
            logger.exception(
                'Process inqueue damaged: %r %r: %r', proc, proc.exitcode, exc)
            if proc._is_alive():
                proc.terminate()
            hub.remove(fd)
            self._put_back(job)

        def _write_job(proc, fd, job):
            # writes job to the worker process.
            # Operation must complete if more than one byte of data
            # was written.  If the broker connection is lost
            # and no data was written the operation shall be canceled.
            header, body, body_size = job._payload
            errors = 0
            try:
                # job result keeps track of what process the job is sent to.
                job._write_to = proc
                send = proc.send_job_offset

                Hw = Bw = 0
                # write header
                while Hw < 4:
                    try:
                        Hw += send(header, Hw)
                    except Exception as exc:  # pylint: disable=broad-except
                        if getattr(exc, 'errno', None) not in UNAVAIL:
                            raise
                        # suspend until more data
                        errors += 1
                        if errors > 100:
                            on_not_recovering(proc, fd, job, exc)
                            raise StopIteration()
                        yield
                    else:
                        errors = 0

                # write body
                while Bw < body_size:
                    try:
                        Bw += send(body, Bw)
                    except Exception as exc:  # pylint: disable=broad-except
                        if getattr(exc, 'errno', None) not in UNAVAIL:
                            raise
                        # suspend until more data
                        errors += 1
                        if errors > 100:
                            on_not_recovering(proc, fd, job, exc)
                            raise StopIteration()
                        yield
                    else:
                        errors = 0
            finally:
                hub_remove(fd)
                write_stats[proc.index] += 1
                # message written, so this fd is now available
                active_writes.discard(fd)
                write_generator_done(job._writer())  # is a weakref

        def send_ack(response, pid, job, fd):
            # Only used when synack is enabled.
            # Schedule writing ack response for when the fd is writable.
            msg = Ack(job, fd, precalc[response])
            callback = promise(write_generator_done)
            cor = _write_ack(fd, msg, callback=callback)
            mark_write_gen_as_active(cor)
            mark_write_fd_as_active(fd)
            callback.args = (cor,)
            add_writer(fd, cor)
        self.send_ack = send_ack

        def _write_ack(fd, ack, callback=None):
            # writes ack back to the worker if synack enabled.
            # this operation *MUST* complete, otherwise
            # the worker process will hang waiting for the ack.
            header, body, body_size = ack[2]
            try:
                try:
                    proc = fileno_to_synq[fd]
                except KeyError:
                    # process died, we can safely discard the ack at this
                    # point.
                    raise StopIteration()
                send = proc.send_syn_offset

                Hw = Bw = 0
                # write header
                while Hw < 4:
                    try:
                        Hw += send(header, Hw)
                    except Exception as exc:  # pylint: disable=broad-except
                        if getattr(exc, 'errno', None) not in UNAVAIL:
                            raise
                        yield

                # write body
                while Bw < body_size:
                    try:
                        Bw += send(body, Bw)
                    except Exception as exc:  # pylint: disable=broad-except
                        if getattr(exc, 'errno', None) not in UNAVAIL:
                            raise
                        # suspend until more data
                        yield
            finally:
                if callback:
                    callback()
                # message written, so this fd is now available
                active_writes.discard(fd)

    def flush(self):
        if self._state == TERMINATE:
            return
        # cancel all tasks that haven't been accepted so that NACK is sent.
        for job in self._cache.values():
            if not job._accepted:
                job._cancel()

        # clear the outgoing buffer as the tasks will be redelivered by
        # the broker anyway.
        if self.outbound_buffer:
            self.outbound_buffer.clear()

        self.maintain_pool()

        try:
            # ...but we must continue writing the payloads we already started
            # to keep message boundaries.
            # The messages may be NACK'ed later if synack is enabled.
            if self._state == RUN:
                # flush outgoing buffers
                intervals = fxrange(0.01, 0.1, 0.01, repeatlast=True)
                owned_by = {}
                for job in self._cache.values():
                    writer = _get_job_writer(job)
                    if writer is not None:
                        owned_by[writer] = job

                while self._active_writers:
                    writers = list(self._active_writers)
                    for gen in writers:
                        if (gen.__name__ == '_write_job' and
                                gen_not_started(gen)):
                            # hasn't started writing the job so can
                            # discard the task, but we must also remove
                            # it from the Pool._cache.
                            try:
                                job = owned_by[gen]
                            except KeyError:
                                pass
                            else:
                                # removes from Pool._cache
                                job.discard()
                            self._active_writers.discard(gen)
                        else:
                            try:
                                job = owned_by[gen]
                            except KeyError:
                                pass
                            else:
                                job_proc = job._write_to
                                if job_proc._is_alive():
                                    self._flush_writer(job_proc, gen)
                    # workers may have exited in the meantime.
                    self.maintain_pool()
                    sleep(next(intervals))  # don't busyloop
        finally:
            self.outbound_buffer.clear()
            self._active_writers.clear()
            self._active_writes.clear()
            self._busy_workers.clear()

    def _flush_writer(self, proc, writer):
        fds = {proc.inq._writer}
        try:
            while fds:
                if not proc._is_alive():
                    break  # process exited
                readable, writable, again = _select(
                    writers=fds, err=fds, timeout=0.5,
                )
                if not again and (writable or readable):
                    try:
                        next(writer)
                    except (StopIteration, OSError, EOFError):
                        break
        finally:
            self._active_writers.discard(writer)

    def get_process_queues(self):
        """Get queues for a new process.

        Here we'll find an unused slot, as there should always
        be one available when we start a new process.
        """
        return next(q for q, owner in self._queues.items()
                    if owner is None)

    def on_grow(self, n):
        """Grow the pool by ``n`` proceses."""
        diff = max(self._processes - len(self._queues), 0)
        if diff:
            self._queues.update({
                self.create_process_queues(): None for _ in range(diff)
            })

    def on_shrink(self, n):
        """Shrink the pool by ``n`` processes."""

    def create_process_queues(self):
        """Create new in, out, etc. queues, returned as a tuple."""
        # NOTE: Pipes must be set O_NONBLOCK at creation time (the original
        # fd), otherwise it won't be possible to change the flags until
        # there's an actual reader/writer on the other side.
        inq = _SimpleQueue(wnonblock=True)
        outq = _SimpleQueue(rnonblock=True)
        synq = None
        assert isblocking(inq._reader)
        assert not isblocking(inq._writer)
        assert not isblocking(outq._reader)
        assert isblocking(outq._writer)
        if self.synack:
            synq = _SimpleQueue(wnonblock=True)
            assert isblocking(synq._reader)
            assert not isblocking(synq._writer)
        return inq, outq, synq

    def on_process_alive(self, pid):
        """Called when receiving the :const:`WORKER_UP` message.

        Marks the process as ready to receive work.
        """
        try:
            proc = next(w for w in self._pool if w.pid == pid)
        except StopIteration:
            return logger.warning('process with pid=%s already exited', pid)
        assert proc.inqW_fd not in self._fileno_to_inq
        assert proc.inqW_fd not in self._all_inqueues
        self._waiting_to_start.discard(proc)
        self._fileno_to_inq[proc.inqW_fd] = proc
        self._fileno_to_synq[proc.synqW_fd] = proc
        self._all_inqueues.add(proc.inqW_fd)

    def on_job_process_down(self, job, pid_gone):
        """Called for each job when the process assigned to it exits."""
        if job._write_to and not job._write_to._is_alive():
            # job was partially written
            self.on_partial_read(job, job._write_to)
        elif job._scheduled_for and not job._scheduled_for._is_alive():
            # job was only scheduled to be written to this process,
            # but no data was sent so put it back on the outbound_buffer.
            self._put_back(job)

    def on_job_process_lost(self, job, pid, exitcode):
        """Called when the process executing job' exits.

        This happens when the process job'
        was assigned to exited by mysterious means (error exitcodes and
        signals).
        """
        self.mark_as_worker_lost(job, exitcode)

    def human_write_stats(self):
        if self.write_stats is None:
            return 'N/A'
        vals = list(self.write_stats.values())
        total = sum(vals)

        def per(v, total):
            return f'{(float(v) / total) if v else 0:.2f}'

        return {
            'total': total,
            'avg': per(total / len(self.write_stats) if total else 0, total),
            'all': ', '.join(per(v, total) for v in vals),
            'raw': ', '.join(map(str, vals)),
            'strategy': SCHED_STRATEGY_TO_NAME.get(
                self.sched_strategy, self.sched_strategy,
            ),
            'inqueues': {
                'total': len(self._all_inqueues),
                'active': len(self._active_writes),
            }
        }

    def _process_cleanup_queues(self, proc):
        """Called to clean up queues after process exit."""
        if not proc.dead:
            try:
                self._queues[self._find_worker_queues(proc)] = None
            except (KeyError, ValueError):
                pass

    @staticmethod
    def _stop_task_handler(task_handler):
        """Called at shutdown to tell processes that we're shutting down."""
        for proc in task_handler.pool:
            try:
                setblocking(proc.inq._writer, 1)
            except OSError:
                pass
            else:
                try:
                    proc.inq.put(None)
                except OSError as exc:
                    if exc.errno != errno.EBADF:
                        raise

    def create_result_handler(self):
        return super().create_result_handler(
            fileno_to_outq=self._fileno_to_outq,
            on_process_alive=self.on_process_alive,
        )

    def _process_register_queues(self, proc, queues):
        """Mark new ownership for ``queues`` to update fileno indices."""
        assert queues in self._queues
        b = len(self._queues)
        self._queues[queues] = proc
        assert b == len(self._queues)

    def _find_worker_queues(self, proc):
        """Find the queues owned by ``proc``."""
        try:
            return next(q for q, owner in self._queues.items()
                        if owner == proc)
        except StopIteration:
            raise ValueError(proc)

    def _setup_queues(self):
        # this is only used by the original pool that used a shared
        # queue for all processes.
        self._quick_put = None

        # these attributes are unused by this class, but we'll still
        # have to initialize them for compatibility.
        self._inqueue = self._outqueue = \
            self._quick_get = self._poll_result = None

    def process_flush_queues(self, proc):
        """Flush all queues.

        Including the outbound buffer, so that
        all tasks that haven't been started will be discarded.

        In Celery this is called whenever the transport connection is lost
        (consumer restart), and when a process is terminated.
        """
        resq = proc.outq._reader
        on_state_change = self._result_handler.on_state_change
        fds = {resq}
        while fds and not resq.closed and self._state != TERMINATE:
            readable, _, _ = _select(fds, None, fds, timeout=0.01)
            if readable:
                try:
                    task = resq.recv()
                except (OSError, EOFError) as exc:
                    _errno = getattr(exc, 'errno', None)
                    if _errno == errno.EINTR:
                        continue
                    elif _errno == errno.EAGAIN:
                        break
                    elif _errno not in UNAVAIL:
                        debug('got %r while flushing process %r',
                              exc, proc, exc_info=1)
                    break
                else:
                    if task is None:
                        debug('got sentinel while flushing process %r', proc)
                        break
                    else:
                        on_state_change(task)
            else:
                break

    def on_partial_read(self, job, proc):
        """Called when a job was partially written to exited child."""
        # worker terminated by signal:
        # we cannot reuse the sockets again, because we don't know if
        # the process wrote/read anything frmo them, and if so we cannot
        # restore the message boundaries.
        if not job._accepted:
            # job was not acked, so find another worker to send it to.
            self._put_back(job)
        writer = _get_job_writer(job)
        if writer:
            self._active_writers.discard(writer)
            del writer

        if not proc.dead:
            proc.dead = True
            # Replace queues to avoid reuse
            before = len(self._queues)
            try:
                queues = self._find_worker_queues(proc)
                if self.destroy_queues(queues, proc):
                    self._queues[self.create_process_queues()] = None
            except ValueError:
                pass
            assert len(self._queues) == before

    def destroy_queues(self, queues, proc):
        """Destroy queues that can no longer be used.

        This way they can be replaced by new usable sockets.
        """
        assert not proc._is_alive()
        self._waiting_to_start.discard(proc)
        removed = 1
        try:
            self._queues.pop(queues)
        except KeyError:
            removed = 0
        try:
            self.on_inqueue_close(queues[0]._writer.fileno(), proc)
        except OSError:
            pass
        for queue in queues:
            if queue:
                for sock in (queue._reader, queue._writer):
                    if not sock.closed:
                        self.hub_remove(sock)
                        try:
                            sock.close()
                        except OSError:
                            pass
        return removed

    def _create_payload(self, type_, args,
                        dumps=_pickle.dumps, pack=pack,
                        protocol=HIGHEST_PROTOCOL):
        body = dumps((type_, args), protocol=protocol)
        size = len(body)
        header = pack('>I', size)
        return header, body, size

    @classmethod
    def _set_result_sentinel(cls, _outqueue, _pool):
        # unused
        pass

    def _help_stuff_finish_args(self):
        # Pool._help_stuff_finished is a classmethod so we have to use this
        # trick to modify the arguments passed to it.
        return (self._pool,)

    @classmethod
    def _help_stuff_finish(cls, pool):
        # pylint: disable=arguments-differ
        debug(
            'removing tasks from inqueue until task handler finished',
        )
        fileno_to_proc = {}
        inqR = set()
        for w in pool:
            try:
                fd = w.inq._reader.fileno()
                inqR.add(fd)
                fileno_to_proc[fd] = w
            except OSError:
                pass
        while inqR:
            readable, _, again = _select(inqR, timeout=0.5)
            if again:
                continue
            if not readable:
                break
            for fd in readable:
                fileno_to_proc[fd].inq._reader.recv()
            sleep(0)

    @property
    def timers(self):
        return {self.maintain_pool: 5.0}




            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.concurrency.base

"""Base Execution Pool."""
import logging
import os
import sys
import time

from billiard.einfo import ExceptionInfo
from billiard.exceptions import WorkerLostError
from kombu.utils.encoding import safe_repr

from celery.exceptions import WorkerShutdown, WorkerTerminate, reraise
from celery.utils import timer2
from celery.utils.log import get_logger
from celery.utils.text import truncate

__all__ = ('BasePool', 'apply_target')

logger = get_logger('celery.pool')


[docs]def apply_target(target, args=(), kwargs=None, callback=None,
                 accept_callback=None, pid=None, getpid=os.getpid,
                 propagate=(), monotonic=time.monotonic, **_):
    """Apply function within pool context."""
    kwargs = {} if not kwargs else kwargs
    if accept_callback:
        accept_callback(pid or getpid(), monotonic())
    try:
        ret = target(*args, **kwargs)
    except propagate:
        raise
    except Exception:
        raise
    except (WorkerShutdown, WorkerTerminate):
        raise
    except BaseException as exc:
        try:
            reraise(WorkerLostError, WorkerLostError(repr(exc)),
                    sys.exc_info()[2])
        except WorkerLostError:
            callback(ExceptionInfo())
    else:
        callback(ret)



[docs]class BasePool:
    """Task pool."""

    RUN = 0x1
    CLOSE = 0x2
    TERMINATE = 0x3

    Timer = timer2.Timer

    #: set to true if the pool can be shutdown from within
    #: a signal handler.
    signal_safe = True

    #: set to true if pool uses greenlets.
    is_green = False

    _state = None
    _pool = None
    _does_debug = True

    #: only used by multiprocessing pool
    uses_semaphore = False

    task_join_will_block = True
    body_can_be_buffer = False

    def __init__(self, limit=None, putlocks=True, forking_enable=True,
                 callbacks_propagate=(), app=None, **options):
        self.limit = limit
        self.putlocks = putlocks
        self.options = options
        self.forking_enable = forking_enable
        self.callbacks_propagate = callbacks_propagate
        self.app = app

[docs]    def on_start(self):
        pass


[docs]    def did_start_ok(self):
        return True


[docs]    def flush(self):
        pass


[docs]    def on_stop(self):
        pass


[docs]    def register_with_event_loop(self, loop):
        pass


[docs]    def on_apply(self, *args, **kwargs):
        pass


[docs]    def on_terminate(self):
        pass


[docs]    def on_soft_timeout(self, job):
        pass


[docs]    def on_hard_timeout(self, job):
        pass


[docs]    def maintain_pool(self, *args, **kwargs):
        pass


[docs]    def terminate_job(self, pid, signal=None):
        raise NotImplementedError(
            f'{type(self)} does not implement kill_job')


[docs]    def restart(self):
        raise NotImplementedError(
            f'{type(self)} does not implement restart')


[docs]    def stop(self):
        self.on_stop()
        self._state = self.TERMINATE


[docs]    def terminate(self):
        self._state = self.TERMINATE
        self.on_terminate()


[docs]    def start(self):
        self._does_debug = logger.isEnabledFor(logging.DEBUG)
        self.on_start()
        self._state = self.RUN


[docs]    def close(self):
        self._state = self.CLOSE
        self.on_close()


[docs]    def on_close(self):
        pass


[docs]    def apply_async(self, target, args=None, kwargs=None, **options):
        """Equivalent of the :func:`apply` built-in function.

        Callbacks should optimally return as soon as possible since
        otherwise the thread which handles the result will get blocked.
        """
        kwargs = {} if not kwargs else kwargs
        args = [] if not args else args
        if self._does_debug:
            logger.debug('TaskPool: Apply %s (args:%s kwargs:%s)',
                         target, truncate(safe_repr(args), 1024),
                         truncate(safe_repr(kwargs), 1024))

        return self.on_apply(target, args, kwargs,
                             waitforslot=self.putlocks,
                             callbacks_propagate=self.callbacks_propagate,
                             **options)


    def _get_info(self):
        return {
            'max-concurrency': self.limit,
        }

    @property
    def info(self):
        return self._get_info()

    @property
    def active(self):
        return self._state == self.RUN

    @property
    def num_processes(self):
        return self.limit





            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.concurrency.eventlet

"""Eventlet execution pool."""
import sys
from time import monotonic

from kombu.asynchronous import timer as _timer  # noqa

from celery import signals  # noqa

from . import base  # noqa

__all__ = ('TaskPool',)

W_RACE = """\
Celery module with %s imported before eventlet patched\
"""
RACE_MODS = ('billiard.', 'celery.', 'kombu.')


#: Warn if we couldn't patch early enough,
#: and thread/socket depending celery modules have already been loaded.
for mod in (mod for mod in sys.modules if mod.startswith(RACE_MODS)):
    for side in ('thread', 'threading', 'socket'):  # pragma: no cover
        if getattr(mod, side, None):
            import warnings
            warnings.warn(RuntimeWarning(W_RACE % side))


def apply_target(target, args=(), kwargs=None, callback=None,
                 accept_callback=None, getpid=None):
    kwargs = {} if not kwargs else kwargs
    return base.apply_target(target, args, kwargs, callback, accept_callback,
                             pid=getpid())


class Timer(_timer.Timer):
    """Eventlet Timer."""

    def __init__(self, *args, **kwargs):
        from eventlet.greenthread import spawn_after
        from greenlet import GreenletExit
        super().__init__(*args, **kwargs)

        self.GreenletExit = GreenletExit
        self._spawn_after = spawn_after
        self._queue = set()

    def _enter(self, eta, priority, entry, **kwargs):
        secs = max(eta - monotonic(), 0)
        g = self._spawn_after(secs, entry)
        self._queue.add(g)
        g.link(self._entry_exit, entry)
        g.entry = entry
        g.eta = eta
        g.priority = priority
        g.canceled = False
        return g

    def _entry_exit(self, g, entry):
        try:
            try:
                g.wait()
            except self.GreenletExit:
                entry.cancel()
                g.canceled = True
        finally:
            self._queue.discard(g)

    def clear(self):
        queue = self._queue
        while queue:
            try:
                queue.pop().cancel()
            except (KeyError, self.GreenletExit):
                pass

    def cancel(self, tref):
        try:
            tref.cancel()
        except self.GreenletExit:
            pass

    @property
    def queue(self):
        return self._queue


[docs]class TaskPool(base.BasePool):
    """Eventlet Task Pool."""

    Timer = Timer

    signal_safe = False
    is_green = True
    task_join_will_block = False
    _pool = None
    _quick_put = None

    def __init__(self, *args, **kwargs):
        from eventlet import greenthread
        from eventlet.greenpool import GreenPool
        self.Pool = GreenPool
        self.getcurrent = greenthread.getcurrent
        self.getpid = lambda: id(greenthread.getcurrent())
        self.spawn_n = greenthread.spawn_n

        super().__init__(*args, **kwargs)

[docs]    def on_start(self):
        self._pool = self.Pool(self.limit)
        signals.eventlet_pool_started.send(sender=self)
        self._quick_put = self._pool.spawn_n
        self._quick_apply_sig = signals.eventlet_pool_apply.send


[docs]    def on_stop(self):
        signals.eventlet_pool_preshutdown.send(sender=self)
        if self._pool is not None:
            self._pool.waitall()
        signals.eventlet_pool_postshutdown.send(sender=self)


[docs]    def on_apply(self, target, args=None, kwargs=None, callback=None,
                 accept_callback=None, **_):
        self._quick_apply_sig(
            sender=self, target=target, args=args, kwargs=kwargs,
        )
        self._quick_put(apply_target, target, args, kwargs,
                        callback, accept_callback,
                        self.getpid)


[docs]    def grow(self, n=1):
        limit = self.limit + n
        self._pool.resize(limit)
        self.limit = limit


[docs]    def shrink(self, n=1):
        limit = self.limit - n
        self._pool.resize(limit)
        self.limit = limit


    def _get_info(self):
        info = super()._get_info()
        info.update({
            'max-concurrency': self.limit,
            'free-threads': self._pool.free(),
            'running-threads': self._pool.running(),
        })
        return info





            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.concurrency.gevent

"""Gevent execution pool."""
from time import monotonic

from kombu.asynchronous import timer as _timer

from . import base

try:
    from gevent import Timeout
except ImportError:  # pragma: no cover
    Timeout = None  # noqa

__all__ = ('TaskPool',)

# pylint: disable=redefined-outer-name
# We cache globals and attribute lookups, so disable this warning.


def apply_timeout(target, args=(), kwargs=None, callback=None,
                  accept_callback=None, pid=None, timeout=None,
                  timeout_callback=None, Timeout=Timeout,
                  apply_target=base.apply_target, **rest):
    kwargs = {} if not kwargs else kwargs
    try:
        with Timeout(timeout):
            return apply_target(target, args, kwargs, callback,
                                accept_callback, pid,
                                propagate=(Timeout,), **rest)
    except Timeout:
        return timeout_callback(False, timeout)


class Timer(_timer.Timer):

    def __init__(self, *args, **kwargs):
        from gevent import Greenlet, GreenletExit

        class _Greenlet(Greenlet):
            cancel = Greenlet.kill

        self._Greenlet = _Greenlet
        self._GreenletExit = GreenletExit
        super().__init__(*args, **kwargs)
        self._queue = set()

    def _enter(self, eta, priority, entry, **kwargs):
        secs = max(eta - monotonic(), 0)
        g = self._Greenlet.spawn_later(secs, entry)
        self._queue.add(g)
        g.link(self._entry_exit)
        g.entry = entry
        g.eta = eta
        g.priority = priority
        g.canceled = False
        return g

    def _entry_exit(self, g):
        try:
            g.kill()
        finally:
            self._queue.discard(g)

    def clear(self):
        queue = self._queue
        while queue:
            try:
                queue.pop().kill()
            except KeyError:
                pass

    @property
    def queue(self):
        return self._queue


[docs]class TaskPool(base.BasePool):
    """GEvent Pool."""

    Timer = Timer

    signal_safe = False
    is_green = True
    task_join_will_block = False
    _pool = None
    _quick_put = None

    def __init__(self, *args, **kwargs):
        from gevent import spawn_raw
        from gevent.pool import Pool
        self.Pool = Pool
        self.spawn_n = spawn_raw
        self.timeout = kwargs.get('timeout')
        super().__init__(*args, **kwargs)

[docs]    def on_start(self):
        self._pool = self.Pool(self.limit)
        self._quick_put = self._pool.spawn


[docs]    def on_stop(self):
        if self._pool is not None:
            self._pool.join()


[docs]    def on_apply(self, target, args=None, kwargs=None, callback=None,
                 accept_callback=None, timeout=None,
                 timeout_callback=None, apply_target=base.apply_target, **_):
        timeout = self.timeout if timeout is None else timeout
        return self._quick_put(apply_timeout if timeout else apply_target,
                               target, args, kwargs, callback, accept_callback,
                               timeout=timeout,
                               timeout_callback=timeout_callback)


[docs]    def grow(self, n=1):
        self._pool._semaphore.counter += n
        self._pool.size += n


[docs]    def shrink(self, n=1):
        self._pool._semaphore.counter -= n
        self._pool.size -= n


    @property
    def num_processes(self):
        return len(self._pool)





            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.concurrency.prefork

"""Prefork execution pool.

Pool implementation using :mod:`multiprocessing`.
"""
import os

from billiard import forking_enable
from billiard.common import REMAP_SIGTERM, TERM_SIGNAME
from billiard.pool import CLOSE, RUN
from billiard.pool import Pool as BlockingPool

from celery import platforms, signals
from celery._state import _set_task_join_will_block, set_default_app
from celery.app import trace
from celery.concurrency.base import BasePool
from celery.utils.functional import noop
from celery.utils.log import get_logger

from .asynpool import AsynPool

__all__ = ('TaskPool', 'process_initializer', 'process_destructor')

#: List of signals to reset when a child process starts.
WORKER_SIGRESET = {
    'SIGTERM', 'SIGHUP', 'SIGTTIN', 'SIGTTOU', 'SIGUSR1',
}

#: List of signals to ignore when a child process starts.
if REMAP_SIGTERM:
    WORKER_SIGIGNORE = {'SIGINT', TERM_SIGNAME}
else:
    WORKER_SIGIGNORE = {'SIGINT'}

logger = get_logger(__name__)
warning, debug = logger.warning, logger.debug


[docs]def process_initializer(app, hostname):
    """Pool child process initializer.

    Initialize the child pool process to ensure the correct
    app instance is used and things like logging works.
    """
    _set_task_join_will_block(True)
    platforms.signals.reset(*WORKER_SIGRESET)
    platforms.signals.ignore(*WORKER_SIGIGNORE)
    platforms.set_mp_process_title('celeryd', hostname=hostname)
    # This is for Windows and other platforms not supporting
    # fork().  Note that init_worker makes sure it's only
    # run once per process.
    app.loader.init_worker()
    app.loader.init_worker_process()
    logfile = os.environ.get('CELERY_LOG_FILE') or None
    if logfile and '%i' in logfile.lower():
        # logfile path will differ so need to set up logging again.
        app.log.already_setup = False
    app.log.setup(int(os.environ.get('CELERY_LOG_LEVEL', 0) or 0),
                  logfile,
                  bool(os.environ.get('CELERY_LOG_REDIRECT', False)),
                  str(os.environ.get('CELERY_LOG_REDIRECT_LEVEL')),
                  hostname=hostname)
    if os.environ.get('FORKED_BY_MULTIPROCESSING'):
        # pool did execv after fork
        trace.setup_worker_optimizations(app, hostname)
    else:
        app.set_current()
        set_default_app(app)
        app.finalize()
        trace._tasks = app._tasks  # enables fast_trace_task optimization.
    # rebuild execution handler for all tasks.
    from celery.app.trace import build_tracer
    for name, task in app.tasks.items():
        task.__trace__ = build_tracer(name, task, app.loader, hostname,
                                      app=app)
    from celery.worker import state as worker_state
    worker_state.reset_state()
    signals.worker_process_init.send(sender=None)



[docs]def process_destructor(pid, exitcode):
    """Pool child process destructor.

    Dispatch the :signal:`worker_process_shutdown` signal.
    """
    signals.worker_process_shutdown.send(
        sender=None, pid=pid, exitcode=exitcode,
    )



[docs]class TaskPool(BasePool):
    """Multiprocessing Pool implementation."""

    Pool = AsynPool
    BlockingPool = BlockingPool

    uses_semaphore = True
    write_stats = None

[docs]    def on_start(self):
        forking_enable(self.forking_enable)
        Pool = (self.BlockingPool if self.options.get('threads', True)
                else self.Pool)
        proc_alive_timeout = (
            self.app.conf.worker_proc_alive_timeout if self.app
            else None
        )
        P = self._pool = Pool(processes=self.limit,
                              initializer=process_initializer,
                              on_process_exit=process_destructor,
                              enable_timeouts=True,
                              synack=False,
                              proc_alive_timeout=proc_alive_timeout,
                              **self.options)

        # Create proxy methods
        self.on_apply = P.apply_async
        self.maintain_pool = P.maintain_pool
        self.terminate_job = P.terminate_job
        self.grow = P.grow
        self.shrink = P.shrink
        self.flush = getattr(P, 'flush', None)  # FIXME add to billiard


[docs]    def restart(self):
        self._pool.restart()
        self._pool.apply_async(noop)


[docs]    def did_start_ok(self):
        return self._pool.did_start_ok()


[docs]    def register_with_event_loop(self, loop):
        try:
            reg = self._pool.register_with_event_loop
        except AttributeError:
            return
        return reg(loop)


[docs]    def on_stop(self):
        """Gracefully stop the pool."""
        if self._pool is not None and self._pool._state in (RUN, CLOSE):
            self._pool.close()
            self._pool.join()
            self._pool = None


[docs]    def on_terminate(self):
        """Force terminate the pool."""
        if self._pool is not None:
            self._pool.terminate()
            self._pool = None


[docs]    def on_close(self):
        if self._pool is not None and self._pool._state == RUN:
            self._pool.close()


    def _get_info(self):
        write_stats = getattr(self._pool, 'human_write_stats', None)
        return {
            'max-concurrency': self.limit,
            'processes': [p.pid for p in self._pool._pool],
            'max-tasks-per-child': self._pool._maxtasksperchild or 'N/A',
            'put-guarded-by-semaphore': self.putlocks,
            'timeouts': (self._pool.soft_timeout or 0,
                         self._pool.timeout or 0),
            'writes': write_stats() if write_stats is not None else 'N/A',
        }

    @property
    def num_processes(self):
        return self._pool._processes





            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.concurrency.solo

"""Single-threaded execution pool."""
import os

from celery import signals

from .base import BasePool, apply_target

__all__ = ('TaskPool',)


[docs]class TaskPool(BasePool):
    """Solo task pool (blocking, inline, fast)."""

    body_can_be_buffer = True

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.on_apply = apply_target
        self.limit = 1
        signals.worker_process_init.send(sender=None)

    def _get_info(self):
        return {
            'max-concurrency': 1,
            'processes': [os.getpid()],
            'max-tasks-per-child': None,
            'put-guarded-by-semaphore': True,
            'timeouts': (),
        }





            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.concurrency.thread

"""Thread execution pool."""

import sys
from concurrent.futures import ThreadPoolExecutor, wait

from .base import BasePool, apply_target

__all__ = ('TaskPool',)


class ApplyResult:
    def __init__(self, future):
        self.f = future
        self.get = self.f.result

    def wait(self, timeout=None):
        wait([self.f], timeout)


[docs]class TaskPool(BasePool):
    """Thread Task Pool."""

    body_can_be_buffer = True
    signal_safe = False

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        # from 3.5, it is calculated from number of CPUs
        if (3, 0) <= sys.version_info < (3, 5) and self.limit is None:
            self.limit = 5

        self.executor = ThreadPoolExecutor(max_workers=self.limit)

[docs]    def on_stop(self):
        self.executor.shutdown()
        super().on_stop()


[docs]    def on_apply(self, target, args=None, kwargs=None, callback=None,
                 accept_callback=None, **_):
        f = self.executor.submit(apply_target, target, args, kwargs,
                                 callback, accept_callback)
        return ApplyResult(f)


    def _get_info(self):
        return {
            'max-concurrency': self.limit,
            'threads': len(self.executor._threads)
            # TODO use a public api to retrieve the current number of threads
            # in the executor when available. (Currently not available).
        }





            

          

      

      

    

  

    
      
          
            


    
        
        This document describes the current stable version of Celery (5.0).
        For development docs,
        go here.
        

    



    Source code for celery.contrib.abortable

"""Abortable Tasks.

Abortable tasks overview
=========================

For long-running :class:`Task`'s, it can be desirable to support
aborting during execution.  Of course, these tasks should be built to
support abortion specifically.

The :class:`AbortableTask` serves as a base class for all :class:`Task`
objects that should support abortion by producers.

* Producers may invoke the :meth:`abort` method on
  :class:`AbortableAsyncResult` instances, to request abortion.

* Consumers (workers) should periodically check (and honor!) the
  :meth:`is_aborted` method at controlled points in their task's
  :meth:`run` method.  The more often, the better.

The necessary intermediate communication is dealt with by the
:class:`AbortableTask` implementation.

Usage example
-------------

In the consumer:

.. code-block:: python

    from __future__ import absolute_import

    from celery.contrib.abortable import AbortableTask
    from celery.utils.log import get_task_logger

    from proj.celery import app

    logger = get_logger(__name__)

    @app.task(bind=True, base=AbortableTask)
    def long_running_task(self):
        results = []
        for i in range(100):
            # check after every 5 iterations...
            # (or alternatively, check when some timer is due)
            if not i % 5:
                if self.is_aborted():
                    # respect aborted state, and terminate gracefully.
                    logger.warning('Task aborted')
                    return
                value = do_something_expensive(i)
                results.append(y)
        logger.info('Task complete')
        return results

In the producer:

.. code-block:: python

    from __future__ import absolute_import

    import time

    from proj.tasks import MyLongRunningTask

    def myview(request):
        # result is of type AbortableAsyncResult
        result = long_running_task.delay()

        # abort the task after 10 seconds
        time.sleep(10)
        result.abort()

After the `result.abort()` call, the task execution isn't
aborted immediately.  In fact, it's not guaranteed to abort at all.
Keep checking `result.state` status, or call `result.get(timeout=)` to
have it block until the task is finished.

.. note::

   In order to abort tasks, there needs to be communication between the
   producer and the consumer.  This is currently implemented through the
   database backend.  Therefore, this class will only work with the
   database backends.
"""
from celery import Task
from celery.result import AsyncResult

__all__ = ('AbortableAsyncResult', 'AbortableTask')


"""
Task States
-----------

.. state:: ABORTED

ABORTED
~~~~~~~

Task is aborted (typically by the producer) and should be
aborted as soon as possible.

"""
ABORTED = 'ABORTED'

[docs]class AbortableAsyncResult(AsyncResult):
 """Represents an abortable result.

 Specifically, this gives the `AsyncResult` a :meth:`abort()` method,
 that sets the state of the underlying Task to `'ABORTED'`.
 """

[docs] def is_aborted(self):
 """Return :const:`True` if the task is (being) aborted."""
 return self.state == ABORTED

[docs] def abort(self):
 """Set the state of the task to :const:`ABORTED`.

 Abortable tasks monitor their state at regular intervals and
 terminate execution if so.

 Warning:
 Be aware that invoking this method does not guarantee when the
 task will be aborted (or even if the task will be aborted at all).
 """
 # TODO: store_result requires all four arguments to be set,
 # but only state should be updated here
 return self.backend.store_result(self.id, result=None,
 state=ABORTED, traceback=None)

[docs]class AbortableTask(Task):
 """Task that can be aborted.

 This serves as a base class for all :class:`Task`'s
 that support aborting during execution.

 All subclasses of :class:`AbortableTask` must call the
 :meth:`is_aborted` method periodically and act accordingly when
 the call evaluates to :const:`True`.
 """

 abstract = True

[docs] def AsyncResult(self, task_id):
 """Return the accompanying AbortableAsyncResult instance."""
 return AbortableAsyncResult(task_id, backend=self.backend)

[docs] def is_aborted(self, **kwargs):
 """Return true if task is aborted.

 Checks against the backend whether this
 :class:`AbortableAsyncResult` is :const:`ABORTED`.

 Always return :const:`False` in case the `task_id` parameter
 refers to a regular (non-abortable) :class:`Task`.

 Be aware that invoking this method will cause a hit in the
 backend (for example a database query), so find a good balance
 between calling it regularly (for responsiveness), but not too
 often (for performance).
 """
 task_id = kwargs.get('task_id', self.request.id)
 result = self.AsyncResult(task_id)
 if not isinstance(result, AbortableAsyncResult):
 return False
 return result.is_aborted()

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.contrib.migrate

"""Message migration tools (Broker <-> Broker)."""
import socket
from functools import partial
from itertools import cycle, islice

from kombu import Queue, eventloop
from kombu.common import maybe_declare
from kombu.utils.encoding import ensure_bytes

from celery.app import app_or_default
from celery.utils.nodenames import worker_direct
from celery.utils.text import str_to_list

__all__ = (
 'StopFiltering', 'State', 'republish', 'migrate_task',
 'migrate_tasks', 'move', 'task_id_eq', 'task_id_in',
 'start_filter', 'move_task_by_id', 'move_by_idmap',
 'move_by_taskmap', 'move_direct', 'move_direct_by_id',
)

MOVING_PROGRESS_FMT = """\
Moving task {state.filtered}/{state.strtotal}: \
{body[task]}[{body[id]}]\
"""

[docs]class StopFiltering(Exception):
 """Semi-predicate used to signal filter stop."""

[docs]class State:
 """Migration progress state."""

 count = 0
 filtered = 0
 total_apx = 0

 @property
 def strtotal(self):
 if not self.total_apx:
 return '?'
 return str(self.total_apx)

 def __repr__(self):
 if self.filtered:
 return f'^{self.filtered}'
 return f'{self.count}/{self.strtotal}'

[docs]def republish(producer, message, exchange=None, routing_key=None,
 remove_props=None):
 """Republish message."""
 if not remove_props:
 remove_props = ['application_headers', 'content_type',
 'content_encoding', 'headers']
 body = ensure_bytes(message.body) # use raw message body.
 info, headers, props = (message.delivery_info,
 message.headers, message.properties)
 exchange = info['exchange'] if exchange is None else exchange
 routing_key = info['routing_key'] if routing_key is None else routing_key
 ctype, enc = message.content_type, message.content_encoding
 # remove compression header, as this will be inserted again
 # when the message is recompressed.
 compression = headers.pop('compression', None)

 for key in remove_props:
 props.pop(key, None)

 producer.publish(ensure_bytes(body), exchange=exchange,
 routing_key=routing_key, compression=compression,
 headers=headers, content_type=ctype,
 content_encoding=enc, **props)

[docs]def migrate_task(producer, body_, message, queues=None):
 """Migrate single task message."""
 info = message.delivery_info
 queues = {} if queues is None else queues
 republish(producer, message,
 exchange=queues.get(info['exchange']),
 routing_key=queues.get(info['routing_key']))

def filter_callback(callback, tasks):

 def filtered(body, message):
 if tasks and body['task'] not in tasks:
 return

 return callback(body, message)
 return filtered

[docs]def migrate_tasks(source, dest, migrate=migrate_task, app=None,
 queues=None, **kwargs):
 """Migrate tasks from one broker to another."""
 app = app_or_default(app)
 queues = prepare_queues(queues)
 producer = app.amqp.Producer(dest, auto_declare=False)
 migrate = partial(migrate, producer, queues=queues)

 def on_declare_queue(queue):
 new_queue = queue(producer.channel)
 new_queue.name = queues.get(queue.name, queue.name)
 if new_queue.routing_key == queue.name:
 new_queue.routing_key = queues.get(queue.name,
 new_queue.routing_key)
 if new_queue.exchange.name == queue.name:
 new_queue.exchange.name = queues.get(queue.name, queue.name)
 new_queue.declare()

 return start_filter(app, source, migrate, queues=queues,
 on_declare_queue=on_declare_queue, **kwargs)

def _maybe_queue(app, q):
 if isinstance(q, str):
 return app.amqp.queues[q]
 return q

[docs]def move(predicate, connection=None, exchange=None, routing_key=None,
 source=None, app=None, callback=None, limit=None, transform=None,
 **kwargs):
 """Find tasks by filtering them and move the tasks to a new queue.

 Arguments:
 predicate (Callable): Filter function used to decide the messages
 to move. Must accept the standard signature of ``(body, message)``
 used by Kombu consumer callbacks. If the predicate wants the
 message to be moved it must return either:

 1) a tuple of ``(exchange, routing_key)``, or

 2) a :class:`~kombu.entity.Queue` instance, or

 3) any other true value means the specified
 ``exchange`` and ``routing_key`` arguments will be used.
 connection (kombu.Connection): Custom connection to use.
 source: List[Union[str, kombu.Queue]]: Optional list of source
 queues to use instead of the default (queues
 in :setting:`task_queues`). This list can also contain
 :class:`~kombu.entity.Queue` instances.
 exchange (str, kombu.Exchange): Default destination exchange.
 routing_key (str): Default destination routing key.
 limit (int): Limit number of messages to filter.
 callback (Callable): Callback called after message moved,
 with signature ``(state, body, message)``.
 transform (Callable): Optional function to transform the return
 value (destination) of the filter function.

 Also supports the same keyword arguments as :func:`start_filter`.

 To demonstrate, the :func:`move_task_by_id` operation can be implemented
 like this:

 .. code-block:: python

 def is_wanted_task(body, message):
 if body['id'] == wanted_id:
 return Queue('foo', exchange=Exchange('foo'),
 routing_key='foo')

 move(is_wanted_task)

 or with a transform:

 .. code-block:: python

 def transform(value):
 if isinstance(value, str):
 return Queue(value, Exchange(value), value)
 return value

 move(is_wanted_task, transform=transform)

 Note:
 The predicate may also return a tuple of ``(exchange, routing_key)``
 to specify the destination to where the task should be moved,
 or a :class:`~kombu.entity.Queue` instance.
 Any other true value means that the task will be moved to the
 default exchange/routing_key.
 """
 app = app_or_default(app)
 queues = [_maybe_queue(app, queue) for queue in source or []] or None
 with app.connection_or_acquire(connection, pool=False) as conn:
 producer = app.amqp.Producer(conn)
 state = State()

 def on_task(body, message):
 ret = predicate(body, message)
 if ret:
 if transform:
 ret = transform(ret)
 if isinstance(ret, Queue):
 maybe_declare(ret, conn.default_channel)
 ex, rk = ret.exchange.name, ret.routing_key
 else:
 ex, rk = expand_dest(ret, exchange, routing_key)
 republish(producer, message,
 exchange=ex, routing_key=rk)
 message.ack()

 state.filtered += 1
 if callback:
 callback(state, body, message)
 if limit and state.filtered >= limit:
 raise StopFiltering()

 return start_filter(app, conn, on_task, consume_from=queues, **kwargs)

def expand_dest(ret, exchange, routing_key):
 try:
 ex, rk = ret
 except (TypeError, ValueError):
 ex, rk = exchange, routing_key
 return ex, rk

[docs]def task_id_eq(task_id, body, message):
 """Return true if task id equals task_id'."""
 return body['id'] == task_id

[docs]def task_id_in(ids, body, message):
 """Return true if task id is member of set ids'."""
 return body['id'] in ids

def prepare_queues(queues):
 if isinstance(queues, str):
 queues = queues.split(',')
 if isinstance(queues, list):
 queues = dict(tuple(islice(cycle(q.split(':')), None, 2))
 for q in queues)
 if queues is None:
 queues = {}
 return queues

class Filterer:

 def __init__(self, app, conn, filter,
 limit=None, timeout=1.0,
 ack_messages=False, tasks=None, queues=None,
 callback=None, forever=False, on_declare_queue=None,
 consume_from=None, state=None, accept=None, **kwargs):
 self.app = app
 self.conn = conn
 self.filter = filter
 self.limit = limit
 self.timeout = timeout
 self.ack_messages = ack_messages
 self.tasks = set(str_to_list(tasks) or [])
 self.queues = prepare_queues(queues)
 self.callback = callback
 self.forever = forever
 self.on_declare_queue = on_declare_queue
 self.consume_from = [
 _maybe_queue(self.app, q)
 for q in consume_from or list(self.queues)
]
 self.state = state or State()
 self.accept = accept

 def start(self):
 # start migrating messages.
 with self.prepare_consumer(self.create_consumer()):
 try:
 for _ in eventloop(self.conn, # pragma: no cover
 timeout=self.timeout,
 ignore_timeouts=self.forever):
 pass
 except socket.timeout:
 pass
 except StopFiltering:
 pass
 return self.state

 def update_state(self, body, message):
 self.state.count += 1
 if self.limit and self.state.count >= self.limit:
 raise StopFiltering()

 def ack_message(self, body, message):
 message.ack()

 def create_consumer(self):
 return self.app.amqp.TaskConsumer(
 self.conn,
 queues=self.consume_from,
 accept=self.accept,
)

 def prepare_consumer(self, consumer):
 filter = self.filter
 update_state = self.update_state
 ack_message = self.ack_message
 if self.tasks:
 filter = filter_callback(filter, self.tasks)
 update_state = filter_callback(update_state, self.tasks)
 ack_message = filter_callback(ack_message, self.tasks)
 consumer.register_callback(filter)
 consumer.register_callback(update_state)
 if self.ack_messages:
 consumer.register_callback(self.ack_message)
 if self.callback is not None:
 callback = partial(self.callback, self.state)
 if self.tasks:
 callback = filter_callback(callback, self.tasks)
 consumer.register_callback(callback)
 self.declare_queues(consumer)
 return consumer

 def declare_queues(self, consumer):
 # declare all queues on the new broker.
 for queue in consumer.queues:
 if self.queues and queue.name not in self.queues:
 continue
 if self.on_declare_queue is not None:
 self.on_declare_queue(queue)
 try:
 _, mcount, _ = queue(
 consumer.channel).queue_declare(passive=True)
 if mcount:
 self.state.total_apx += mcount
 except self.conn.channel_errors:
 pass

[docs]def start_filter(app, conn, filter, limit=None, timeout=1.0,
 ack_messages=False, tasks=None, queues=None,
 callback=None, forever=False, on_declare_queue=None,
 consume_from=None, state=None, accept=None, **kwargs):
 """Filter tasks."""
 return Filterer(
 app, conn, filter,
 limit=limit,
 timeout=timeout,
 ack_messages=ack_messages,
 tasks=tasks,
 queues=queues,
 callback=callback,
 forever=forever,
 on_declare_queue=on_declare_queue,
 consume_from=consume_from,
 state=state,
 accept=accept,
 **kwargs).start()

[docs]def move_task_by_id(task_id, dest, **kwargs):
 """Find a task by id and move it to another queue.

 Arguments:
 task_id (str): Id of task to find and move.
 dest: (str, kombu.Queue): Destination queue.
 transform (Callable): Optional function to transform the return
 value (destination) of the filter function.
 **kwargs (Any): Also supports the same keyword
 arguments as :func:`move`.
 """
 return move_by_idmap({task_id: dest}, **kwargs)

[docs]def move_by_idmap(map, **kwargs):
 """Move tasks by matching from a ``task_id: queue`` mapping.

 Where ``queue`` is a queue to move the task to.

 Example:
 >>> move_by_idmap({
 ... '5bee6e82-f4ac-468e-bd3d-13e8600250bc': Queue('name'),
 ... 'ada8652d-aef3-466b-abd2-becdaf1b82b3': Queue('name'),
 ... '3a2b140d-7db1-41ba-ac90-c36a0ef4ab1f': Queue('name')},
 ... queues=['hipri'])
 """
 def task_id_in_map(body, message):
 return map.get(message.properties['correlation_id'])

 # adding the limit means that we don't have to consume any more
 # when we've found everything.
 return move(task_id_in_map, limit=len(map), **kwargs)

[docs]def move_by_taskmap(map, **kwargs):
 """Move tasks by matching from a ``task_name: queue`` mapping.

 ``queue`` is the queue to move the task to.

 Example:
 >>> move_by_taskmap({
 ... 'tasks.add': Queue('name'),
 ... 'tasks.mul': Queue('name'),
 ... })
 """
 def task_name_in_map(body, message):
 return map.get(body['task']) # <- name of task

 return move(task_name_in_map, **kwargs)

def filter_status(state, body, message, **kwargs):
 print(MOVING_PROGRESS_FMT.format(state=state, body=body, **kwargs))

move_direct = partial(move, transform=worker_direct)
move_direct_by_id = partial(move_task_by_id, transform=worker_direct)
move_direct_by_idmap = partial(move_by_idmap, transform=worker_direct)
move_direct_by_taskmap = partial(move_by_taskmap, transform=worker_direct)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.contrib.pytest

"""Fixtures and testing utilities for :pypi:`pytest <pytest>`."""
import os
from contextlib import contextmanager

import pytest

from .testing import worker
from .testing.app import TestApp, setup_default_app

NO_WORKER = os.environ.get('NO_WORKER')

pylint: disable=redefined-outer-name
Well, they're called fixtures....

[docs]def pytest_configure(config):
 """Register additional pytest configuration."""
 # add the pytest.mark.celery() marker registration to the pytest.ini [markers] section
 # this prevents pytest 4.5 and newer from issueing a warning about an unknown marker
 # and shows helpful marker documentation when running pytest --markers.
 config.addinivalue_line(
 "markers", "celery(**overrides): override celery configuration for a test case"
)

@contextmanager
def _create_app(enable_logging=False,
 use_trap=False,
 parameters=None,
 **config):
 # type: (Any, Any, Any, **Any) -> Celery
 """Utility context used to setup Celery app for pytest fixtures."""
 parameters = {} if not parameters else parameters
 test_app = TestApp(
 set_as_current=False,
 enable_logging=enable_logging,
 config=config,
 **parameters
)
 with setup_default_app(test_app, use_trap=use_trap):
 yield test_app

[docs]@pytest.fixture(scope='session')
def use_celery_app_trap():
 # type: () -> bool
 """You can override this fixture to enable the app trap.

 The app trap raises an exception whenever something attempts
 to use the current or default apps.
 """
 return False

[docs]@pytest.fixture(scope='session')
def celery_session_app(request,
 celery_config,
 celery_parameters,
 celery_enable_logging,
 use_celery_app_trap):
 # type: (Any, Any, Any, Any, Any) -> Celery
 """Session Fixture: Return app for session fixtures."""
 mark = request.node.get_closest_marker('celery')
 config = dict(celery_config, **mark.kwargs if mark else {})
 with _create_app(enable_logging=celery_enable_logging,
 use_trap=use_celery_app_trap,
 parameters=celery_parameters,
 **config) as app:
 if not use_celery_app_trap:
 app.set_default()
 app.set_current()
 yield app

[docs]@pytest.fixture(scope='session')
def celery_session_worker(
 request, # type: Any
 celery_session_app, # type: Celery
 celery_includes, # type: Sequence[str]
 celery_class_tasks, # type: str
 celery_worker_pool, # type: Any
 celery_worker_parameters, # type: Mapping[str, Any]
):
 # type: (...) -> WorkController
 """Session Fixture: Start worker that lives throughout test suite."""
 if not NO_WORKER:
 for module in celery_includes:
 celery_session_app.loader.import_task_module(module)
 for class_task in celery_class_tasks:
 celery_session_app.tasks.register(class_task)
 with worker.start_worker(celery_session_app,
 pool=celery_worker_pool,
 **celery_worker_parameters) as w:
 yield w

[docs]@pytest.fixture(scope='session')
def celery_enable_logging():
 # type: () -> bool
 """You can override this fixture to enable logging."""
 return False

[docs]@pytest.fixture(scope='session')
def celery_includes():
 # type: () -> Sequence[str]
 """You can override this include modules when a worker start.

 You can have this return a list of module names to import,
 these can be task modules, modules registering signals, and so on.
 """
 return ()

[docs]@pytest.fixture(scope='session')
def celery_worker_pool():
 # type: () -> Union[str, Any]
 """You can override this fixture to set the worker pool.

 The "solo" pool is used by default, but you can set this to
 return e.g. "prefork".
 """
 return 'solo'

[docs]@pytest.fixture(scope='session')
def celery_config():
 # type: () -> Mapping[str, Any]
 """Redefine this fixture to configure the test Celery app.

 The config returned by your fixture will then be used
 to configure the :func:`celery_app` fixture.
 """
 return {}

[docs]@pytest.fixture(scope='session')
def celery_parameters():
 # type: () -> Mapping[str, Any]
 """Redefine this fixture to change the init parameters of test Celery app.

 The dict returned by your fixture will then be used
 as parameters when instantiating :class:`~celery.Celery`.
 """
 return {}

[docs]@pytest.fixture(scope='session')
def celery_worker_parameters():
 # type: () -> Mapping[str, Any]
 """Redefine this fixture to change the init parameters of Celery workers.

 This can be used e. g. to define queues the worker will consume tasks from.

 The dict returned by your fixture will then be used
 as parameters when instantiating :class:`~celery.worker.WorkController`.
 """
 return {}

[docs]@pytest.fixture()
def celery_app(request,
 celery_config,
 celery_parameters,
 celery_enable_logging,
 use_celery_app_trap):
 """Fixture creating a Celery application instance."""
 mark = request.node.get_closest_marker('celery')
 config = dict(celery_config, **mark.kwargs if mark else {})
 with _create_app(enable_logging=celery_enable_logging,
 use_trap=use_celery_app_trap,
 parameters=celery_parameters,
 **config) as app:
 yield app

[docs]@pytest.fixture(scope='session')
def celery_class_tasks():
 """Redefine this fixture to register tasks with the test Celery app."""
 return []

[docs]@pytest.fixture()
def celery_worker(request,
 celery_app,
 celery_includes,
 celery_worker_pool,
 celery_worker_parameters):
 # type: (Any, Celery, Sequence[str], str, Any) -> WorkController
 """Fixture: Start worker in a thread, stop it when the test returns."""
 if not NO_WORKER:
 for module in celery_includes:
 celery_app.loader.import_task_module(module)
 with worker.start_worker(celery_app,
 pool=celery_worker_pool,
 **celery_worker_parameters) as w:
 yield w

[docs]@pytest.fixture()
def depends_on_current_app(celery_app):
 """Fixture that sets app as current."""
 celery_app.set_current()

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.contrib.rdb

"""Remote Debugger.

Introduction
============

This is a remote debugger for Celery tasks running in multiprocessing
pool workers. Inspired by a lost post on dzone.com.

Usage

.. code-block:: python

 from celery.contrib import rdb
 from celery import task

 @task()
 def add(x, y):
 result = x + y
 rdb.set_trace()
 return result

Environment Variables
=====================

.. envvar:: CELERY_RDB_HOST

``CELERY_RDB_HOST``

 Hostname to bind to. Default is '127.0.0.1' (only accessible from
 localhost).

.. envvar:: CELERY_RDB_PORT

``CELERY_RDB_PORT``

 Base port to bind to. Default is 6899.
 The debugger will try to find an available port starting from the
 base port. The selected port will be logged by the worker.
"""
import errno
import os
import socket
import sys
from pdb import Pdb

from billiard.process import current_process

__all__ = (
 'CELERY_RDB_HOST', 'CELERY_RDB_PORT', 'DEFAULT_PORT',
 'Rdb', 'debugger', 'set_trace',
)

DEFAULT_PORT = 6899

CELERY_RDB_HOST = os.environ.get('CELERY_RDB_HOST') or '127.0.0.1'
CELERY_RDB_PORT = int(os.environ.get('CELERY_RDB_PORT') or DEFAULT_PORT)

#: Holds the currently active debugger.
_current = [None]

_frame = getattr(sys, '_getframe')

NO_AVAILABLE_PORT = """\
{self.ident}: Couldn't find an available port.

Please specify one using the CELERY_RDB_PORT environment variable.
"""

BANNER = """\
{self.ident}: Ready to connect: telnet {self.host} {self.port}

Type `exit` in session to continue.

{self.ident}: Waiting for client...
"""

SESSION_STARTED = '{self.ident}: Now in session with {self.remote_addr}.'
SESSION_ENDED = '{self.ident}: Session with {self.remote_addr} ended.'

[docs]class Rdb(Pdb):
 """Remote debugger."""

 me = 'Remote Debugger'
 _prev_outs = None
 _sock = None

 def __init__(self, host=CELERY_RDB_HOST, port=CELERY_RDB_PORT,
 port_search_limit=100, port_skew=+0, out=sys.stdout):
 self.active = True
 self.out = out

 self._prev_handles = sys.stdin, sys.stdout

 self._sock, this_port = self.get_avail_port(
 host, port, port_search_limit, port_skew,
)
 self._sock.setblocking(1)
 self._sock.listen(1)
 self.ident = f'{self.me}:{this_port}'
 self.host = host
 self.port = this_port
 self.say(BANNER.format(self=self))

 self._client, address = self._sock.accept()
 self._client.setblocking(1)
 self.remote_addr = ':'.join(str(v) for v in address)
 self.say(SESSION_STARTED.format(self=self))
 self._handle = sys.stdin = sys.stdout = self._client.makefile('rw')
 Pdb.__init__(self, completekey='tab',
 stdin=self._handle, stdout=self._handle)

 def get_avail_port(self, host, port, search_limit=100, skew=+0):
 try:
 _, skew = current_process().name.split('-')
 skew = int(skew)
 except ValueError:
 pass
 this_port = None
 for i in range(search_limit):
 _sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 _sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
 this_port = port + skew + i
 try:
 _sock.bind((host, this_port))
 except OSError as exc:
 if exc.errno in [errno.EADDRINUSE, errno.EINVAL]:
 continue
 raise
 else:
 return _sock, this_port
 else:
 raise Exception(NO_AVAILABLE_PORT.format(self=self))

 def say(self, m):
 print(m, file=self.out)

 def __enter__(self):
 return self

 def __exit__(self, *exc_info):
 self._close_session()

 def _close_session(self):
 self.stdin, self.stdout = sys.stdin, sys.stdout = self._prev_handles
 if self.active:
 if self._handle is not None:
 self._handle.close()
 if self._client is not None:
 self._client.close()
 if self._sock is not None:
 self._sock.close()
 self.active = False
 self.say(SESSION_ENDED.format(self=self))

 def do_continue(self, arg):
 self._close_session()
 self.set_continue()
 return 1
 do_c = do_cont = do_continue

 def do_quit(self, arg):
 self._close_session()
 self.set_quit()
 return 1
 do_q = do_exit = do_quit

 def set_quit(self):
 # this raises a BdbQuit exception that we're unable to catch.
 sys.settrace(None)

[docs]def debugger():
 """Return the current debugger instance, or create if none."""
 rdb = _current[0]
 if rdb is None or not rdb.active:
 rdb = _current[0] = Rdb()
 return rdb

[docs]def set_trace(frame=None):
 """Set break-point at current location, or a specified frame."""
 if frame is None:
 frame = _frame().f_back
 return debugger().set_trace(frame)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.contrib.sphinx

"""Sphinx documentation plugin used to document tasks.

Introduction
============

Usage

The Celery extension for Sphinx requires Sphinx 2.0 or later.

Add the extension to your :file:`docs/conf.py` configuration module:

.. code-block:: python

 extensions = (...,
 'celery.contrib.sphinx')

If you'd like to change the prefix for tasks in reference documentation
then you can change the ``celery_task_prefix`` configuration value:

.. code-block:: python

 celery_task_prefix = '(task)' # < default

With the extension installed `autodoc` will automatically find
task decorated objects (e.g. when using the automodule directive)
and generate the correct (as well as add a ``(task)`` prefix),
and you can also refer to the tasks using `:task:proj.tasks.add`
syntax.

Use ``.. autotask::`` to alternatively manually document a task.
"""
from inspect import formatargspec, getfullargspec

from sphinx.domains.python import PyFunction
from sphinx.ext.autodoc import FunctionDocumenter

from celery.app.task import BaseTask

[docs]class TaskDocumenter(FunctionDocumenter):
 """Document task definitions."""

 objtype = 'task'
 member_order = 11

[docs] @classmethod
 def can_document_member(cls, member, membername, isattr, parent):
 return isinstance(member, BaseTask) and getattr(member, '__wrapped__')

[docs] def format_args(self):
 wrapped = getattr(self.object, '__wrapped__', None)
 if wrapped is not None:
 argspec = getfullargspec(wrapped)
 if argspec[0] and argspec[0][0] in ('cls', 'self'):
 del argspec[0][0]
 fmt = formatargspec(*argspec)
 fmt = fmt.replace('\\', '\\\\')
 return fmt
 return ''

[docs] def document_members(self, all_members=False):
 pass

[docs] def check_module(self):
 # Normally checks if *self.object* is really defined in the module
 # given by *self.modname*. But since functions decorated with the @task
 # decorator are instances living in the celery.local, we have to check
 # the wrapped function instead.
 wrapped = getattr(self.object, '__wrapped__', None)
 if wrapped and getattr(wrapped, '__module__') == self.modname:
 return True
 return super().check_module()

[docs]class TaskDirective(PyFunction):
 """Sphinx task directive."""

[docs] def get_signature_prefix(self, sig):
 return self.env.config.celery_task_prefix

[docs]def autodoc_skip_member_handler(app, what, name, obj, skip, options):
 """Handler for autodoc-skip-member event."""
 # Celery tasks created with the @task decorator have the property
 # that *obj.__doc__* and *obj.__class__.__doc__* are equal, which
 # trips up the logic in sphinx.ext.autodoc that is supposed to
 # suppress repetition of class documentation in an instance of the
 # class. This overrides that behavior.
 if isinstance(obj, BaseTask) and getattr(obj, '__wrapped__'):
 if skip:
 return False
 return None

[docs]def setup(app):
 """Setup Sphinx extension."""
 app.setup_extension('sphinx.ext.autodoc')
 app.add_autodocumenter(TaskDocumenter)
 app.add_directive_to_domain('py', 'task', TaskDirective)
 app.add_config_value('celery_task_prefix', '(task)', True)
 app.connect('autodoc-skip-member', autodoc_skip_member_handler)

 return {
 'parallel_read_safe': True
 }

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.contrib.testing.app

"""Create Celery app instances used for testing."""
import weakref
from contextlib import contextmanager
from copy import deepcopy

from kombu.utils.imports import symbol_by_name

from celery import Celery, _state

#: Contains the default configuration values for the test app.
DEFAULT_TEST_CONFIG = {
 'worker_hijack_root_logger': False,
 'worker_log_color': False,
 'accept_content': {'json'},
 'enable_utc': True,
 'timezone': 'UTC',
 'broker_url': 'memory://',
 'result_backend': 'cache+memory://',
 'broker_heartbeat': 0,
}

[docs]class Trap:
 """Trap that pretends to be an app but raises an exception instead.

 This to protect from code that does not properly pass app instances,
 then falls back to the current_app.
 """

 def __getattr__(self, name):
 # Workaround to allow unittest.mock to patch this object
 # in Python 3.8 and above.
 if name == '_is_coroutine' or name == '__func__':
 return None
 print(name)
 raise RuntimeError('Test depends on current_app')

[docs]class UnitLogging(symbol_by_name(Celery.log_cls)):
 """Sets up logging for the test application."""

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)
 self.already_setup = True

[docs]def TestApp(name=None, config=None, enable_logging=False, set_as_current=False,
 log=UnitLogging, backend=None, broker=None, **kwargs):
 """App used for testing."""
 from . import tasks # noqa
 config = dict(deepcopy(DEFAULT_TEST_CONFIG), **config or {})
 if broker is not None:
 config.pop('broker_url', None)
 if backend is not None:
 config.pop('result_backend', None)
 log = None if enable_logging else log
 test_app = Celery(
 name or 'celery.tests',
 set_as_current=set_as_current,
 log=log,
 broker=broker,
 backend=backend,
 **kwargs)
 test_app.add_defaults(config)
 return test_app

[docs]@contextmanager
def set_trap(app):
 """Contextmanager that installs the trap app.

 The trap means that anything trying to use the current or default app
 will raise an exception.
 """
 trap = Trap()
 prev_tls = _state._tls
 _state.set_default_app(trap)

 class NonTLS:
 current_app = trap
 _state._tls = NonTLS()

 yield
 _state._tls = prev_tls

[docs]@contextmanager
def setup_default_app(app, use_trap=False):
 """Setup default app for testing.

 Ensures state is clean after the test returns.
 """
 prev_current_app = _state.get_current_app()
 prev_default_app = _state.default_app
 prev_finalizers = set(_state._on_app_finalizers)
 prev_apps = weakref.WeakSet(_state._apps)

 if use_trap:
 with set_trap(app):
 yield
 else:
 yield

 _state.set_default_app(prev_default_app)
 _state._tls.current_app = prev_current_app
 if app is not prev_current_app:
 app.close()
 _state._on_app_finalizers = prev_finalizers
 _state._apps = prev_apps

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.contrib.testing.manager

"""Integration testing utilities."""
import socket
import sys
from collections import defaultdict
from functools import partial
from itertools import count

from kombu.utils.functional import retry_over_time

from celery import states
from celery.exceptions import TimeoutError
from celery.result import ResultSet
from celery.utils.text import truncate
from celery.utils.time import humanize_seconds as _humanize_seconds

E_STILL_WAITING = 'Still waiting for {0}. Trying again {when}: {exc!r}'

humanize_seconds = partial(_humanize_seconds, microseconds=True)

[docs]class Sentinel(Exception):
 """Signifies the end of something."""

[docs]class ManagerMixin:
 """Mixin that adds :class:`Manager` capabilities."""

 def _init_manager(self,
 block_timeout=30 * 60.0, no_join=False,
 stdout=None, stderr=None):
 # type: (float, bool, TextIO, TextIO) -> None
 self.stdout = sys.stdout if stdout is None else stdout
 self.stderr = sys.stderr if stderr is None else stderr
 self.connerrors = self.app.connection().recoverable_connection_errors
 self.block_timeout = block_timeout
 self.no_join = no_join

[docs] def remark(self, s, sep='-'):
 # type: (str, str) -> None
 print(f'{sep}{s}', file=self.stdout)

[docs] def missing_results(self, r):
 # type: (Sequence[AsyncResult]) -> Sequence[str]
 return [res.id for res in r if res.id not in res.backend._cache]

[docs] def wait_for(
 self,
 fun, # type: Callable
 catch, # type: Sequence[Any]
 desc="thing", # type: str
 args=(), # type: Tuple
 kwargs=None, # type: Dict
 errback=None, # type: Callable
 max_retries=10, # type: int
 interval_start=0.1, # type: float
 interval_step=0.5, # type: float
 interval_max=5.0, # type: float
 emit_warning=False, # type: bool
 **options # type: Any
):
 # type: (...) -> Any
 """Wait for event to happen.

 The `catch` argument specifies the exception that means the event
 has not happened yet.
 """
 kwargs = {} if not kwargs else kwargs

 def on_error(exc, intervals, retries):
 interval = next(intervals)
 if emit_warning:
 self.warn(E_STILL_WAITING.format(
 desc, when=humanize_seconds(interval, 'in', ' '), exc=exc,
))
 if errback:
 errback(exc, interval, retries)
 return interval

 return self.retry_over_time(
 fun, catch,
 args=args, kwargs=kwargs,
 errback=on_error, max_retries=max_retries,
 interval_start=interval_start, interval_step=interval_step,
 **options
)

[docs] def ensure_not_for_a_while(self, fun, catch,
 desc='thing', max_retries=20,
 interval_start=0.1, interval_step=0.02,
 interval_max=1.0, emit_warning=False,
 **options):
 """Make sure something does not happen (at least for a while)."""
 try:
 return self.wait_for(
 fun, catch, desc=desc, max_retries=max_retries,
 interval_start=interval_start, interval_step=interval_step,
 interval_max=interval_max, emit_warning=emit_warning,
)
 except catch:
 pass
 else:
 raise AssertionError(f'Should not have happened: {desc}')

[docs] def retry_over_time(self, *args, **kwargs):
 return retry_over_time(*args, **kwargs)

[docs] def join(self, r, propagate=False, max_retries=10, **kwargs):
 if self.no_join:
 return
 if not isinstance(r, ResultSet):
 r = self.app.ResultSet([r])
 received = []

 def on_result(task_id, value):
 received.append(task_id)

 for i in range(max_retries) if max_retries else count(0):
 received[:] = []
 try:
 return r.get(callback=on_result, propagate=propagate, **kwargs)
 except (socket.timeout, TimeoutError) as exc:
 waiting_for = self.missing_results(r)
 self.remark(
 'Still waiting for {}/{}: [{}]: {!r}'.format(
 len(r) - len(received), len(r),
 truncate(', '.join(waiting_for)), exc), '!',
)
 except self.connerrors as exc:
 self.remark(f'join: connection lost: {exc!r}', '!')
 raise AssertionError('Test failed: Missing task results')

[docs] def inspect(self, timeout=3.0):
 return self.app.control.inspect(timeout=timeout)

[docs] def query_tasks(self, ids, timeout=0.5):
 tasks = self.inspect(timeout).query_task(*ids) or {}
 yield from tasks.items()

[docs] def query_task_states(self, ids, timeout=0.5):
 states = defaultdict(set)
 for hostname, reply in self.query_tasks(ids, timeout=timeout):
 for task_id, (state, _) in reply.items():
 states[state].add(task_id)
 return states

[docs] def assert_accepted(self, ids, interval=0.5,
 desc='waiting for tasks to be accepted', **policy):
 return self.assert_task_worker_state(
 self.is_accepted, ids, interval=interval, desc=desc, **policy
)

[docs] def assert_received(self, ids, interval=0.5,
 desc='waiting for tasks to be received', **policy):
 return self.assert_task_worker_state(
 self.is_accepted, ids, interval=interval, desc=desc, **policy
)

[docs] def assert_result_tasks_in_progress_or_completed(
 self,
 async_results,
 interval=0.5,
 desc='waiting for tasks to be started or completed',
 **policy
):
 return self.assert_task_state_from_result(
 self.is_result_task_in_progress,
 async_results,
 interval=interval, desc=desc, **policy
)

[docs] def assert_task_state_from_result(self, fun, results,
 interval=0.5, **policy):
 return self.wait_for(
 partial(self.true_or_raise, fun, results, timeout=interval),
 (Sentinel,), **policy
)

[docs] @staticmethod
 def is_result_task_in_progress(results, **kwargs):
 possible_states = (states.STARTED, states.SUCCESS)
 return all(result.state in possible_states for result in results)

[docs] def assert_task_worker_state(self, fun, ids, interval=0.5, **policy):
 return self.wait_for(
 partial(self.true_or_raise, fun, ids, timeout=interval),
 (Sentinel,), **policy
)

[docs] def is_received(self, ids, **kwargs):
 return self._ids_matches_state(
 ['reserved', 'active', 'ready'], ids, **kwargs)

[docs] def is_accepted(self, ids, **kwargs):
 return self._ids_matches_state(['active', 'ready'], ids, **kwargs)

 def _ids_matches_state(self, expected_states, ids, timeout=0.5):
 states = self.query_task_states(ids, timeout=timeout)
 return all(
 any(t in s for s in [states[k] for k in expected_states])
 for t in ids
)

[docs] def true_or_raise(self, fun, *args, **kwargs):
 res = fun(*args, **kwargs)
 if not res:
 raise Sentinel()
 return res

[docs]class Manager(ManagerMixin):
 """Test helpers for task integration tests."""

 def __init__(self, app, **kwargs):
 self.app = app
 self._init_manager(**kwargs)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.contrib.testing.mocks

"""Useful mocks for unit testing."""
import numbers
from datetime import datetime, timedelta

try:
 from case import Mock
except ImportError:
 from unittest.mock import Mock

[docs]def TaskMessage(
 name, # type: str
 id=None, # type: str
 args=(), # type: Sequence
 kwargs=None, # type: Mapping
 callbacks=None, # type: Sequence[Signature]
 errbacks=None, # type: Sequence[Signature]
 chain=None, # type: Sequence[Signature]
 shadow=None, # type: str
 utc=None, # type: bool
 **options # type: Any
):
 # type: (...) -> Any
 """Create task message in protocol 2 format."""
 kwargs = {} if not kwargs else kwargs
 from kombu.serialization import dumps

 from celery import uuid
 id = id or uuid()
 message = Mock(name=f'TaskMessage-{id}')
 message.headers = {
 'id': id,
 'task': name,
 'shadow': shadow,
 }
 embed = {'callbacks': callbacks, 'errbacks': errbacks, 'chain': chain}
 message.headers.update(options)
 message.content_type, message.content_encoding, message.body = dumps(
 (args, kwargs, embed), serializer='json',
)
 message.payload = (args, kwargs, embed)
 return message

[docs]def TaskMessage1(
 name, # type: str
 id=None, # type: str
 args=(), # type: Sequence
 kwargs=None, # type: Mapping
 callbacks=None, # type: Sequence[Signature]
 errbacks=None, # type: Sequence[Signature]
 chain=None, # type: Squence[Signature]
 **options # type: Any
):
 # type: (...) -> Any
 """Create task message in protocol 1 format."""
 kwargs = {} if not kwargs else kwargs
 from kombu.serialization import dumps

 from celery import uuid
 id = id or uuid()
 message = Mock(name=f'TaskMessage-{id}')
 message.headers = {}
 message.payload = {
 'task': name,
 'id': id,
 'args': args,
 'kwargs': kwargs,
 'callbacks': callbacks,
 'errbacks': errbacks,
 }
 message.payload.update(options)
 message.content_type, message.content_encoding, message.body = dumps(
 message.payload,
)
 return message

[docs]def task_message_from_sig(app, sig, utc=True, TaskMessage=TaskMessage):
 # type: (Celery, Signature, bool, Any) -> Any
 """Create task message from :class:`celery.Signature`.

 Example:
 >>> m = task_message_from_sig(app, add.s(2, 2))
 >>> amqp_client.basic_publish(m, exchange='ex', routing_key='rkey')
 """
 sig.freeze()
 callbacks = sig.options.pop('link', None)
 errbacks = sig.options.pop('link_error', None)
 countdown = sig.options.pop('countdown', None)
 if countdown:
 eta = app.now() + timedelta(seconds=countdown)
 else:
 eta = sig.options.pop('eta', None)
 if eta and isinstance(eta, datetime):
 eta = eta.isoformat()
 expires = sig.options.pop('expires', None)
 if expires and isinstance(expires, numbers.Real):
 expires = app.now() + timedelta(seconds=expires)
 if expires and isinstance(expires, datetime):
 expires = expires.isoformat()
 return TaskMessage(
 sig.task, id=sig.id, args=sig.args,
 kwargs=sig.kwargs,
 callbacks=[dict(s) for s in callbacks] if callbacks else None,
 errbacks=[dict(s) for s in errbacks] if errbacks else None,
 eta=eta,
 expires=expires,
 utc=utc,
 **sig.options
)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.contrib.testing.worker

"""Embedded workers for integration tests."""
import os
import threading
from contextlib import contextmanager

from celery import worker
from celery.result import _set_task_join_will_block, allow_join_result
from celery.utils.dispatch import Signal
from celery.utils.nodenames import anon_nodename

WORKER_LOGLEVEL = os.environ.get('WORKER_LOGLEVEL', 'error')

test_worker_starting = Signal(
 name='test_worker_starting',
 providing_args={},
)
test_worker_started = Signal(
 name='test_worker_started',
 providing_args={'worker', 'consumer'},
)
test_worker_stopped = Signal(
 name='test_worker_stopped',
 providing_args={'worker'},
)

[docs]class TestWorkController(worker.WorkController):
 """Worker that can synchronize on being fully started."""

 def __init__(self, *args, **kwargs):
 # type: (*Any, **Any) -> None
 self._on_started = threading.Event()
 super().__init__(*args, **kwargs)

[docs] def on_consumer_ready(self, consumer):
 # type: (celery.worker.consumer.Consumer) -> None
 """Callback called when the Consumer blueprint is fully started."""
 self._on_started.set()
 test_worker_started.send(
 sender=self.app, worker=self, consumer=consumer)

[docs] def ensure_started(self):
 # type: () -> None
 """Wait for worker to be fully up and running.

 Warning:
 Worker must be started within a thread for this to work,
 or it will block forever.
 """
 self._on_started.wait()

[docs]@contextmanager
def start_worker(
 app, # type: Celery
 concurrency=1, # type: int
 pool='solo', # type: str
 loglevel=WORKER_LOGLEVEL, # type: Union[str, int]
 logfile=None, # type: str
 perform_ping_check=True, # type: bool
 ping_task_timeout=10.0, # type: float
 **kwargs # type: Any
):
 # type: (...) -> Iterable
 """Start embedded worker.

 Yields:
 celery.app.worker.Worker: worker instance.
 """
 test_worker_starting.send(sender=app)

 with _start_worker_thread(app,
 concurrency=concurrency,
 pool=pool,
 loglevel=loglevel,
 logfile=logfile,
 perform_ping_check=perform_ping_check,
 **kwargs) as worker:
 if perform_ping_check:
 from .tasks import ping
 with allow_join_result():
 assert ping.delay().get(timeout=ping_task_timeout) == 'pong'

 yield worker
 test_worker_stopped.send(sender=app, worker=worker)

@contextmanager
def _start_worker_thread(app,
 concurrency=1,
 pool='solo',
 loglevel=WORKER_LOGLEVEL,
 logfile=None,
 WorkController=TestWorkController,
 perform_ping_check=True,
 **kwargs):
 # type: (Celery, int, str, Union[str, int], str, Any, **Any) -> Iterable
 """Start Celery worker in a thread.

 Yields:
 celery.worker.Worker: worker instance.
 """
 setup_app_for_worker(app, loglevel, logfile)
 if perform_ping_check:
 assert 'celery.ping' in app.tasks
 # Make sure we can connect to the broker
 with app.connection(hostname=os.environ.get('TEST_BROKER')) as conn:
 conn.default_channel.queue_declare

 worker = WorkController(
 app=app,
 concurrency=concurrency,
 hostname=anon_nodename(),
 pool=pool,
 loglevel=loglevel,
 logfile=logfile,
 # not allowed to override TestWorkController.on_consumer_ready
 ready_callback=None,
 without_heartbeat=True,
 without_mingle=True,
 without_gossip=True,
 **kwargs)

 t = threading.Thread(target=worker.start)
 t.start()
 worker.ensure_started()
 _set_task_join_will_block(False)

 yield worker

 from celery.worker import state
 state.should_terminate = 0
 t.join(10)
 state.should_terminate = None

@contextmanager
def _start_worker_process(app,
 concurrency=1,
 pool='solo',
 loglevel=WORKER_LOGLEVEL,
 logfile=None,
 **kwargs):
 # type (Celery, int, str, Union[int, str], str, **Any) -> Iterable
 """Start worker in separate process.

 Yields:
 celery.app.worker.Worker: worker instance.
 """
 from celery.apps.multi import Cluster, Node

 app.set_current()
 cluster = Cluster([Node('testworker1@%h')])
 cluster.start()
 yield
 cluster.stopwait()

[docs]def setup_app_for_worker(app, loglevel, logfile):
 # type: (Celery, Union[str, int], str) -> None
 """Setup the app to be used for starting an embedded worker."""
 app.finalize()
 app.set_current()
 app.set_default()
 type(app.log)._setup = False
 app.log.setup(loglevel=loglevel, logfile=logfile)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.events.cursesmon

"""Graphical monitor of Celery events using curses."""

import curses
import sys
import threading
from datetime import datetime
from itertools import count
from math import ceil
from textwrap import wrap
from time import time

from celery import VERSION_BANNER, states
from celery.app import app_or_default
from celery.utils.text import abbr, abbrtask

__all__ = ('CursesMonitor', 'evtop')

BORDER_SPACING = 4
LEFT_BORDER_OFFSET = 3
UUID_WIDTH = 36
STATE_WIDTH = 8
TIMESTAMP_WIDTH = 8
MIN_WORKER_WIDTH = 15
MIN_TASK_WIDTH = 16

this module is considered experimental
we don't care about coverage.

STATUS_SCREEN = """\
events: {s.event_count} tasks:{s.task_count} workers:{w_alive}/{w_all}
"""

[docs]class CursesMonitor: # pragma: no cover
 """A curses based Celery task monitor."""

 keymap = {}
 win = None
 screen_delay = 10
 selected_task = None
 selected_position = 0
 selected_str = 'Selected: '
 foreground = curses.COLOR_BLACK
 background = curses.COLOR_WHITE
 online_str = 'Workers online: '
 help_title = 'Keys: '
 help = ('j:down k:up i:info t:traceback r:result c:revoke ^c: quit')
 greet = f'celery events {VERSION_BANNER}'
 info_str = 'Info: '

 def __init__(self, state, app, keymap=None):
 self.app = app
 self.keymap = keymap or self.keymap
 self.state = state
 default_keymap = {
 'J': self.move_selection_down,
 'K': self.move_selection_up,
 'C': self.revoke_selection,
 'T': self.selection_traceback,
 'R': self.selection_result,
 'I': self.selection_info,
 'L': self.selection_rate_limit,
 }
 self.keymap = dict(default_keymap, **self.keymap)
 self.lock = threading.RLock()

[docs] def format_row(self, uuid, task, worker, timestamp, state):
 mx = self.display_width

 # include spacing
 detail_width = mx - 1 - STATE_WIDTH - 1 - TIMESTAMP_WIDTH
 uuid_space = detail_width - 1 - MIN_TASK_WIDTH - 1 - MIN_WORKER_WIDTH

 if uuid_space < UUID_WIDTH:
 uuid_width = uuid_space
 else:
 uuid_width = UUID_WIDTH

 detail_width = detail_width - uuid_width - 1
 task_width = int(ceil(detail_width / 2.0))
 worker_width = detail_width - task_width - 1

 uuid = abbr(uuid, uuid_width).ljust(uuid_width)
 worker = abbr(worker, worker_width).ljust(worker_width)
 task = abbrtask(task, task_width).ljust(task_width)
 state = abbr(state, STATE_WIDTH).ljust(STATE_WIDTH)
 timestamp = timestamp.ljust(TIMESTAMP_WIDTH)

 row = f'{uuid} {worker} {task} {timestamp} {state} '
 if self.screen_width is None:
 self.screen_width = len(row[:mx])
 return row[:mx]

 @property
 def screen_width(self):
 _, mx = self.win.getmaxyx()
 return mx

 @property
 def screen_height(self):
 my, _ = self.win.getmaxyx()
 return my

 @property
 def display_width(self):
 _, mx = self.win.getmaxyx()
 return mx - BORDER_SPACING

 @property
 def display_height(self):
 my, _ = self.win.getmaxyx()
 return my - 10

 @property
 def limit(self):
 return self.display_height

[docs] def find_position(self):
 if not self.tasks:
 return 0
 for i, e in enumerate(self.tasks):
 if self.selected_task == e[0]:
 return i
 return 0

[docs] def move_selection_up(self):
 self.move_selection(-1)

[docs] def move_selection_down(self):
 self.move_selection(1)

[docs] def move_selection(self, direction=1):
 if not self.tasks:
 return
 pos = self.find_position()
 try:
 self.selected_task = self.tasks[pos + direction][0]
 except IndexError:
 self.selected_task = self.tasks[0][0]

 keyalias = {curses.KEY_DOWN: 'J',
 curses.KEY_UP: 'K',
 curses.KEY_ENTER: 'I'}

[docs] def handle_keypress(self):
 try:
 key = self.win.getkey().upper()
 except Exception: # pylint: disable=broad-except
 return
 key = self.keyalias.get(key) or key
 handler = self.keymap.get(key)
 if handler is not None:
 handler()

[docs] def alert(self, callback, title=None):
 self.win.erase()
 my, mx = self.win.getmaxyx()
 y = blank_line = count(2)
 if title:
 self.win.addstr(next(y), 3, title,
 curses.A_BOLD | curses.A_UNDERLINE)
 next(blank_line)
 callback(my, mx, next(y))
 self.win.addstr(my - 1, 0, 'Press any key to continue...',
 curses.A_BOLD)
 self.win.refresh()
 while 1:
 try:
 return self.win.getkey().upper()
 except Exception: # pylint: disable=broad-except
 pass

[docs] def selection_rate_limit(self):
 if not self.selected_task:
 return curses.beep()
 task = self.state.tasks[self.selected_task]
 if not task.name:
 return curses.beep()

 my, mx = self.win.getmaxyx()
 r = 'New rate limit: '
 self.win.addstr(my - 2, 3, r, curses.A_BOLD | curses.A_UNDERLINE)
 self.win.addstr(my - 2, len(r) + 3, ' ' * (mx - len(r)))
 rlimit = self.readline(my - 2, 3 + len(r))

 if rlimit:
 reply = self.app.control.rate_limit(task.name,
 rlimit.strip(), reply=True)
 self.alert_remote_control_reply(reply)

[docs] def alert_remote_control_reply(self, reply):

 def callback(my, mx, xs):
 y = count(xs)
 if not reply:
 self.win.addstr(
 next(y), 3, 'No replies received in 1s deadline.',
 curses.A_BOLD + curses.color_pair(2),
)
 return

 for subreply in reply:
 curline = next(y)

 host, response = next(subreply.items())
 host = f'{host}: '
 self.win.addstr(curline, 3, host, curses.A_BOLD)
 attr = curses.A_NORMAL
 text = ''
 if 'error' in response:
 text = response['error']
 attr |= curses.color_pair(2)
 elif 'ok' in response:
 text = response['ok']
 attr |= curses.color_pair(3)
 self.win.addstr(curline, 3 + len(host), text, attr)

 return self.alert(callback, 'Remote Control Command Replies')

[docs] def readline(self, x, y):
 buffer = ''
 curses.echo()
 try:
 i = 0
 while 1:
 ch = self.win.getch(x, y + i)
 if ch != -1:
 if ch in (10, curses.KEY_ENTER): # enter
 break
 if ch in (27,):
 buffer = ''
 break
 buffer += chr(ch)
 i += 1
 finally:
 curses.noecho()
 return buffer

[docs] def revoke_selection(self):
 if not self.selected_task:
 return curses.beep()
 reply = self.app.control.revoke(self.selected_task, reply=True)
 self.alert_remote_control_reply(reply)

[docs] def selection_info(self):
 if not self.selected_task:
 return

 def alert_callback(mx, my, xs):
 my, mx = self.win.getmaxyx()
 y = count(xs)
 task = self.state.tasks[self.selected_task]
 info = task.info(extra=['state'])
 infoitems = [
 ('args', info.pop('args', None)),
 ('kwargs', info.pop('kwargs', None))
] + list(info.items())
 for key, value in infoitems:
 if key is None:
 continue
 value = str(value)
 curline = next(y)
 keys = key + ': '
 self.win.addstr(curline, 3, keys, curses.A_BOLD)
 wrapped = wrap(value, mx - 2)
 if len(wrapped) == 1:
 self.win.addstr(
 curline, len(keys) + 3,
 abbr(wrapped[0],
 self.screen_width - (len(keys) + 3)))
 else:
 for subline in wrapped:
 nexty = next(y)
 if nexty >= my - 1:
 subline = ' ' * 4 + '[...]'
 elif nexty >= my:
 break
 self.win.addstr(
 nexty, 3,
 abbr(' ' * 4 + subline, self.screen_width - 4),
 curses.A_NORMAL,
)

 return self.alert(
 alert_callback, f'Task details for {self.selected_task}',
)

[docs] def selection_traceback(self):
 if not self.selected_task:
 return curses.beep()
 task = self.state.tasks[self.selected_task]
 if task.state not in states.EXCEPTION_STATES:
 return curses.beep()

 def alert_callback(my, mx, xs):
 y = count(xs)
 for line in task.traceback.split('\n'):
 self.win.addstr(next(y), 3, line)

 return self.alert(
 alert_callback,
 f'Task Exception Traceback for {self.selected_task}',
)

[docs] def selection_result(self):
 if not self.selected_task:
 return

 def alert_callback(my, mx, xs):
 y = count(xs)
 task = self.state.tasks[self.selected_task]
 result = (getattr(task, 'result', None) or
 getattr(task, 'exception', None))
 for line in wrap(result or '', mx - 2):
 self.win.addstr(next(y), 3, line)

 return self.alert(
 alert_callback,
 f'Task Result for {self.selected_task}',
)

[docs] def display_task_row(self, lineno, task):
 state_color = self.state_colors.get(task.state)
 attr = curses.A_NORMAL
 if task.uuid == self.selected_task:
 attr = curses.A_STANDOUT
 timestamp = datetime.utcfromtimestamp(
 task.timestamp or time(),
)
 timef = timestamp.strftime('%H:%M:%S')
 hostname = task.worker.hostname if task.worker else '*NONE*'
 line = self.format_row(task.uuid, task.name,
 hostname,
 timef, task.state)
 self.win.addstr(lineno, LEFT_BORDER_OFFSET, line, attr)

 if state_color:
 self.win.addstr(lineno,
 len(line) - STATE_WIDTH + BORDER_SPACING - 1,
 task.state, state_color | attr)

[docs] def draw(self):
 with self.lock:
 win = self.win
 self.handle_keypress()
 x = LEFT_BORDER_OFFSET
 y = blank_line = count(2)
 my, _ = win.getmaxyx()
 win.erase()
 win.bkgd(' ', curses.color_pair(1))
 win.border()
 win.addstr(1, x, self.greet, curses.A_DIM | curses.color_pair(5))
 next(blank_line)
 win.addstr(next(y), x, self.format_row('UUID', 'TASK',
 'WORKER', 'TIME', 'STATE'),
 curses.A_BOLD | curses.A_UNDERLINE)
 tasks = self.tasks
 if tasks:
 for row, (_, task) in enumerate(tasks):
 if row > self.display_height:
 break

 if task.uuid:
 lineno = next(y)
 self.display_task_row(lineno, task)

 # -- Footer
 next(blank_line)
 win.hline(my - 6, x, curses.ACS_HLINE, self.screen_width - 4)

 # Selected Task Info
 if self.selected_task:
 win.addstr(my - 5, x, self.selected_str, curses.A_BOLD)
 info = 'Missing extended info'
 detail = ''
 try:
 selection = self.state.tasks[self.selected_task]
 except KeyError:
 pass
 else:
 info = selection.info()
 if 'runtime' in info:
 info['runtime'] = '{:.2f}'.format(info['runtime'])
 if 'result' in info:
 info['result'] = abbr(info['result'], 16)
 info = ' '.join(
 f'{key}={value}'
 for key, value in info.items()
)
 detail = '... -> key i'
 infowin = abbr(info,
 self.screen_width - len(self.selected_str) - 2,
 detail)
 win.addstr(my - 5, x + len(self.selected_str), infowin)
 # Make ellipsis bold
 if detail in infowin:
 detailpos = len(infowin) - len(detail)
 win.addstr(my - 5, x + len(self.selected_str) + detailpos,
 detail, curses.A_BOLD)
 else:
 win.addstr(my - 5, x, 'No task selected', curses.A_NORMAL)

 # Workers
 if self.workers:
 win.addstr(my - 4, x, self.online_str, curses.A_BOLD)
 win.addstr(my - 4, x + len(self.online_str),
 ', '.join(sorted(self.workers)), curses.A_NORMAL)
 else:
 win.addstr(my - 4, x, 'No workers discovered.')

 # Info
 win.addstr(my - 3, x, self.info_str, curses.A_BOLD)
 win.addstr(
 my - 3, x + len(self.info_str),
 STATUS_SCREEN.format(
 s=self.state,
 w_alive=len([w for w in self.state.workers.values()
 if w.alive]),
 w_all=len(self.state.workers),
),
 curses.A_DIM,
)

 # Help
 self.safe_add_str(my - 2, x, self.help_title, curses.A_BOLD)
 self.safe_add_str(my - 2, x + len(self.help_title), self.help,
 curses.A_DIM)
 win.refresh()

[docs] def safe_add_str(self, y, x, string, *args, **kwargs):
 if x + len(string) > self.screen_width:
 string = string[:self.screen_width - x]
 self.win.addstr(y, x, string, *args, **kwargs)

[docs] def init_screen(self):
 with self.lock:
 self.win = curses.initscr()
 self.win.nodelay(True)
 self.win.keypad(True)
 curses.start_color()
 curses.init_pair(1, self.foreground, self.background)
 # exception states
 curses.init_pair(2, curses.COLOR_RED, self.background)
 # successful state
 curses.init_pair(3, curses.COLOR_GREEN, self.background)
 # revoked state
 curses.init_pair(4, curses.COLOR_MAGENTA, self.background)
 # greeting
 curses.init_pair(5, curses.COLOR_BLUE, self.background)
 # started state
 curses.init_pair(6, curses.COLOR_YELLOW, self.foreground)

 self.state_colors = {states.SUCCESS: curses.color_pair(3),
 states.REVOKED: curses.color_pair(4),
 states.STARTED: curses.color_pair(6)}
 for state in states.EXCEPTION_STATES:
 self.state_colors[state] = curses.color_pair(2)

 curses.cbreak()

[docs] def resetscreen(self):
 with self.lock:
 curses.nocbreak()
 self.win.keypad(False)
 curses.echo()
 curses.endwin()

[docs] def nap(self):
 curses.napms(self.screen_delay)

 @property
 def tasks(self):
 return list(self.state.tasks_by_time(limit=self.limit))

 @property
 def workers(self):
 return [hostname for hostname, w in self.state.workers.items()
 if w.alive]

class DisplayThread(threading.Thread): # pragma: no cover

 def __init__(self, display):
 self.display = display
 self.shutdown = False
 threading.Thread.__init__(self)

 def run(self):
 while not self.shutdown:
 self.display.draw()
 self.display.nap()

def capture_events(app, state, display): # pragma: no cover

 def on_connection_error(exc, interval):
 print('Connection Error: {!r}. Retry in {}s.'.format(
 exc, interval), file=sys.stderr)

 while 1:
 print('-> evtop: starting capture...', file=sys.stderr)
 with app.connection_for_read() as conn:
 try:
 conn.ensure_connection(on_connection_error,
 app.conf.broker_connection_max_retries)
 recv = app.events.Receiver(conn, handlers={'*': state.event})
 display.resetscreen()
 display.init_screen()
 recv.capture()
 except conn.connection_errors + conn.channel_errors as exc:
 print(f'Connection lost: {exc!r}', file=sys.stderr)

[docs]def evtop(app=None): # pragma: no cover
 """Start curses monitor."""
 app = app_or_default(app)
 state = app.events.State()
 display = CursesMonitor(state, app)
 display.init_screen()
 refresher = DisplayThread(display)
 refresher.start()
 try:
 capture_events(app, state, display)
 except Exception:
 refresher.shutdown = True
 refresher.join()
 display.resetscreen()
 raise
 except (KeyboardInterrupt, SystemExit):
 refresher.shutdown = True
 refresher.join()
 display.resetscreen()

if __name__ == '__main__': # pragma: no cover
 evtop()

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.events.dispatcher

"""Event dispatcher sends events."""

import os
import threading
import time
from collections import defaultdict, deque

from kombu import Producer

from celery.app import app_or_default
from celery.utils.nodenames import anon_nodename
from celery.utils.time import utcoffset

from .event import Event, get_exchange, group_from

__all__ = ('EventDispatcher',)

[docs]class EventDispatcher:
 """Dispatches event messages.

 Arguments:
 connection (kombu.Connection): Connection to the broker.

 hostname (str): Hostname to identify ourselves as,
 by default uses the hostname returned by
 :func:`~celery.utils.anon_nodename`.

 groups (Sequence[str]): List of groups to send events for.
 :meth:`send` will ignore send requests to groups not in this list.
 If this is :const:`None`, all events will be sent.
 Example groups include ``"task"`` and ``"worker"``.

 enabled (bool): Set to :const:`False` to not actually publish any
 events, making :meth:`send` a no-op.

 channel (kombu.Channel): Can be used instead of `connection` to specify
 an exact channel to use when sending events.

 buffer_while_offline (bool): If enabled events will be buffered
 while the connection is down. :meth:`flush` must be called
 as soon as the connection is re-established.

 Note:
 You need to :meth:`close` this after use.
 """

 DISABLED_TRANSPORTS = {'sql'}

 app = None

 # set of callbacks to be called when :meth:`enabled`.
 on_enabled = None

 # set of callbacks to be called when :meth:`disabled`.
 on_disabled = None

 def __init__(self, connection=None, hostname=None, enabled=True,
 channel=None, buffer_while_offline=True, app=None,
 serializer=None, groups=None, delivery_mode=1,
 buffer_group=None, buffer_limit=24, on_send_buffered=None):
 self.app = app_or_default(app or self.app)
 self.connection = connection
 self.channel = channel
 self.hostname = hostname or anon_nodename()
 self.buffer_while_offline = buffer_while_offline
 self.buffer_group = buffer_group or frozenset()
 self.buffer_limit = buffer_limit
 self.on_send_buffered = on_send_buffered
 self._group_buffer = defaultdict(list)
 self.mutex = threading.Lock()
 self.producer = None
 self._outbound_buffer = deque()
 self.serializer = serializer or self.app.conf.event_serializer
 self.on_enabled = set()
 self.on_disabled = set()
 self.groups = set(groups or [])
 self.tzoffset = [-time.timezone, -time.altzone]
 self.clock = self.app.clock
 self.delivery_mode = delivery_mode
 if not connection and channel:
 self.connection = channel.connection.client
 self.enabled = enabled
 conninfo = self.connection or self.app.connection_for_write()
 self.exchange = get_exchange(conninfo,
 name=self.app.conf.event_exchange)
 if conninfo.transport.driver_type in self.DISABLED_TRANSPORTS:
 self.enabled = False
 if self.enabled:
 self.enable()
 self.headers = {'hostname': self.hostname}
 self.pid = os.getpid()

 def __enter__(self):
 return self

 def __exit__(self, *exc_info):
 self.close()

[docs] def enable(self):
 self.producer = Producer(self.channel or self.connection,
 exchange=self.exchange,
 serializer=self.serializer,
 auto_declare=False)
 self.enabled = True
 for callback in self.on_enabled:
 callback()

[docs] def disable(self):
 if self.enabled:
 self.enabled = False
 self.close()
 for callback in self.on_disabled:
 callback()

[docs] def publish(self, type, fields, producer,
 blind=False, Event=Event, **kwargs):
 """Publish event using custom :class:`~kombu.Producer`.

 Arguments:
 type (str): Event type name, with group separated by dash (`-`).
 fields: Dictionary of event fields, must be json serializable.
 producer (kombu.Producer): Producer instance to use:
 only the ``publish`` method will be called.
 retry (bool): Retry in the event of connection failure.
 retry_policy (Mapping): Map of custom retry policy options.
 See :meth:`~kombu.Connection.ensure`.
 blind (bool): Don't set logical clock value (also don't forward
 the internal logical clock).
 Event (Callable): Event type used to create event.
 Defaults to :func:`Event`.
 utcoffset (Callable): Function returning the current
 utc offset in hours.
 """
 clock = None if blind else self.clock.forward()
 event = Event(type, hostname=self.hostname, utcoffset=utcoffset(),
 pid=self.pid, clock=clock, **fields)
 with self.mutex:
 return self._publish(event, producer,
 routing_key=type.replace('-', '.'), **kwargs)

 def _publish(self, event, producer, routing_key, retry=False,
 retry_policy=None, utcoffset=utcoffset):
 exchange = self.exchange
 try:
 producer.publish(
 event,
 routing_key=routing_key,
 exchange=exchange.name,
 retry=retry,
 retry_policy=retry_policy,
 declare=[exchange],
 serializer=self.serializer,
 headers=self.headers,
 delivery_mode=self.delivery_mode,
)
 except Exception as exc: # pylint: disable=broad-except
 if not self.buffer_while_offline:
 raise
 self._outbound_buffer.append((event, routing_key, exc))

[docs] def send(self, type, blind=False, utcoffset=utcoffset, retry=False,
 retry_policy=None, Event=Event, **fields):
 """Send event.

 Arguments:
 type (str): Event type name, with group separated by dash (`-`).
 retry (bool): Retry in the event of connection failure.
 retry_policy (Mapping): Map of custom retry policy options.
 See :meth:`~kombu.Connection.ensure`.
 blind (bool): Don't set logical clock value (also don't forward
 the internal logical clock).
 Event (Callable): Event type used to create event,
 defaults to :func:`Event`.
 utcoffset (Callable): unction returning the current utc offset
 in hours.
 **fields (Any): Event fields -- must be json serializable.
 """
 if self.enabled:
 groups, group = self.groups, group_from(type)
 if groups and group not in groups:
 return
 if group in self.buffer_group:
 clock = self.clock.forward()
 event = Event(type, hostname=self.hostname,
 utcoffset=utcoffset(),
 pid=self.pid, clock=clock, **fields)
 buf = self._group_buffer[group]
 buf.append(event)
 if len(buf) >= self.buffer_limit:
 self.flush()
 elif self.on_send_buffered:
 self.on_send_buffered()
 else:
 return self.publish(type, fields, self.producer, blind=blind,
 Event=Event, retry=retry,
 retry_policy=retry_policy)

[docs] def flush(self, errors=True, groups=True):
 """Flush the outbound buffer."""
 if errors:
 buf = list(self._outbound_buffer)
 try:
 with self.mutex:
 for event, routing_key, _ in buf:
 self._publish(event, self.producer, routing_key)
 finally:
 self._outbound_buffer.clear()
 if groups:
 with self.mutex:
 for group, events in self._group_buffer.items():
 self._publish(events, self.producer, '%s.multi' % group)
 events[:] = [] # list.clear

[docs] def extend_buffer(self, other):
 """Copy the outbound buffer of another instance."""
 self._outbound_buffer.extend(other._outbound_buffer)

[docs] def close(self):
 """Close the event dispatcher."""
 self.mutex.locked() and self.mutex.release()
 self.producer = None

 def _get_publisher(self):
 return self.producer

 def _set_publisher(self, producer):
 self.producer = producer
 publisher = property(_get_publisher, _set_publisher) # XXX compat

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.events.dumper

"""Utility to dump events to screen.

This is a simple program that dumps events to the console
as they happen. Think of it like a `tcpdump` for Celery events.
"""
import sys
from datetime import datetime

from celery.app import app_or_default
from celery.utils.functional import LRUCache
from celery.utils.time import humanize_seconds

__all__ = ('Dumper', 'evdump')

TASK_NAMES = LRUCache(limit=0xFFF)

HUMAN_TYPES = {
 'worker-offline': 'shutdown',
 'worker-online': 'started',
 'worker-heartbeat': 'heartbeat',
}

CONNECTION_ERROR = """\
-> Cannot connect to %s: %s.
Trying again %s
"""

def humanize_type(type):
 try:
 return HUMAN_TYPES[type.lower()]
 except KeyError:
 return type.lower().replace('-', ' ')

[docs]class Dumper:
 """Monitor events."""

 def __init__(self, out=sys.stdout):
 self.out = out

[docs] def say(self, msg):
 print(msg, file=self.out)
 # need to flush so that output can be piped.
 try:
 self.out.flush()
 except AttributeError: # pragma: no cover
 pass

[docs] def on_event(self, ev):
 timestamp = datetime.utcfromtimestamp(ev.pop('timestamp'))
 type = ev.pop('type').lower()
 hostname = ev.pop('hostname')
 if type.startswith('task-'):
 uuid = ev.pop('uuid')
 if type in ('task-received', 'task-sent'):
 task = TASK_NAMES[uuid] = '{}({}) args={} kwargs={}' \
 .format(ev.pop('name'), uuid,
 ev.pop('args'),
 ev.pop('kwargs'))
 else:
 task = TASK_NAMES.get(uuid, '')
 return self.format_task_event(hostname, timestamp,
 type, task, ev)
 fields = ', '.join(
 f'{key}={ev[key]}' for key in sorted(ev)
)
 sep = fields and ':' or ''
 self.say(f'{hostname} [{timestamp}] {humanize_type(type)}{sep} {fields}')

[docs] def format_task_event(self, hostname, timestamp, type, task, event):
 fields = ', '.join(
 f'{key}={event[key]}' for key in sorted(event)
)
 sep = fields and ':' or ''
 self.say(f'{hostname} [{timestamp}] {humanize_type(type)}{sep} {task} {fields}')

[docs]def evdump(app=None, out=sys.stdout):
 """Start event dump."""
 app = app_or_default(app)
 dumper = Dumper(out=out)
 dumper.say('-> evdump: starting capture...')
 conn = app.connection_for_read().clone()

 def _error_handler(exc, interval):
 dumper.say(CONNECTION_ERROR % (
 conn.as_uri(), exc, humanize_seconds(interval, 'in', ' ')
))

 while 1:
 try:
 conn.ensure_connection(_error_handler)
 recv = app.events.Receiver(conn, handlers={'*': dumper.on_event})
 recv.capture()
 except (KeyboardInterrupt, SystemExit):
 return conn and conn.close()
 except conn.connection_errors + conn.channel_errors:
 dumper.say('-> Connection lost, attempting reconnect')

if __name__ == '__main__': # pragma: no cover
 evdump()

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.events.event

"""Creating events, and event exchange definition."""
import time
from copy import copy

from kombu import Exchange

__all__ = (
 'Event', 'event_exchange', 'get_exchange', 'group_from',
)

EVENT_EXCHANGE_NAME = 'celeryev'
#: Exchange used to send events on.
#: Note: Use :func:`get_exchange` instead, as the type of
#: exchange will vary depending on the broker connection.
event_exchange = Exchange(EVENT_EXCHANGE_NAME, type='topic')

[docs]def Event(type, _fields=None, __dict__=dict, __now__=time.time, **fields):
 """Create an event.

 Notes:
 An event is simply a dictionary: the only required field is ``type``.
 A ``timestamp`` field will be set to the current time if not provided.
 """
 event = __dict__(_fields, **fields) if _fields else fields
 if 'timestamp' not in event:
 event.update(timestamp=__now__(), type=type)
 else:
 event['type'] = type
 return event

[docs]def group_from(type):
 """Get the group part of an event type name.

 Example:
 >>> group_from('task-sent')
 'task'

 >>> group_from('custom-my-event')
 'custom'
 """
 return type.split('-', 1)[0]

[docs]def get_exchange(conn, name=EVENT_EXCHANGE_NAME):
 """Get exchange used for sending events.

 Arguments:
 conn (kombu.Connection): Connection used for sending/receiving events.
 name (str): Name of the exchange. Default is ``celeryev``.

 Note:
 The event type changes if Redis is used as the transport
 (from topic -> fanout).
 """
 ex = copy(event_exchange)
 if conn.transport.driver_type == 'redis':
 # quick hack for Issue #436
 ex.type = 'fanout'
 if name != ex.name:
 ex.name = name
 return ex

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.events.receiver

"""Event receiver implementation."""
import time
from operator import itemgetter

from kombu import Queue
from kombu.connection import maybe_channel
from kombu.mixins import ConsumerMixin

from celery import uuid
from celery.app import app_or_default
from celery.utils.time import adjust_timestamp

from .event import get_exchange

__all__ = ('EventReceiver',)

CLIENT_CLOCK_SKEW = -1

_TZGETTER = itemgetter('utcoffset', 'timestamp')

[docs]class EventReceiver(ConsumerMixin):
 """Capture events.

 Arguments:
 connection (kombu.Connection): Connection to the broker.
 handlers (Mapping[Callable]): Event handlers.
 This is a map of event type names and their handlers.
 The special handler `"*"` captures all events that don't have a
 handler.
 """

 app = None

 def __init__(self, channel, handlers=None, routing_key='#',
 node_id=None, app=None, queue_prefix=None,
 accept=None, queue_ttl=None, queue_expires=None):
 self.app = app_or_default(app or self.app)
 self.channel = maybe_channel(channel)
 self.handlers = {} if handlers is None else handlers
 self.routing_key = routing_key
 self.node_id = node_id or uuid()
 self.queue_prefix = queue_prefix or self.app.conf.event_queue_prefix
 self.exchange = get_exchange(
 self.connection or self.app.connection_for_write(),
 name=self.app.conf.event_exchange)
 if queue_ttl is None:
 queue_ttl = self.app.conf.event_queue_ttl
 if queue_expires is None:
 queue_expires = self.app.conf.event_queue_expires
 self.queue = Queue(
 '.'.join([self.queue_prefix, self.node_id]),
 exchange=self.exchange,
 routing_key=self.routing_key,
 auto_delete=True, durable=False,
 message_ttl=queue_ttl,
 expires=queue_expires,
)
 self.clock = self.app.clock
 self.adjust_clock = self.clock.adjust
 self.forward_clock = self.clock.forward
 if accept is None:
 accept = {self.app.conf.event_serializer, 'json'}
 self.accept = accept

[docs] def process(self, type, event):
 """Process event by dispatching to configured handler."""
 handler = self.handlers.get(type) or self.handlers.get('*')
 handler and handler(event)

[docs] def get_consumers(self, Consumer, channel):
 return [Consumer(queues=[self.queue],
 callbacks=[self._receive], no_ack=True,
 accept=self.accept)]

[docs] def on_consume_ready(self, connection, channel, consumers,
 wakeup=True, **kwargs):
 if wakeup:
 self.wakeup_workers(channel=channel)

[docs] def itercapture(self, limit=None, timeout=None, wakeup=True):
 return self.consume(limit=limit, timeout=timeout, wakeup=wakeup)

[docs] def capture(self, limit=None, timeout=None, wakeup=True):
 """Open up a consumer capturing events.

 This has to run in the main process, and it will never stop
 unless :attr:`EventDispatcher.should_stop` is set to True, or
 forced via :exc:`KeyboardInterrupt` or :exc:`SystemExit`.
 """
 for _ in self.consume(limit=limit, timeout=timeout, wakeup=wakeup):
 pass

[docs] def wakeup_workers(self, channel=None):
 self.app.control.broadcast('heartbeat',
 connection=self.connection,
 channel=channel)

[docs] def event_from_message(self, body, localize=True,
 now=time.time, tzfields=_TZGETTER,
 adjust_timestamp=adjust_timestamp,
 CLIENT_CLOCK_SKEW=CLIENT_CLOCK_SKEW):
 type = body['type']
 if type == 'task-sent':
 # clients never sync so cannot use their clock value
 _c = body['clock'] = (self.clock.value or 1) + CLIENT_CLOCK_SKEW
 self.adjust_clock(_c)
 else:
 try:
 clock = body['clock']
 except KeyError:
 body['clock'] = self.forward_clock()
 else:
 self.adjust_clock(clock)

 if localize:
 try:
 offset, timestamp = tzfields(body)
 except KeyError:
 pass
 else:
 body['timestamp'] = adjust_timestamp(timestamp, offset)
 body['local_received'] = now()
 return type, body

 def _receive(self, body, message, list=list, isinstance=isinstance):
 if isinstance(body, list): # celery 4.0+: List of events
 process, from_message = self.process, self.event_from_message
 [process(*from_message(event)) for event in body]
 else:
 self.process(*self.event_from_message(body))

 @property
 def connection(self):
 return self.channel.connection.client if self.channel else None

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.events.snapshot

"""Periodically store events in a database.

Consuming the events as a stream isn't always suitable
so this module implements a system to take snapshots of the
state of a cluster at regular intervals. There's a full
implementation of this writing the snapshots to a database
in :mod:`djcelery.snapshots` in the `django-celery` distribution.
"""
from kombu.utils.limits import TokenBucket

from celery import platforms
from celery.app import app_or_default
from celery.utils.dispatch import Signal
from celery.utils.imports import instantiate
from celery.utils.log import get_logger
from celery.utils.time import rate
from celery.utils.timer2 import Timer

__all__ = ('Polaroid', 'evcam')

logger = get_logger('celery.evcam')

[docs]class Polaroid:
 """Record event snapshots."""

 timer = None
 shutter_signal = Signal(name='shutter_signal', providing_args={'state'})
 cleanup_signal = Signal(name='cleanup_signal')
 clear_after = False

 _tref = None
 _ctref = None

 def __init__(self, state, freq=1.0, maxrate=None,
 cleanup_freq=3600.0, timer=None, app=None):
 self.app = app_or_default(app)
 self.state = state
 self.freq = freq
 self.cleanup_freq = cleanup_freq
 self.timer = timer or self.timer or Timer()
 self.logger = logger
 self.maxrate = maxrate and TokenBucket(rate(maxrate))

[docs] def install(self):
 self._tref = self.timer.call_repeatedly(self.freq, self.capture)
 self._ctref = self.timer.call_repeatedly(
 self.cleanup_freq, self.cleanup,
)

[docs] def on_shutter(self, state):
 pass

[docs] def on_cleanup(self):
 pass

[docs] def cleanup(self):
 logger.debug('Cleanup: Running...')
 self.cleanup_signal.send(sender=self.state)
 self.on_cleanup()

[docs] def shutter(self):
 if self.maxrate is None or self.maxrate.can_consume():
 logger.debug('Shutter: %s', self.state)
 self.shutter_signal.send(sender=self.state)
 self.on_shutter(self.state)

[docs] def capture(self):
 self.state.freeze_while(self.shutter, clear_after=self.clear_after)

[docs] def cancel(self):
 if self._tref:
 self._tref() # flush all received events.
 self._tref.cancel()
 if self._ctref:
 self._ctref.cancel()

 def __enter__(self):
 self.install()
 return self

 def __exit__(self, *exc_info):
 self.cancel()

[docs]def evcam(camera, freq=1.0, maxrate=None, loglevel=0,
 logfile=None, pidfile=None, timer=None, app=None):
 """Start snapshot recorder."""
 app = app_or_default(app)

 if pidfile:
 platforms.create_pidlock(pidfile)

 app.log.setup_logging_subsystem(loglevel, logfile)

 print(f'-> evcam: Taking snapshots with {camera} (every {freq} secs.)')
 state = app.events.State()
 cam = instantiate(camera, state, app=app, freq=freq,
 maxrate=maxrate, timer=timer)
 cam.install()
 conn = app.connection_for_read()
 recv = app.events.Receiver(conn, handlers={'*': state.event})
 try:
 try:
 recv.capture(limit=None)
 except KeyboardInterrupt:
 raise SystemExit
 finally:
 cam.cancel()
 conn.close()

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.events.state

"""In-memory representation of cluster state.

This module implements a data-structure used to keep
track of the state of a cluster of workers and the tasks
it is working on (by consuming events).

For every event consumed the state is updated,
so the state represents the state of the cluster
at the time of the last event.

Snapshots (:mod:`celery.events.snapshot`) can be used to
take "pictures" of this state at regular intervals
to for example, store that in a database.
"""
import bisect
import sys
import threading
from collections import defaultdict
from collections.abc import Callable
from datetime import datetime
from decimal import Decimal
from itertools import islice
from operator import itemgetter
from time import time
from weakref import WeakSet, ref

from kombu.clocks import timetuple
from kombu.utils.objects import cached_property

from celery import states
from celery.utils.functional import LRUCache, memoize, pass1
from celery.utils.log import get_logger

__all__ = ('Worker', 'Task', 'State', 'heartbeat_expires')

pylint: disable=redefined-outer-name
We cache globals and attribute lookups, so disable this warning.
pylint: disable=too-many-function-args
For some reason pylint thinks ._event is a method, when it's a property.

#: Set if running PyPy
PYPY = hasattr(sys, 'pypy_version_info')

#: The window (in percentage) is added to the workers heartbeat
#: frequency. If the time between updates exceeds this window,
#: then the worker is considered to be offline.
HEARTBEAT_EXPIRE_WINDOW = 200

#: Max drift between event timestamp and time of event received
#: before we alert that clocks may be unsynchronized.
HEARTBEAT_DRIFT_MAX = 16

DRIFT_WARNING = """\
Substantial drift from %s may mean clocks are out of sync. Current drift is
%s seconds. [orig: %s recv: %s]
"""

logger = get_logger(__name__)
warn = logger.warning

R_STATE = '<State: events={0.event_count} tasks={0.task_count}>'
R_WORKER = '<Worker: {0.hostname} ({0.status_string} clock:{0.clock})'
R_TASK = '<Task: {0.name}({0.uuid}) {0.state} clock:{0.clock}>'

#: Mapping of task event names to task state.
TASK_EVENT_TO_STATE = {
 'sent': states.PENDING,
 'received': states.RECEIVED,
 'started': states.STARTED,
 'failed': states.FAILURE,
 'retried': states.RETRY,
 'succeeded': states.SUCCESS,
 'revoked': states.REVOKED,
 'rejected': states.REJECTED,
}

class CallableDefaultdict(defaultdict):
 """:class:`~collections.defaultdict` with configurable __call__.

 We use this for backwards compatibility in State.tasks_by_type
 etc, which used to be a method but is now an index instead.

 So you can do::

 >>> add_tasks = state.tasks_by_type['proj.tasks.add']

 while still supporting the method call::

 >>> add_tasks = list(state.tasks_by_type(
 ... 'proj.tasks.add', reverse=True))
 """

 def __init__(self, fun, *args, **kwargs):
 self.fun = fun
 super().__init__(*args, **kwargs)

 def __call__(self, *args, **kwargs):
 return self.fun(*args, **kwargs)

Callable.register(CallableDefaultdict) # noqa: E305

@memoize(maxsize=1000, keyfun=lambda a, _: a[0])
def _warn_drift(hostname, drift, local_received, timestamp):
 # we use memoize here so the warning is only logged once per hostname
 warn(DRIFT_WARNING, hostname, drift,
 datetime.fromtimestamp(local_received),
 datetime.fromtimestamp(timestamp))

[docs]def heartbeat_expires(timestamp, freq=60,
 expire_window=HEARTBEAT_EXPIRE_WINDOW,
 Decimal=Decimal, float=float, isinstance=isinstance):
 """Return time when heartbeat expires."""
 # some json implementations returns decimal.Decimal objects,
 # which aren't compatible with float.
 freq = float(freq) if isinstance(freq, Decimal) else freq
 if isinstance(timestamp, Decimal):
 timestamp = float(timestamp)
 return timestamp + (freq * (expire_window / 1e2))

def _depickle_task(cls, fields):
 return cls(**fields)

def with_unique_field(attr):

 def _decorate_cls(cls):

 def __eq__(this, other):
 if isinstance(other, this.__class__):
 return getattr(this, attr) == getattr(other, attr)
 return NotImplemented
 cls.__eq__ = __eq__

 def __ne__(this, other):
 res = this.__eq__(other)
 return True if res is NotImplemented else not res
 cls.__ne__ = __ne__

 def __hash__(this):
 return hash(getattr(this, attr))
 cls.__hash__ = __hash__

 return cls
 return _decorate_cls

[docs]@with_unique_field('hostname')
class Worker:
 """Worker State."""

 heartbeat_max = 4
 expire_window = HEARTBEAT_EXPIRE_WINDOW

 _fields = ('hostname', 'pid', 'freq', 'heartbeats', 'clock',
 'active', 'processed', 'loadavg', 'sw_ident',
 'sw_ver', 'sw_sys')
 if not PYPY: # pragma: no cover
 __slots__ = _fields + ('event', '__dict__', '__weakref__')

 def __init__(self, hostname=None, pid=None, freq=60,
 heartbeats=None, clock=0, active=None, processed=None,
 loadavg=None, sw_ident=None, sw_ver=None, sw_sys=None):
 self.hostname = hostname
 self.pid = pid
 self.freq = freq
 self.heartbeats = [] if heartbeats is None else heartbeats
 self.clock = clock or 0
 self.active = active
 self.processed = processed
 self.loadavg = loadavg
 self.sw_ident = sw_ident
 self.sw_ver = sw_ver
 self.sw_sys = sw_sys
 self.event = self._create_event_handler()

 def __reduce__(self):
 return self.__class__, (self.hostname, self.pid, self.freq,
 self.heartbeats, self.clock, self.active,
 self.processed, self.loadavg, self.sw_ident,
 self.sw_ver, self.sw_sys)

 def _create_event_handler(self):
 _set = object.__setattr__
 hbmax = self.heartbeat_max
 heartbeats = self.heartbeats
 hb_pop = self.heartbeats.pop
 hb_append = self.heartbeats.append

 def event(type_, timestamp=None,
 local_received=None, fields=None,
 max_drift=HEARTBEAT_DRIFT_MAX, abs=abs, int=int,
 insort=bisect.insort, len=len):
 fields = fields or {}
 for k, v in fields.items():
 _set(self, k, v)
 if type_ == 'offline':
 heartbeats[:] = []
 else:
 if not local_received or not timestamp:
 return
 drift = abs(int(local_received) - int(timestamp))
 if drift > max_drift:
 _warn_drift(self.hostname, drift,
 local_received, timestamp)
 if local_received: # pragma: no cover
 hearts = len(heartbeats)
 if hearts > hbmax - 1:
 hb_pop(0)
 if hearts and local_received > heartbeats[-1]:
 hb_append(local_received)
 else:
 insort(heartbeats, local_received)
 return event

[docs] def update(self, f, **kw):
 d = dict(f, **kw) if kw else f
 for k, v in d.items():
 setattr(self, k, v)

 def __repr__(self):
 return R_WORKER.format(self)

 @property
 def status_string(self):
 return 'ONLINE' if self.alive else 'OFFLINE'

 @property
 def heartbeat_expires(self):
 return heartbeat_expires(self.heartbeats[-1],
 self.freq, self.expire_window)

 @property
 def alive(self, nowfun=time):
 return bool(self.heartbeats and nowfun() < self.heartbeat_expires)

 @property
 def id(self):
 return '{0.hostname}.{0.pid}'.format(self)

[docs]@with_unique_field('uuid')
class Task:
 """Task State."""

 name = received = sent = started = succeeded = failed = retried = \
 revoked = rejected = args = kwargs = eta = expires = retries = \
 worker = result = exception = timestamp = runtime = traceback = \
 exchange = routing_key = root_id = parent_id = client = None
 state = states.PENDING
 clock = 0

 _fields = (
 'uuid', 'name', 'state', 'received', 'sent', 'started', 'rejected',
 'succeeded', 'failed', 'retried', 'revoked', 'args', 'kwargs',
 'eta', 'expires', 'retries', 'worker', 'result', 'exception',
 'timestamp', 'runtime', 'traceback', 'exchange', 'routing_key',
 'clock', 'client', 'root', 'root_id', 'parent', 'parent_id',
 'children',
)
 if not PYPY: # pragma: no cover
 __slots__ = ('__dict__', '__weakref__')

 #: How to merge out of order events.
 #: Disorder is detected by logical ordering (e.g., :event:`task-received`
 #: must've happened before a :event:`task-failed` event).
 #:
 #: A merge rule consists of a state and a list of fields to keep from
 #: that state. ``(RECEIVED, ('name', 'args')``, means the name and args
 #: fields are always taken from the RECEIVED state, and any values for
 #: these fields received before or after is simply ignored.
 merge_rules = {
 states.RECEIVED: (
 'name', 'args', 'kwargs', 'parent_id',
 'root_id', 'retries', 'eta', 'expires',
),
 }

 #: meth:`info` displays these fields by default.
 _info_fields = (
 'args', 'kwargs', 'retries', 'result', 'eta', 'runtime',
 'expires', 'exception', 'exchange', 'routing_key',
 'root_id', 'parent_id',
)

 def __init__(self, uuid=None, cluster_state=None, children=None, **kwargs):
 self.uuid = uuid
 self.cluster_state = cluster_state
 if self.cluster_state is not None:
 self.children = WeakSet(
 self.cluster_state.tasks.get(task_id)
 for task_id in children or ()
 if task_id in self.cluster_state.tasks
)
 else:
 self.children = WeakSet()
 self._serializer_handlers = {
 'children': self._serializable_children,
 'root': self._serializable_root,
 'parent': self._serializable_parent,
 }
 if kwargs:
 self.__dict__.update(kwargs)

[docs] def event(self, type_, timestamp=None, local_received=None, fields=None,
 precedence=states.precedence, setattr=setattr,
 task_event_to_state=TASK_EVENT_TO_STATE.get, RETRY=states.RETRY):
 fields = fields or {}

 # using .get is faster than catching KeyError in this case.
 state = task_event_to_state(type_)
 if state is not None:
 # sets, for example, self.succeeded to the timestamp.
 setattr(self, type_, timestamp)
 else:
 state = type_.upper() # custom state

 # note that precedence here is reversed
 # see implementation in celery.states.state.__lt__
 if state != RETRY and self.state != RETRY and \
 precedence(state) > precedence(self.state):
 # this state logically happens-before the current state, so merge.
 keep = self.merge_rules.get(state)
 if keep is not None:
 fields = {
 k: v for k, v in fields.items() if k in keep
 }
 else:
 fields.update(state=state, timestamp=timestamp)

 # update current state with info from this event.
 self.__dict__.update(fields)

[docs] def info(self, fields=None, extra=None):
 """Information about this task suitable for on-screen display."""
 extra = [] if not extra else extra
 fields = self._info_fields if fields is None else fields

 def _keys():
 for key in list(fields) + list(extra):
 value = getattr(self, key, None)
 if value is not None:
 yield key, value

 return dict(_keys())

 def __repr__(self):
 return R_TASK.format(self)

[docs] def as_dict(self):
 get = object.__getattribute__
 handler = self._serializer_handlers.get
 return {
 k: handler(k, pass1)(get(self, k)) for k in self._fields
 }

 def _serializable_children(self, value):
 return [task.id for task in self.children]

 def _serializable_root(self, value):
 return self.root_id

 def _serializable_parent(self, value):
 return self.parent_id

 def __reduce__(self):
 return _depickle_task, (self.__class__, self.as_dict())

 @property
 def id(self):
 return self.uuid

 @property
 def origin(self):
 return self.client if self.worker is None else self.worker.id

 @property
 def ready(self):
 return self.state in states.READY_STATES

[docs] @cached_property
 def parent(self):
 # issue github.com/mher/flower/issues/648
 try:
 return self.parent_id and self.cluster_state.tasks.data[self.parent_id]
 except KeyError:
 return None

[docs] @cached_property
 def root(self):
 # issue github.com/mher/flower/issues/648
 try:
 return self.root_id and self.cluster_state.tasks.data[self.root_id]
 except KeyError:
 return None

[docs]class State:
 """Records clusters state."""

 Worker = Worker
 Task = Task
 event_count = 0
 task_count = 0
 heap_multiplier = 4

 def __init__(self, callback=None,
 workers=None, tasks=None, taskheap=None,
 max_workers_in_memory=5000, max_tasks_in_memory=10000,
 on_node_join=None, on_node_leave=None,
 tasks_by_type=None, tasks_by_worker=None):
 self.event_callback = callback
 self.workers = (LRUCache(max_workers_in_memory)
 if workers is None else workers)
 self.tasks = (LRUCache(max_tasks_in_memory)
 if tasks is None else tasks)
 self._taskheap = [] if taskheap is None else taskheap
 self.max_workers_in_memory = max_workers_in_memory
 self.max_tasks_in_memory = max_tasks_in_memory
 self.on_node_join = on_node_join
 self.on_node_leave = on_node_leave
 self._mutex = threading.Lock()
 self.handlers = {}
 self._seen_types = set()
 self._tasks_to_resolve = {}
 self.rebuild_taskheap()

 # type: Mapping[TaskName, WeakSet[Task]]
 self.tasks_by_type = CallableDefaultdict(
 self._tasks_by_type, WeakSet)
 self.tasks_by_type.update(
 _deserialize_Task_WeakSet_Mapping(tasks_by_type, self.tasks))

 # type: Mapping[Hostname, WeakSet[Task]]
 self.tasks_by_worker = CallableDefaultdict(
 self._tasks_by_worker, WeakSet)
 self.tasks_by_worker.update(
 _deserialize_Task_WeakSet_Mapping(tasks_by_worker, self.tasks))

 @cached_property
 def _event(self):
 return self._create_dispatcher()

[docs] def freeze_while(self, fun, *args, **kwargs):
 clear_after = kwargs.pop('clear_after', False)
 with self._mutex:
 try:
 return fun(*args, **kwargs)
 finally:
 if clear_after:
 self._clear()

[docs] def clear_tasks(self, ready=True):
 with self._mutex:
 return self._clear_tasks(ready)

 def _clear_tasks(self, ready=True):
 if ready:
 in_progress = {
 uuid: task for uuid, task in self.itertasks()
 if task.state not in states.READY_STATES
 }
 self.tasks.clear()
 self.tasks.update(in_progress)
 else:
 self.tasks.clear()
 self._taskheap[:] = []

 def _clear(self, ready=True):
 self.workers.clear()
 self._clear_tasks(ready)
 self.event_count = 0
 self.task_count = 0

[docs] def clear(self, ready=True):
 with self._mutex:
 return self._clear(ready)

[docs] def get_or_create_worker(self, hostname, **kwargs):
 """Get or create worker by hostname.

 Returns:
 Tuple: of ``(worker, was_created)`` pairs.
 """
 try:
 worker = self.workers[hostname]
 if kwargs:
 worker.update(kwargs)
 return worker, False
 except KeyError:
 worker = self.workers[hostname] = self.Worker(
 hostname, **kwargs)
 return worker, True

[docs] def get_or_create_task(self, uuid):
 """Get or create task by uuid."""
 try:
 return self.tasks[uuid], False
 except KeyError:
 task = self.tasks[uuid] = self.Task(uuid, cluster_state=self)
 return task, True

[docs] def event(self, event):
 with self._mutex:
 return self._event(event)

[docs] def task_event(self, type_, fields):
 """Deprecated, use :meth:`event`."""
 return self._event(dict(fields, type='-'.join(['task', type_])))[0]

[docs] def worker_event(self, type_, fields):
 """Deprecated, use :meth:`event`."""
 return self._event(dict(fields, type='-'.join(['worker', type_])))[0]

 def _create_dispatcher(self):
 # noqa: C901
 # pylint: disable=too-many-statements
 # This code is highly optimized, but not for reusability.
 get_handler = self.handlers.__getitem__
 event_callback = self.event_callback
 wfields = itemgetter('hostname', 'timestamp', 'local_received')
 tfields = itemgetter('uuid', 'hostname', 'timestamp',
 'local_received', 'clock')
 taskheap = self._taskheap
 th_append = taskheap.append
 th_pop = taskheap.pop
 # Removing events from task heap is an O(n) operation,
 # so easier to just account for the common number of events
 # for each task (PENDING->RECEIVED->STARTED->final)
 #: an O(n) operation
 max_events_in_heap = self.max_tasks_in_memory * self.heap_multiplier
 add_type = self._seen_types.add
 on_node_join, on_node_leave = self.on_node_join, self.on_node_leave
 tasks, Task = self.tasks, self.Task
 workers, Worker = self.workers, self.Worker
 # avoid updating LRU entry at getitem
 get_worker, get_task = workers.data.__getitem__, tasks.data.__getitem__

 get_task_by_type_set = self.tasks_by_type.__getitem__
 get_task_by_worker_set = self.tasks_by_worker.__getitem__

 def _event(event,
 timetuple=timetuple, KeyError=KeyError,
 insort=bisect.insort, created=True):
 self.event_count += 1
 if event_callback:
 event_callback(self, event)
 group, _, subject = event['type'].partition('-')
 try:
 handler = get_handler(group)
 except KeyError:
 pass
 else:
 return handler(subject, event), subject

 if group == 'worker':
 try:
 hostname, timestamp, local_received = wfields(event)
 except KeyError:
 pass
 else:
 is_offline = subject == 'offline'
 try:
 worker, created = get_worker(hostname), False
 except KeyError:
 if is_offline:
 worker, created = Worker(hostname), False
 else:
 worker = workers[hostname] = Worker(hostname)
 worker.event(subject, timestamp, local_received, event)
 if on_node_join and (created or subject == 'online'):
 on_node_join(worker)
 if on_node_leave and is_offline:
 on_node_leave(worker)
 workers.pop(hostname, None)
 return (worker, created), subject
 elif group == 'task':
 (uuid, hostname, timestamp,
 local_received, clock) = tfields(event)
 # task-sent event is sent by client, not worker
 is_client_event = subject == 'sent'
 try:
 task, task_created = get_task(uuid), False
 except KeyError:
 task = tasks[uuid] = Task(uuid, cluster_state=self)
 task_created = True
 if is_client_event:
 task.client = hostname
 else:
 try:
 worker = get_worker(hostname)
 except KeyError:
 worker = workers[hostname] = Worker(hostname)
 task.worker = worker
 if worker is not None and local_received:
 worker.event(None, local_received, timestamp)

 origin = hostname if is_client_event else worker.id

 # remove oldest event if exceeding the limit.
 heaps = len(taskheap)
 if heaps + 1 > max_events_in_heap:
 th_pop(0)

 # most events will be dated later than the previous.
 timetup = timetuple(clock, timestamp, origin, ref(task))
 if heaps and timetup > taskheap[-1]:
 th_append(timetup)
 else:
 insort(taskheap, timetup)

 if subject == 'received':
 self.task_count += 1
 task.event(subject, timestamp, local_received, event)
 task_name = task.name
 if task_name is not None:
 add_type(task_name)
 if task_created: # add to tasks_by_type index
 get_task_by_type_set(task_name).add(task)
 get_task_by_worker_set(hostname).add(task)
 if task.parent_id:
 try:
 parent_task = self.tasks[task.parent_id]
 except KeyError:
 self._add_pending_task_child(task)
 else:
 parent_task.children.add(task)
 try:
 _children = self._tasks_to_resolve.pop(uuid)
 except KeyError:
 pass
 else:
 task.children.update(_children)

 return (task, task_created), subject
 return _event

 def _add_pending_task_child(self, task):
 try:
 ch = self._tasks_to_resolve[task.parent_id]
 except KeyError:
 ch = self._tasks_to_resolve[task.parent_id] = WeakSet()
 ch.add(task)

[docs] def rebuild_taskheap(self, timetuple=timetuple):
 heap = self._taskheap[:] = [
 timetuple(t.clock, t.timestamp, t.origin, ref(t))
 for t in self.tasks.values()
]
 heap.sort()

[docs] def itertasks(self, limit=None):
 for index, row in enumerate(self.tasks.items()):
 yield row
 if limit and index + 1 >= limit:
 break

[docs] def tasks_by_time(self, limit=None, reverse=True):
 """Generator yielding tasks ordered by time.

 Yields:
 Tuples of ``(uuid, Task)``.
 """
 _heap = self._taskheap
 if reverse:
 _heap = reversed(_heap)

 seen = set()
 for evtup in islice(_heap, 0, limit):
 task = evtup[3]()
 if task is not None:
 uuid = task.uuid
 if uuid not in seen:
 yield uuid, task
 seen.add(uuid)

 tasks_by_timestamp = tasks_by_time

 def _tasks_by_type(self, name, limit=None, reverse=True):
 """Get all tasks by type.

 This is slower than accessing :attr:`tasks_by_type`,
 but will be ordered by time.

 Returns:
 Generator: giving ``(uuid, Task)`` pairs.
 """
 return islice(
 ((uuid, task) for uuid, task in self.tasks_by_time(reverse=reverse)
 if task.name == name),
 0, limit,
)

 def _tasks_by_worker(self, hostname, limit=None, reverse=True):
 """Get all tasks by worker.

 Slower than accessing :attr:`tasks_by_worker`, but ordered by time.
 """
 return islice(
 ((uuid, task) for uuid, task in self.tasks_by_time(reverse=reverse)
 if task.worker.hostname == hostname),
 0, limit,
)

[docs] def task_types(self):
 """Return a list of all seen task types."""
 return sorted(self._seen_types)

[docs] def alive_workers(self):
 """Return a list of (seemingly) alive workers."""
 return (w for w in self.workers.values() if w.alive)

 def __repr__(self):
 return R_STATE.format(self)

 def __reduce__(self):
 return self.__class__, (
 self.event_callback, self.workers, self.tasks, None,
 self.max_workers_in_memory, self.max_tasks_in_memory,
 self.on_node_join, self.on_node_leave,
 _serialize_Task_WeakSet_Mapping(self.tasks_by_type),
 _serialize_Task_WeakSet_Mapping(self.tasks_by_worker),
)

def _serialize_Task_WeakSet_Mapping(mapping):
 return {name: [t.id for t in tasks] for name, tasks in mapping.items()}

def _deserialize_Task_WeakSet_Mapping(mapping, tasks):
 mapping = mapping or {}
 return {name: WeakSet(tasks[i] for i in ids if i in tasks)
 for name, ids in mapping.items()}

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.loaders.app

"""The default loader used with custom app instances."""
from .base import BaseLoader

__all__ = ('AppLoader',)

[docs]class AppLoader(BaseLoader):
 """Default loader used when an app is specified."""

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.loaders.base

"""Loader base class."""
import importlib
import os
import re
import sys
from datetime import datetime

from kombu.utils import json
from kombu.utils.objects import cached_property

from celery import signals
from celery.exceptions import reraise
from celery.utils.collections import DictAttribute, force_mapping
from celery.utils.functional import maybe_list
from celery.utils.imports import (NotAPackage, find_module, import_from_cwd,
 symbol_by_name)

__all__ = ('BaseLoader',)

_RACE_PROTECTION = False

CONFIG_INVALID_NAME = """\
Error: Module '{module}' doesn't exist, or it's not a valid \
Python module name.
"""

CONFIG_WITH_SUFFIX = CONFIG_INVALID_NAME + """\
Did you mean '{suggest}'?
"""

unconfigured = object()

[docs]class BaseLoader:
 """Base class for loaders.

 Loaders handles,

 * Reading celery client/worker configurations.

 * What happens when a task starts?
 See :meth:`on_task_init`.

 * What happens when the worker starts?
 See :meth:`on_worker_init`.

 * What happens when the worker shuts down?
 See :meth:`on_worker_shutdown`.

 * What modules are imported to find tasks?
 """

 builtin_modules = frozenset()
 configured = False
 override_backends = {}
 worker_initialized = False

 _conf = unconfigured

 def __init__(self, app, **kwargs):
 self.app = app
 self.task_modules = set()

[docs] def now(self, utc=True):
 if utc:
 return datetime.utcnow()
 return datetime.now()

[docs] def on_task_init(self, task_id, task):
 """Called before a task is executed."""

[docs] def on_process_cleanup(self):
 """Called after a task is executed."""

[docs] def on_worker_init(self):
 """Called when the worker (:program:`celery worker`) starts."""

[docs] def on_worker_shutdown(self):
 """Called when the worker (:program:`celery worker`) shuts down."""

[docs] def on_worker_process_init(self):
 """Called when a child process starts."""

[docs] def import_task_module(self, module):
 self.task_modules.add(module)
 return self.import_from_cwd(module)

[docs] def import_module(self, module, package=None):
 return importlib.import_module(module, package=package)

[docs] def import_from_cwd(self, module, imp=None, package=None):
 return import_from_cwd(
 module,
 self.import_module if imp is None else imp,
 package=package,
)

[docs] def import_default_modules(self):
 responses = signals.import_modules.send(sender=self.app)
 # Prior to this point loggers are not yet set up properly, need to
 # check responses manually and reraised exceptions if any, otherwise
 # they'll be silenced, making it incredibly difficult to debug.
 for _, response in responses:
 if isinstance(response, Exception):
 raise response
 return [self.import_task_module(m) for m in self.default_modules]

[docs] def init_worker(self):
 if not self.worker_initialized:
 self.worker_initialized = True
 self.import_default_modules()
 self.on_worker_init()

[docs] def shutdown_worker(self):
 self.on_worker_shutdown()

[docs] def init_worker_process(self):
 self.on_worker_process_init()

[docs] def config_from_object(self, obj, silent=False):
 if isinstance(obj, str):
 try:
 obj = self._smart_import(obj, imp=self.import_from_cwd)
 except (ImportError, AttributeError):
 if silent:
 return False
 raise
 self._conf = force_mapping(obj)
 return True

 def _smart_import(self, path, imp=None):
 imp = self.import_module if imp is None else imp
 if ':' in path:
 # Path includes attribute so can just jump
 # here (e.g., ``os.path:abspath``).
 return symbol_by_name(path, imp=imp)

 # Not sure if path is just a module name or if it includes an
 # attribute name (e.g., ``os.path``, vs, ``os.path.abspath``).
 try:
 return imp(path)
 except ImportError:
 # Not a module name, so try module + attribute.
 return symbol_by_name(path, imp=imp)

 def _import_config_module(self, name):
 try:
 self.find_module(name)
 except NotAPackage as exc:
 if name.endswith('.py'):
 reraise(NotAPackage, NotAPackage(CONFIG_WITH_SUFFIX.format(
 module=name, suggest=name[:-3])), sys.exc_info()[2])
 raise NotAPackage(CONFIG_INVALID_NAME.format(module=name)) from exc
 else:
 return self.import_from_cwd(name)

[docs] def find_module(self, module):
 return find_module(module)

[docs] def cmdline_config_parser(self, args, namespace='celery',
 re_type=re.compile(r'\((\w+)\)'),
 extra_types=None,
 override_types=None):
 extra_types = extra_types if extra_types else {'json': json.loads}
 override_types = override_types if override_types else {
 'tuple': 'json',
 'list': 'json',
 'dict': 'json'
 }
 from celery.app.defaults import NAMESPACES, Option
 namespace = namespace and namespace.lower()
 typemap = dict(Option.typemap, **extra_types)

 def getarg(arg):
 """Parse single configuration from command-line."""
 # ## find key/value
 # ns.key=value|ns_key=value (case insensitive)
 key, value = arg.split('=', 1)
 key = key.lower().replace('.', '_')

 # ## find name-space.
 # .key=value|_key=value expands to default name-space.
 if key[0] == '_':
 ns, key = namespace, key[1:]
 else:
 # find name-space part of key
 ns, key = key.split('_', 1)

 ns_key = (ns and ns + '_' or '') + key

 # (type)value makes cast to custom type.
 cast = re_type.match(value)
 if cast:
 type_ = cast.groups()[0]
 type_ = override_types.get(type_, type_)
 value = value[len(cast.group()):]
 value = typemap[type_](value)
 else:
 try:
 value = NAMESPACES[ns.lower()][key].to_python(value)
 except ValueError as exc:
 # display key name in error message.
 raise ValueError(f'{ns_key!r}: {exc}')
 return ns_key, value
 return dict(getarg(arg) for arg in args)

[docs] def read_configuration(self, env='CELERY_CONFIG_MODULE'):
 try:
 custom_config = os.environ[env]
 except KeyError:
 pass
 else:
 if custom_config:
 usercfg = self._import_config_module(custom_config)
 return DictAttribute(usercfg)

[docs] def autodiscover_tasks(self, packages, related_name='tasks'):
 self.task_modules.update(
 mod.__name__ for mod in autodiscover_tasks(packages or (),
 related_name) if mod)

[docs] @cached_property
 def default_modules(self):
 return (
 tuple(self.builtin_modules) +
 tuple(maybe_list(self.app.conf.imports)) +
 tuple(maybe_list(self.app.conf.include))
)

 @property
 def conf(self):
 """Loader configuration."""
 if self._conf is unconfigured:
 self._conf = self.read_configuration()
 return self._conf

def autodiscover_tasks(packages, related_name='tasks'):
 global _RACE_PROTECTION

 if _RACE_PROTECTION:
 return ()
 _RACE_PROTECTION = True
 try:
 return [find_related_module(pkg, related_name) for pkg in packages]
 finally:
 _RACE_PROTECTION = False

def find_related_module(package, related_name):
 """Find module in package."""
 # Django 1.7 allows for speciying a class name in INSTALLED_APPS.
 # (Issue #2248).
 try:
 module = importlib.import_module(package)
 if not related_name and module:
 return module
 except ImportError:
 package, _, _ = package.rpartition('.')
 if not package:
 raise

 module_name = f'{package}.{related_name}'

 try:
 return importlib.import_module(module_name)
 except ImportError as e:
 import_exc_name = getattr(e, 'name', module_name)
 if import_exc_name is not None and import_exc_name != module_name:
 raise e
 return

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.loaders.default

"""The default loader used when no custom app has been initialized."""
import os
import warnings

from celery.exceptions import NotConfigured
from celery.utils.collections import DictAttribute
from celery.utils.serialization import strtobool

from .base import BaseLoader

__all__ = ('Loader', 'DEFAULT_CONFIG_MODULE')

DEFAULT_CONFIG_MODULE = 'celeryconfig'

#: Warns if configuration file is missing if :envvar:`C_WNOCONF` is set.
C_WNOCONF = strtobool(os.environ.get('C_WNOCONF', False))

[docs]class Loader(BaseLoader):
 """The loader used by the default app."""

[docs] def setup_settings(self, settingsdict):
 return DictAttribute(settingsdict)

[docs] def read_configuration(self, fail_silently=True):
 """Read configuration from :file:`celeryconfig.py`."""
 configname = os.environ.get('CELERY_CONFIG_MODULE',
 DEFAULT_CONFIG_MODULE)
 try:
 usercfg = self._import_config_module(configname)
 except ImportError:
 if not fail_silently:
 raise
 # billiard sets this if forked using execv
 if C_WNOCONF and not os.environ.get('FORKED_BY_MULTIPROCESSING'):
 warnings.warn(NotConfigured(
 'No {module} module found! Please make sure it exists and '
 'is available to Python.'.format(module=configname)))
 return self.setup_settings({})
 else:
 self.configured = True
 return self.setup_settings(usercfg)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.security.certificate

"""X.509 certificates."""
import datetime
import glob
import os

from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives.asymmetric import padding
from cryptography.x509 import load_pem_x509_certificate
from kombu.utils.encoding import bytes_to_str, ensure_bytes

from celery.exceptions import SecurityError

from .utils import reraise_errors

__all__ = ('Certificate', 'CertStore', 'FSCertStore')

[docs]class Certificate:
 """X.509 certificate."""

 def __init__(self, cert):
 with reraise_errors(
 'Invalid certificate: {0!r}', errors=(ValueError,)
):
 self._cert = load_pem_x509_certificate(
 ensure_bytes(cert), backend=default_backend())

[docs] def has_expired(self):
 """Check if the certificate has expired."""
 return datetime.datetime.now() > self._cert.not_valid_after

[docs] def get_pubkey(self):
 """Get public key from certificate."""
 return self._cert.public_key()

[docs] def get_serial_number(self):
 """Return the serial number in the certificate."""
 return self._cert.serial_number

[docs] def get_issuer(self):
 """Return issuer (CA) as a string."""
 return ' '.join(x.value for x in self._cert.issuer)

[docs] def get_id(self):
 """Serial number/issuer pair uniquely identifies a certificate."""
 return f'{self.get_issuer()} {self.get_serial_number()}'

[docs] def verify(self, data, signature, digest):
 """Verify signature for string containing data."""
 with reraise_errors('Bad signature: {0!r}'):

 padd = padding.PSS(
 mgf=padding.MGF1(digest),
 salt_length=padding.PSS.MAX_LENGTH)

 self.get_pubkey().verify(signature,
 ensure_bytes(data), padd, digest)

[docs]class CertStore:
 """Base class for certificate stores."""

 def __init__(self):
 self._certs = {}

[docs] def itercerts(self):
 """Return certificate iterator."""
 yield from self._certs.values()

 def __getitem__(self, id):
 """Get certificate by id."""
 try:
 return self._certs[bytes_to_str(id)]
 except KeyError:
 raise SecurityError(f'Unknown certificate: {id!r}')

[docs] def add_cert(self, cert):
 cert_id = bytes_to_str(cert.get_id())
 if cert_id in self._certs:
 raise SecurityError(f'Duplicate certificate: {id!r}')
 self._certs[cert_id] = cert

[docs]class FSCertStore(CertStore):
 """File system certificate store."""

 def __init__(self, path):
 CertStore.__init__(self)
 if os.path.isdir(path):
 path = os.path.join(path, '*')
 for p in glob.glob(path):
 with open(p) as f:
 cert = Certificate(f.read())
 if cert.has_expired():
 raise SecurityError(
 f'Expired certificate: {cert.get_id()!r}')
 self.add_cert(cert)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.security.key

"""Private keys for the security serializer."""
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.asymmetric import padding
from kombu.utils.encoding import ensure_bytes

from .utils import reraise_errors

__all__ = ('PrivateKey',)

[docs]class PrivateKey:
 """Represents a private key."""

 def __init__(self, key, password=None):
 with reraise_errors(
 'Invalid private key: {0!r}', errors=(ValueError,)
):
 self._key = serialization.load_pem_private_key(
 ensure_bytes(key),
 password=password,
 backend=default_backend())

[docs] def sign(self, data, digest):
 """Sign string containing data."""
 with reraise_errors('Unable to sign data: {0!r}'):

 padd = padding.PSS(
 mgf=padding.MGF1(digest),
 salt_length=padding.PSS.MAX_LENGTH)

 return self._key.sign(ensure_bytes(data), padd, digest)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.security.serialization

"""Secure serializer."""
from kombu.serialization import dumps, loads, registry
from kombu.utils.encoding import bytes_to_str, ensure_bytes, str_to_bytes

from celery.app.defaults import DEFAULT_SECURITY_DIGEST
from celery.utils.serialization import b64decode, b64encode

from .certificate import Certificate, FSCertStore
from .key import PrivateKey
from .utils import get_digest_algorithm, reraise_errors

__all__ = ('SecureSerializer', 'register_auth')

[docs]class SecureSerializer:
 """Signed serializer."""

 def __init__(self, key=None, cert=None, cert_store=None,
 digest=DEFAULT_SECURITY_DIGEST, serializer='json'):
 self._key = key
 self._cert = cert
 self._cert_store = cert_store
 self._digest = get_digest_algorithm(digest)
 self._serializer = serializer

[docs] def serialize(self, data):
 """Serialize data structure into string."""
 assert self._key is not None
 assert self._cert is not None
 with reraise_errors('Unable to serialize: {0!r}', (Exception,)):
 content_type, content_encoding, body = dumps(
 bytes_to_str(data), serializer=self._serializer)
 # What we sign is the serialized body, not the body itself.
 # this way the receiver doesn't have to decode the contents
 # to verify the signature (and thus avoiding potential flaws
 # in the decoding step).
 body = ensure_bytes(body)
 return self._pack(body, content_type, content_encoding,
 signature=self._key.sign(body, self._digest),
 signer=self._cert.get_id())

[docs] def deserialize(self, data):
 """Deserialize data structure from string."""
 assert self._cert_store is not None
 with reraise_errors('Unable to deserialize: {0!r}', (Exception,)):
 payload = self._unpack(data)
 signature, signer, body = (payload['signature'],
 payload['signer'],
 payload['body'])
 self._cert_store[signer].verify(body, signature, self._digest)
 return loads(bytes_to_str(body), payload['content_type'],
 payload['content_encoding'], force=True)

 def _pack(self, body, content_type, content_encoding, signer, signature,
 sep=str_to_bytes('\x00\x01')):
 fields = sep.join(
 ensure_bytes(s) for s in [signer, signature, content_type,
 content_encoding, body]
)
 return b64encode(fields)

 def _unpack(self, payload, sep=str_to_bytes('\x00\x01')):
 raw_payload = b64decode(ensure_bytes(payload))
 first_sep = raw_payload.find(sep)

 signer = raw_payload[:first_sep]
 signer_cert = self._cert_store[signer]

 # shift 3 bits right to get signature length
 # 2048bit rsa key has a signature length of 256
 # 4096bit rsa key has a signature length of 512
 sig_len = signer_cert.get_pubkey().key_size >> 3
 sep_len = len(sep)
 signature_start_position = first_sep + sep_len
 signature_end_position = signature_start_position + sig_len
 signature = raw_payload[
 signature_start_position:signature_end_position
]

 v = raw_payload[signature_end_position + sep_len:].split(sep)

 return {
 'signer': signer,
 'signature': signature,
 'content_type': bytes_to_str(v[0]),
 'content_encoding': bytes_to_str(v[1]),
 'body': bytes_to_str(v[2]),
 }

[docs]def register_auth(key=None, cert=None, store=None,
 digest=DEFAULT_SECURITY_DIGEST,
 serializer='json'):
 """Register security serializer."""
 s = SecureSerializer(key and PrivateKey(key),
 cert and Certificate(cert),
 store and FSCertStore(store),
 digest, serializer=serializer)
 registry.register('auth', s.serialize, s.deserialize,
 content_type='application/data',
 content_encoding='utf-8')

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.security.utils

"""Utilities used by the message signing serializer."""
import sys
from contextlib import contextmanager

import cryptography.exceptions
from cryptography.hazmat.primitives import hashes

from celery.exceptions import SecurityError, reraise

__all__ = ('get_digest_algorithm', 'reraise_errors',)

[docs]def get_digest_algorithm(digest='sha256'):
 """Convert string to hash object of cryptography library."""
 assert digest is not None
 return getattr(hashes, digest.upper())()

[docs]@contextmanager
def reraise_errors(msg='{0!r}', errors=None):
 """Context reraising crypto errors as :exc:`SecurityError`."""
 errors = (cryptography.exceptions,) if errors is None else errors
 try:
 yield
 except errors as exc:
 reraise(SecurityError,
 SecurityError(msg.format(exc)),
 sys.exc_info()[2])

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.utils.abstract

"""Abstract classes."""
from abc import ABCMeta, abstractmethod
from collections.abc import Callable

__all__ = ('CallableTask', 'CallableSignature')

def _hasattr(C, attr):
 return any(attr in B.__dict__ for B in C.__mro__)

class _AbstractClass(metaclass=ABCMeta):
 __required_attributes__ = frozenset()

 @classmethod
 def _subclasshook_using(cls, parent, C):
 return (
 cls is parent and
 all(_hasattr(C, attr) for attr in cls.__required_attributes__)
) or NotImplemented

 @classmethod
 def register(cls, other):
 # we override `register` to return other for use as a decorator.
 type(cls).register(cls, other)
 return other

[docs]class CallableTask(_AbstractClass, Callable): # pragma: no cover
 """Task interface."""

 __required_attributes__ = frozenset({
 'delay', 'apply_async', 'apply',
 })

[docs] @abstractmethod
 def delay(self, *args, **kwargs):
 pass

[docs] @abstractmethod
 def apply_async(self, *args, **kwargs):
 pass

[docs] @abstractmethod
 def apply(self, *args, **kwargs):
 pass

 @classmethod
 def __subclasshook__(cls, C):
 return cls._subclasshook_using(CallableTask, C)

[docs]class CallableSignature(CallableTask): # pragma: no cover
 """Celery Signature interface."""

 __required_attributes__ = frozenset({
 'clone', 'freeze', 'set', 'link', 'link_error', '__or__',
 })

 @property
 @abstractmethod
 def name(self):
 pass

 @property
 @abstractmethod
 def type(self):
 pass

 @property
 @abstractmethod
 def app(self):
 pass

 @property
 @abstractmethod
 def id(self):
 pass

 @property
 @abstractmethod
 def task(self):
 pass

 @property
 @abstractmethod
 def args(self):
 pass

 @property
 @abstractmethod
 def kwargs(self):
 pass

 @property
 @abstractmethod
 def options(self):
 pass

 @property
 @abstractmethod
 def subtask_type(self):
 pass

 @property
 @abstractmethod
 def chord_size(self):
 pass

 @property
 @abstractmethod
 def immutable(self):
 pass

[docs] @abstractmethod
 def clone(self, args=None, kwargs=None):
 pass

[docs] @abstractmethod
 def freeze(self, id=None, group_id=None, chord=None, root_id=None,
 group_index=None):
 pass

[docs] @abstractmethod
 def set(self, immutable=None, **options):
 pass

[docs] @abstractmethod
 def link(self, callback):
 pass

[docs] @abstractmethod
 def link_error(self, errback):
 pass

 @abstractmethod
 def __or__(self, other):
 pass

 @abstractmethod
 def __invert__(self):
 pass

 @classmethod
 def __subclasshook__(cls, C):
 return cls._subclasshook_using(CallableSignature, C)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.utils.collections

"""Custom maps, sets, sequences, and other data structures."""
import sys
import time
from collections import OrderedDict as _OrderedDict
from collections import deque
from collections.abc import (Callable, Mapping, MutableMapping, MutableSet,
 Sequence)
from heapq import heapify, heappop, heappush
from itertools import chain, count
from queue import Empty

from .functional import first, uniq
from .text import match_case

try:
 # pypy: dicts are ordered in recent versions
 from __pypy__ import reversed_dict as _dict_is_ordered
except ImportError:
 _dict_is_ordered = None

try:
 from django.utils.functional import LazyObject, LazySettings
except ImportError:
 class LazyObject: # noqa
 pass
 LazySettings = LazyObject # noqa

__all__ = (
 'AttributeDictMixin', 'AttributeDict', 'BufferMap', 'ChainMap',
 'ConfigurationView', 'DictAttribute', 'Evictable',
 'LimitedSet', 'Messagebuffer', 'OrderedDict',
 'force_mapping', 'lpmerge',
)

REPR_LIMITED_SET = """\
<{name}({size}): maxlen={0.maxlen}, expires={0.expires}, minlen={0.minlen}>\
"""

[docs]def force_mapping(m):
 # type: (Any) -> Mapping
 """Wrap object into supporting the mapping interface if necessary."""
 if isinstance(m, (LazyObject, LazySettings)):
 m = m._wrapped
 return DictAttribute(m) if not isinstance(m, Mapping) else m

[docs]def lpmerge(L, R):
 # type: (Mapping, Mapping) -> Mapping
 """In place left precedent dictionary merge.

 Keeps values from `L`, if the value in `R` is :const:`None`.
 """
 setitem = L.__setitem__
 [setitem(k, v) for k, v in R.items() if v is not None]
 return L

[docs]class OrderedDict(_OrderedDict):
 """Dict where insertion order matters."""

 def _LRUkey(self):
 # type: () -> Any
 # return value of od.keys does not support __next__,
 # but this version will also not create a copy of the list.
 return next(iter(self.keys()))

 if not hasattr(_OrderedDict, 'move_to_end'):
 if _dict_is_ordered: # pragma: no cover

 def move_to_end(self, key, last=True):
 # type: (Any, bool) -> None
 if not last:
 # we don't use this argument, and the only way to
 # implement this on PyPy seems to be O(n): creating a
 # copy with the order changed, so we just raise.
 raise NotImplementedError('no last=True on PyPy')
 self[key] = self.pop(key)

 else:

 def move_to_end(self, key, last=True):
 # type: (Any, bool) -> None
 link = self._OrderedDict__map[key]
 link_prev = link[0]
 link_next = link[1]
 link_prev[1] = link_next
 link_next[0] = link_prev
 root = self._OrderedDict__root
 if last:
 last = root[0]
 link[0] = last
 link[1] = root
 last[1] = root[0] = link
 else:
 first_node = root[1]
 link[0] = root
 link[1] = first_node
 root[1] = first_node[0] = link

[docs]class AttributeDictMixin:
 """Mixin for Mapping interface that adds attribute access.

 I.e., `d.key -> d[key]`).
 """

 def __getattr__(self, k):
 # type: (str) -> Any
 """`d.key -> d[key]`."""
 try:
 return self[k]
 except KeyError:
 raise AttributeError(
 f'{type(self).__name__!r} object has no attribute {k!r}')

 def __setattr__(self, key, value):
 # type: (str, Any) -> None
 """`d[key] = value -> d.key = value`."""
 self[key] = value

[docs]class AttributeDict(dict, AttributeDictMixin):
 """Dict subclass with attribute access."""

[docs]class DictAttribute:
 """Dict interface to attributes.

 `obj[k] -> obj.k`
 `obj[k] = val -> obj.k = val`
 """

 obj = None

 def __init__(self, obj):
 # type: (Any) -> None
 object.__setattr__(self, 'obj', obj)

 def __getattr__(self, key):
 # type: (Any) -> Any
 return getattr(self.obj, key)

 def __setattr__(self, key, value):
 # type: (Any, Any) -> None
 return setattr(self.obj, key, value)

[docs] def get(self, key, default=None):
 # type: (Any, Any) -> Any
 try:
 return self[key]
 except KeyError:
 return default

[docs] def setdefault(self, key, default=None):
 # type: (Any, Any) -> None
 if key not in self:
 self[key] = default

 def __getitem__(self, key):
 # type: (Any) -> Any
 try:
 return getattr(self.obj, key)
 except AttributeError:
 raise KeyError(key)

 def __setitem__(self, key, value):
 # type: (Any, Any) -> Any
 setattr(self.obj, key, value)

 def __contains__(self, key):
 # type: (Any) -> bool
 return hasattr(self.obj, key)

 def _iterate_keys(self):
 # type: () -> Iterable
 return iter(dir(self.obj))
 iterkeys = _iterate_keys

 def __iter__(self):
 # type: () -> Iterable
 return self._iterate_keys()

 def _iterate_items(self):
 # type: () -> Iterable
 for key in self._iterate_keys():
 yield key, getattr(self.obj, key)
 iteritems = _iterate_items

 def _iterate_values(self):
 # type: () -> Iterable
 for key in self._iterate_keys():
 yield getattr(self.obj, key)
 itervalues = _iterate_values

 if sys.version_info[0] == 3: # pragma: no cover
 items = _iterate_items
 keys = _iterate_keys
 values = _iterate_values
 else:

[docs] def keys(self):
 # type: () -> List[Any]
 return list(self)

[docs] def items(self):
 # type: () -> List[Tuple[Any, Any]]
 return list(self._iterate_items())

[docs] def values(self):
 # type: () -> List[Any]
 return list(self._iterate_values())

MutableMapping.register(DictAttribute) # noqa: E305

[docs]class ChainMap(MutableMapping):
 """Key lookup on a sequence of maps."""

 key_t = None
 changes = None
 defaults = None
 maps = None
 _observers = []

 def __init__(self, *maps, **kwargs):
 # type: (*Mapping, **Any) -> None
 maps = list(maps or [{}])
 self.__dict__.update(
 key_t=kwargs.get('key_t'),
 maps=maps,
 changes=maps[0],
 defaults=maps[1:],
)

[docs] def add_defaults(self, d):
 # type: (Mapping) -> None
 d = force_mapping(d)
 self.defaults.insert(0, d)
 self.maps.insert(1, d)

[docs] def pop(self, key, *default):
 # type: (Any, *Any) -> Any
 try:
 return self.maps[0].pop(key, *default)
 except KeyError:
 raise KeyError(
 f'Key not found in the first mapping: {key!r}')

 def __missing__(self, key):
 # type: (Any) -> Any
 raise KeyError(key)

 def _key(self, key):
 # type: (Any) -> Any
 return self.key_t(key) if self.key_t is not None else key

 def __getitem__(self, key):
 # type: (Any) -> Any
 _key = self._key(key)
 for mapping in self.maps:
 try:
 return mapping[_key]
 except KeyError:
 pass
 return self.__missing__(key)

 def __setitem__(self, key, value):
 # type: (Any, Any) -> None
 self.changes[self._key(key)] = value

 def __delitem__(self, key):
 # type: (Any) -> None
 try:
 del self.changes[self._key(key)]
 except KeyError:
 raise KeyError(f'Key not found in first mapping: {key!r}')

[docs] def clear(self):
 # type: () -> None
 self.changes.clear()

[docs] def get(self, key, default=None):
 # type: (Any, Any) -> Any
 try:
 return self[self._key(key)]
 except KeyError:
 return default

 def __len__(self):
 # type: () -> int
 return len(set().union(*self.maps))

 def __iter__(self):
 return self._iterate_keys()

 def __contains__(self, key):
 # type: (Any) -> bool
 key = self._key(key)
 return any(key in m for m in self.maps)

 def __bool__(self):
 # type: () -> bool
 return any(self.maps)
 __nonzero__ = __bool__ # Py2

[docs] def setdefault(self, key, default=None):
 # type: (Any, Any) -> None
 key = self._key(key)
 if key not in self:
 self[key] = default

[docs] def update(self, *args, **kwargs):
 # type: (*Any, **Any) -> Any
 result = self.changes.update(*args, **kwargs)
 for callback in self._observers:
 callback(*args, **kwargs)
 return result

 def __repr__(self):
 # type: () -> str
 return '{0.__class__.__name__}({1})'.format(
 self, ', '.join(map(repr, self.maps)))

[docs] @classmethod
 def fromkeys(cls, iterable, *args):
 # type: (type, Iterable, *Any) -> 'ChainMap'
 """Create a ChainMap with a single dict created from the iterable."""
 return cls(dict.fromkeys(iterable, *args))

[docs] def copy(self):
 # type: () -> 'ChainMap'
 return self.__class__(self.maps[0].copy(), *self.maps[1:])

 __copy__ = copy # Py2

 def _iter(self, op):
 # type: (Callable) -> Iterable
 # defaults must be first in the stream, so values in
 # changes take precedence.
 # pylint: disable=bad-reversed-sequence
 # Someone should teach pylint about properties.
 return chain(*[op(d) for d in reversed(self.maps)])

 def _iterate_keys(self):
 # type: () -> Iterable
 return uniq(self._iter(lambda d: d.keys()))
 iterkeys = _iterate_keys

 def _iterate_items(self):
 # type: () -> Iterable
 return ((key, self[key]) for key in self)
 iteritems = _iterate_items

 def _iterate_values(self):
 # type: () -> Iterable
 return (self[key] for key in self)
 itervalues = _iterate_values

[docs] def bind_to(self, callback):
 self._observers.append(callback)

 if sys.version_info[0] == 3: # pragma: no cover
 keys = _iterate_keys
 items = _iterate_items
 values = _iterate_values

 else: # noqa
[docs] def keys(self):
 # type: () -> List[Any]
 return list(self._iterate_keys())

[docs] def items(self):
 # type: () -> List[Tuple[Any, Any]]
 return list(self._iterate_items())

[docs] def values(self):
 # type: () -> List[Any]
 return list(self._iterate_values())

[docs]class ConfigurationView(ChainMap, AttributeDictMixin):
 """A view over an applications configuration dictionaries.

 Custom (but older) version of :class:`collections.ChainMap`.

 If the key does not exist in ``changes``, the ``defaults``
 dictionaries are consulted.

 Arguments:
 changes (Mapping): Map of configuration changes.
 defaults (List[Mapping]): List of dictionaries containing
 the default configuration.
 """

 def __init__(self, changes, defaults=None, keys=None, prefix=None):
 # type: (Mapping, Mapping, List[str], str) -> None
 defaults = [] if defaults is None else defaults
 super().__init__(changes, *defaults)
 self.__dict__.update(
 prefix=prefix.rstrip('_') + '_' if prefix else prefix,
 _keys=keys,
)

 def _to_keys(self, key):
 # type: (str) -> Sequence[str]
 prefix = self.prefix
 if prefix:
 pkey = prefix + key if not key.startswith(prefix) else key
 return match_case(pkey, prefix), key
 return key,

 def __getitem__(self, key):
 # type: (str) -> Any
 keys = self._to_keys(key)
 getitem = super().__getitem__
 for k in keys + (
 tuple(f(key) for f in self._keys) if self._keys else ()):
 try:
 return getitem(k)
 except KeyError:
 pass
 try:
 # support subclasses implementing __missing__
 return self.__missing__(key)
 except KeyError:
 if len(keys) > 1:
 raise KeyError(
 'Key not found: {0!r} (with prefix: {0!r})'.format(*keys))
 raise

 def __setitem__(self, key, value):
 # type: (str, Any) -> Any
 self.changes[self._key(key)] = value

[docs] def first(self, *keys):
 # type: (*str) -> Any
 return first(None, (self.get(key) for key in keys))

[docs] def get(self, key, default=None):
 # type: (str, Any) -> Any
 try:
 return self[key]
 except KeyError:
 return default

[docs] def clear(self):
 # type: () -> None
 """Remove all changes, but keep defaults."""
 self.changes.clear()

 def __contains__(self, key):
 # type: (str) -> bool
 keys = self._to_keys(key)
 return any(any(k in m for k in keys) for m in self.maps)

[docs] def swap_with(self, other):
 # type: (ConfigurationView) -> None
 changes = other.__dict__['changes']
 defaults = other.__dict__['defaults']
 self.__dict__.update(
 changes=changes,
 defaults=defaults,
 key_t=other.__dict__['key_t'],
 prefix=other.__dict__['prefix'],
 maps=[changes] + defaults
)

[docs]class LimitedSet:
 """Kind-of Set (or priority queue) with limitations.

 Good for when you need to test for membership (`a in set`),
 but the set should not grow unbounded.

 ``maxlen`` is enforced at all times, so if the limit is reached
 we'll also remove non-expired items.

 You can also configure ``minlen``: this is the minimal residual size
 of the set.

 All arguments are optional, and no limits are enabled by default.

 Arguments:
 maxlen (int): Optional max number of items.
 Adding more items than ``maxlen`` will result in immediate
 removal of items sorted by oldest insertion time.

 expires (float): TTL for all items.
 Expired items are purged as keys are inserted.

 minlen (int): Minimal residual size of this set.
 .. versionadded:: 4.0

 Value must be less than ``maxlen`` if both are configured.

 Older expired items will be deleted, only after the set
 exceeds ``minlen`` number of items.

 data (Sequence): Initial data to initialize set with.
 Can be an iterable of ``(key, value)`` pairs,
 a dict (``{key: insertion_time}``), or another instance
 of :class:`LimitedSet`.

 Example:
 >>> s = LimitedSet(maxlen=50000, expires=3600, minlen=4000)
 >>> for i in range(60000):
 ... s.add(i)
 ... s.add(str(i))
 ...
 >>> 57000 in s # last 50k inserted values are kept
 True
 >>> '10' in s # '10' did expire and was purged from set.
 False
 >>> len(s) # maxlen is reached
 50000
 >>> s.purge(now=time.monotonic() + 7200) # clock + 2 hours
 >>> len(s) # now only minlen items are cached
 4000
 >>>> 57000 in s # even this item is gone now
 False
 """

 max_heap_percent_overload = 15

 def __init__(self, maxlen=0, expires=0, data=None, minlen=0):
 # type: (int, float, Mapping, int) -> None
 self.maxlen = 0 if maxlen is None else maxlen
 self.minlen = 0 if minlen is None else minlen
 self.expires = 0 if expires is None else expires
 self._data = {}
 self._heap = []

 if data:
 # import items from data
 self.update(data)

 if not self.maxlen >= self.minlen >= 0:
 raise ValueError(
 'minlen must be a positive number, less or equal to maxlen.')
 if self.expires < 0:
 raise ValueError('expires cannot be negative!')

 def _refresh_heap(self):
 # type: () -> None
 """Time consuming recreating of heap. Don't run this too often."""
 self._heap[:] = [entry for entry in self._data.values()]
 heapify(self._heap)

 def _maybe_refresh_heap(self):
 # type: () -> None
 if self._heap_overload >= self.max_heap_percent_overload:
 self._refresh_heap()

[docs] def clear(self):
 # type: () -> None
 """Clear all data, start from scratch again."""
 self._data.clear()
 self._heap[:] = []

[docs] def add(self, item, now=None):
 # type: (Any, float) -> None
 """Add a new item, or reset the expiry time of an existing item."""
 now = now or time.monotonic()
 if item in self._data:
 self.discard(item)
 entry = (now, item)
 self._data[item] = entry
 heappush(self._heap, entry)
 if self.maxlen and len(self._data) >= self.maxlen:
 self.purge()

[docs] def update(self, other):
 # type: (Iterable) -> None
 """Update this set from other LimitedSet, dict or iterable."""
 if not other:
 return
 if isinstance(other, LimitedSet):
 self._data.update(other._data)
 self._refresh_heap()
 self.purge()
 elif isinstance(other, dict):
 # revokes are sent as a dict
 for key, inserted in other.items():
 if isinstance(inserted, (tuple, list)):
 # in case someone uses ._data directly for sending update
 inserted = inserted[0]
 if not isinstance(inserted, float):
 raise ValueError(
 'Expecting float timestamp, got type '
 f'{type(inserted)!r} with value: {inserted}')
 self.add(key, inserted)
 else:
 # XXX AVOID THIS, it could keep old data if more parties
 # exchange them all over and over again
 for obj in other:
 self.add(obj)

[docs] def discard(self, item):
 # type: (Any) -> None
 # mark an existing item as removed. If KeyError is not found, pass.
 self._data.pop(item, None)
 self._maybe_refresh_heap()

 pop_value = discard

[docs] def purge(self, now=None):
 # type: (float) -> None
 """Check oldest items and remove them if needed.

 Arguments:
 now (float): Time of purging -- by default right now.
 This can be useful for unit testing.
 """
 now = now or time.monotonic()
 now = now() if isinstance(now, Callable) else now
 if self.maxlen:
 while len(self._data) > self.maxlen:
 self.pop()
 # time based expiring:
 if self.expires:
 while len(self._data) > self.minlen >= 0:
 inserted_time, _ = self._heap[0]
 if inserted_time + self.expires > now:
 break # oldest item hasn't expired yet
 self.pop()

[docs] def pop(self, default=None):
 # type: (Any) -> Any
 """Remove and return the oldest item, or :const:`None` when empty."""
 while self._heap:
 _, item = heappop(self._heap)
 try:
 self._data.pop(item)
 except KeyError:
 pass
 else:
 return item
 return default

[docs] def as_dict(self):
 # type: () -> Dict
 """Whole set as serializable dictionary.

 Example:
 >>> s = LimitedSet(maxlen=200)
 >>> r = LimitedSet(maxlen=200)
 >>> for i in range(500):
 ... s.add(i)
 ...
 >>> r.update(s.as_dict())
 >>> r == s
 True
 """
 return {key: inserted for inserted, key in self._data.values()}

 def __eq__(self, other):
 # type: (Any) -> bool
 return self._data == other._data

 def __ne__(self, other):
 # type: (Any) -> bool
 return not self.__eq__(other)

 def __repr__(self):
 # type: () -> str
 return REPR_LIMITED_SET.format(
 self, name=type(self).__name__, size=len(self),
)

 def __iter__(self):
 # type: () -> Iterable
 return (i for _, i in sorted(self._data.values()))

 def __len__(self):
 # type: () -> int
 return len(self._data)

 def __contains__(self, key):
 # type: (Any) -> bool
 return key in self._data

 def __reduce__(self):
 # type: () -> Any
 return self.__class__, (
 self.maxlen, self.expires, self.as_dict(), self.minlen)

 def __bool__(self):
 # type: () -> bool
 return bool(self._data)
 __nonzero__ = __bool__ # Py2

 @property
 def _heap_overload(self):
 # type: () -> float
 """Compute how much is heap bigger than data [percents]."""
 return len(self._heap) * 100 / max(len(self._data), 1) - 100

MutableSet.register(LimitedSet) # noqa: E305

[docs]class Evictable:
 """Mixin for classes supporting the ``evict`` method."""

 Empty = Empty

[docs] def evict(self):
 # type: () -> None
 """Force evict until maxsize is enforced."""
 self._evict(range=count)

 def _evict(self, limit=100, range=range):
 # type: (int) -> None
 try:
 [self._evict1() for _ in range(limit)]
 except IndexError:
 pass

 def _evict1(self):
 # type: () -> None
 if self._evictcount <= self.maxsize:
 raise IndexError()
 try:
 self._pop_to_evict()
 except self.Empty:
 raise IndexError()

[docs]class Messagebuffer(Evictable):
 """A buffer of pending messages."""

 Empty = Empty

 def __init__(self, maxsize, iterable=None, deque=deque):
 # type: (int, Iterable, Any) -> None
 self.maxsize = maxsize
 self.data = deque(iterable or [])
 self._append = self.data.append
 self._pop = self.data.popleft
 self._len = self.data.__len__
 self._extend = self.data.extend

[docs] def put(self, item):
 # type: (Any) -> None
 self._append(item)
 self.maxsize and self._evict()

[docs] def extend(self, it):
 # type: (Iterable) -> None
 self._extend(it)
 self.maxsize and self._evict()

[docs] def take(self, *default):
 # type: (*Any) -> Any
 try:
 return self._pop()
 except IndexError:
 if default:
 return default[0]
 raise self.Empty()

 def _pop_to_evict(self):
 # type: () -> None
 return self.take()

 def __repr__(self):
 # type: () -> str
 return f'<{type(self).__name__}: {len(self)}/{self.maxsize}>'

 def __iter__(self):
 # type: () -> Iterable
 while 1:
 try:
 yield self._pop()
 except IndexError:
 break

 def __len__(self):
 # type: () -> int
 return self._len()

 def __contains__(self, item):
 # type: () -> bool
 return item in self.data

 def __reversed__(self):
 # type: () -> Iterable
 return reversed(self.data)

 def __getitem__(self, index):
 # type: (Any) -> Any
 return self.data[index]

 @property
 def _evictcount(self):
 # type: () -> int
 return len(self)

Sequence.register(Messagebuffer) # noqa: E305

[docs]class BufferMap(OrderedDict, Evictable):
 """Map of buffers."""

 Buffer = Messagebuffer
 Empty = Empty

 maxsize = None
 total = 0
 bufmaxsize = None

 def __init__(self, maxsize, iterable=None, bufmaxsize=1000):
 # type: (int, Iterable, int) -> None
 super().__init__()
 self.maxsize = maxsize
 self.bufmaxsize = 1000
 if iterable:
 self.update(iterable)
 self.total = sum(len(buf) for buf in self.items())

[docs] def put(self, key, item):
 # type: (Any, Any) -> None
 self._get_or_create_buffer(key).put(item)
 self.total += 1
 self.move_to_end(key) # least recently used.
 self.maxsize and self._evict()

[docs] def extend(self, key, it):
 # type: (Any, Iterable) -> None
 self._get_or_create_buffer(key).extend(it)
 self.total += len(it)
 self.maxsize and self._evict()

[docs] def take(self, key, *default):
 # type: (Any, *Any) -> Any
 item, throw = None, False
 try:
 buf = self[key]
 except KeyError:
 throw = True
 else:
 try:
 item = buf.take()
 self.total -= 1
 except self.Empty:
 throw = True
 else:
 self.move_to_end(key) # mark as LRU

 if throw:
 if default:
 return default[0]
 raise self.Empty()
 return item

 def _get_or_create_buffer(self, key):
 # type: (Any) -> Messagebuffer
 try:
 return self[key]
 except KeyError:
 buf = self[key] = self._new_buffer()
 return buf

 def _new_buffer(self):
 # type: () -> Messagebuffer
 return self.Buffer(maxsize=self.bufmaxsize)

 def _LRUpop(self, *default):
 # type: (*Any) -> Any
 return self[self._LRUkey()].take(*default)

 def _pop_to_evict(self):
 # type: () -> None
 for _ in range(100):
 key = self._LRUkey()
 buf = self[key]
 try:
 buf.take()
 except (IndexError, self.Empty):
 # buffer empty, remove it from mapping.
 self.pop(key)
 else:
 # we removed one item
 self.total -= 1
 # if buffer is empty now, remove it from mapping.
 if not len(buf):
 self.pop(key)
 else:
 # move to least recently used.
 self.move_to_end(key)
 break

 def __repr__(self):
 # type: () -> str
 return f'<{type(self).__name__}: {self.total}/{self.maxsize}>'

 @property
 def _evictcount(self):
 # type: () -> int
 return self.total

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.utils.debug

"""Utilities for debugging memory usage, blocking calls, etc."""
import os
import sys
import traceback
from contextlib import contextmanager
from functools import partial
from pprint import pprint

from celery.platforms import signals
from celery.utils.text import WhateverIO

try:
 from psutil import Process
except ImportError:
 Process = None # noqa

__all__ = (
 'blockdetection', 'sample_mem', 'memdump', 'sample',
 'humanbytes', 'mem_rss', 'ps', 'cry',
)

UNITS = (
 (2 ** 40.0, 'TB'),
 (2 ** 30.0, 'GB'),
 (2 ** 20.0, 'MB'),
 (2 ** 10.0, 'KB'),
 (0.0, 'b'),
)

_process = None
_mem_sample = []

def _on_blocking(signum, frame):
 import inspect
 raise RuntimeError(
 f'Blocking detection timed-out at: {inspect.getframeinfo(frame)}'
)

@contextmanager
def blockdetection(timeout):
 """Context that raises an exception if process is blocking.

 Uses ``SIGALRM`` to detect blocking functions.
 """
 if not timeout:
 yield
 else:
 old_handler = signals['ALRM']
 old_handler = None if old_handler == _on_blocking else old_handler

 signals['ALRM'] = _on_blocking

 try:
 yield signals.arm_alarm(timeout)
 finally:
 if old_handler:
 signals['ALRM'] = old_handler
 signals.reset_alarm()

[docs]def sample_mem():
 """Sample RSS memory usage.

 Statistics can then be output by calling :func:`memdump`.
 """
 current_rss = mem_rss()
 _mem_sample.append(current_rss)
 return current_rss

def _memdump(samples=10): # pragma: no cover
 S = _mem_sample
 prev = list(S) if len(S) <= samples else sample(S, samples)
 _mem_sample[:] = []
 import gc
 gc.collect()
 after_collect = mem_rss()
 return prev, after_collect

[docs]def memdump(samples=10, file=None): # pragma: no cover
 """Dump memory statistics.

 Will print a sample of all RSS memory samples added by
 calling :func:`sample_mem`, and in addition print
 used RSS memory after :func:`gc.collect`.
 """
 say = partial(print, file=file)
 if ps() is None:
 say('- rss: (psutil not installed).')
 return
 prev, after_collect = _memdump(samples)
 if prev:
 say('- rss (sample):')
 for mem in prev:
 say(f'- > {mem},')
 say(f'- rss (end): {after_collect}.')

[docs]def sample(x, n, k=0):
 """Given a list `x` a sample of length ``n`` of that list is returned.

 For example, if `n` is 10, and `x` has 100 items, a list of every tenth.
 item is returned.

 ``k`` can be used as offset.
 """
 j = len(x) // n
 for _ in range(n):
 try:
 yield x[k]
 except IndexError:
 break
 k += j

def hfloat(f, p=5):
 """Convert float to value suitable for humans.

 Arguments:
 f (float): The floating point number.
 p (int): Floating point precision (default is 5).
 """
 i = int(f)
 return i if i == f else '{0:.{p}}'.format(f, p=p)

def humanbytes(s):
 """Convert bytes to human-readable form (e.g., KB, MB)."""
 return next(
 f'{hfloat(s / div if div else s)}{unit}'
 for div, unit in UNITS if s >= div
)

[docs]def mem_rss():
 """Return RSS memory usage as a humanized string."""
 p = ps()
 if p is not None:
 return humanbytes(_process_memory_info(p).rss)

[docs]def ps(): # pragma: no cover
 """Return the global :class:`psutil.Process` instance.

 Note:
 Returns :const:`None` if :pypi:`psutil` is not installed.
 """
 global _process
 if _process is None and Process is not None:
 _process = Process(os.getpid())
 return _process

def _process_memory_info(process):
 try:
 return process.memory_info()
 except AttributeError:
 return process.get_memory_info()

def cry(out=None, sepchr='=', seplen=49): # pragma: no cover
 """Return stack-trace of all active threads.

 See Also:
 Taken from https://gist.github.com/737056.
 """
 import threading

 out = WhateverIO() if out is None else out
 P = partial(print, file=out)

 # get a map of threads by their ID so we can print their names
 # during the traceback dump
 tmap = {t.ident: t for t in threading.enumerate()}

 sep = sepchr * seplen
 for tid, frame in sys._current_frames().items():
 thread = tmap.get(tid)
 if not thread:
 # skip old junk (left-overs from a fork)
 continue
 P(f'{thread.name}')
 P(sep)
 traceback.print_stack(frame, file=out)
 P(sep)
 P('LOCAL VARIABLES')
 P(sep)
 pprint(frame.f_locals, stream=out)
 P('\n')
 return out.getvalue()

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.utils.deprecated

"""Deprecation utilities."""
import warnings

from vine.utils import wraps

from celery.exceptions import CDeprecationWarning, CPendingDeprecationWarning

__all__ = ('Callable', 'Property', 'warn')

PENDING_DEPRECATION_FMT = """
 {description} is scheduled for deprecation in \
 version {deprecation} and removal in version v{removal}. \
 {alternative}
"""

DEPRECATION_FMT = """
 {description} is deprecated and scheduled for removal in
 version {removal}. {alternative}
"""

[docs]def warn(description=None, deprecation=None,
 removal=None, alternative=None, stacklevel=2):
 """Warn of (pending) deprecation."""
 ctx = {'description': description,
 'deprecation': deprecation, 'removal': removal,
 'alternative': alternative}
 if deprecation is not None:
 w = CPendingDeprecationWarning(PENDING_DEPRECATION_FMT.format(**ctx))
 else:
 w = CDeprecationWarning(DEPRECATION_FMT.format(**ctx))
 warnings.warn(w, stacklevel=stacklevel)

[docs]def Callable(deprecation=None, removal=None,
 alternative=None, description=None):
 """Decorator for deprecated functions.

 A deprecation warning will be emitted when the function is called.

 Arguments:
 deprecation (str): Version that marks first deprecation, if this
 argument isn't set a ``PendingDeprecationWarning`` will be
 emitted instead.
 removal (str): Future version when this feature will be removed.
 alternative (str): Instructions for an alternative solution (if any).
 description (str): Description of what's being deprecated.
 """
 def _inner(fun):

 @wraps(fun)
 def __inner(*args, **kwargs):
 from .imports import qualname
 warn(description=description or qualname(fun),
 deprecation=deprecation,
 removal=removal,
 alternative=alternative,
 stacklevel=3)
 return fun(*args, **kwargs)
 return __inner
 return _inner

[docs]def Property(deprecation=None, removal=None,
 alternative=None, description=None):
 """Decorator for deprecated properties."""
 def _inner(fun):
 return _deprecated_property(
 fun, deprecation=deprecation, removal=removal,
 alternative=alternative, description=description or fun.__name__)
 return _inner

class _deprecated_property:

 def __init__(self, fget=None, fset=None, fdel=None, doc=None, **depreinfo):
 self.__get = fget
 self.__set = fset
 self.__del = fdel
 self.__name__, self.__module__, self.__doc__ = (
 fget.__name__, fget.__module__, fget.__doc__,
)
 self.depreinfo = depreinfo
 self.depreinfo.setdefault('stacklevel', 3)

 def __get__(self, obj, type=None):
 if obj is None:
 return self
 warn(**self.depreinfo)
 return self.__get(obj)

 def __set__(self, obj, value):
 if obj is None:
 return self
 if self.__set is None:
 raise AttributeError('cannot set attribute')
 warn(**self.depreinfo)
 self.__set(obj, value)

 def __delete__(self, obj):
 if obj is None:
 return self
 if self.__del is None:
 raise AttributeError('cannot delete attribute')
 warn(**self.depreinfo)
 self.__del(obj)

 def setter(self, fset):
 return self.__class__(self.__get, fset, self.__del, **self.depreinfo)

 def deleter(self, fdel):
 return self.__class__(self.__get, self.__set, fdel, **self.depreinfo)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.utils.functional

"""Functional-style utilties."""
import inspect
import sys
from collections import UserList
from functools import partial
from itertools import chain, islice

from kombu.utils.functional import (LRUCache, dictfilter, is_list, lazy,
 maybe_evaluate, maybe_list, memoize)
from vine import promise

__all__ = (
 'LRUCache', 'is_list', 'maybe_list', 'memoize', 'mlazy', 'noop',
 'first', 'firstmethod', 'chunks', 'padlist', 'mattrgetter', 'uniq',
 'regen', 'dictfilter', 'lazy', 'maybe_evaluate', 'head_from_fun',
 'maybe', 'fun_accepts_kwargs',
)

FUNHEAD_TEMPLATE = """
def {fun_name}({fun_args}):
 return {fun_value}
"""

class DummyContext:

 def __enter__(self):
 return self

 def __exit__(self, *exc_info):
 pass

[docs]class mlazy(lazy):
 """Memoized lazy evaluation.

 The function is only evaluated once, every subsequent access
 will return the same value.
 """

 #: Set to :const:`True` after the object has been evaluated.
 evaluated = False
 _value = None

[docs] def evaluate(self):
 if not self.evaluated:
 self._value = super().evaluate()
 self.evaluated = True
 return self._value

[docs]def noop(*args, **kwargs):
 """No operation.

 Takes any arguments/keyword arguments and does nothing.
 """

def pass1(arg, *args, **kwargs):
 """Return the first positional argument."""
 return arg

def evaluate_promises(it):
 for value in it:
 if isinstance(value, promise):
 value = value()
 yield value

[docs]def first(predicate, it):
 """Return the first element in ``it`` that ``predicate`` accepts.

 If ``predicate`` is None it will return the first item that's not
 :const:`None`.
 """
 return next(
 (v for v in evaluate_promises(it) if (
 predicate(v) if predicate is not None else v is not None)),
 None,
)

[docs]def firstmethod(method, on_call=None):
 """Multiple dispatch.

 Return a function that with a list of instances,
 finds the first instance that gives a value for the given method.

 The list can also contain lazy instances
 (:class:`~kombu.utils.functional.lazy`.)
 """
 def _matcher(it, *args, **kwargs):
 for obj in it:
 try:
 meth = getattr(maybe_evaluate(obj), method)
 reply = (on_call(meth, *args, **kwargs) if on_call
 else meth(*args, **kwargs))
 except AttributeError:
 pass
 else:
 if reply is not None:
 return reply
 return _matcher

[docs]def chunks(it, n):
 """Split an iterator into chunks with `n` elements each.

 Warning:
 ``it`` must be an actual iterator, if you pass this a
 concrete sequence will get you repeating elements.

 So ``chunks(iter(range(1000)), 10)`` is fine, but
 ``chunks(range(1000), 10)`` is not.

 Example:
 # n == 2
 >>> x = chunks(iter([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), 2)
 >>> list(x)
 [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10]]

 # n == 3
 >>> x = chunks(iter([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), 3)
 >>> list(x)
 [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10]]
 """
 for item in it:
 yield [item] + list(islice(it, n - 1))

[docs]def padlist(container, size, default=None):
 """Pad list with default elements.

 Example:
 >>> first, last, city = padlist(['George', 'Costanza', 'NYC'], 3)
 ('George', 'Costanza', 'NYC')
 >>> first, last, city = padlist(['George', 'Costanza'], 3)
 ('George', 'Costanza', None)
 >>> first, last, city, planet = padlist(
 ... ['George', 'Costanza', 'NYC'], 4, default='Earth',
 ...)
 ('George', 'Costanza', 'NYC', 'Earth')
 """
 return list(container)[:size] + [default] * (size - len(container))

[docs]def mattrgetter(*attrs):
 """Get attributes, ignoring attribute errors.

 Like :func:`operator.itemgetter` but return :const:`None` on missing
 attributes instead of raising :exc:`AttributeError`.
 """
 return lambda obj: {attr: getattr(obj, attr, None) for attr in attrs}

[docs]def uniq(it):
 """Return all unique elements in ``it``, preserving order."""
 seen = set()
 return (seen.add(obj) or obj for obj in it if obj not in seen)

[docs]def regen(it):
 """Convert iterator to an object that can be consumed multiple times.

 ``Regen`` takes any iterable, and if the object is an
 generator it will cache the evaluated list on first access,
 so that the generator can be "consumed" multiple times.
 """
 if isinstance(it, (list, tuple)):
 return it
 return _regen(it)

class _regen(UserList, list):
 # must be subclass of list so that json can encode.

 def __init__(self, it):
 # pylint: disable=super-init-not-called
 # UserList creates a new list and sets .data, so we don't
 # want to call init here.
 self.__it = it
 self.__index = 0
 self.__consumed = []

 def __reduce__(self):
 return list, (self.data,)

 def __length_hint__(self):
 return self.__it.__length_hint__()

 def __iter__(self):
 return chain(self.__consumed, self.__it)

 def __getitem__(self, index):
 if index < 0:
 return self.data[index]
 try:
 return self.__consumed[index]
 except IndexError:
 try:
 for _ in range(self.__index, index + 1):
 self.__consumed.append(next(self.__it))
 except StopIteration:
 raise IndexError(index)
 else:
 return self.__consumed[index]

 @property
 def data(self):
 try:
 self.__consumed.extend(list(self.__it))
 except StopIteration:
 pass
 return self.__consumed

def _argsfromspec(spec, replace_defaults=True):
 if spec.defaults:
 split = len(spec.defaults)
 defaults = (list(range(len(spec.defaults))) if replace_defaults
 else spec.defaults)
 positional = spec.args[:-split]
 optional = list(zip(spec.args[-split:], defaults))
 else:
 positional, optional = spec.args, []

 varargs = spec.varargs
 varkw = spec.varkw
 if spec.kwonlydefaults:
 split = len(spec.kwonlydefaults)
 kwonlyargs = spec.kwonlyargs[:-split]
 if replace_defaults:
 kwonlyargs_optional = [
 (kw, i) for i, kw in enumerate(spec.kwonlyargs[-split:])]
 else:
 kwonlyargs_optional = list(spec.kwonlydefaults.items())
 else:
 kwonlyargs, kwonlyargs_optional = spec.kwonlyargs, []

 return ', '.join(filter(None, [
 ', '.join(positional),
 ', '.join(f'{k}={v}' for k, v in optional),
 f'*{varargs}' if varargs else None,
 '*' if (kwonlyargs or kwonlyargs_optional) and not varargs else None,
 ', '.join(kwonlyargs) if kwonlyargs else None,
 ', '.join(f'{k}="{v}"' for k, v in kwonlyargs_optional),
 f'**{varkw}' if varkw else None,
]))

[docs]def head_from_fun(fun, bound=False, debug=False):
 """Generate signature function from actual function."""
 # we could use inspect.Signature here, but that implementation
 # is very slow since it implements the argument checking
 # in pure-Python. Instead we use exec to create a new function
 # with an empty body, meaning it has the same performance as
 # as just calling a function.
 is_function = inspect.isfunction(fun)
 is_callable = hasattr(fun, '__call__')
 is_cython = fun.__class__.__name__ == 'cython_function_or_method'
 is_method = inspect.ismethod(fun)

 if not is_function and is_callable and not is_method and not is_cython:
 name, fun = fun.__class__.__name__, fun.__call__
 else:
 name = fun.__name__
 definition = FUNHEAD_TEMPLATE.format(
 fun_name=name,
 fun_args=_argsfromspec(inspect.getfullargspec(fun)),
 fun_value=1,
)
 if debug: # pragma: no cover
 print(definition, file=sys.stderr)
 namespace = {'__name__': fun.__module__}
 # pylint: disable=exec-used
 # Tasks are rarely, if ever, created at runtime - exec here is fine.
 exec(definition, namespace)
 result = namespace[name]
 result._source = definition
 if bound:
 return partial(result, object())
 return result

def arity_greater(fun, n):
 argspec = inspect.getfullargspec(fun)
 return argspec.varargs or len(argspec.args) > n

def fun_takes_argument(name, fun, position=None):
 spec = inspect.getfullargspec(fun)
 return (
 spec.varkw or spec.varargs or
 (len(spec.args) >= position if position else name in spec.args)
)

if hasattr(inspect, 'signature'):
 def fun_accepts_kwargs(fun):
 """Return true if function accepts arbitrary keyword arguments."""
 return any(
 p for p in inspect.signature(fun).parameters.values()
 if p.kind == p.VAR_KEYWORD
)
else:
[docs] def fun_accepts_kwargs(fun): # noqa
 """Return true if function accepts arbitrary keyword arguments."""
 try:
 argspec = inspect.getargspec(fun)
 except TypeError:
 try:
 argspec = inspect.getargspec(fun.__call__)
 except (TypeError, AttributeError):
 return
 return not argspec or argspec[2] is not None

[docs]def maybe(typ, val):
 """Call typ on value if val is defined."""
 return typ(val) if val is not None else val

def seq_concat_item(seq, item):
 """Return copy of sequence seq with item added.

 Returns:
 Sequence: if seq is a tuple, the result will be a tuple,
 otherwise it depends on the implementation of ``__add__``.
 """
 return seq + (item,) if isinstance(seq, tuple) else seq + [item]

def seq_concat_seq(a, b):
 """Concatenate two sequences: ``a + b``.

 Returns:
 Sequence: The return value will depend on the largest sequence
 - if b is larger and is a tuple, the return value will be a tuple.
 - if a is larger and is a list, the return value will be a list,
 """
 # find the type of the largest sequence
 prefer = type(max([a, b], key=len))
 # convert the smallest list to the type of the largest sequence.
 if not isinstance(a, prefer):
 a = prefer(a)
 if not isinstance(b, prefer):
 b = prefer(b)
 return a + b

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.utils.graph

"""Dependency graph implementation."""
from collections import Counter
from textwrap import dedent

from kombu.utils.encoding import bytes_to_str, safe_str

__all__ = ('DOT', 'CycleError', 'DependencyGraph', 'GraphFormatter')

[docs]class DOT:
 """Constants related to the dot format."""

 HEAD = dedent("""
 {IN}{type} {id} {{
 {INp}graph [{attrs}]
 """)
 ATTR = '{name}={value}'
 NODE = '{INp}"{0}" [{attrs}]'
 EDGE = '{INp}"{0}" {dir} "{1}" [{attrs}]'
 ATTRSEP = ', '
 DIRS = {'graph': '--', 'digraph': '->'}
 TAIL = '{IN}}}'

[docs]class CycleError(Exception):
 """A cycle was detected in an acyclic graph."""

[docs]class DependencyGraph:
 """A directed acyclic graph of objects and their dependencies.

 Supports a robust topological sort
 to detect the order in which they must be handled.

 Takes an optional iterator of ``(obj, dependencies)``
 tuples to build the graph from.

 Warning:
 Does not support cycle detection.
 """

 def __init__(self, it=None, formatter=None):
 self.formatter = formatter or GraphFormatter()
 self.adjacent = {}
 if it is not None:
 self.update(it)

[docs] def add_arc(self, obj):
 """Add an object to the graph."""
 self.adjacent.setdefault(obj, [])

[docs] def add_edge(self, A, B):
 """Add an edge from object ``A`` to object ``B``.

 I.e. ``A`` depends on ``B``.
 """
 self[A].append(B)

[docs] def connect(self, graph):
 """Add nodes from another graph."""
 self.adjacent.update(graph.adjacent)

[docs] def topsort(self):
 """Sort the graph topologically.

 Returns:
 List: of objects in the order in which they must be handled.
 """
 graph = DependencyGraph()
 components = self._tarjan72()

 NC = {
 node: component for component in components for node in component
 }
 for component in components:
 graph.add_arc(component)
 for node in self:
 node_c = NC[node]
 for successor in self[node]:
 successor_c = NC[successor]
 if node_c != successor_c:
 graph.add_edge(node_c, successor_c)
 return [t[0] for t in graph._khan62()]

[docs] def valency_of(self, obj):
 """Return the valency (degree) of a vertex in the graph."""
 try:
 l = [len(self[obj])]
 except KeyError:
 return 0
 for node in self[obj]:
 l.append(self.valency_of(node))
 return sum(l)

[docs] def update(self, it):
 """Update graph with data from a list of ``(obj, deps)`` tuples."""
 tups = list(it)
 for obj, _ in tups:
 self.add_arc(obj)
 for obj, deps in tups:
 for dep in deps:
 self.add_edge(obj, dep)

[docs] def edges(self):
 """Return generator that yields for all edges in the graph."""
 return (obj for obj, adj in self.items() if adj)

 def _khan62(self):
 """Perform Khan's simple topological sort algorithm from '62.

 See https://en.wikipedia.org/wiki/Topological_sorting
 """
 count = Counter()
 result = []

 for node in self:
 for successor in self[node]:
 count[successor] += 1
 ready = [node for node in self if not count[node]]

 while ready:
 node = ready.pop()
 result.append(node)

 for successor in self[node]:
 count[successor] -= 1
 if count[successor] == 0:
 ready.append(successor)
 result.reverse()
 return result

 def _tarjan72(self):
 """Perform Tarjan's algorithm to find strongly connected components.

 See Also:
 :wikipedia:`Tarjan%27s_strongly_connected_components_algorithm`
 """
 result, stack, low = [], [], {}

 def visit(node):
 if node in low:
 return
 num = len(low)
 low[node] = num
 stack_pos = len(stack)
 stack.append(node)

 for successor in self[node]:
 visit(successor)
 low[node] = min(low[node], low[successor])

 if num == low[node]:
 component = tuple(stack[stack_pos:])
 stack[stack_pos:] = []
 result.append(component)
 for item in component:
 low[item] = len(self)

 for node in self:
 visit(node)

 return result

[docs] def to_dot(self, fh, formatter=None):
 """Convert the graph to DOT format.

 Arguments:
 fh (IO): A file, or a file-like object to write the graph to.
 formatter (celery.utils.graph.GraphFormatter): Custom graph
 formatter to use.
 """
 seen = set()
 draw = formatter or self.formatter

 def P(s):
 print(bytes_to_str(s), file=fh)

 def if_not_seen(fun, obj):
 if draw.label(obj) not in seen:
 P(fun(obj))
 seen.add(draw.label(obj))

 P(draw.head())
 for obj, adjacent in self.items():
 if not adjacent:
 if_not_seen(draw.terminal_node, obj)
 for req in adjacent:
 if_not_seen(draw.node, obj)
 P(draw.edge(obj, req))
 P(draw.tail())

[docs] def format(self, obj):
 return self.formatter(obj) if self.formatter else obj

 def __iter__(self):
 return iter(self.adjacent)

 def __getitem__(self, node):
 return self.adjacent[node]

 def __len__(self):
 return len(self.adjacent)

 def __contains__(self, obj):
 return obj in self.adjacent

 def _iterate_items(self):
 return self.adjacent.items()
 items = iteritems = _iterate_items

 def __repr__(self):
 return '\n'.join(self.repr_node(N) for N in self)

[docs] def repr_node(self, obj, level=1, fmt='{0}({1})'):
 output = [fmt.format(obj, self.valency_of(obj))]
 if obj in self:
 for other in self[obj]:
 d = fmt.format(other, self.valency_of(other))
 output.append(' ' * level + d)
 output.extend(self.repr_node(other, level + 1).split('\n')[1:])
 return '\n'.join(output)

[docs]class GraphFormatter:
 """Format dependency graphs."""

 _attr = DOT.ATTR.strip()
 _node = DOT.NODE.strip()
 _edge = DOT.EDGE.strip()
 _head = DOT.HEAD.strip()
 _tail = DOT.TAIL.strip()
 _attrsep = DOT.ATTRSEP
 _dirs = dict(DOT.DIRS)

 scheme = {
 'shape': 'box',
 'arrowhead': 'vee',
 'style': 'filled',
 'fontname': 'HelveticaNeue',
 }
 edge_scheme = {
 'color': 'darkseagreen4',
 'arrowcolor': 'black',
 'arrowsize': 0.7,
 }
 node_scheme = {'fillcolor': 'palegreen3', 'color': 'palegreen4'}
 term_scheme = {'fillcolor': 'palegreen1', 'color': 'palegreen2'}
 graph_scheme = {'bgcolor': 'mintcream'}

 def __init__(self, root=None, type=None, id=None,
 indent=0, inw=' ' * 4, **scheme):
 self.id = id or 'dependencies'
 self.root = root
 self.type = type or 'digraph'
 self.direction = self._dirs[self.type]
 self.IN = inw * (indent or 0)
 self.INp = self.IN + inw
 self.scheme = dict(self.scheme, **scheme)
 self.graph_scheme = dict(self.graph_scheme, root=self.label(self.root))

[docs] def attr(self, name, value):
 value = f'"{value}"'
 return self.FMT(self._attr, name=name, value=value)

[docs] def attrs(self, d, scheme=None):
 d = dict(self.scheme, **dict(scheme, **d or {}) if scheme else d)
 return self._attrsep.join(
 safe_str(self.attr(k, v)) for k, v in d.items()
)

[docs] def head(self, **attrs):
 return self.FMT(
 self._head, id=self.id, type=self.type,
 attrs=self.attrs(attrs, self.graph_scheme),
)

[docs] def tail(self):
 return self.FMT(self._tail)

[docs] def label(self, obj):
 return obj

[docs] def node(self, obj, **attrs):
 return self.draw_node(obj, self.node_scheme, attrs)

[docs] def terminal_node(self, obj, **attrs):
 return self.draw_node(obj, self.term_scheme, attrs)

[docs] def edge(self, a, b, **attrs):
 return self.draw_edge(a, b, **attrs)

 def _enc(self, s):
 return s.encode('utf-8', 'ignore')

[docs] def FMT(self, fmt, *args, **kwargs):
 return self._enc(fmt.format(
 *args, **dict(kwargs, IN=self.IN, INp=self.INp)
))

[docs] def draw_edge(self, a, b, scheme=None, attrs=None):
 return self.FMT(
 self._edge, self.label(a), self.label(b),
 dir=self.direction, attrs=self.attrs(attrs, self.edge_scheme),
)

[docs] def draw_node(self, obj, scheme=None, attrs=None):
 return self.FMT(
 self._node, self.label(obj), attrs=self.attrs(attrs, scheme),
)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.utils.imports

"""Utilities related to importing modules and symbols by name."""
import importlib
import os
import sys
import warnings
from contextlib import contextmanager
from importlib import reload

from kombu.utils.imports import symbol_by_name

#: Billiard sets this when execv is enabled.
#: We use it to find out the name of the original ``__main__``
#: module, so that we can properly rewrite the name of the
#: task to be that of ``App.main``.
MP_MAIN_FILE = os.environ.get('MP_MAIN_FILE')

__all__ = (
 'NotAPackage', 'qualname', 'instantiate', 'symbol_by_name',
 'cwd_in_path', 'find_module', 'import_from_cwd',
 'reload_from_cwd', 'module_file', 'gen_task_name',
)

[docs]class NotAPackage(Exception):
 """Raised when importing a package, but it's not a package."""

if sys.version_info > (3, 3): # pragma: no cover
 def qualname(obj):
 """Return object name."""
 if not hasattr(obj, '__name__') and hasattr(obj, '__class__'):
 obj = obj.__class__
 q = getattr(obj, '__qualname__', None)
 if '.' not in q:
 q = '.'.join((obj.__module__, q))
 return q
else:
[docs] def qualname(obj): # noqa
 """Return object name."""
 if not hasattr(obj, '__name__') and hasattr(obj, '__class__'):
 obj = obj.__class__
 return '.'.join((obj.__module__, obj.__name__))

[docs]def instantiate(name, *args, **kwargs):
 """Instantiate class by name.

 See Also:
 :func:`symbol_by_name`.
 """
 return symbol_by_name(name)(*args, **kwargs)

[docs]@contextmanager
def cwd_in_path():
 """Context adding the current working directory to sys.path."""
 cwd = os.getcwd()
 if cwd in sys.path:
 yield
 else:
 sys.path.insert(0, cwd)
 try:
 yield cwd
 finally:
 try:
 sys.path.remove(cwd)
 except ValueError: # pragma: no cover
 pass

[docs]def find_module(module, path=None, imp=None):
 """Version of :func:`imp.find_module` supporting dots."""
 if imp is None:
 imp = importlib.import_module
 with cwd_in_path():
 try:
 return imp(module)
 except ImportError:
 # Raise a more specific error if the problem is that one of the
 # dot-separated segments of the module name is not a package.
 if '.' in module:
 parts = module.split('.')
 for i, part in enumerate(parts[:-1]):
 package = '.'.join(parts[:i + 1])
 try:
 mpart = imp(package)
 except ImportError:
 # Break out and re-raise the original ImportError
 # instead.
 break
 try:
 mpart.__path__
 except AttributeError:
 raise NotAPackage(package)
 raise

[docs]def import_from_cwd(module, imp=None, package=None):
 """Import module, temporarily including modules in the current directory.

 Modules located in the current directory has
 precedence over modules located in `sys.path`.
 """
 if imp is None:
 imp = importlib.import_module
 with cwd_in_path():
 return imp(module, package=package)

[docs]def reload_from_cwd(module, reloader=None):
 """Reload module (ensuring that CWD is in sys.path)."""
 if reloader is None:
 reloader = reload
 with cwd_in_path():
 return reloader(module)

[docs]def module_file(module):
 """Return the correct original file name of a module."""
 name = module.__file__
 return name[:-1] if name.endswith('.pyc') else name

[docs]def gen_task_name(app, name, module_name):
 """Generate task name from name/module pair."""
 module_name = module_name or '__main__'
 try:
 module = sys.modules[module_name]
 except KeyError:
 # Fix for manage.py shell_plus (Issue #366)
 module = None

 if module is not None:
 module_name = module.__name__
 # - If the task module is used as the __main__ script
 # - we need to rewrite the module part of the task name
 # - to match App.main.
 if MP_MAIN_FILE and module.__file__ == MP_MAIN_FILE:
 # - see comment about :envvar:`MP_MAIN_FILE` above.
 module_name = '__main__'
 if module_name == '__main__' and app.main:
 return '.'.join([app.main, name])
 return '.'.join(p for p in (module_name, name) if p)

def load_extension_class_names(namespace):
 try:
 from pkg_resources import iter_entry_points
 except ImportError: # pragma: no cover
 return

 for ep in iter_entry_points(namespace):
 yield ep.name, ':'.join([ep.module_name, ep.attrs[0]])

def load_extension_classes(namespace):
 for name, class_name in load_extension_class_names(namespace):
 try:
 cls = symbol_by_name(class_name)
 except (ImportError, SyntaxError) as exc:
 warnings.warn(
 f'Cannot load {namespace} extension {class_name!r}: {exc!r}')
 else:
 yield name, cls

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.utils.iso8601

"""Parse ISO8601 dates.

Originally taken from :pypi:`pyiso8601`
(https://bitbucket.org/micktwomey/pyiso8601)

Modified to match the behavior of ``dateutil.parser``:

 - raise :exc:`ValueError` instead of ``ParseError``
 - return naive :class:`~datetime.datetime` by default
 - uses :class:`pytz.FixedOffset`

This is the original License:

Copyright (c) 2007 Michael Twomey

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sub-license, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
import re
from datetime import datetime

from pytz import FixedOffset

__all__ = ('parse_iso8601',)

Adapted from http://delete.me.uk/2005/03/iso8601.html
ISO8601_REGEX = re.compile(
 r'(?P<year>[0-9]{4})(-(?P<month>[0-9]{1,2})(-(?P<day>[0-9]{1,2})'
 r'((?P<separator>.)(?P<hour>[0-9]{2}):(?P<minute>[0-9]{2})'
 r'(:(?P<second>[0-9]{2})(\.(?P<fraction>[0-9]+))?)?'
 r'(?P<timezone>Z|(([-+])([0-9]{2}):([0-9]{2})))?)?)?)?'
)
TIMEZONE_REGEX = re.compile(
 r'(?P<prefix>[+-])(?P<hours>[0-9]{2}).(?P<minutes>[0-9]{2})'
)

[docs]def parse_iso8601(datestring):
 """Parse and convert ISO-8601 string to datetime."""
 m = ISO8601_REGEX.match(datestring)
 if not m:
 raise ValueError('unable to parse date string %r' % datestring)
 groups = m.groupdict()
 tz = groups['timezone']
 if tz == 'Z':
 tz = FixedOffset(0)
 elif tz:
 m = TIMEZONE_REGEX.match(tz)
 prefix, hours, minutes = m.groups()
 hours, minutes = int(hours), int(minutes)
 if prefix == '-':
 hours = -hours
 minutes = -minutes
 tz = FixedOffset(minutes + hours * 60)
 return datetime(
 int(groups['year']), int(groups['month']),
 int(groups['day']), int(groups['hour'] or 0),
 int(groups['minute'] or 0), int(groups['second'] or 0),
 int(groups['fraction'] or 0), tz
)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.utils.log

"""Logging utilities."""
import logging
import numbers
import os
import sys
import threading
import traceback
from contextlib import contextmanager

from kombu.log import LOG_LEVELS
from kombu.log import get_logger as _get_logger
from kombu.utils.encoding import safe_str

from .term import colored

__all__ = (
 'ColorFormatter', 'LoggingProxy', 'base_logger',
 'set_in_sighandler', 'in_sighandler', 'get_logger',
 'get_task_logger', 'mlevel',
 'get_multiprocessing_logger', 'reset_multiprocessing_logger', 'LOG_LEVELS'
)

_process_aware = False
_in_sighandler = False

MP_LOG = os.environ.get('MP_LOG', False)

RESERVED_LOGGER_NAMES = {'celery', 'celery.task'}

Sets up our logging hierarchy.
#
Every logger in the celery package inherits from the "celery"
logger, and every task logger inherits from the "celery.task"
logger.
base_logger = logger = _get_logger('celery')

[docs]def set_in_sighandler(value):
 """Set flag signifiying that we're inside a signal handler."""
 global _in_sighandler
 _in_sighandler = value

def iter_open_logger_fds():
 seen = set()
 loggers = (list(logging.Logger.manager.loggerDict.values()) +
 [logging.getLogger(None)])
 for l in loggers:
 try:
 for handler in l.handlers:
 try:
 if handler not in seen: # pragma: no cover
 yield handler.stream
 seen.add(handler)
 except AttributeError:
 pass
 except AttributeError: # PlaceHolder does not have handlers
 pass

[docs]@contextmanager
def in_sighandler():
 """Context that records that we are in a signal handler."""
 set_in_sighandler(True)
 try:
 yield
 finally:
 set_in_sighandler(False)

def logger_isa(l, p, max=1000):
 this, seen = l, set()
 for _ in range(max):
 if this == p:
 return True
 else:
 if this in seen:
 raise RuntimeError(
 f'Logger {l.name!r} parents recursive',
)
 seen.add(this)
 this = this.parent
 if not this:
 break
 else: # pragma: no cover
 raise RuntimeError(f'Logger hierarchy exceeds {max}')
 return False

def _using_logger_parent(parent_logger, logger_):
 if not logger_isa(logger_, parent_logger):
 logger_.parent = parent_logger
 return logger_

[docs]def get_logger(name):
 """Get logger by name."""
 l = _get_logger(name)
 if logging.root not in (l, l.parent) and l is not base_logger:
 l = _using_logger_parent(base_logger, l)
 return l

task_logger = get_logger('celery.task')
worker_logger = get_logger('celery.worker')

[docs]def get_task_logger(name):
 """Get logger for task module by name."""
 if name in RESERVED_LOGGER_NAMES:
 raise RuntimeError(f'Logger name {name!r} is reserved!')
 return _using_logger_parent(task_logger, get_logger(name))

[docs]def mlevel(level):
 """Convert level name/int to log level."""
 if level and not isinstance(level, numbers.Integral):
 return LOG_LEVELS[level.upper()]
 return level

[docs]class ColorFormatter(logging.Formatter):
 """Logging formatter that adds colors based on severity."""

 #: Loglevel -> Color mapping.
 COLORS = colored().names
 colors = {
 'DEBUG': COLORS['blue'],
 'WARNING': COLORS['yellow'],
 'ERROR': COLORS['red'],
 'CRITICAL': COLORS['magenta'],
 }

 def __init__(self, fmt=None, use_color=True):
 logging.Formatter.__init__(self, fmt)
 self.use_color = use_color

[docs] def formatException(self, ei):
 if ei and not isinstance(ei, tuple):
 ei = sys.exc_info()
 r = logging.Formatter.formatException(self, ei)
 return r

[docs] def format(self, record):
 msg = logging.Formatter.format(self, record)
 color = self.colors.get(record.levelname)

 # reset exception info later for other handlers...
 einfo = sys.exc_info() if record.exc_info == 1 else record.exc_info

 if color and self.use_color:
 try:
 # safe_str will repr the color object
 # and color will break on non-string objects
 # so need to reorder calls based on type.
 # Issue #427
 try:
 if isinstance(msg, str):
 return str(color(safe_str(msg)))
 return safe_str(color(msg))
 except UnicodeDecodeError: # pragma: no cover
 return safe_str(msg) # skip colors
 except Exception as exc: # pylint: disable=broad-except
 prev_msg, record.exc_info, record.msg = (
 record.msg, 1, '<Unrepresentable {!r}: {!r}>'.format(
 type(msg), exc
),
)
 try:
 return logging.Formatter.format(self, record)
 finally:
 record.msg, record.exc_info = prev_msg, einfo
 else:
 return safe_str(msg)

[docs]class LoggingProxy:
 """Forward file object to :class:`logging.Logger` instance.

 Arguments:
 logger (~logging.Logger): Logger instance to forward to.
 loglevel (int, str): Log level to use when logging messages.
 """

 mode = 'w'
 name = None
 closed = False
 loglevel = logging.ERROR
 _thread = threading.local()

 def __init__(self, logger, loglevel=None):
 # pylint: disable=redefined-outer-name
 # Note that the logger global is redefined here, be careful changing.
 self.logger = logger
 self.loglevel = mlevel(loglevel or self.logger.level or self.loglevel)
 self._safewrap_handlers()

 def _safewrap_handlers(self):
 # Make the logger handlers dump internal errors to
 # :data:`sys.__stderr__` instead of :data:`sys.stderr` to circumvent
 # infinite loops.

 def wrap_handler(handler): # pragma: no cover

 class WithSafeHandleError(logging.Handler):

 def handleError(self, record):
 try:
 traceback.print_exc(None, sys.__stderr__)
 except OSError:
 pass # see python issue 5971

 handler.handleError = WithSafeHandleError().handleError
 return [wrap_handler(h) for h in self.logger.handlers]

[docs] def write(self, data):
 """Write message to logging object."""
 if _in_sighandler:
 return print(safe_str(data), file=sys.__stderr__)
 if getattr(self._thread, 'recurse_protection', False):
 # Logger is logging back to this file, so stop recursing.
 return
 data = data.strip()
 if data and not self.closed:
 self._thread.recurse_protection = True
 try:
 self.logger.log(self.loglevel, safe_str(data))
 finally:
 self._thread.recurse_protection = False

[docs] def writelines(self, sequence):
 # type: (Sequence[str]) -> None
 """Write list of strings to file.

 The sequence can be any iterable object producing strings.
 This is equivalent to calling :meth:`write` for each string.
 """
 for part in sequence:
 self.write(part)

[docs] def flush(self):
 # This object is not buffered so any :meth:`flush`
 # requests are ignored.
 pass

[docs] def close(self):
 # when the object is closed, no write requests are
 # forwarded to the logging object anymore.
 self.closed = True

[docs] def isatty(self):
 """Here for file support."""
 return False

[docs]def get_multiprocessing_logger():
 """Return the multiprocessing logger."""
 try:
 from billiard import util
 except ImportError: # pragma: no cover
 pass
 else:
 return util.get_logger()

[docs]def reset_multiprocessing_logger():
 """Reset multiprocessing logging setup."""
 try:
 from billiard import util
 except ImportError: # pragma: no cover
 pass
 else:
 if hasattr(util, '_logger'): # pragma: no cover
 util._logger = None

def current_process():
 try:
 from billiard import process
 except ImportError: # pragma: no cover
 pass
 else:
 return process.current_process()

def current_process_index(base=1):
 index = getattr(current_process(), 'index', None)
 return index + base if index is not None else index

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.utils.nodenames

"""Worker name utilities."""
import os
import socket
from functools import partial

from kombu.entity import Exchange, Queue

from .functional import memoize
from .text import simple_format

#: Exchange for worker direct queues.
WORKER_DIRECT_EXCHANGE = Exchange('C.dq2')

#: Format for worker direct queue names.
WORKER_DIRECT_QUEUE_FORMAT = '{hostname}.dq2'

#: Separator for worker node name and hostname.
NODENAME_SEP = '@'

NODENAME_DEFAULT = 'celery'

gethostname = memoize(1, Cache=dict)(socket.gethostname)

__all__ = (
 'worker_direct', 'gethostname', 'nodename',
 'anon_nodename', 'nodesplit', 'default_nodename',
 'node_format', 'host_format',
)

[docs]def worker_direct(hostname):
 """Return the :class:`kombu.Queue` being a direct route to a worker.

 Arguments:
 hostname (str, ~kombu.Queue): The fully qualified node name of
 a worker (e.g., ``w1@example.com``). If passed a
 :class:`kombu.Queue` instance it will simply return
 that instead.
 """
 if isinstance(hostname, Queue):
 return hostname
 return Queue(
 WORKER_DIRECT_QUEUE_FORMAT.format(hostname=hostname),
 WORKER_DIRECT_EXCHANGE,
 hostname,
)

[docs]def nodename(name, hostname):
 """Create node name from name/hostname pair."""
 return NODENAME_SEP.join((name, hostname))

[docs]def anon_nodename(hostname=None, prefix='gen'):
 """Return the nodename for this process (not a worker).

 This is used for e.g. the origin task message field.
 """
 return nodename(''.join([prefix, str(os.getpid())]),
 hostname or gethostname())

[docs]def nodesplit(name):
 """Split node name into tuple of name/hostname."""
 parts = name.split(NODENAME_SEP, 1)
 if len(parts) == 1:
 return None, parts[0]
 return parts

[docs]def default_nodename(hostname):
 """Return the default nodename for this process."""
 name, host = nodesplit(hostname or '')
 return nodename(name or NODENAME_DEFAULT, host or gethostname())

[docs]def node_format(s, name, **extra):
 """Format worker node name (name@host.com)."""
 shortname, host = nodesplit(name)
 return host_format(
 s, host, shortname or NODENAME_DEFAULT, p=name, **extra)

def _fmt_process_index(prefix='', default='0'):
 from .log import current_process_index
 index = current_process_index()
 return f'{prefix}{index}' if index else default

_fmt_process_index_with_prefix = partial(_fmt_process_index, '-', '')

[docs]def host_format(s, host=None, name=None, **extra):
 """Format host %x abbreviations."""
 host = host or gethostname()
 hname, _, domain = host.partition('.')
 name = name or hname
 keys = dict({
 'h': host, 'n': name, 'd': domain,
 'i': _fmt_process_index, 'I': _fmt_process_index_with_prefix,
 }, **extra)
 return simple_format(s, keys)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.utils.objects

"""Object related utilities, including introspection, etc."""
from functools import reduce

__all__ = ('Bunch', 'FallbackContext', 'getitem_property', 'mro_lookup')

[docs]class Bunch:
 """Object that enables you to modify attributes."""

 def __init__(self, **kwargs):
 self.__dict__.update(kwargs)

[docs]def mro_lookup(cls, attr, stop=None, monkey_patched=None):
 """Return the first node by MRO order that defines an attribute.

 Arguments:
 cls (Any): Child class to traverse.
 attr (str): Name of attribute to find.
 stop (Set[Any]): A set of types that if reached will stop
 the search.
 monkey_patched (Sequence): Use one of the stop classes
 if the attributes module origin isn't in this list.
 Used to detect monkey patched attributes.

 Returns:
 Any: The attribute value, or :const:`None` if not found.
 """
 stop = set() if not stop else stop
 monkey_patched = [] if not monkey_patched else monkey_patched
 for node in cls.mro():
 if node in stop:
 try:
 value = node.__dict__[attr]
 module_origin = value.__module__
 except (AttributeError, KeyError):
 pass
 else:
 if module_origin not in monkey_patched:
 return node
 return
 if attr in node.__dict__:
 return node

[docs]class FallbackContext:
 """Context workaround.

 The built-in ``@contextmanager`` utility does not work well
 when wrapping other contexts, as the traceback is wrong when
 the wrapped context raises.

 This solves this problem and can be used instead of ``@contextmanager``
 in this example::

 @contextmanager
 def connection_or_default_connection(connection=None):
 if connection:
 # user already has a connection, shouldn't close
 # after use
 yield connection
 else:
 # must've new connection, and also close the connection
 # after the block returns
 with create_new_connection() as connection:
 yield connection

 This wrapper can be used instead for the above like this::

 def connection_or_default_connection(connection=None):
 return FallbackContext(connection, create_new_connection)
 """

 def __init__(self, provided, fallback, *fb_args, **fb_kwargs):
 self.provided = provided
 self.fallback = fallback
 self.fb_args = fb_args
 self.fb_kwargs = fb_kwargs
 self._context = None

 def __enter__(self):
 if self.provided is not None:
 return self.provided
 context = self._context = self.fallback(
 *self.fb_args, **self.fb_kwargs
).__enter__()
 return context

 def __exit__(self, *exc_info):
 if self._context is not None:
 return self._context.__exit__(*exc_info)

[docs]class getitem_property:
 """Attribute -> dict key descriptor.

 The target object must support ``__getitem__``,
 and optionally ``__setitem__``.

 Example:
 >>> from collections import defaultdict

 >>> class Me(dict):
 ... deep = defaultdict(dict)
 ...
 ... foo = _getitem_property('foo')
 ... deep_thing = _getitem_property('deep.thing')

 >>> me = Me()
 >>> me.foo
 None

 >>> me.foo = 10
 >>> me.foo
 10
 >>> me['foo']
 10

 >>> me.deep_thing = 42
 >>> me.deep_thing
 42
 >>> me.deep
 defaultdict(<type 'dict'>, {'thing': 42})
 """

 def __init__(self, keypath, doc=None):
 path, _, self.key = keypath.rpartition('.')
 self.path = path.split('.') if path else None
 self.__doc__ = doc

 def _path(self, obj):
 return (reduce(lambda d, k: d[k], [obj] + self.path) if self.path
 else obj)

 def __get__(self, obj, type=None):
 if obj is None:
 return type
 return self._path(obj).get(self.key)

 def __set__(self, obj, value):
 self._path(obj)[self.key] = value

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.utils.saferepr

"""Streaming, truncating, non-recursive version of :func:`repr`.

Differences from regular :func:`repr`:

- Sets are represented the Python 3 way: ``{1, 2}`` vs ``set([1, 2])``.
- Unicode strings does not have the ``u'`` prefix, even on Python 2.
- Empty set formatted as ``set()`` (Python 3), not ``set([])`` (Python 2).
- Longs don't have the ``L`` suffix.

Very slow with no limits, super quick with limits.
"""
import traceback
from collections import deque, namedtuple
from decimal import Decimal
from itertools import chain
from numbers import Number
from pprint import _recursion

from .text import truncate

__all__ = ('saferepr', 'reprstream')

#: Node representing literal text.
#: - .value: is the literal text value
#: - .truncate: specifies if this text can be truncated, for things like
#: LIT_DICT_END this will be False, as we always display
#: the ending brackets, e.g: [[[1, 2, 3, ...,], ...,]]
#: - .direction: If +1 the current level is increment by one,
#: if -1 the current level is decremented by one, and
#: if 0 the current level is unchanged.
_literal = namedtuple('_literal', ('value', 'truncate', 'direction'))

#: Node representing a dictionary key.
_key = namedtuple('_key', ('value',))

#: Node representing quoted text, e.g. a string value.
_quoted = namedtuple('_quoted', ('value',))

#: Recursion protection.
_dirty = namedtuple('_dirty', ('objid',))

#: Types that are repsented as chars.
chars_t = (bytes, str)

#: Types that are regarded as safe to call repr on.
safe_t = (Number,)

#: Set types.
set_t = (frozenset, set)

LIT_DICT_START = _literal('{', False, +1)
LIT_DICT_KVSEP = _literal(': ', True, 0)
LIT_DICT_END = _literal('}', False, -1)
LIT_LIST_START = _literal('[', False, +1)
LIT_LIST_END = _literal(']', False, -1)
LIT_LIST_SEP = _literal(', ', True, 0)
LIT_SET_START = _literal('{', False, +1)
LIT_SET_END = _literal('}', False, -1)
LIT_TUPLE_START = _literal('(', False, +1)
LIT_TUPLE_END = _literal(')', False, -1)
LIT_TUPLE_END_SV = _literal(',)', False, -1)

[docs]def saferepr(o, maxlen=None, maxlevels=3, seen=None):
 # type: (Any, int, int, Set) -> str
 """Safe version of :func:`repr`.

 Warning:
 Make sure you set the maxlen argument, or it will be very slow
 for recursive objects. With the maxlen set, it's often faster
 than built-in repr.
 """
 return ''.join(_saferepr(
 o, maxlen=maxlen, maxlevels=maxlevels, seen=seen
))

def _chaindict(mapping,
 LIT_DICT_KVSEP=LIT_DICT_KVSEP,
 LIT_LIST_SEP=LIT_LIST_SEP):
 # type: (Dict, _literal, _literal) -> Iterator[Any]
 size = len(mapping)
 for i, (k, v) in enumerate(mapping.items()):
 yield _key(k)
 yield LIT_DICT_KVSEP
 yield v
 if i < (size - 1):
 yield LIT_LIST_SEP

def _chainlist(it, LIT_LIST_SEP=LIT_LIST_SEP):
 # type: (List) -> Iterator[Any]
 size = len(it)
 for i, v in enumerate(it):
 yield v
 if i < (size - 1):
 yield LIT_LIST_SEP

def _repr_empty_set(s):
 # type: (Set) -> str
 return '{}()'.format(type(s).__name__)

def _safetext(val):
 # type: (AnyStr) -> str
 if isinstance(val, bytes):
 try:
 val.encode('utf-8')
 except UnicodeDecodeError:
 # is bytes with unrepresentable characters, attempt
 # to convert back to unicode
 return val.decode('utf-8', errors='backslashreplace')
 return val

def _format_binary_bytes(val, maxlen, ellipsis='...'):
 # type: (bytes, int, str) -> str
 if maxlen and len(val) > maxlen:
 # we don't want to copy all the data, just take what we need.
 chunk = memoryview(val)[:maxlen].tobytes()
 return _bytes_prefix(f"'{_repr_binary_bytes(chunk)}{ellipsis}'")
 return _bytes_prefix(f"'{_repr_binary_bytes(val)}'")

def _bytes_prefix(s):
 return 'b' + s

def _repr_binary_bytes(val):
 # type: (bytes) -> str
 try:
 return val.decode('utf-8')
 except UnicodeDecodeError:
 # possibly not unicode, but binary data so format as hex.
 try:
 ashex = val.hex
 except AttributeError: # pragma: no cover
 # Python 3.4
 return val.decode('utf-8', errors='replace')
 else:
 # Python 3.5+
 return ashex()

def _format_chars(val, maxlen):
 # type: (AnyStr, int) -> str
 if isinstance(val, bytes): # pragma: no cover
 return _format_binary_bytes(val, maxlen)
 else:
 return "'{}'".format(truncate(val, maxlen).replace("'", "\\'"))

def _repr(obj):
 # type: (Any) -> str
 try:
 return repr(obj)
 except Exception as exc:
 stack = '\n'.join(traceback.format_stack())
 return f'<Unrepresentable {type(obj)!r}{id(obj):#x}: {exc!r} {stack!r}>'

def _saferepr(o, maxlen=None, maxlevels=3, seen=None):
 # type: (Any, int, int, Set) -> str
 stack = deque([iter([o])])
 for token, it in reprstream(stack, seen=seen, maxlevels=maxlevels):
 if maxlen is not None and maxlen <= 0:
 yield ', ...'
 # move rest back to stack, so that we can include
 # dangling parens.
 stack.append(it)
 break
 if isinstance(token, _literal):
 val = token.value
 elif isinstance(token, _key):
 val = saferepr(token.value, maxlen, maxlevels)
 elif isinstance(token, _quoted):
 val = _format_chars(token.value, maxlen)
 else:
 val = _safetext(truncate(token, maxlen))
 yield val
 if maxlen is not None:
 maxlen -= len(val)
 for rest1 in stack:
 # maxlen exceeded, process any dangling parens.
 for rest2 in rest1:
 if isinstance(rest2, _literal) and not rest2.truncate:
 yield rest2.value

def _reprseq(val, lit_start, lit_end, builtin_type, chainer):
 # type: (Sequence, _literal, _literal, Any, Any) -> Tuple[Any, ...]
 if type(val) is builtin_type: # noqa
 return lit_start, lit_end, chainer(val)
 return (
 _literal(f'{type(val).__name__}({lit_start.value}', False, +1),
 _literal(f'{lit_end.value})', False, -1),
 chainer(val)
)

[docs]def reprstream(stack, seen=None, maxlevels=3, level=0, isinstance=isinstance):
 """Streaming repr, yielding tokens."""
 # type: (deque, Set, int, int, Callable) -> Iterator[Any]
 seen = seen or set()
 append = stack.append
 popleft = stack.popleft
 is_in_seen = seen.__contains__
 discard_from_seen = seen.discard
 add_to_seen = seen.add

 while stack:
 lit_start = lit_end = None
 it = popleft()
 for val in it:
 orig = val
 if isinstance(val, _dirty):
 discard_from_seen(val.objid)
 continue
 elif isinstance(val, _literal):
 level += val.direction
 yield val, it
 elif isinstance(val, _key):
 yield val, it
 elif isinstance(val, Decimal):
 yield _repr(val), it
 elif isinstance(val, safe_t):
 yield str(val), it
 elif isinstance(val, chars_t):
 yield _quoted(val), it
 elif isinstance(val, range): # pragma: no cover
 yield _repr(val), it
 else:
 if isinstance(val, set_t):
 if not val:
 yield _repr_empty_set(val), it
 continue
 lit_start, lit_end, val = _reprseq(
 val, LIT_SET_START, LIT_SET_END, set, _chainlist,
)
 elif isinstance(val, tuple):
 lit_start, lit_end, val = (
 LIT_TUPLE_START,
 LIT_TUPLE_END_SV if len(val) == 1 else LIT_TUPLE_END,
 _chainlist(val))
 elif isinstance(val, dict):
 lit_start, lit_end, val = (
 LIT_DICT_START, LIT_DICT_END, _chaindict(val))
 elif isinstance(val, list):
 lit_start, lit_end, val = (
 LIT_LIST_START, LIT_LIST_END, _chainlist(val))
 else:
 # other type of object
 yield _repr(val), it
 continue

 if maxlevels and level >= maxlevels:
 yield f'{lit_start.value}...{lit_end.value}', it
 continue

 objid = id(orig)
 if is_in_seen(objid):
 yield _recursion(orig), it
 continue
 add_to_seen(objid)

 # Recurse into the new list/tuple/dict/etc by tacking
 # the rest of our iterable onto the new it: this way
 # it works similar to a linked list.
 append(chain([lit_start], val, [_dirty(objid), lit_end], it))
 break

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.utils.serialization

"""Utilities for safely pickling exceptions."""
import datetime
import numbers
import sys
from base64 import b64decode as base64decode
from base64 import b64encode as base64encode
from functools import partial
from inspect import getmro
from itertools import takewhile

from kombu.utils.encoding import bytes_to_str, safe_repr, str_to_bytes

try:
 import cPickle as pickle
except ImportError:
 import pickle # noqa

__all__ = (
 'UnpickleableExceptionWrapper', 'subclass_exception',
 'find_pickleable_exception', 'create_exception_cls',
 'get_pickleable_exception', 'get_pickleable_etype',
 'get_pickled_exception', 'strtobool',
)

#: List of base classes we probably don't want to reduce to.
unwanted_base_classes = (Exception, BaseException, object)

STRTOBOOL_DEFAULT_TABLE = {'false': False, 'no': False, '0': False,
 'true': True, 'yes': True, '1': True,
 'on': True, 'off': False}

[docs]def subclass_exception(name, parent, module): # noqa
 """Create new exception class."""
 return type(name, (parent,), {'__module__': module})

[docs]def find_pickleable_exception(exc, loads=pickle.loads,
 dumps=pickle.dumps):
 """Find first pickleable exception base class.

 With an exception instance, iterate over its super classes (by MRO)
 and find the first super exception that's pickleable. It does
 not go below :exc:`Exception` (i.e., it skips :exc:`Exception`,
 :class:`BaseException` and :class:`object`). If that happens
 you should use :exc:`UnpickleableException` instead.

 Arguments:
 exc (BaseException): An exception instance.
 loads: decoder to use.
 dumps: encoder to use

 Returns:
 Exception: Nearest pickleable parent exception class
 (except :exc:`Exception` and parents), or if the exception is
 pickleable it will return :const:`None`.
 """
 exc_args = getattr(exc, 'args', [])
 for supercls in itermro(exc.__class__, unwanted_base_classes):
 try:
 superexc = supercls(*exc_args)
 loads(dumps(superexc))
 except Exception: # pylint: disable=broad-except
 pass
 else:
 return superexc

def itermro(cls, stop):
 return takewhile(lambda sup: sup not in stop, getmro(cls))

[docs]def create_exception_cls(name, module, parent=None):
 """Dynamically create an exception class."""
 if not parent:
 parent = Exception
 return subclass_exception(name, parent, module)

def ensure_serializable(items, encoder):
 """Ensure items will serialize.

 For a given list of arbitrary objects, return the object
 or a string representation, safe for serialization.

 Arguments:
 items (Iterable[Any]): Objects to serialize.
 encoder (Callable): Callable function to serialize with.
 """
 safe_exc_args = []
 for arg in items:
 try:
 encoder(arg)
 safe_exc_args.append(arg)
 except Exception: # pylint: disable=broad-except
 safe_exc_args.append(safe_repr(arg))
 return tuple(safe_exc_args)

[docs]class UnpickleableExceptionWrapper(Exception):
 """Wraps unpickleable exceptions.

 Arguments:
 exc_module (str): See :attr:`exc_module`.
 exc_cls_name (str): See :attr:`exc_cls_name`.
 exc_args (Tuple[Any, ...]): See :attr:`exc_args`.

 Example:
 >>> def pickle_it(raising_function):
 ... try:
 ... raising_function()
 ... except Exception as e:
 ... exc = UnpickleableExceptionWrapper(
 ... e.__class__.__module__,
 ... e.__class__.__name__,
 ... e.args,
 ...)
 ... pickle.dumps(exc) # Works fine.
 """

 #: The module of the original exception.
 exc_module = None

 #: The name of the original exception class.
 exc_cls_name = None

 #: The arguments for the original exception.
 exc_args = None

 def __init__(self, exc_module, exc_cls_name, exc_args, text=None):
 safe_exc_args = ensure_serializable(exc_args, pickle.dumps)
 self.exc_module = exc_module
 self.exc_cls_name = exc_cls_name
 self.exc_args = safe_exc_args
 self.text = text
 Exception.__init__(self, exc_module, exc_cls_name, safe_exc_args,
 text)

[docs] def restore(self):
 return create_exception_cls(self.exc_cls_name,
 self.exc_module)(*self.exc_args)

 def __str__(self):
 return self.text

[docs] @classmethod
 def from_exception(cls, exc):
 return cls(exc.__class__.__module__,
 exc.__class__.__name__,
 getattr(exc, 'args', []),
 safe_repr(exc))

[docs]def get_pickleable_exception(exc):
 """Make sure exception is pickleable."""
 try:
 pickle.loads(pickle.dumps(exc))
 except Exception: # pylint: disable=broad-except
 pass
 else:
 return exc
 nearest = find_pickleable_exception(exc)
 if nearest:
 return nearest
 return UnpickleableExceptionWrapper.from_exception(exc)

[docs]def get_pickleable_etype(cls, loads=pickle.loads, dumps=pickle.dumps):
 """Get pickleable exception type."""
 try:
 loads(dumps(cls))
 except Exception: # pylint: disable=broad-except
 return Exception
 else:
 return cls

[docs]def get_pickled_exception(exc):
 """Reverse of :meth:`get_pickleable_exception`."""
 if isinstance(exc, UnpickleableExceptionWrapper):
 return exc.restore()
 return exc

def b64encode(s):
 return bytes_to_str(base64encode(str_to_bytes(s)))

def b64decode(s):
 return base64decode(str_to_bytes(s))

[docs]def strtobool(term, table=None):
 """Convert common terms for true/false to bool.

 Examples (true/false/yes/no/on/off/1/0).
 """
 if table is None:
 table = STRTOBOOL_DEFAULT_TABLE
 if isinstance(term, str):
 try:
 return table[term.lower()]
 except KeyError:
 raise TypeError(f'Cannot coerce {term!r} to type bool')
 return term

def _datetime_to_json(dt):
 # See "Date Time String Format" in the ECMA-262 specification.
 if isinstance(dt, datetime.datetime):
 r = dt.isoformat()
 if dt.microsecond:
 r = r[:23] + r[26:]
 if r.endswith('+00:00'):
 r = r[:-6] + 'Z'
 return r
 elif isinstance(dt, datetime.time):
 r = dt.isoformat()
 if dt.microsecond:
 r = r[:12]
 return r
 else:
 return dt.isoformat()

def jsonify(obj,
 builtin_types=(numbers.Real, str), key=None,
 keyfilter=None,
 unknown_type_filter=None):
 """Transform object making it suitable for json serialization."""
 from kombu.abstract import Object as KombuDictType
 _jsonify = partial(jsonify, builtin_types=builtin_types, key=key,
 keyfilter=keyfilter,
 unknown_type_filter=unknown_type_filter)

 if isinstance(obj, KombuDictType):
 obj = obj.as_dict(recurse=True)

 if obj is None or isinstance(obj, builtin_types):
 return obj
 elif isinstance(obj, (tuple, list)):
 return [_jsonify(v) for v in obj]
 elif isinstance(obj, dict):
 return {
 k: _jsonify(v, key=k) for k, v in obj.items()
 if (keyfilter(k) if keyfilter else 1)
 }
 elif isinstance(obj, (datetime.date, datetime.time)):
 return _datetime_to_json(obj)
 elif isinstance(obj, datetime.timedelta):
 return str(obj)
 else:
 if unknown_type_filter is None:
 raise ValueError(
 f'Unsupported type: {type(obj)!r} {obj!r} (parent: {key})'
)
 return unknown_type_filter(obj)

def raise_with_context(exc):
 exc_info = sys.exc_info()
 if not exc_info:
 raise exc
 elif exc_info[1] is exc:
 raise
 raise exc from exc_info[1]

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.utils.sysinfo

"""System information utilities."""
import os
from math import ceil

from kombu.utils.objects import cached_property

__all__ = ('load_average', 'df')

if hasattr(os, 'getloadavg'):

 def _load_average():
 return tuple(ceil(l * 1e2) / 1e2 for l in os.getloadavg())

else: # pragma: no cover
 # Windows doesn't have getloadavg
 def _load_average(): # noqa
 return (0.0, 0.0, 0.0)

[docs]def load_average():
 """Return system load average as a triple."""
 return _load_average()

[docs]class df:
 """Disk information."""

 def __init__(self, path):
 self.path = path

 @property
 def total_blocks(self):
 return self.stat.f_blocks * self.stat.f_frsize / 1024

 @property
 def available(self):
 return self.stat.f_bavail * self.stat.f_frsize / 1024

 @property
 def capacity(self):
 avail = self.stat.f_bavail
 used = self.stat.f_blocks - self.stat.f_bfree
 return int(ceil(used * 100.0 / (used + avail) + 0.5))

[docs] @cached_property
 def stat(self):
 return os.statvfs(os.path.abspath(self.path))

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.utils.term

"""Terminals and colors."""
import base64
import codecs
import os
import platform
import sys
from functools import reduce

from celery.platforms import isatty

__all__ = ('colored',)

BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, WHITE = range(8)
OP_SEQ = '\033[%dm'
RESET_SEQ = '\033[0m'
COLOR_SEQ = '\033[1;%dm'

IS_WINDOWS = platform.system() == 'Windows'

ITERM_PROFILE = os.environ.get('ITERM_PROFILE')
TERM = os.environ.get('TERM')
TERM_IS_SCREEN = TERM and TERM.startswith('screen')

tmux requires unrecognized OSC sequences to be wrapped with DCS tmux;
<sequence> ST, and for all ESCs in <sequence> to be replaced with ESC ESC.
It only accepts ESC backslash for ST.
_IMG_PRE = '\033Ptmux;\033\033]' if TERM_IS_SCREEN else '\033]'
_IMG_POST = '\a\033\\' if TERM_IS_SCREEN else '\a'

def fg(s):
 return COLOR_SEQ % s

[docs]class colored:
 """Terminal colored text.

 Example:
 >>> c = colored(enabled=True)
 >>> print(str(c.red('the quick '), c.blue('brown ', c.bold('fox ')),
 ... c.magenta(c.underline('jumps over')),
 ... c.yellow(' the lazy '),
 ... c.green('dog ')))
 """

 def __init__(self, *s, **kwargs):
 self.s = s
 self.enabled = not IS_WINDOWS and kwargs.get('enabled', True)
 self.op = kwargs.get('op', '')
 self.names = {
 'black': self.black,
 'red': self.red,
 'green': self.green,
 'yellow': self.yellow,
 'blue': self.blue,
 'magenta': self.magenta,
 'cyan': self.cyan,
 'white': self.white,
 }

 def _add(self, a, b):
 return str(a) + str(b)

 def _fold_no_color(self, a, b):
 try:
 A = a.no_color()
 except AttributeError:
 A = str(a)
 try:
 B = b.no_color()
 except AttributeError:
 B = str(b)

 return ''.join((str(A), str(B)))

[docs] def no_color(self):
 if self.s:
 return str(reduce(self._fold_no_color, self.s))
 return ''

[docs] def embed(self):
 prefix = ''
 if self.enabled:
 prefix = self.op
 return ''.join((str(prefix), str(reduce(self._add, self.s))))

 def __str__(self):
 suffix = ''
 if self.enabled:
 suffix = RESET_SEQ
 return str(''.join((self.embed(), str(suffix))))

[docs] def node(self, s, op):
 return self.__class__(enabled=self.enabled, op=op, *s)

[docs] def black(self, *s):
 return self.node(s, fg(30 + BLACK))

[docs] def red(self, *s):
 return self.node(s, fg(30 + RED))

[docs] def green(self, *s):
 return self.node(s, fg(30 + GREEN))

[docs] def yellow(self, *s):
 return self.node(s, fg(30 + YELLOW))

[docs] def blue(self, *s):
 return self.node(s, fg(30 + BLUE))

[docs] def magenta(self, *s):
 return self.node(s, fg(30 + MAGENTA))

[docs] def cyan(self, *s):
 return self.node(s, fg(30 + CYAN))

[docs] def white(self, *s):
 return self.node(s, fg(30 + WHITE))

 def __repr__(self):
 return repr(self.no_color())

[docs] def bold(self, *s):
 return self.node(s, OP_SEQ % 1)

[docs] def underline(self, *s):
 return self.node(s, OP_SEQ % 4)

[docs] def blink(self, *s):
 return self.node(s, OP_SEQ % 5)

[docs] def reverse(self, *s):
 return self.node(s, OP_SEQ % 7)

[docs] def bright(self, *s):
 return self.node(s, OP_SEQ % 8)

[docs] def ired(self, *s):
 return self.node(s, fg(40 + RED))

[docs] def igreen(self, *s):
 return self.node(s, fg(40 + GREEN))

[docs] def iyellow(self, *s):
 return self.node(s, fg(40 + YELLOW))

[docs] def iblue(self, *s):
 return self.node(s, fg(40 + BLUE))

[docs] def imagenta(self, *s):
 return self.node(s, fg(40 + MAGENTA))

[docs] def icyan(self, *s):
 return self.node(s, fg(40 + CYAN))

[docs] def iwhite(self, *s):
 return self.node(s, fg(40 + WHITE))

[docs] def reset(self, *s):
 return self.node(s or [''], RESET_SEQ)

 def __add__(self, other):
 return str(self) + str(other)

def supports_images():
 return isatty(sys.stdin) and ITERM_PROFILE

def _read_as_base64(path):
 with codecs.open(path, mode='rb') as fh:
 encoded = base64.b64encode(fh.read())
 return encoded if type(encoded) == 'str' else encoded.decode('ascii')

def imgcat(path, inline=1, preserve_aspect_ratio=0, **kwargs):
 return '\n%s1337;File=inline=%d;preserveAspectRatio=%d:%s%s' % (
 _IMG_PRE, inline, preserve_aspect_ratio,
 _read_as_base64(path), _IMG_POST)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.utils.text

"""Text formatting utilities."""
import io
import re
from collections.abc import Callable
from functools import partial
from pprint import pformat
from textwrap import fill

__all__ = (
 'abbr', 'abbrtask', 'dedent', 'dedent_initial',
 'ensure_newlines', 'ensure_sep',
 'fill_paragraphs', 'indent', 'join',
 'pluralize', 'pretty', 'str_to_list', 'simple_format', 'truncate',
)

UNKNOWN_SIMPLE_FORMAT_KEY = """
Unknown format %{0} in string {1!r}.
Possible causes: Did you forget to escape the expand sign (use '%%{0!r}'),
or did you escape and the value was expanded twice? (%%N -> %N -> %hostname)?
""".strip()

RE_FORMAT = re.compile(r'%(\w)')

[docs]def str_to_list(s):
 # type: (str) -> List[str]
 """Convert string to list."""
 if isinstance(s, str):
 return s.split(',')
 return s

[docs]def dedent_initial(s, n=4):
 # type: (str, int) -> str
 """Remove identation from first line of text."""
 return s[n:] if s[:n] == ' ' * n else s

[docs]def dedent(s, n=4, sep='\n'):
 # type: (str, int, str) -> str
 """Remove identation."""
 return sep.join(dedent_initial(l) for l in s.splitlines())

[docs]def fill_paragraphs(s, width, sep='\n'):
 # type: (str, int, str) -> str
 """Fill paragraphs with newlines (or custom separator)."""
 return sep.join(fill(p, width) for p in s.split(sep))

[docs]def join(l, sep='\n'):
 # type: (str, str) -> str
 """Concatenate list of strings."""
 return sep.join(v for v in l if v)

[docs]def ensure_sep(sep, s, n=2):
 # type: (str, str, int) -> str
 """Ensure text s ends in separator sep'."""
 return s + sep * (n - s.count(sep))

ensure_newlines = partial(ensure_sep, '\n')

[docs]def abbr(S, max, ellipsis='...'):
 # type: (str, int, str) -> str
 """Abbreviate word."""
 if S is None:
 return '???'
 if len(S) > max:
 return ellipsis and (S[:max - len(ellipsis)] + ellipsis) or S[:max]
 return S

[docs]def abbrtask(S, max):
 # type: (str, int) -> str
 """Abbreviate task name."""
 if S is None:
 return '???'
 if len(S) > max:
 module, _, cls = S.rpartition('.')
 module = abbr(module, max - len(cls) - 3, False)
 return module + '[.]' + cls
 return S

[docs]def indent(t, indent=0, sep='\n'):
 # type: (str, int, str) -> str
 """Indent text."""
 return sep.join(' ' * indent + p for p in t.split(sep))

[docs]def truncate(s, maxlen=128, suffix='...'):
 # type: (str, int, str) -> str
 """Truncate text to a maximum number of characters."""
 if maxlen and len(s) >= maxlen:
 return s[:maxlen].rsplit(' ', 1)[0] + suffix
 return s

[docs]def pluralize(n, text, suffix='s'):
 # type: (int, str, str) -> str
 """Pluralize term when n is greater than one."""
 if n != 1:
 return text + suffix
 return text

[docs]def pretty(value, width=80, nl_width=80, sep='\n', **kw):
 # type: (str, int, int, str, **Any) -> str
 """Format value for printing to console."""
 if isinstance(value, dict):
 return '{{{0} {1}'.format(sep, pformat(value, 4, nl_width)[1:])
 elif isinstance(value, tuple):
 return '{}{}{}'.format(
 sep, ' ' * 4, pformat(value, width=nl_width, **kw),
)
 else:
 return pformat(value, width=width, **kw)

def match_case(s, other):
 # type: (str, str) -> str
 return s.upper() if other.isupper() else s.lower()

[docs]def simple_format(s, keys, pattern=RE_FORMAT, expand=r'\1'):
 # type: (str, Mapping[str, str], Pattern, str) -> str
 """Format string, expanding abbreviations in keys'."""
 if s:
 keys.setdefault('%', '%')

 def resolve(match):
 key = match.expand(expand)
 try:
 resolver = keys[key]
 except KeyError:
 raise ValueError(UNKNOWN_SIMPLE_FORMAT_KEY.format(key, s))
 if isinstance(resolver, Callable):
 return resolver()
 return resolver

 return pattern.sub(resolve, s)
 return s

def remove_repeating_from_task(task_name, s):
 # type: (str, str) -> str
 """Given task name, remove repeating module names.

 Example:
 >>> remove_repeating_from_task(
 ... 'tasks.add',
 ... 'tasks.add(2, 2), tasks.mul(3), tasks.div(4)')
 'tasks.add(2, 2), mul(3), div(4)'
 """
 # This is used by e.g. repr(chain), to remove repeating module names.
 # - extract the module part of the task name
 module = str(task_name).rpartition('.')[0] + '.'
 return remove_repeating(module, s)

def remove_repeating(substr, s):
 # type: (str, str) -> str
 """Remove repeating module names from string.

 Arguments:
 task_name (str): Task name (full path including module),
 to use as the basis for removing module names.
 s (str): The string we want to work on.

 Example:

 >>> _shorten_names(
 ... 'x.tasks.add',
 ... 'x.tasks.add(2, 2) | x.tasks.add(4) | x.tasks.mul(8)',
 ...)
 'x.tasks.add(2, 2) | add(4) | mul(8)'
 """
 # find the first occurrence of substr in the string.
 index = s.find(substr)
 if index >= 0:
 return ''.join([
 # leave the first occurrence of substr untouched.
 s[:index + len(substr)],
 # strip seen substr from the rest of the string.
 s[index + len(substr):].replace(substr, ''),
])
 return s

StringIO = io.StringIO
_SIO_write = StringIO.write
_SIO_init = StringIO.__init__

class WhateverIO(StringIO):
 """StringIO that takes bytes or str."""

 def __init__(self, v=None, *a, **kw):
 _SIO_init(self, v.decode() if isinstance(v, bytes) else v, *a, **kw)

 def write(self, data):
 _SIO_write(self, data.decode() if isinstance(data, bytes) else data)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.utils.threads

"""Threading primitives and utilities."""
import os
import socket
import sys
import threading
import traceback
from contextlib import contextmanager
from threading import TIMEOUT_MAX as THREAD_TIMEOUT_MAX

from celery.local import Proxy

try:
 from greenlet import getcurrent as get_ident
except ImportError: # pragma: no cover
 try:
 from _thread import get_ident # noqa
 except ImportError:
 try:
 from thread import get_ident # noqa
 except ImportError: # pragma: no cover
 try:
 from _dummy_thread import get_ident # noqa
 except ImportError:
 from dummy_thread import get_ident # noqa

__all__ = (
 'bgThread', 'Local', 'LocalStack', 'LocalManager',
 'get_ident', 'default_socket_timeout',
)

USE_FAST_LOCALS = os.environ.get('USE_FAST_LOCALS')

[docs]@contextmanager
def default_socket_timeout(timeout):
 """Context temporarily setting the default socket timeout."""
 prev = socket.getdefaulttimeout()
 socket.setdefaulttimeout(timeout)
 yield
 socket.setdefaulttimeout(prev)

[docs]class bgThread(threading.Thread):
 """Background service thread."""

 def __init__(self, name=None, **kwargs):
 super().__init__()
 self._is_shutdown = threading.Event()
 self._is_stopped = threading.Event()
 self.daemon = True
 self.name = name or self.__class__.__name__

[docs] def body(self):
 raise NotImplementedError()

[docs] def on_crash(self, msg, *fmt, **kwargs):
 print(msg.format(*fmt), file=sys.stderr)
 traceback.print_exc(None, sys.stderr)

[docs] def run(self):
 body = self.body
 shutdown_set = self._is_shutdown.is_set
 try:
 while not shutdown_set():
 try:
 body()
 except Exception as exc: # pylint: disable=broad-except
 try:
 self.on_crash('{0!r} crashed: {1!r}', self.name, exc)
 self._set_stopped()
 finally:
 sys.stderr.flush()
 os._exit(1) # exiting by normal means won't work
 finally:
 self._set_stopped()

 def _set_stopped(self):
 try:
 self._is_stopped.set()
 except TypeError: # pragma: no cover
 # we lost the race at interpreter shutdown,
 # so gc collected built-in modules.
 pass

[docs] def stop(self):
 """Graceful shutdown."""
 self._is_shutdown.set()
 self._is_stopped.wait()
 if self.is_alive():
 self.join(THREAD_TIMEOUT_MAX)

def release_local(local):
 """Release the contents of the local for the current context.

 This makes it possible to use locals without a manager.

 With this function one can release :class:`Local` objects as well as
 :class:`StackLocal` objects. However it's not possible to
 release data held by proxies that way, one always has to retain
 a reference to the underlying local object in order to be able
 to release it.

 Example:
 >>> loc = Local()
 >>> loc.foo = 42
 >>> release_local(loc)
 >>> hasattr(loc, 'foo')
 False
 """
 local.__release_local__()

[docs]class Local:
 """Local object."""

 __slots__ = ('__storage__', '__ident_func__')

 def __init__(self):
 object.__setattr__(self, '__storage__', {})
 object.__setattr__(self, '__ident_func__', get_ident)

 def __iter__(self):
 return iter(self.__storage__.items())

 def __call__(self, proxy):
 """Create a proxy for a name."""
 return Proxy(self, proxy)

 def __release_local__(self):
 self.__storage__.pop(self.__ident_func__(), None)

 def __getattr__(self, name):
 try:
 return self.__storage__[self.__ident_func__()][name]
 except KeyError:
 raise AttributeError(name)

 def __setattr__(self, name, value):
 ident = self.__ident_func__()
 storage = self.__storage__
 try:
 storage[ident][name] = value
 except KeyError:
 storage[ident] = {name: value}

 def __delattr__(self, name):
 try:
 del self.__storage__[self.__ident_func__()][name]
 except KeyError:
 raise AttributeError(name)

class _LocalStack:
 """Local stack.

 This class works similar to a :class:`Local` but keeps a stack
 of objects instead. This is best explained with an example::

 >>> ls = LocalStack()
 >>> ls.push(42)
 >>> ls.top
 42
 >>> ls.push(23)
 >>> ls.top
 23
 >>> ls.pop()
 23
 >>> ls.top
 42

 They can be force released by using a :class:`LocalManager` or with
 the :func:`release_local` function but the correct way is to pop the
 item from the stack after using. When the stack is empty it will
 no longer be bound to the current context (and as such released).

 By calling the stack without arguments it will return a proxy that
 resolves to the topmost item on the stack.
 """

 def __init__(self):
 self._local = Local()

 def __release_local__(self):
 self._local.__release_local__()

 def _get__ident_func__(self):
 return self._local.__ident_func__

 def _set__ident_func__(self, value):
 object.__setattr__(self._local, '__ident_func__', value)
 __ident_func__ = property(_get__ident_func__, _set__ident_func__)
 del _get__ident_func__, _set__ident_func__

 def __call__(self):
 def _lookup():
 rv = self.top
 if rv is None:
 raise RuntimeError('object unbound')
 return rv
 return Proxy(_lookup)

 def push(self, obj):
 """Push a new item to the stack."""
 rv = getattr(self._local, 'stack', None)
 if rv is None:
 # pylint: disable=assigning-non-slot
 # This attribute is defined now.
 self._local.stack = rv = []
 rv.append(obj)
 return rv

 def pop(self):
 """Remove the topmost item from the stack.

 Note:
 Will return the old value or `None` if the stack was already empty.
 """
 stack = getattr(self._local, 'stack', None)
 if stack is None:
 return None
 elif len(stack) == 1:
 release_local(self._local)
 return stack[-1]
 else:
 return stack.pop()

 def __len__(self):
 stack = getattr(self._local, 'stack', None)
 return len(stack) if stack else 0

 @property
 def stack(self):
 # get_current_worker_task uses this to find
 # the original task that was executed by the worker.
 stack = getattr(self._local, 'stack', None)
 if stack is not None:
 return stack
 return []

 @property
 def top(self):
 """The topmost item on the stack.

 Note:
 If the stack is empty, :const:`None` is returned.
 """
 try:
 return self._local.stack[-1]
 except (AttributeError, IndexError):
 return None

[docs]class LocalManager:
 """Local objects cannot manage themselves.

 For that you need a local manager.
 You can pass a local manager multiple locals or add them
 later by appending them to ``manager.locals``. Every time the manager
 cleans up, it will clean up all the data left in the locals for this
 context.

 The ``ident_func`` parameter can be added to override the default ident
 function for the wrapped locals.
 """

 def __init__(self, locals=None, ident_func=None):
 if locals is None:
 self.locals = []
 elif isinstance(locals, Local):
 self.locals = [locals]
 else:
 self.locals = list(locals)
 if ident_func is not None:
 self.ident_func = ident_func
 for local in self.locals:
 object.__setattr__(local, '__ident_func__', ident_func)
 else:
 self.ident_func = get_ident

[docs] def get_ident(self):
 """Return context identifier.

 This is the indentifer the local objects use internally
 for this context. You cannot override this method to change the
 behavior but use it to link other context local objects (such as
 SQLAlchemy's scoped sessions) to the Werkzeug locals.
 """
 return self.ident_func()

[docs] def cleanup(self):
 """Manually clean up the data in the locals for this context.

 Call this at the end of the request or use ``make_middleware()``.
 """
 for local in self.locals:
 release_local(local)

 def __repr__(self):
 return '<{} storages: {}>'.format(
 self.__class__.__name__, len(self.locals))

class _FastLocalStack(threading.local):

 def __init__(self):
 self.stack = []
 self.push = self.stack.append
 self.pop = self.stack.pop
 super().__init__()

 @property
 def top(self):
 try:
 return self.stack[-1]
 except (AttributeError, IndexError):
 return None

 def __len__(self):
 return len(self.stack)

if USE_FAST_LOCALS: # pragma: no cover
 LocalStack = _FastLocalStack
else: # pragma: no cover
 # - See #706
 # since each thread has its own greenlet we can just use those as
 # identifiers for the context. If greenlets aren't available we
 # fall back to the current thread ident.
 LocalStack = _LocalStack # noqa

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.utils.time

"""Utilities related to dates, times, intervals, and timezones."""
import numbers
import os
import random
import time as _time
from calendar import monthrange
from datetime import date, datetime, timedelta, tzinfo

from kombu.utils.functional import reprcall
from kombu.utils.objects import cached_property
from pytz import AmbiguousTimeError, FixedOffset
from pytz import timezone as _timezone
from pytz import utc

from .functional import dictfilter
from .iso8601 import parse_iso8601
from .text import pluralize

__all__ = (
 'LocalTimezone', 'timezone', 'maybe_timedelta',
 'delta_resolution', 'remaining', 'rate', 'weekday',
 'humanize_seconds', 'maybe_iso8601', 'is_naive',
 'make_aware', 'localize', 'to_utc', 'maybe_make_aware',
 'ffwd', 'utcoffset', 'adjust_timestamp',
 'get_exponential_backoff_interval',
)

C_REMDEBUG = os.environ.get('C_REMDEBUG', False)

DAYNAMES = 'sun', 'mon', 'tue', 'wed', 'thu', 'fri', 'sat'
WEEKDAYS = dict(zip(DAYNAMES, range(7)))

RATE_MODIFIER_MAP = {
 's': lambda n: n,
 'm': lambda n: n / 60.0,
 'h': lambda n: n / 60.0 / 60.0,
}

TIME_UNITS = (
 ('day', 60 * 60 * 24.0, lambda n: format(n, '.2f')),
 ('hour', 60 * 60.0, lambda n: format(n, '.2f')),
 ('minute', 60.0, lambda n: format(n, '.2f')),
 ('second', 1.0, lambda n: format(n, '.2f')),
)

ZERO = timedelta(0)

_local_timezone = None

[docs]class LocalTimezone(tzinfo):
 """Local time implementation.

 Note:
 Used only when the :setting:`enable_utc` setting is disabled.
 """

 _offset_cache = {}

 def __init__(self):
 # This code is moved in __init__ to execute it as late as possible
 # See get_default_timezone().
 self.STDOFFSET = timedelta(seconds=-_time.timezone)
 if _time.daylight:
 self.DSTOFFSET = timedelta(seconds=-_time.altzone)
 else:
 self.DSTOFFSET = self.STDOFFSET
 self.DSTDIFF = self.DSTOFFSET - self.STDOFFSET
 tzinfo.__init__(self)

 def __repr__(self):
 return f'<LocalTimezone: UTC{int(self.DSTOFFSET.total_seconds() / 3600):+03d}>'

[docs] def utcoffset(self, dt):
 return self.DSTOFFSET if self._isdst(dt) else self.STDOFFSET

[docs] def dst(self, dt):
 return self.DSTDIFF if self._isdst(dt) else ZERO

[docs] def tzname(self, dt):
 return _time.tzname[self._isdst(dt)]

[docs] def fromutc(self, dt):
 # The base tzinfo class no longer implements a DST
 # offset aware .fromutc() in Python 3 (Issue #2306).

 # I'd rather rely on pytz to do this, than port
 # the C code from cpython's fromutc [asksol]
 offset = int(self.utcoffset(dt).seconds / 60.0)
 try:
 tz = self._offset_cache[offset]
 except KeyError:
 tz = self._offset_cache[offset] = FixedOffset(offset)
 return tz.fromutc(dt.replace(tzinfo=tz))

 def _isdst(self, dt):
 tt = (dt.year, dt.month, dt.day,
 dt.hour, dt.minute, dt.second,
 dt.weekday(), 0, 0)
 stamp = _time.mktime(tt)
 tt = _time.localtime(stamp)
 return tt.tm_isdst > 0

class _Zone:

 def tz_or_local(self, tzinfo=None):
 # pylint: disable=redefined-outer-name
 if tzinfo is None:
 return self.local
 return self.get_timezone(tzinfo)

 def to_local(self, dt, local=None, orig=None):
 if is_naive(dt):
 dt = make_aware(dt, orig or self.utc)
 return localize(dt, self.tz_or_local(local))

 def to_system(self, dt):
 # tz=None is a special case since Python 3.3, and will
 # convert to the current local timezone (Issue #2306).
 return dt.astimezone(tz=None)

 def to_local_fallback(self, dt):
 if is_naive(dt):
 return make_aware(dt, self.local)
 return localize(dt, self.local)

 def get_timezone(self, zone):
 if isinstance(zone, str):
 return _timezone(zone)
 return zone

 @cached_property
 def local(self):
 return LocalTimezone()

 @cached_property
 def utc(self):
 return self.get_timezone('UTC')

timezone = _Zone()

[docs]def maybe_timedelta(delta):
 """Convert integer to timedelta, if argument is an integer."""
 if isinstance(delta, numbers.Real):
 return timedelta(seconds=delta)
 return delta

[docs]def delta_resolution(dt, delta):
 """Round a :class:`~datetime.datetime` to the resolution of timedelta.

 If the :class:`~datetime.timedelta` is in days, the
 :class:`~datetime.datetime` will be rounded to the nearest days,
 if the :class:`~datetime.timedelta` is in hours the
 :class:`~datetime.datetime` will be rounded to the nearest hour,
 and so on until seconds, which will just return the original
 :class:`~datetime.datetime`.
 """
 delta = max(delta.total_seconds(), 0)

 resolutions = ((3, lambda x: x / 86400),
 (4, lambda x: x / 3600),
 (5, lambda x: x / 60))

 args = dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second
 for res, predicate in resolutions:
 if predicate(delta) >= 1.0:
 return datetime(*args[:res], tzinfo=dt.tzinfo)
 return dt

[docs]def remaining(start, ends_in, now=None, relative=False):
 """Calculate the remaining time for a start date and a timedelta.

 For example, "how many seconds left for 30 seconds after start?"

 Arguments:
 start (~datetime.datetime): Starting date.
 ends_in (~datetime.timedelta): The end delta.
 relative (bool): If enabled the end time will be calculated
 using :func:`delta_resolution` (i.e., rounded to the
 resolution of `ends_in`).
 now (Callable): Function returning the current time and date.
 Defaults to :func:`datetime.utcnow`.

 Returns:
 ~datetime.timedelta: Remaining time.
 """
 now = now or datetime.utcnow()
 if str(start.tzinfo) == str(now.tzinfo) and now.utcoffset() != start.utcoffset():
 # DST started/ended
 start = start.replace(tzinfo=now.tzinfo)
 end_date = start + ends_in
 if relative:
 end_date = delta_resolution(end_date, ends_in).replace(microsecond=0)
 ret = end_date - now
 if C_REMDEBUG: # pragma: no cover
 print('rem: NOW:{!r} START:{!r} ENDS_IN:{!r} END_DATE:{} REM:{}'.format(
 now, start, ends_in, end_date, ret))
 return ret

[docs]def rate(r):
 """Convert rate string (`"100/m"`, `"2/h"` or `"0.5/s"`) to seconds."""
 if r:
 if isinstance(r, str):
 ops, _, modifier = r.partition('/')
 return RATE_MODIFIER_MAP[modifier or 's'](float(ops)) or 0
 return r or 0
 return 0

[docs]def weekday(name):
 """Return the position of a weekday: 0 - 7, where 0 is Sunday.

 Example:
 >>> weekday('sunday'), weekday('sun'), weekday('mon')
 (0, 0, 1)
 """
 abbreviation = name[0:3].lower()
 try:
 return WEEKDAYS[abbreviation]
 except KeyError:
 # Show original day name in exception, instead of abbr.
 raise KeyError(name)

[docs]def humanize_seconds(secs, prefix='', sep='', now='now', microseconds=False):
 """Show seconds in human form.

 For example, 60 becomes "1 minute", and 7200 becomes "2 hours".

 Arguments:
 prefix (str): can be used to add a preposition to the output
 (e.g., 'in' will give 'in 1 second', but add nothing to 'now').
 now (str): Literal 'now'.
 microseconds (bool): Include microseconds.
 """
 secs = float(format(float(secs), '.2f'))
 for unit, divider, formatter in TIME_UNITS:
 if secs >= divider:
 w = secs / float(divider)
 return '{}{}{} {}'.format(prefix, sep, formatter(w),
 pluralize(w, unit))
 if microseconds and secs > 0.0:
 return '{prefix}{sep}{0:.2f} seconds'.format(
 secs, sep=sep, prefix=prefix)
 return now

[docs]def maybe_iso8601(dt):
 """Either ``datetime | str -> datetime`` or ``None -> None``."""
 if not dt:
 return
 if isinstance(dt, datetime):
 return dt
 return parse_iso8601(dt)

[docs]def is_naive(dt):
 """Return :const:`True` if :class:`~datetime.datetime` is naive."""
 return dt.tzinfo is None or dt.tzinfo.utcoffset(dt) is None

[docs]def make_aware(dt, tz):
 """Set timezone for a :class:`~datetime.datetime` object."""
 try:
 _localize = tz.localize
 except AttributeError:
 return dt.replace(tzinfo=tz)
 else:
 # works on pytz timezones
 try:
 return _localize(dt, is_dst=None)
 except AmbiguousTimeError:
 return min(_localize(dt, is_dst=True),
 _localize(dt, is_dst=False))

[docs]def localize(dt, tz):
 """Convert aware :class:`~datetime.datetime` to another timezone."""
 if is_naive(dt): # Ensure timezone aware datetime
 dt = make_aware(dt, tz)
 if dt.tzinfo == utc:
 dt = dt.astimezone(tz) # Always safe to call astimezone on utc zones
 try:
 _normalize = tz.normalize
 except AttributeError: # non-pytz tz
 return dt
 else:
 try:
 return _normalize(dt, is_dst=None)
 except TypeError:
 return _normalize(dt)
 except AmbiguousTimeError:
 return min(_normalize(dt, is_dst=True),
 _normalize(dt, is_dst=False))

[docs]def to_utc(dt):
 """Convert naive :class:`~datetime.datetime` to UTC."""
 return make_aware(dt, timezone.utc)

[docs]def maybe_make_aware(dt, tz=None):
 """Convert dt to aware datetime, do nothing if dt is already aware."""
 if is_naive(dt):
 dt = to_utc(dt)
 return localize(
 dt, timezone.utc if tz is None else timezone.tz_or_local(tz),
)
 return dt

[docs]class ffwd:
 """Version of ``dateutil.relativedelta`` that only supports addition."""

 def __init__(self, year=None, month=None, weeks=0, weekday=None, day=None,
 hour=None, minute=None, second=None, microsecond=None,
 **kwargs):
 # pylint: disable=redefined-outer-name
 # weekday is also a function in outer scope.
 self.year = year
 self.month = month
 self.weeks = weeks
 self.weekday = weekday
 self.day = day
 self.hour = hour
 self.minute = minute
 self.second = second
 self.microsecond = microsecond
 self.days = weeks * 7
 self._has_time = self.hour is not None or self.minute is not None

 def __repr__(self):
 return reprcall('ffwd', (), self._fields(weeks=self.weeks,
 weekday=self.weekday))

 def __radd__(self, other):
 if not isinstance(other, date):
 return NotImplemented
 year = self.year or other.year
 month = self.month or other.month
 day = min(monthrange(year, month)[1], self.day or other.day)
 ret = other.replace(**dict(dictfilter(self._fields()),
 year=year, month=month, day=day))
 if self.weekday is not None:
 ret += timedelta(days=(7 - ret.weekday() + self.weekday) % 7)
 return ret + timedelta(days=self.days)

 def _fields(self, **extra):
 return dictfilter({
 'year': self.year, 'month': self.month, 'day': self.day,
 'hour': self.hour, 'minute': self.minute,
 'second': self.second, 'microsecond': self.microsecond,
 }, **extra)

[docs]def utcoffset(time=_time, localtime=_time.localtime):
 """Return the current offset to UTC in hours."""
 if localtime().tm_isdst:
 return time.altzone // 3600
 return time.timezone // 3600

[docs]def adjust_timestamp(ts, offset, here=utcoffset):
 """Adjust timestamp based on provided utcoffset."""
 return ts - (offset - here()) * 3600

[docs]def get_exponential_backoff_interval(
 factor,
 retries,
 maximum,
 full_jitter=False
):
 """Calculate the exponential backoff wait time."""
 # Will be zero if factor equals 0
 countdown = min(maximum, factor * (2 ** retries))
 # Full jitter according to
 # https://www.awsarchitectureblog.com/2015/03/backoff.html
 if full_jitter:
 countdown = random.randrange(countdown + 1)
 # Adjust according to maximum wait time and account for negative values.
 return max(0, countdown)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.utils.timer2

"""Scheduler for Python functions.

.. note::
 This is used for the thread-based worker only,
 not for amqp/redis/sqs/qpid where :mod:`kombu.asynchronous.timer` is used.
"""
import os
import sys
import threading
from itertools import count
from threading import TIMEOUT_MAX as THREAD_TIMEOUT_MAX
from time import sleep

from kombu.asynchronous.timer import Entry
from kombu.asynchronous.timer import Timer as Schedule
from kombu.asynchronous.timer import logger, to_timestamp

TIMER_DEBUG = os.environ.get('TIMER_DEBUG')

__all__ = ('Entry', 'Schedule', 'Timer', 'to_timestamp')

[docs]class Timer(threading.Thread):
 """Timer thread.

 Note:
 This is only used for transports not supporting AsyncIO.
 """

 Entry = Entry
 Schedule = Schedule

 running = False
 on_tick = None

 _timer_count = count(1)

 if TIMER_DEBUG: # pragma: no cover
 def start(self, *args, **kwargs):
 import traceback
 print('- Timer starting')
 traceback.print_stack()
 super().start(*args, **kwargs)

 def __init__(self, schedule=None, on_error=None, on_tick=None,
 on_start=None, max_interval=None, **kwargs):
 self.schedule = schedule or self.Schedule(on_error=on_error,
 max_interval=max_interval)
 self.on_start = on_start
 self.on_tick = on_tick or self.on_tick
 threading.Thread.__init__(self)
 self._is_shutdown = threading.Event()
 self._is_stopped = threading.Event()
 self.mutex = threading.Lock()
 self.not_empty = threading.Condition(self.mutex)
 self.daemon = True
 self.name = 'Timer-{}'.format(next(self._timer_count))

 def _next_entry(self):
 with self.not_empty:
 delay, entry = next(self.scheduler)
 if entry is None:
 if delay is None:
 self.not_empty.wait(1.0)
 return delay
 return self.schedule.apply_entry(entry)
 __next__ = next = _next_entry # for 2to3

[docs] def run(self):
 try:
 self.running = True
 self.scheduler = iter(self.schedule)

 while not self._is_shutdown.isSet():
 delay = self._next_entry()
 if delay:
 if self.on_tick:
 self.on_tick(delay)
 if sleep is None: # pragma: no cover
 break
 sleep(delay)
 try:
 self._is_stopped.set()
 except TypeError: # pragma: no cover
 # we lost the race at interpreter shutdown,
 # so gc collected built-in modules.
 pass
 except Exception as exc:
 logger.error('Thread Timer crashed: %r', exc, exc_info=True)
 sys.stderr.flush()
 os._exit(1)

[docs] def stop(self):
 self._is_shutdown.set()
 if self.running:
 self._is_stopped.wait()
 self.join(THREAD_TIMEOUT_MAX)
 self.running = False

[docs] def ensure_started(self):
 if not self.running and not self.is_alive():
 if self.on_start:
 self.on_start(self)
 self.start()

 def _do_enter(self, meth, *args, **kwargs):
 self.ensure_started()
 with self.mutex:
 entry = getattr(self.schedule, meth)(*args, **kwargs)
 self.not_empty.notify()
 return entry

[docs] def enter(self, entry, eta, priority=None):
 return self._do_enter('enter_at', entry, eta, priority=priority)

[docs] def call_at(self, *args, **kwargs):
 return self._do_enter('call_at', *args, **kwargs)

[docs] def enter_after(self, *args, **kwargs):
 return self._do_enter('enter_after', *args, **kwargs)

[docs] def call_after(self, *args, **kwargs):
 return self._do_enter('call_after', *args, **kwargs)

[docs] def call_repeatedly(self, *args, **kwargs):
 return self._do_enter('call_repeatedly', *args, **kwargs)

[docs] def exit_after(self, secs, priority=10):
 self.call_after(secs, sys.exit, priority)

[docs] def cancel(self, tref):
 tref.cancel()

[docs] def clear(self):
 self.schedule.clear()

[docs] def empty(self):
 return not len(self)

 def __len__(self):
 return len(self.schedule)

 def __bool__(self):
 """``bool(timer)``."""
 return True
 __nonzero__ = __bool__

 @property
 def queue(self):
 return self.schedule.queue

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.utils.dispatch.signal

"""Implementation of the Observer pattern."""
import sys
import threading
import warnings
import weakref
from weakref import WeakMethod

from kombu.utils.functional import retry_over_time

from celery.exceptions import CDeprecationWarning
from celery.local import PromiseProxy, Proxy
from celery.utils.functional import fun_accepts_kwargs
from celery.utils.log import get_logger
from celery.utils.time import humanize_seconds

__all__ = ('Signal',)

logger = get_logger(__name__)

def _make_id(target): # pragma: no cover
 if isinstance(target, Proxy):
 target = target._get_current_object()
 if isinstance(target, (bytes, str)):
 # see Issue #2475
 return target
 if hasattr(target, '__func__'):
 return id(target.__func__)
 return id(target)

def _boundmethod_safe_weakref(obj):
 """Get weakref constructor appropriate for `obj`. `obj` may be a bound method.

 Bound method objects must be special-cased because they're usually garbage
 collected immediately, even if the instance they're bound to persists.

 Returns:
 a (weakref constructor, main object) tuple. `weakref constructor` is
 either :class:`weakref.ref` or :class:`weakref.WeakMethod`. `main
 object` is the instance that `obj` is bound to if it is a bound method;
 otherwise `main object` is simply `obj.
 """
 try:
 obj.__func__
 obj.__self__
 # Bound method
 return WeakMethod, obj.__self__
 except AttributeError:
 # Not a bound method
 return weakref.ref, obj

def _make_lookup_key(receiver, sender, dispatch_uid):
 if dispatch_uid:
 return (dispatch_uid, _make_id(sender))
 else:
 return (_make_id(receiver), _make_id(sender))

NONE_ID = _make_id(None)

NO_RECEIVERS = object()

RECEIVER_RETRY_ERROR = """\
Could not process signal receiver %(receiver)s. Retrying %(when)s...\
"""

[docs]class Signal: # pragma: no cover
 """Create new signal.

 Keyword Arguments:
 providing_args (List): A list of the arguments this signal can pass
 along in a :meth:`send` call.
 use_caching (bool): Enable receiver cache.
 name (str): Name of signal, used for debugging purposes.
 """

 #: Holds a dictionary of
 #: ``{receiverkey (id): weakref(receiver)}`` mappings.
 receivers = None

 def __init__(self, providing_args=None, use_caching=False, name=None):
 self.receivers = []
 self.providing_args = set(
 providing_args if providing_args is not None else [])
 self.lock = threading.Lock()
 self.use_caching = use_caching
 self.name = name
 # For convenience we create empty caches even if they are not used.
 # A note about caching: if use_caching is defined, then for each
 # distinct sender we cache the receivers that sender has in
 # 'sender_receivers_cache'. The cache is cleaned when .connect() or
 # .disconnect() is called and populated on .send().
 self.sender_receivers_cache = (
 weakref.WeakKeyDictionary() if use_caching else {}
)
 self._dead_receivers = False

 def _connect_proxy(self, fun, sender, weak, dispatch_uid):
 return self.connect(
 fun, sender=sender._get_current_object(),
 weak=weak, dispatch_uid=dispatch_uid,
)

[docs] def connect(self, *args, **kwargs):
 """Connect receiver to sender for signal.

 Arguments:
 receiver (Callable): A function or an instance method which is to
 receive signals. Receivers must be hashable objects.

 if weak is :const:`True`, then receiver must be
 weak-referenceable.

 Receivers must be able to accept keyword arguments.

 If receivers have a `dispatch_uid` attribute, the receiver will
 not be added if another receiver already exists with that
 `dispatch_uid`.

 sender (Any): The sender to which the receiver should respond.
 Must either be a Python object, or :const:`None` to
 receive events from any sender.

 weak (bool): Whether to use weak references to the receiver.
 By default, the module will attempt to use weak references to
 the receiver objects. If this parameter is false, then strong
 references will be used.

 dispatch_uid (Hashable): An identifier used to uniquely identify a
 particular instance of a receiver. This will usually be a
 string, though it may be anything hashable.

 retry (bool): If the signal receiver raises an exception
 (e.g. ConnectionError), the receiver will be retried until it
 runs successfully. A strong ref to the receiver will be stored
 and the `weak` option will be ignored.
 """
 def _handle_options(sender=None, weak=True, dispatch_uid=None,
 retry=False):

 def _connect_signal(fun):

 options = {'dispatch_uid': dispatch_uid,
 'weak': weak}

 def _retry_receiver(retry_fun):

 def _try_receiver_over_time(*args, **kwargs):
 def on_error(exc, intervals, retries):
 interval = next(intervals)
 err_msg = RECEIVER_RETRY_ERROR % \
 {'receiver': retry_fun,
 'when': humanize_seconds(interval, 'in', ' ')}
 logger.error(err_msg)
 return interval

 return retry_over_time(retry_fun, Exception, args,
 kwargs, on_error)

 return _try_receiver_over_time

 if retry:
 options['weak'] = False
 if not dispatch_uid:
 # if there's no dispatch_uid then we need to set the
 # dispatch uid to the original func id so we can look
 # it up later with the original func id
 options['dispatch_uid'] = _make_id(fun)
 fun = _retry_receiver(fun)

 self._connect_signal(fun, sender, options['weak'],
 options['dispatch_uid'])
 return fun

 return _connect_signal

 if args and callable(args[0]):
 return _handle_options(*args[1:], **kwargs)(args[0])
 return _handle_options(*args, **kwargs)

 def _connect_signal(self, receiver, sender, weak, dispatch_uid):
 assert callable(receiver), 'Signal receivers must be callable'
 if not fun_accepts_kwargs(receiver):
 raise ValueError(
 'Signal receiver must accept keyword arguments.')

 if isinstance(sender, PromiseProxy):
 sender.__then__(
 self._connect_proxy, receiver, sender, weak, dispatch_uid,
)
 return receiver

 lookup_key = _make_lookup_key(receiver, sender, dispatch_uid)

 if weak:
 ref, receiver_object = _boundmethod_safe_weakref(receiver)
 receiver = ref(receiver)
 weakref.finalize(receiver_object, self._remove_receiver)

 with self.lock:
 self._clear_dead_receivers()
 for r_key, _ in self.receivers:
 if r_key == lookup_key:
 break
 else:
 self.receivers.append((lookup_key, receiver))
 self.sender_receivers_cache.clear()

 return receiver

[docs] def disconnect(self, receiver=None, sender=None, weak=None,
 dispatch_uid=None):
 """Disconnect receiver from sender for signal.

 If weak references are used, disconnect needn't be called.
 The receiver will be removed from dispatch automatically.

 Arguments:
 receiver (Callable): The registered receiver to disconnect.
 May be none if `dispatch_uid` is specified.

 sender (Any): The registered sender to disconnect.

 weak (bool): The weakref state to disconnect.

 dispatch_uid (Hashable): The unique identifier of the receiver
 to disconnect.
 """
 if weak is not None:
 warnings.warn(
 'Passing `weak` to disconnect has no effect.',
 CDeprecationWarning, stacklevel=2)

 lookup_key = _make_lookup_key(receiver, sender, dispatch_uid)

 disconnected = False
 with self.lock:
 self._clear_dead_receivers()
 for index in range(len(self.receivers)):
 (r_key, _) = self.receivers[index]
 if r_key == lookup_key:
 disconnected = True
 del self.receivers[index]
 break
 self.sender_receivers_cache.clear()
 return disconnected

[docs] def has_listeners(self, sender=None):
 return bool(self._live_receivers(sender))

[docs] def send(self, sender, **named):
 """Send signal from sender to all connected receivers.

 If any receiver raises an error, the error propagates back through
 send, terminating the dispatch loop, so it is quite possible to not
 have all receivers called if a raises an error.

 Arguments:
 sender (Any): The sender of the signal.
 Either a specific object or :const:`None`.
 **named (Any): Named arguments which will be passed to receivers.

 Returns:
 List: of tuple pairs: `[(receiver, response), …]`.
 """
 responses = []
 if not self.receivers or \
 self.sender_receivers_cache.get(sender) is NO_RECEIVERS:
 return responses

 for receiver in self._live_receivers(sender):
 try:
 response = receiver(signal=self, sender=sender, **named)
 except Exception as exc: # pylint: disable=broad-except
 if not hasattr(exc, '__traceback__'):
 exc.__traceback__ = sys.exc_info()[2]
 logger.exception(
 'Signal handler %r raised: %r', receiver, exc)
 responses.append((receiver, exc))
 else:
 responses.append((receiver, response))
 return responses

 send_robust = send # Compat with Django interface.

 def _clear_dead_receivers(self):
 # Warning: caller is assumed to hold self.lock
 if self._dead_receivers:
 self._dead_receivers = False
 new_receivers = []
 for r in self.receivers:
 if isinstance(r[1], weakref.ReferenceType) and r[1]() is None:
 continue
 new_receivers.append(r)
 self.receivers = new_receivers

 def _live_receivers(self, sender):
 """Filter sequence of receivers to get resolved, live receivers.

 This checks for weak references and resolves them, then returning only
 live receivers.
 """
 receivers = None
 if self.use_caching and not self._dead_receivers:
 receivers = self.sender_receivers_cache.get(sender)
 # We could end up here with NO_RECEIVERS even if we do check this
 # case in .send() prior to calling _Live_receivers() due to
 # concurrent .send() call.
 if receivers is NO_RECEIVERS:
 return []
 if receivers is None:
 with self.lock:
 self._clear_dead_receivers()
 senderkey = _make_id(sender)
 receivers = []
 for (receiverkey, r_senderkey), receiver in self.receivers:
 if r_senderkey == NONE_ID or r_senderkey == senderkey:
 receivers.append(receiver)
 if self.use_caching:
 if not receivers:
 self.sender_receivers_cache[sender] = NO_RECEIVERS
 else:
 # Note: we must cache the weakref versions.
 self.sender_receivers_cache[sender] = receivers
 non_weak_receivers = []
 for receiver in receivers:
 if isinstance(receiver, weakref.ReferenceType):
 # Dereference the weak reference.
 receiver = receiver()
 if receiver is not None:
 non_weak_receivers.append(receiver)
 else:
 non_weak_receivers.append(receiver)
 return non_weak_receivers

 def _remove_receiver(self, receiver=None):
 """Remove dead receivers from connections."""
 # Mark that the self..receivers first has dead weakrefs. If so,
 # we will clean those up in connect, disconnect and _live_receivers
 # while holding self.lock. Note that doing the cleanup here isn't a
 # good idea, _remove_receiver() will be called as a side effect of
 # garbage collection, and so the call can happen wh ile we are already
 # holding self.lock.
 self._dead_receivers = True

 def __repr__(self):
 """``repr(signal)``."""
 return f'<{type(self).__name__}: {self.name} providing_args={self.providing_args!r}>'

 def __str__(self):
 """``str(signal)``."""
 return repr(self)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.worker.autoscale

"""Pool Autoscaling.

This module implements the internal thread responsible
for growing and shrinking the pool according to the
current autoscale settings.

The autoscale thread is only enabled if
the :option:`celery worker --autoscale` option is used.
"""
import os
import threading
from time import monotonic, sleep

from kombu.asynchronous.semaphore import DummyLock

from celery import bootsteps
from celery.utils.log import get_logger
from celery.utils.threads import bgThread

from . import state
from .components import Pool

__all__ = ('Autoscaler', 'WorkerComponent')

logger = get_logger(__name__)
debug, info, error = logger.debug, logger.info, logger.error

AUTOSCALE_KEEPALIVE = float(os.environ.get('AUTOSCALE_KEEPALIVE', 30))

[docs]class WorkerComponent(bootsteps.StartStopStep):
 """Bootstep that starts the autoscaler thread/timer in the worker."""

 label = 'Autoscaler'
 conditional = True
 requires = (Pool,)

 def __init__(self, w, **kwargs):
 self.enabled = w.autoscale
 w.autoscaler = None

[docs] def create(self, w):
 scaler = w.autoscaler = self.instantiate(
 w.autoscaler_cls,
 w.pool, w.max_concurrency, w.min_concurrency,
 worker=w, mutex=DummyLock() if w.use_eventloop else None,
)
 return scaler if not w.use_eventloop else None

[docs] def register_with_event_loop(self, w, hub):
 w.consumer.on_task_message.add(w.autoscaler.maybe_scale)
 hub.call_repeatedly(
 w.autoscaler.keepalive, w.autoscaler.maybe_scale,
)

[docs] def info(self, w):
 """Return `Autoscaler` info."""
 return {'autoscaler': w.autoscaler.info()}

[docs]class Autoscaler(bgThread):
 """Background thread to autoscale pool workers."""

 def __init__(self, pool, max_concurrency,
 min_concurrency=0, worker=None,
 keepalive=AUTOSCALE_KEEPALIVE, mutex=None):
 super().__init__()
 self.pool = pool
 self.mutex = mutex or threading.Lock()
 self.max_concurrency = max_concurrency
 self.min_concurrency = min_concurrency
 self.keepalive = keepalive
 self._last_scale_up = None
 self.worker = worker

 assert self.keepalive, 'cannot scale down too fast.'

[docs] def body(self):
 with self.mutex:
 self.maybe_scale()
 sleep(1.0)

 def _maybe_scale(self, req=None):
 procs = self.processes
 cur = min(self.qty, self.max_concurrency)
 if cur > procs:
 self.scale_up(cur - procs)
 return True
 cur = max(self.qty, self.min_concurrency)
 if cur < procs:
 self.scale_down(procs - cur)
 return True

[docs] def maybe_scale(self, req=None):
 if self._maybe_scale(req):
 self.pool.maintain_pool()

[docs] def update(self, max=None, min=None):
 with self.mutex:
 if max is not None:
 if max < self.processes:
 self._shrink(self.processes - max)
 self._update_consumer_prefetch_count(max)
 self.max_concurrency = max
 if min is not None:
 if min > self.processes:
 self._grow(min - self.processes)
 self.min_concurrency = min
 return self.max_concurrency, self.min_concurrency

[docs] def scale_up(self, n):
 self._last_scale_up = monotonic()
 return self._grow(n)

[docs] def scale_down(self, n):
 if self._last_scale_up and (
 monotonic() - self._last_scale_up > self.keepalive):
 return self._shrink(n)

 def _grow(self, n):
 info('Scaling up %s processes.', n)
 self.pool.grow(n)

 def _shrink(self, n):
 info('Scaling down %s processes.', n)
 try:
 self.pool.shrink(n)
 except ValueError:
 debug("Autoscaler won't scale down: all processes busy.")
 except Exception as exc:
 error('Autoscaler: scale_down: %r', exc, exc_info=True)

 def _update_consumer_prefetch_count(self, new_max):
 diff = new_max - self.max_concurrency
 if diff:
 self.worker.consumer._update_prefetch_count(
 diff
)

[docs] def info(self):
 return {
 'max': self.max_concurrency,
 'min': self.min_concurrency,
 'current': self.processes,
 'qty': self.qty,
 }

 @property
 def qty(self):
 return len(state.reserved_requests)

 @property
 def processes(self):
 return self.pool.num_processes

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.worker.components

"""Worker-level Bootsteps."""
import atexit
import warnings

from kombu.asynchronous import Hub as _Hub
from kombu.asynchronous import get_event_loop, set_event_loop
from kombu.asynchronous.semaphore import DummyLock, LaxBoundedSemaphore
from kombu.asynchronous.timer import Timer as _Timer

from celery import bootsteps
from celery._state import _set_task_join_will_block
from celery.exceptions import ImproperlyConfigured
from celery.platforms import IS_WINDOWS
from celery.utils.log import worker_logger as logger

__all__ = ('Timer', 'Hub', 'Pool', 'Beat', 'StateDB', 'Consumer')

GREEN_POOLS = {'eventlet', 'gevent'}

ERR_B_GREEN = """\
-B option doesn't work with eventlet/gevent pools: \
use standalone beat instead.\
"""

W_POOL_SETTING = """
The worker_pool setting shouldn't be used to select the eventlet/gevent
pools, instead you *must use the -P* argument so that patches are applied
as early as possible.
"""

[docs]class Timer(bootsteps.Step):
 """Timer bootstep."""

[docs] def create(self, w):
 if w.use_eventloop:
 # does not use dedicated timer thread.
 w.timer = _Timer(max_interval=10.0)
 else:
 if not w.timer_cls:
 # Default Timer is set by the pool, as for example, the
 # eventlet pool needs a custom timer implementation.
 w.timer_cls = w.pool_cls.Timer
 w.timer = self.instantiate(w.timer_cls,
 max_interval=w.timer_precision,
 on_error=self.on_timer_error,
 on_tick=self.on_timer_tick)

[docs] def on_timer_error(self, exc):
 logger.error('Timer error: %r', exc, exc_info=True)

[docs] def on_timer_tick(self, delay):
 logger.debug('Timer wake-up! Next ETA %s secs.', delay)

[docs]class Hub(bootsteps.StartStopStep):
 """Worker starts the event loop."""

 requires = (Timer,)

 def __init__(self, w, **kwargs):
 w.hub = None
 super().__init__(w, **kwargs)

[docs] def include_if(self, w):
 return w.use_eventloop

[docs] def create(self, w):
 w.hub = get_event_loop()
 if w.hub is None:
 required_hub = getattr(w._conninfo, 'requires_hub', None)
 w.hub = set_event_loop((
 required_hub if required_hub else _Hub)(w.timer))
 self._patch_thread_primitives(w)
 return self

[docs] def start(self, w):
 pass

[docs] def stop(self, w):
 w.hub.close()

[docs] def terminate(self, w):
 w.hub.close()

 def _patch_thread_primitives(self, w):
 # make clock use dummy lock
 w.app.clock.mutex = DummyLock()
 # multiprocessing's ApplyResult uses this lock.
 try:
 from billiard import pool
 except ImportError: # pragma: no cover
 pass
 else:
 pool.Lock = DummyLock

[docs]class Pool(bootsteps.StartStopStep):
 """Bootstep managing the worker pool.

 Describes how to initialize the worker pool, and starts and stops
 the pool during worker start-up/shutdown.

 Adds attributes:

 * autoscale
 * pool
 * max_concurrency
 * min_concurrency
 """

 requires = (Hub,)

 def __init__(self, w, autoscale=None, **kwargs):
 w.pool = None
 w.max_concurrency = None
 w.min_concurrency = w.concurrency
 self.optimization = w.optimization
 if isinstance(autoscale, str):
 max_c, _, min_c = autoscale.partition(',')
 autoscale = [int(max_c), min_c and int(min_c) or 0]
 w.autoscale = autoscale
 if w.autoscale:
 w.max_concurrency, w.min_concurrency = w.autoscale
 super().__init__(w, **kwargs)

[docs] def close(self, w):
 if w.pool:
 w.pool.close()

[docs] def terminate(self, w):
 if w.pool:
 w.pool.terminate()

[docs] def create(self, w):
 semaphore = None
 max_restarts = None
 if w.app.conf.worker_pool in GREEN_POOLS: # pragma: no cover
 warnings.warn(UserWarning(W_POOL_SETTING))
 threaded = not w.use_eventloop or IS_WINDOWS
 procs = w.min_concurrency
 w.process_task = w._process_task
 if not threaded:
 semaphore = w.semaphore = LaxBoundedSemaphore(procs)
 w._quick_acquire = w.semaphore.acquire
 w._quick_release = w.semaphore.release
 max_restarts = 100
 if w.pool_putlocks and w.pool_cls.uses_semaphore:
 w.process_task = w._process_task_sem
 allow_restart = w.pool_restarts
 pool = w.pool = self.instantiate(
 w.pool_cls, w.min_concurrency,
 initargs=(w.app, w.hostname),
 maxtasksperchild=w.max_tasks_per_child,
 max_memory_per_child=w.max_memory_per_child,
 timeout=w.time_limit,
 soft_timeout=w.soft_time_limit,
 putlocks=w.pool_putlocks and threaded,
 lost_worker_timeout=w.worker_lost_wait,
 threads=threaded,
 max_restarts=max_restarts,
 allow_restart=allow_restart,
 forking_enable=True,
 semaphore=semaphore,
 sched_strategy=self.optimization,
 app=w.app,
)
 _set_task_join_will_block(pool.task_join_will_block)
 return pool

[docs] def info(self, w):
 return {'pool': w.pool.info if w.pool else 'N/A'}

[docs] def register_with_event_loop(self, w, hub):
 w.pool.register_with_event_loop(hub)

[docs]class Beat(bootsteps.StartStopStep):
 """Step used to embed a beat process.

 Enabled when the ``beat`` argument is set.
 """

 label = 'Beat'
 conditional = True

 def __init__(self, w, beat=False, **kwargs):
 self.enabled = w.beat = beat
 w.beat = None
 super().__init__(w, beat=beat, **kwargs)

[docs] def create(self, w):
 from celery.beat import EmbeddedService
 if w.pool_cls.__module__.endswith(('gevent', 'eventlet')):
 raise ImproperlyConfigured(ERR_B_GREEN)
 b = w.beat = EmbeddedService(w.app,
 schedule_filename=w.schedule_filename,
 scheduler_cls=w.scheduler)
 return b

[docs]class StateDB(bootsteps.Step):
 """Bootstep that sets up between-restart state database file."""

 def __init__(self, w, **kwargs):
 self.enabled = w.statedb
 w._persistence = None
 super().__init__(w, **kwargs)

[docs] def create(self, w):
 w._persistence = w.state.Persistent(w.state, w.statedb, w.app.clock)
 atexit.register(w._persistence.save)

[docs]class Consumer(bootsteps.StartStopStep):
 """Bootstep starting the Consumer blueprint."""

 last = True

[docs] def create(self, w):
 if w.max_concurrency:
 prefetch_count = max(w.max_concurrency, 1) * w.prefetch_multiplier
 else:
 prefetch_count = w.concurrency * w.prefetch_multiplier
 c = w.consumer = self.instantiate(
 w.consumer_cls, w.process_task,
 hostname=w.hostname,
 task_events=w.task_events,
 init_callback=w.ready_callback,
 initial_prefetch_count=prefetch_count,
 pool=w.pool,
 timer=w.timer,
 app=w.app,
 controller=w,
 hub=w.hub,
 worker_options=w.options,
 disable_rate_limits=w.disable_rate_limits,
 prefetch_multiplier=w.prefetch_multiplier,
)
 return c

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.worker.control

"""Worker remote control command implementations."""
import io
import tempfile
from collections import UserDict, namedtuple

from billiard.common import TERM_SIGNAME
from kombu.utils.encoding import safe_repr

from celery.exceptions import WorkerShutdown
from celery.platforms import signals as _signals
from celery.utils.functional import maybe_list
from celery.utils.log import get_logger
from celery.utils.serialization import jsonify, strtobool
from celery.utils.time import rate

from . import state as worker_state
from .request import Request

__all__ = ('Panel',)

DEFAULT_TASK_INFO_ITEMS = ('exchange', 'routing_key', 'rate_limit')
logger = get_logger(__name__)

controller_info_t = namedtuple('controller_info_t', [
 'alias', 'type', 'visible', 'default_timeout',
 'help', 'signature', 'args', 'variadic',
])

def ok(value):
 return {'ok': value}

def nok(value):
 return {'error': value}

[docs]class Panel(UserDict):
 """Global registry of remote control commands."""

 data = {} # global dict.
 meta = {} # -"-

[docs] @classmethod
 def register(cls, *args, **kwargs):
 if args:
 return cls._register(**kwargs)(*args)
 return cls._register(**kwargs)

 @classmethod
 def _register(cls, name=None, alias=None, type='control',
 visible=True, default_timeout=1.0, help=None,
 signature=None, args=None, variadic=None):

 def _inner(fun):
 control_name = name or fun.__name__
 _help = help or (fun.__doc__ or '').strip().split('\n')[0]
 cls.data[control_name] = fun
 cls.meta[control_name] = controller_info_t(
 alias, type, visible, default_timeout,
 _help, signature, args, variadic)
 if alias:
 cls.data[alias] = fun
 return fun
 return _inner

def control_command(**kwargs):
 return Panel.register(type='control', **kwargs)

def inspect_command(**kwargs):
 return Panel.register(type='inspect', **kwargs)

-- App

@inspect_command()
def report(state):
 """Information about Celery installation for bug reports."""
 return ok(state.app.bugreport())

@inspect_command(
 alias='dump_conf', # XXX < backwards compatible
 signature='[include_defaults=False]',
 args=[('with_defaults', strtobool)],
)
def conf(state, with_defaults=False, **kwargs):
 """List configuration."""
 return jsonify(state.app.conf.table(with_defaults=with_defaults),
 keyfilter=_wanted_config_key,
 unknown_type_filter=safe_repr)

def _wanted_config_key(key):
 return isinstance(key, str) and not key.startswith('__')

-- Task

@inspect_command(
 variadic='ids',
 signature='[id1 [id2 [... [idN]]]]',
)
def query_task(state, ids, **kwargs):
 """Query for task information by id."""
 return {
 req.id: (_state_of_task(req), req.info())
 for req in _find_requests_by_id(maybe_list(ids))
 }

def _find_requests_by_id(ids,
 get_request=worker_state.requests.__getitem__):
 for task_id in ids:
 try:
 yield get_request(task_id)
 except KeyError:
 pass

def _state_of_task(request,
 is_active=worker_state.active_requests.__contains__,
 is_reserved=worker_state.reserved_requests.__contains__):
 if is_active(request):
 return 'active'
 elif is_reserved(request):
 return 'reserved'
 return 'ready'

@control_command(
 variadic='task_id',
 signature='[id1 [id2 [... [idN]]]]',
)
def revoke(state, task_id, terminate=False, signal=None, **kwargs):
 """Revoke task by task id (or list of ids).

 Keyword Arguments:
 terminate (bool): Also terminate the process if the task is active.
 signal (str): Name of signal to use for terminate (e.g., ``KILL``).
 """
 # pylint: disable=redefined-outer-name
 # XXX Note that this redefines `terminate`:
 # Outside of this scope that is a function.
 # supports list argument since 3.1
 task_ids, task_id = set(maybe_list(task_id) or []), None
 size = len(task_ids)
 terminated = set()

 worker_state.revoked.update(task_ids)
 if terminate:
 signum = _signals.signum(signal or TERM_SIGNAME)
 for request in _find_requests_by_id(task_ids):
 if request.id not in terminated:
 terminated.add(request.id)
 logger.info('Terminating %s (%s)', request.id, signum)
 request.terminate(state.consumer.pool, signal=signum)
 if len(terminated) >= size:
 break

 if not terminated:
 return ok('terminate: tasks unknown')
 return ok('terminate: {}'.format(', '.join(terminated)))

 idstr = ', '.join(task_ids)
 logger.info('Tasks flagged as revoked: %s', idstr)
 return ok(f'tasks {idstr} flagged as revoked')

@control_command(
 variadic='task_id',
 args=[('signal', str)],
 signature='<signal> [id1 [id2 [... [idN]]]]'
)
def terminate(state, signal, task_id, **kwargs):
 """Terminate task by task id (or list of ids)."""
 return revoke(state, task_id, terminate=True, signal=signal)

@control_command(
 args=[('task_name', str), ('rate_limit', str)],
 signature='<task_name> <rate_limit (e.g., 5/s | 5/m | 5/h)>',
)
def rate_limit(state, task_name, rate_limit, **kwargs):
 """Tell worker(s) to modify the rate limit for a task by type.

 See Also:
 :attr:`celery.task.base.Task.rate_limit`.

 Arguments:
 task_name (str): Type of task to set rate limit for.
 rate_limit (int, str): New rate limit.
 """
 # pylint: disable=redefined-outer-name
 # XXX Note that this redefines `terminate`:
 # Outside of this scope that is a function.
 try:
 rate(rate_limit)
 except ValueError as exc:
 return nok(f'Invalid rate limit string: {exc!r}')

 try:
 state.app.tasks[task_name].rate_limit = rate_limit
 except KeyError:
 logger.error('Rate limit attempt for unknown task %s',
 task_name, exc_info=True)
 return nok('unknown task')

 state.consumer.reset_rate_limits()

 if not rate_limit:
 logger.info('Rate limits disabled for tasks of type %s', task_name)
 return ok('rate limit disabled successfully')

 logger.info('New rate limit for tasks of type %s: %s.',
 task_name, rate_limit)
 return ok('new rate limit set successfully')

@control_command(
 args=[('task_name', str), ('soft', float), ('hard', float)],
 signature='<task_name> <soft_secs> [hard_secs]',
)
def time_limit(state, task_name=None, hard=None, soft=None, **kwargs):
 """Tell worker(s) to modify the time limit for task by type.

 Arguments:
 task_name (str): Name of task to change.
 hard (float): Hard time limit.
 soft (float): Soft time limit.
 """
 try:
 task = state.app.tasks[task_name]
 except KeyError:
 logger.error('Change time limit attempt for unknown task %s',
 task_name, exc_info=True)
 return nok('unknown task')

 task.soft_time_limit = soft
 task.time_limit = hard

 logger.info('New time limits for tasks of type %s: soft=%s hard=%s',
 task_name, soft, hard)
 return ok('time limits set successfully')

-- Events

@inspect_command()
def clock(state, **kwargs):
 """Get current logical clock value."""
 return {'clock': state.app.clock.value}

@control_command()
def election(state, id, topic, action=None, **kwargs):
 """Hold election.

 Arguments:
 id (str): Unique election id.
 topic (str): Election topic.
 action (str): Action to take for elected actor.
 """
 if state.consumer.gossip:
 state.consumer.gossip.election(id, topic, action)

@control_command()
def enable_events(state):
 """Tell worker(s) to send task-related events."""
 dispatcher = state.consumer.event_dispatcher
 if dispatcher.groups and 'task' not in dispatcher.groups:
 dispatcher.groups.add('task')
 logger.info('Events of group {task} enabled by remote.')
 return ok('task events enabled')
 return ok('task events already enabled')

@control_command()
def disable_events(state):
 """Tell worker(s) to stop sending task-related events."""
 dispatcher = state.consumer.event_dispatcher
 if 'task' in dispatcher.groups:
 dispatcher.groups.discard('task')
 logger.info('Events of group {task} disabled by remote.')
 return ok('task events disabled')
 return ok('task events already disabled')

@control_command()
def heartbeat(state):
 """Tell worker(s) to send event heartbeat immediately."""
 logger.debug('Heartbeat requested by remote.')
 dispatcher = state.consumer.event_dispatcher
 dispatcher.send('worker-heartbeat', freq=5, **worker_state.SOFTWARE_INFO)

-- Worker

@inspect_command(visible=False)
def hello(state, from_node, revoked=None, **kwargs):
 """Request mingle sync-data."""
 # pylint: disable=redefined-outer-name
 # XXX Note that this redefines `revoked`:
 # Outside of this scope that is a function.
 if from_node != state.hostname:
 logger.info('sync with %s', from_node)
 if revoked:
 worker_state.revoked.update(revoked)
 return {
 'revoked': worker_state.revoked._data,
 'clock': state.app.clock.forward(),
 }

@inspect_command(default_timeout=0.2)
def ping(state, **kwargs):
 """Ping worker(s)."""
 return ok('pong')

@inspect_command()
def stats(state, **kwargs):
 """Request worker statistics/information."""
 return state.consumer.controller.stats()

@inspect_command(alias='dump_schedule')
def scheduled(state, **kwargs):
 """List of currently scheduled ETA/countdown tasks."""
 return list(_iter_schedule_requests(state.consumer.timer))

def _iter_schedule_requests(timer):
 for waiting in timer.schedule.queue:
 try:
 arg0 = waiting.entry.args[0]
 except (IndexError, TypeError):
 continue
 else:
 if isinstance(arg0, Request):
 yield {
 'eta': arg0.eta.isoformat() if arg0.eta else None,
 'priority': waiting.priority,
 'request': arg0.info(),
 }

@inspect_command(alias='dump_reserved')
def reserved(state, **kwargs):
 """List of currently reserved tasks, not including scheduled/active."""
 reserved_tasks = (
 state.tset(worker_state.reserved_requests) -
 state.tset(worker_state.active_requests)
)
 if not reserved_tasks:
 return []
 return [request.info() for request in reserved_tasks]

@inspect_command(alias='dump_active')
def active(state, **kwargs):
 """List of tasks currently being executed."""
 return [request.info()
 for request in state.tset(worker_state.active_requests)]

@inspect_command(alias='dump_revoked')
def revoked(state, **kwargs):
 """List of revoked task-ids."""
 return list(worker_state.revoked)

@inspect_command(
 alias='dump_tasks',
 variadic='taskinfoitems',
 signature='[attr1 [attr2 [... [attrN]]]]',
)
def registered(state, taskinfoitems=None, builtins=False, **kwargs):
 """List of registered tasks.

 Arguments:
 taskinfoitems (Sequence[str]): List of task attributes to include.
 Defaults to ``exchange,routing_key,rate_limit``.
 builtins (bool): Also include built-in tasks.
 """
 reg = state.app.tasks
 taskinfoitems = taskinfoitems or DEFAULT_TASK_INFO_ITEMS

 tasks = reg if builtins else (
 task for task in reg if not task.startswith('celery.'))

 def _extract_info(task):
 fields = {
 field: str(getattr(task, field, None)) for field in taskinfoitems
 if getattr(task, field, None) is not None
 }
 if fields:
 info = ['='.join(f) for f in fields.items()]
 return '{} [{}]'.format(task.name, ' '.join(info))
 return task.name

 return [_extract_info(reg[task]) for task in sorted(tasks)]

-- Debugging

@inspect_command(
 default_timeout=60.0,
 args=[('type', str), ('num', int), ('max_depth', int)],
 signature='[object_type=Request] [num=200 [max_depth=10]]',
)
def objgraph(state, num=200, max_depth=10, type='Request'): # pragma: no cover
 """Create graph of uncollected objects (memory-leak debugging).

 Arguments:
 num (int): Max number of objects to graph.
 max_depth (int): Traverse at most n levels deep.
 type (str): Name of object to graph. Default is ``"Request"``.
 """
 try:
 import objgraph as _objgraph
 except ImportError:
 raise ImportError('Requires the objgraph library')
 logger.info('Dumping graph for type %r', type)
 with tempfile.NamedTemporaryFile(prefix='cobjg',
 suffix='.png', delete=False) as fh:
 objects = _objgraph.by_type(type)[:num]
 _objgraph.show_backrefs(
 objects,
 max_depth=max_depth, highlight=lambda v: v in objects,
 filename=fh.name,
)
 return {'filename': fh.name}

@inspect_command()
def memsample(state, **kwargs):
 """Sample current RSS memory usage."""
 from celery.utils.debug import sample_mem
 return sample_mem()

@inspect_command(
 args=[('samples', int)],
 signature='[n_samples=10]',
)
def memdump(state, samples=10, **kwargs): # pragma: no cover
 """Dump statistics of previous memsample requests."""
 from celery.utils import debug
 out = io.StringIO()
 debug.memdump(file=out)
 return out.getvalue()

-- Pool

@control_command(
 args=[('n', int)],
 signature='[N=1]',
)
def pool_grow(state, n=1, **kwargs):
 """Grow pool by n processes/threads."""
 if state.consumer.controller.autoscaler:
 return nok("pool_grow is not supported with autoscale. Adjust autoscale range instead.")
 else:
 state.consumer.pool.grow(n)
 state.consumer._update_prefetch_count(n)
 return ok('pool will grow')

@control_command(
 args=[('n', int)],
 signature='[N=1]',
)
def pool_shrink(state, n=1, **kwargs):
 """Shrink pool by n processes/threads."""
 if state.consumer.controller.autoscaler:
 return nok("pool_shrink is not supported with autoscale. Adjust autoscale range instead.")
 else:
 state.consumer.pool.shrink(n)
 state.consumer._update_prefetch_count(-n)
 return ok('pool will shrink')

@control_command()
def pool_restart(state, modules=None, reload=False, reloader=None, **kwargs):
 """Restart execution pool."""
 if state.app.conf.worker_pool_restarts:
 state.consumer.controller.reload(modules, reload, reloader=reloader)
 return ok('reload started')
 else:
 raise ValueError('Pool restarts not enabled')

@control_command(
 args=[('max', int), ('min', int)],
 signature='[max [min]]',
)
def autoscale(state, max=None, min=None):
 """Modify autoscale settings."""
 autoscaler = state.consumer.controller.autoscaler
 if autoscaler:
 max_, min_ = autoscaler.update(max, min)
 return ok(f'autoscale now max={max_} min={min_}')
 raise ValueError('Autoscale not enabled')

@control_command()
def shutdown(state, msg='Got shutdown from remote', **kwargs):
 """Shutdown worker(s)."""
 logger.warning(msg)
 raise WorkerShutdown(msg)

-- Queues

@control_command(
 args=[
 ('queue', str),
 ('exchange', str),
 ('exchange_type', str),
 ('routing_key', str),
],
 signature='<queue> [exchange [type [routing_key]]]',
)
def add_consumer(state, queue, exchange=None, exchange_type=None,
 routing_key=None, **options):
 """Tell worker(s) to consume from task queue by name."""
 state.consumer.call_soon(
 state.consumer.add_task_queue,
 queue, exchange, exchange_type or 'direct', routing_key, **options)
 return ok(f'add consumer {queue}')

@control_command(
 args=[('queue', str)],
 signature='<queue>',
)
def cancel_consumer(state, queue, **_):
 """Tell worker(s) to stop consuming from task queue by name."""
 state.consumer.call_soon(
 state.consumer.cancel_task_queue, queue,
)
 return ok(f'no longer consuming from {queue}')

@inspect_command()
def active_queues(state):
 """List the task queues a worker is currently consuming from."""
 if state.consumer.task_consumer:
 return [dict(queue.as_dict(recurse=True))
 for queue in state.consumer.task_consumer.queues]
 return []

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.worker.heartbeat

"""Heartbeat service.

This is the internal thread responsible for sending heartbeat events
at regular intervals (may not be an actual thread).
"""
from celery.signals import heartbeat_sent
from celery.utils.sysinfo import load_average

from .state import SOFTWARE_INFO, active_requests, all_total_count

__all__ = ('Heart',)

[docs]class Heart:
 """Timer sending heartbeats at regular intervals.

 Arguments:
 timer (kombu.asynchronous.timer.Timer): Timer to use.
 eventer (celery.events.EventDispatcher): Event dispatcher
 to use.
 interval (float): Time in seconds between sending
 heartbeats. Default is 2 seconds.
 """

 def __init__(self, timer, eventer, interval=None):
 self.timer = timer
 self.eventer = eventer
 self.interval = float(interval or 2.0)
 self.tref = None

 # Make event dispatcher start/stop us when enabled/disabled.
 self.eventer.on_enabled.add(self.start)
 self.eventer.on_disabled.add(self.stop)

 # Only send heartbeat_sent signal if it has receivers.
 self._send_sent_signal = (
 heartbeat_sent.send if heartbeat_sent.receivers else None)

 def _send(self, event, retry=True):
 if self._send_sent_signal is not None:
 self._send_sent_signal(sender=self)
 return self.eventer.send(event, freq=self.interval,
 active=len(active_requests),
 processed=all_total_count[0],
 loadavg=load_average(),
 retry=retry,
 **SOFTWARE_INFO)

[docs] def start(self):
 if self.eventer.enabled:
 self._send('worker-online')
 self.tref = self.timer.call_repeatedly(
 self.interval, self._send, ('worker-heartbeat',),
)

[docs] def stop(self):
 if self.tref is not None:
 self.timer.cancel(self.tref)
 self.tref = None
 if self.eventer.enabled:
 self._send('worker-offline', retry=False)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.worker.loops

"""The consumers highly-optimized inner loop."""
import errno
import socket

from celery import bootsteps
from celery.exceptions import WorkerLostError
from celery.utils.log import get_logger

from . import state

__all__ = ('asynloop', 'synloop')

pylint: disable=redefined-outer-name
We cache globals and attribute lookups, so disable this warning.

logger = get_logger(__name__)

def _quick_drain(connection, timeout=0.1):
 try:
 connection.drain_events(timeout=timeout)
 except Exception as exc: # pylint: disable=broad-except
 exc_errno = getattr(exc, 'errno', None)
 if exc_errno is not None and exc_errno != errno.EAGAIN:
 raise

def _enable_amqheartbeats(timer, connection, rate=2.0):
 if connection:
 tick = connection.heartbeat_check
 heartbeat = connection.get_heartbeat_interval() # negotiated
 if heartbeat and connection.supports_heartbeats:
 timer.call_repeatedly(heartbeat / rate, tick, (rate,))

[docs]def asynloop(obj, connection, consumer, blueprint, hub, qos,
 heartbeat, clock, hbrate=2.0):
 """Non-blocking event loop."""
 RUN = bootsteps.RUN
 update_qos = qos.update
 errors = connection.connection_errors

 on_task_received = obj.create_task_handler()

 _enable_amqheartbeats(hub.timer, connection, rate=hbrate)

 consumer.on_message = on_task_received
 obj.controller.register_with_event_loop(hub)
 obj.register_with_event_loop(hub)
 consumer.consume()
 obj.on_ready()

 # did_start_ok will verify that pool processes were able to start,
 # but this will only work the first time we start, as
 # maxtasksperchild will mess up metrics.
 if not obj.restart_count and not obj.pool.did_start_ok():
 raise WorkerLostError('Could not start worker processes')

 # consumer.consume() may have prefetched up to our
 # limit - drain an event so we're in a clean state
 # prior to starting our event loop.
 if connection.transport.driver_type == 'amqp':
 hub.call_soon(_quick_drain, connection)

 # FIXME: Use loop.run_forever
 # Tried and works, but no time to test properly before release.
 hub.propagate_errors = errors
 loop = hub.create_loop()

 try:
 while blueprint.state == RUN and obj.connection:
 state.maybe_shutdown()

 # We only update QoS when there's no more messages to read.
 # This groups together qos calls, and makes sure that remote
 # control commands will be prioritized over task messages.
 if qos.prev != qos.value:
 update_qos()

 try:
 next(loop)
 except StopIteration:
 loop = hub.create_loop()
 finally:
 try:
 hub.reset()
 except Exception as exc: # pylint: disable=broad-except
 logger.exception(
 'Error cleaning up after event loop: %r', exc)

[docs]def synloop(obj, connection, consumer, blueprint, hub, qos,
 heartbeat, clock, hbrate=2.0, **kwargs):
 """Fallback blocking event loop for transports that doesn't support AIO."""
 RUN = bootsteps.RUN
 on_task_received = obj.create_task_handler()
 perform_pending_operations = obj.perform_pending_operations
 if getattr(obj.pool, 'is_green', False):
 _enable_amqheartbeats(obj.timer, connection, rate=hbrate)
 consumer.on_message = on_task_received
 consumer.consume()

 obj.on_ready()

 while blueprint.state == RUN and obj.connection:
 state.maybe_shutdown()
 if qos.prev != qos.value:
 qos.update()
 try:
 perform_pending_operations()
 connection.drain_events(timeout=2.0)
 except socket.timeout:
 pass
 except OSError:
 if blueprint.state == RUN:
 raise

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.worker.pidbox

"""Worker Pidbox (remote control)."""
import socket
import threading

from kombu.common import ignore_errors
from kombu.utils.encoding import safe_str

from celery.utils.collections import AttributeDict
from celery.utils.functional import pass1
from celery.utils.log import get_logger

from . import control

__all__ = ('Pidbox', 'gPidbox')

logger = get_logger(__name__)
debug, error, info = logger.debug, logger.error, logger.info

[docs]class Pidbox:
 """Worker mailbox."""

 consumer = None

 def __init__(self, c):
 self.c = c
 self.hostname = c.hostname
 self.node = c.app.control.mailbox.Node(
 safe_str(c.hostname),
 handlers=control.Panel.data,
 state=AttributeDict(
 app=c.app,
 hostname=c.hostname,
 consumer=c,
 tset=pass1 if c.controller.use_eventloop else set),
)
 self._forward_clock = self.c.app.clock.forward

[docs] def on_message(self, body, message):
 # just increase clock as clients usually don't
 # have a valid clock to adjust with.
 self._forward_clock()
 try:
 self.node.handle_message(body, message)
 except KeyError as exc:
 error('No such control command: %s', exc)
 except Exception as exc:
 error('Control command error: %r', exc, exc_info=True)
 self.reset()

[docs] def start(self, c):
 self.node.channel = c.connection.channel()
 self.consumer = self.node.listen(callback=self.on_message)
 self.consumer.on_decode_error = c.on_decode_error

[docs] def on_stop(self):
 pass

[docs] def stop(self, c):
 self.on_stop()
 self.consumer = self._close_channel(c)

[docs] def reset(self):
 self.stop(self.c)
 self.start(self.c)

 def _close_channel(self, c):
 if self.node and self.node.channel:
 ignore_errors(c, self.node.channel.close)

[docs] def shutdown(self, c):
 self.on_stop()
 if self.consumer:
 debug('Canceling broadcast consumer...')
 ignore_errors(c, self.consumer.cancel)
 self.stop(self.c)

[docs]class gPidbox(Pidbox):
 """Worker pidbox (greenlet)."""

 _node_shutdown = None
 _node_stopped = None
 _resets = 0

[docs] def start(self, c):
 c.pool.spawn_n(self.loop, c)

[docs] def on_stop(self):
 if self._node_stopped:
 self._node_shutdown.set()
 debug('Waiting for broadcast thread to shutdown...')
 self._node_stopped.wait()
 self._node_stopped = self._node_shutdown = None

[docs] def reset(self):
 self._resets += 1

 def _do_reset(self, c, connection):
 self._close_channel(c)
 self.node.channel = connection.channel()
 self.consumer = self.node.listen(callback=self.on_message)
 self.consumer.consume()

[docs] def loop(self, c):
 resets = [self._resets]
 shutdown = self._node_shutdown = threading.Event()
 stopped = self._node_stopped = threading.Event()
 try:
 with c.connection_for_read() as connection:
 info('pidbox: Connected to %s.', connection.as_uri())
 self._do_reset(c, connection)
 while not shutdown.is_set() and c.connection:
 if resets[0] < self._resets:
 resets[0] += 1
 self._do_reset(c, connection)
 try:
 connection.drain_events(timeout=1.0)
 except socket.timeout:
 pass
 finally:
 stopped.set()

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.worker.request

"""Task request.

This module defines the :class:`Request` class, that specifies
how tasks are executed.
"""
import logging
import sys
from datetime import datetime
from time import monotonic, time
from weakref import ref

from billiard.common import TERM_SIGNAME
from kombu.utils.encoding import safe_repr, safe_str
from kombu.utils.objects import cached_property

from celery import signals
from celery.app.task import Context
from celery.app.trace import trace_task, trace_task_ret
from celery.exceptions import (Ignore, InvalidTaskError, Reject, Retry,
 TaskRevokedError, Terminated,
 TimeLimitExceeded, WorkerLostError)
from celery.platforms import signals as _signals
from celery.utils.functional import maybe, noop
from celery.utils.log import get_logger
from celery.utils.nodenames import gethostname
from celery.utils.serialization import get_pickled_exception
from celery.utils.time import maybe_iso8601, maybe_make_aware, timezone

from . import state

__all__ = ('Request',)

pylint: disable=redefined-outer-name
We cache globals and attribute lookups, so disable this warning.

IS_PYPY = hasattr(sys, 'pypy_version_info')

logger = get_logger(__name__)
debug, info, warn, error = (logger.debug, logger.info,
 logger.warning, logger.error)
_does_info = False
_does_debug = False

def __optimize__():
 # this is also called by celery.app.trace.setup_worker_optimizations
 global _does_debug
 global _does_info
 _does_debug = logger.isEnabledFor(logging.DEBUG)
 _does_info = logger.isEnabledFor(logging.INFO)

__optimize__() # noqa: E305

Localize
tz_or_local = timezone.tz_or_local
send_revoked = signals.task_revoked.send

task_accepted = state.task_accepted
task_ready = state.task_ready
revoked_tasks = state.revoked

[docs]class Request:
 """A request for task execution."""

 acknowledged = False
 time_start = None
 worker_pid = None
 time_limits = (None, None)
 _already_revoked = False
 _terminate_on_ack = None
 _apply_result = None
 _tzlocal = None

 if not IS_PYPY: # pragma: no cover
 __slots__ = (
 '_app', '_type', 'name', 'id', '_root_id', '_parent_id',
 '_on_ack', '_body', '_hostname', '_eventer', '_connection_errors',
 '_task', '_eta', '_expires', '_request_dict', '_on_reject', '_utc',
 '_content_type', '_content_encoding', '_argsrepr', '_kwargsrepr',
 '_args', '_kwargs', '_decoded', '__payload',
 '__weakref__', '__dict__',
)

 def __init__(self, message, on_ack=noop,
 hostname=None, eventer=None, app=None,
 connection_errors=None, request_dict=None,
 task=None, on_reject=noop, body=None,
 headers=None, decoded=False, utc=True,
 maybe_make_aware=maybe_make_aware,
 maybe_iso8601=maybe_iso8601, **opts):
 self._message = message
 self._request_dict = message.headers if headers is None else headers
 self._body = message.body if body is None else body
 self._app = app
 self._utc = utc
 self._decoded = decoded
 if decoded:
 self._content_type = self._content_encoding = None
 else:
 self._content_type, self._content_encoding = (
 message.content_type, message.content_encoding,
)
 self.__payload = self._body if self._decoded else message.payload
 self.id = self._request_dict['id']
 self._type = self.name = self._request_dict['task']
 if 'shadow' in self._request_dict:
 self.name = self._request_dict['shadow'] or self.name
 self._root_id = self._request_dict.get('root_id')
 self._parent_id = self._request_dict.get('parent_id')
 timelimit = self._request_dict.get('timelimit', None)
 if timelimit:
 self.time_limits = timelimit
 self._argsrepr = self._request_dict.get('argsrepr', '')
 self._kwargsrepr = self._request_dict.get('kwargsrepr', '')
 self._on_ack = on_ack
 self._on_reject = on_reject
 self._hostname = hostname or gethostname()
 self._eventer = eventer
 self._connection_errors = connection_errors or ()
 self._task = task or self._app.tasks[self._type]

 # timezone means the message is timezone-aware, and the only timezone
 # supported at this point is UTC.
 eta = self._request_dict.get('eta')
 if eta is not None:
 try:
 eta = maybe_iso8601(eta)
 except (AttributeError, ValueError, TypeError) as exc:
 raise InvalidTaskError(
 f'invalid ETA value {eta!r}: {exc}')
 self._eta = maybe_make_aware(eta, self.tzlocal)
 else:
 self._eta = None

 expires = self._request_dict.get('expires')
 if expires is not None:
 try:
 expires = maybe_iso8601(expires)
 except (AttributeError, ValueError, TypeError) as exc:
 raise InvalidTaskError(
 f'invalid expires value {expires!r}: {exc}')
 self._expires = maybe_make_aware(expires, self.tzlocal)
 else:
 self._expires = None

 delivery_info = message.delivery_info or {}
 properties = message.properties or {}
 self._delivery_info = {
 'exchange': delivery_info.get('exchange'),
 'routing_key': delivery_info.get('routing_key'),
 'priority': properties.get('priority'),
 'redelivered': delivery_info.get('redelivered'),
 }
 self._request_dict.update({
 'reply_to': properties.get('reply_to'),
 'correlation_id': properties.get('correlation_id'),
 'hostname': self._hostname,
 'delivery_info': self._delivery_info
 })
 # this is a reference pass to avoid memory usage burst
 self._request_dict['args'], self._request_dict['kwargs'], _ = self.__payload
 self._args = self._request_dict['args']
 self._kwargs = self._request_dict['kwargs']

 @property
 def delivery_info(self):
 return self._delivery_info

 @property
 def message(self):
 return self._message

 @property
 def request_dict(self):
 return self._request_dict

 @property
 def body(self):
 return self._body

 @property
 def app(self):
 return self._app

 @property
 def utc(self):
 return self._utc

 @property
 def content_type(self):
 return self._content_type

 @property
 def content_encoding(self):
 return self._content_encoding

 @property
 def type(self):
 return self._type

 @property
 def root_id(self):
 return self._root_id

 @property
 def parent_id(self):
 return self._parent_id

 @property
 def argsrepr(self):
 return self._argsrepr

 @property
 def args(self):
 return self._args

 @property
 def kwargs(self):
 return self._kwargs

 @property
 def kwargsrepr(self):
 return self._kwargsrepr

 @property
 def on_ack(self):
 return self._on_ack

 @property
 def on_reject(self):
 return self._on_reject

 @on_reject.setter
 def on_reject(self, value):
 self._on_reject = value

 @property
 def hostname(self):
 return self._hostname

 @property
 def eventer(self):
 return self._eventer

 @eventer.setter
 def eventer(self, eventer):
 self._eventer = eventer

 @property
 def connection_errors(self):
 return self._connection_errors

 @property
 def task(self):
 return self._task

 @property
 def eta(self):
 return self._eta

 @property
 def expires(self):
 return self._expires

 @expires.setter
 def expires(self, value):
 self._expires = value

 @property
 def tzlocal(self):
 if self._tzlocal is None:
 self._tzlocal = self._app.conf.timezone
 return self._tzlocal

 @property
 def store_errors(self):
 return (not self.task.ignore_result or
 self.task.store_errors_even_if_ignored)

 @property
 def task_id(self):
 # XXX compat
 return self.id

 @task_id.setter # noqa
 def task_id(self, value):
 self.id = value

 @property
 def task_name(self):
 # XXX compat
 return self.name

 @task_name.setter # noqa
 def task_name(self, value):
 self.name = value

 @property
 def reply_to(self):
 # used by rpc backend when failures reported by parent process
 return self._request_dict['reply_to']

 @property
 def correlation_id(self):
 # used similarly to reply_to
 return self._request_dict['correlation_id']

[docs] def execute_using_pool(self, pool, **kwargs):
 """Used by the worker to send this task to the pool.

 Arguments:
 pool (~celery.concurrency.base.TaskPool): The execution pool
 used to execute this request.

 Raises:
 celery.exceptions.TaskRevokedError: if the task was revoked.
 """
 task_id = self.id
 task = self._task
 if self.revoked():
 raise TaskRevokedError(task_id)

 time_limit, soft_time_limit = self.time_limits
 result = pool.apply_async(
 trace_task_ret,
 args=(self._type, task_id, self._request_dict, self._body,
 self._content_type, self._content_encoding),
 accept_callback=self.on_accepted,
 timeout_callback=self.on_timeout,
 callback=self.on_success,
 error_callback=self.on_failure,
 soft_timeout=soft_time_limit or task.soft_time_limit,
 timeout=time_limit or task.time_limit,
 correlation_id=task_id,
)
 # cannot create weakref to None
 self._apply_result = maybe(ref, result)
 return result

[docs] def execute(self, loglevel=None, logfile=None):
 """Execute the task in a :func:`~celery.app.trace.trace_task`.

 Arguments:
 loglevel (int): The loglevel used by the task.
 logfile (str): The logfile used by the task.
 """
 if self.revoked():
 return

 # acknowledge task as being processed.
 if not self.task.acks_late:
 self.acknowledge()

 _, _, embed = self._payload
 request = self._request_dict
 # pylint: disable=unpacking-non-sequence
 # payload is a property, so pylint doesn't think it's a tuple.
 request.update({
 'loglevel': loglevel,
 'logfile': logfile,
 'is_eager': False,
 }, **embed or {})

 retval, I, _, _ = trace_task(self.task, self.id, self._args, self._kwargs, request,
 hostname=self._hostname, loader=self._app.loader,
 app=self._app)

 if I:
 self.reject(requeue=False)
 else:
 self.acknowledge()
 return retval

[docs] def maybe_expire(self):
 """If expired, mark the task as revoked."""
 if self._expires:
 now = datetime.now(self._expires.tzinfo)
 if now > self._expires:
 revoked_tasks.add(self.id)
 return True

[docs] def terminate(self, pool, signal=None):
 signal = _signals.signum(signal or TERM_SIGNAME)
 if self.time_start:
 pool.terminate_job(self.worker_pid, signal)
 self._announce_revoked('terminated', True, signal, False)
 else:
 self._terminate_on_ack = pool, signal
 if self._apply_result is not None:
 obj = self._apply_result() # is a weakref
 if obj is not None:
 obj.terminate(signal)

 def _announce_revoked(self, reason, terminated, signum, expired):
 task_ready(self)
 self.send_event('task-revoked',
 terminated=terminated, signum=signum, expired=expired)
 self.task.backend.mark_as_revoked(
 self.id, reason, request=self._context,
 store_result=self.store_errors,
)
 self.acknowledge()
 self._already_revoked = True
 send_revoked(self.task, request=self._context,
 terminated=terminated, signum=signum, expired=expired)

[docs] def revoked(self):
 """If revoked, skip task and mark state."""
 expired = False
 if self._already_revoked:
 return True
 if self._expires:
 expired = self.maybe_expire()
 if self.id in revoked_tasks:
 info('Discarding revoked task: %s[%s]', self.name, self.id)
 self._announce_revoked(
 'expired' if expired else 'revoked', False, None, expired,
)
 return True
 return False

[docs] def send_event(self, type, **fields):
 if self._eventer and self._eventer.enabled and self.task.send_events:
 self._eventer.send(type, uuid=self.id, **fields)

[docs] def on_accepted(self, pid, time_accepted):
 """Handler called when task is accepted by worker pool."""
 self.worker_pid = pid
 # Convert monotonic time_accepted to absolute time
 self.time_start = time() - (monotonic() - time_accepted)
 task_accepted(self)
 if not self.task.acks_late:
 self.acknowledge()
 self.send_event('task-started')
 if _does_debug:
 debug('Task accepted: %s[%s] pid:%r', self.name, self.id, pid)
 if self._terminate_on_ack is not None:
 self.terminate(*self._terminate_on_ack)

[docs] def on_timeout(self, soft, timeout):
 """Handler called if the task times out."""
 if soft:
 warn('Soft time limit (%ss) exceeded for %s[%s]',
 timeout, self.name, self.id)
 else:
 task_ready(self)
 error('Hard time limit (%ss) exceeded for %s[%s]',
 timeout, self.name, self.id)
 exc = TimeLimitExceeded(timeout)

 self.task.backend.mark_as_failure(
 self.id, exc, request=self._context,
 store_result=self.store_errors,
)

 if self.task.acks_late and self.task.acks_on_failure_or_timeout:
 self.acknowledge()

[docs] def on_success(self, failed__retval__runtime, **kwargs):
 """Handler called if the task was successfully processed."""
 failed, retval, runtime = failed__retval__runtime
 if failed:
 if isinstance(retval.exception, (SystemExit, KeyboardInterrupt)):
 raise retval.exception
 return self.on_failure(retval, return_ok=True)
 task_ready(self)

 if self.task.acks_late:
 self.acknowledge()

 self.send_event('task-succeeded', result=retval, runtime=runtime)

[docs] def on_retry(self, exc_info):
 """Handler called if the task should be retried."""
 if self.task.acks_late:
 self.acknowledge()

 self.send_event('task-retried',
 exception=safe_repr(exc_info.exception.exc),
 traceback=safe_str(exc_info.traceback))

[docs] def on_failure(self, exc_info, send_failed_event=True, return_ok=False):
 """Handler called if the task raised an exception."""
 task_ready(self)
 if isinstance(exc_info.exception, MemoryError):
 raise MemoryError(f'Process got: {exc_info.exception}')
 elif isinstance(exc_info.exception, Reject):
 return self.reject(requeue=exc_info.exception.requeue)
 elif isinstance(exc_info.exception, Ignore):
 return self.acknowledge()

 exc = exc_info.exception

 if isinstance(exc, Retry):
 return self.on_retry(exc_info)

 # (acks_late) acknowledge after result stored.
 requeue = False
 if self.task.acks_late:
 reject = (
 self.task.reject_on_worker_lost and
 isinstance(exc, WorkerLostError)
)
 ack = self.task.acks_on_failure_or_timeout
 if reject:
 requeue = True
 self.reject(requeue=requeue)
 send_failed_event = False
 elif ack:
 self.acknowledge()
 else:
 # supporting the behaviour where a task failed and
 # need to be removed from prefetched local queue
 self.reject(requeue=False)

 # These are special cases where the process would not have had time
 # to write the result.
 if isinstance(exc, Terminated):
 self._announce_revoked(
 'terminated', True, str(exc), False)
 send_failed_event = False # already sent revoked event
 elif not requeue and (isinstance(exc, WorkerLostError) or not return_ok):
 # only mark as failure if task has not been requeued
 self.task.backend.mark_as_failure(
 self.id, exc, request=self._context,
 store_result=self.store_errors,
)

 if send_failed_event:
 self.send_event(
 'task-failed',
 exception=safe_repr(get_pickled_exception(exc_info.exception)),
 traceback=exc_info.traceback,
)

 if not return_ok:
 error('Task handler raised error: %r', exc,
 exc_info=exc_info.exc_info)

[docs] def acknowledge(self):
 """Acknowledge task."""
 if not self.acknowledged:
 self._on_ack(logger, self._connection_errors)
 self.acknowledged = True

[docs] def reject(self, requeue=False):
 if not self.acknowledged:
 self._on_reject(logger, self._connection_errors, requeue)
 self.acknowledged = True
 self.send_event('task-rejected', requeue=requeue)

[docs] def info(self, safe=False):
 return {
 'id': self.id,
 'name': self.name,
 'args': self._args,
 'kwargs': self._kwargs,
 'type': self._type,
 'hostname': self._hostname,
 'time_start': self.time_start,
 'acknowledged': self.acknowledged,
 'delivery_info': self.delivery_info,
 'worker_pid': self.worker_pid,
 }

[docs] def humaninfo(self):
 return '{0.name}[{0.id}]'.format(self)

 def __str__(self):
 """``str(self)``."""
 return ' '.join([
 self.humaninfo(),
 f' ETA:[{self._eta}]' if self._eta else '',
 f' expires:[{self._expires}]' if self._expires else '',
])

 def __repr__(self):
 """``repr(self)``."""
 return '<{}: {} {} {}>'.format(
 type(self).__name__, self.humaninfo(),
 self._argsrepr, self._kwargsrepr,
)

 @cached_property
 def _payload(self):
 return self.__payload

[docs] @cached_property
 def chord(self):
 # used by backend.mark_as_failure when failure is reported
 # by parent process
 # pylint: disable=unpacking-non-sequence
 # payload is a property, so pylint doesn't think it's a tuple.
 _, _, embed = self._payload
 return embed.get('chord')

[docs] @cached_property
 def errbacks(self):
 # used by backend.mark_as_failure when failure is reported
 # by parent process
 # pylint: disable=unpacking-non-sequence
 # payload is a property, so pylint doesn't think it's a tuple.
 _, _, embed = self._payload
 return embed.get('errbacks')

[docs] @cached_property
 def group(self):
 # used by backend.on_chord_part_return when failures reported
 # by parent process
 return self._request_dict.get('group')

 @cached_property
 def _context(self):
 """Context (:class:`~celery.app.task.Context`) of this task."""
 request = self._request_dict
 # pylint: disable=unpacking-non-sequence
 # payload is a property, so pylint doesn't think it's a tuple.
 _, _, embed = self._payload
 request.update(**embed or {})
 return Context(request)

[docs] @cached_property
 def group_index(self):
 # used by backend.on_chord_part_return to order return values in group
 return self._request_dict.get('group_index')

def create_request_cls(base, task, pool, hostname, eventer,
 ref=ref, revoked_tasks=revoked_tasks,
 task_ready=task_ready, trace=trace_task_ret):
 default_time_limit = task.time_limit
 default_soft_time_limit = task.soft_time_limit
 apply_async = pool.apply_async
 acks_late = task.acks_late
 events = eventer and eventer.enabled

 class Request(base):

 def execute_using_pool(self, pool, **kwargs):
 task_id = self.task_id
 if (self.expires or task_id in revoked_tasks) and self.revoked():
 raise TaskRevokedError(task_id)

 time_limit, soft_time_limit = self.time_limits
 result = apply_async(
 trace,
 args=(self.type, task_id, self.request_dict, self.body,
 self.content_type, self.content_encoding),
 accept_callback=self.on_accepted,
 timeout_callback=self.on_timeout,
 callback=self.on_success,
 error_callback=self.on_failure,
 soft_timeout=soft_time_limit or default_soft_time_limit,
 timeout=time_limit or default_time_limit,
 correlation_id=task_id,
)
 # cannot create weakref to None
 # pylint: disable=attribute-defined-outside-init
 self._apply_result = maybe(ref, result)
 return result

 def on_success(self, failed__retval__runtime, **kwargs):
 failed, retval, runtime = failed__retval__runtime
 if failed:
 if isinstance(retval.exception, (
 SystemExit, KeyboardInterrupt)):
 raise retval.exception
 return self.on_failure(retval, return_ok=True)
 task_ready(self)

 if acks_late:
 self.acknowledge()

 if events:
 self.send_event(
 'task-succeeded', result=retval, runtime=runtime,
)

 return Request

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.worker.state

"""Internal worker state (global).

This includes the currently active and reserved tasks,
statistics, and revoked tasks.
"""
import os
import platform
import shelve
import sys
import weakref
import zlib
from collections import Counter

from kombu.serialization import pickle, pickle_protocol
from kombu.utils.objects import cached_property

from celery import __version__
from celery.exceptions import WorkerShutdown, WorkerTerminate
from celery.utils.collections import LimitedSet

__all__ = (
 'SOFTWARE_INFO', 'reserved_requests', 'active_requests',
 'total_count', 'revoked', 'task_reserved', 'maybe_shutdown',
 'task_accepted', 'task_ready', 'Persistent',
)

#: Worker software/platform information.
SOFTWARE_INFO = {
 'sw_ident': 'py-celery',
 'sw_ver': __version__,
 'sw_sys': platform.system(),
}

#: maximum number of revokes to keep in memory.
REVOKES_MAX = 50000

#: how many seconds a revoke will be active before
#: being expired when the max limit has been exceeded.
REVOKE_EXPIRES = 10800

#: Mapping of reserved task_id->Request.
requests = {}

#: set of all reserved :class:`~celery.worker.request.Request`'s.
reserved_requests = weakref.WeakSet()

#: set of currently active :class:`~celery.worker.request.Request`'s.
active_requests = weakref.WeakSet()

#: count of tasks accepted by the worker, sorted by type.
total_count = Counter()

#: count of all tasks accepted by the worker
all_total_count = [0]

#: the list of currently revoked tasks. Persistent if ``statedb`` set.
revoked = LimitedSet(maxlen=REVOKES_MAX, expires=REVOKE_EXPIRES)

should_stop = None
should_terminate = None

def reset_state():
 requests.clear()
 reserved_requests.clear()
 active_requests.clear()
 total_count.clear()
 all_total_count[:] = [0]
 revoked.clear()

[docs]def maybe_shutdown():
 """Shutdown if flags have been set."""
 if should_terminate is not None and should_terminate is not False:
 raise WorkerTerminate(should_terminate)
 elif should_stop is not None and should_stop is not False:
 raise WorkerShutdown(should_stop)

def task_reserved(request,
 add_request=requests.__setitem__,
 add_reserved_request=reserved_requests.add):
 """Update global state when a task has been reserved."""
 add_request(request.id, request)
 add_reserved_request(request)

[docs]def task_accepted(request,
 _all_total_count=None,
 add_active_request=active_requests.add,
 add_to_total_count=total_count.update):
 """Update global state when a task has been accepted."""
 if not _all_total_count:
 _all_total_count = all_total_count
 add_active_request(request)
 add_to_total_count({request.name: 1})
 all_total_count[0] += 1

def task_ready(request,
 remove_request=requests.pop,
 discard_active_request=active_requests.discard,
 discard_reserved_request=reserved_requests.discard):
 """Update global state when a task is ready."""
 remove_request(request.id, None)
 discard_active_request(request)
 discard_reserved_request(request)

C_BENCH = os.environ.get('C_BENCH') or os.environ.get('CELERY_BENCH')
C_BENCH_EVERY = int(os.environ.get('C_BENCH_EVERY') or
 os.environ.get('CELERY_BENCH_EVERY') or 1000)
if C_BENCH: # pragma: no cover
 import atexit
 from time import monotonic

 from billiard.process import current_process

 from celery.utils.debug import memdump, sample_mem

 all_count = 0
 bench_first = None
 bench_start = None
 bench_last = None
 bench_every = C_BENCH_EVERY
 bench_sample = []
 __reserved = task_reserved
 __ready = task_ready

 if current_process()._name == 'MainProcess':
 @atexit.register
 def on_shutdown():
 if bench_first is not None and bench_last is not None:
 print('- Time spent in benchmark: {!r}'.format(
 bench_last - bench_first))
 print('- Avg: {}'.format(
 sum(bench_sample) / len(bench_sample)))
 memdump()

[docs] def task_reserved(request): # noqa
 """Called when a task is reserved by the worker."""
 global bench_start
 global bench_first
 now = None
 if bench_start is None:
 bench_start = now = monotonic()
 if bench_first is None:
 bench_first = now

 return __reserved(request)

[docs] def task_ready(request): # noqa
 """Called when a task is completed."""
 global all_count
 global bench_start
 global bench_last
 all_count += 1
 if not all_count % bench_every:
 now = monotonic()
 diff = now - bench_start
 print('- Time spent processing {} tasks (since first '
 'task received): ~{:.4f}s\n'.format(bench_every, diff))
 sys.stdout.flush()
 bench_start = bench_last = now
 bench_sample.append(diff)
 sample_mem()
 return __ready(request)

[docs]class Persistent:
 """Stores worker state between restarts.

 This is the persistent data stored by the worker when
 :option:`celery worker --statedb` is enabled.

 Currently only stores revoked task id's.
 """

 storage = shelve
 protocol = pickle_protocol
 compress = zlib.compress
 decompress = zlib.decompress
 _is_open = False

 def __init__(self, state, filename, clock=None):
 self.state = state
 self.filename = filename
 self.clock = clock
 self.merge()

[docs] def open(self):
 return self.storage.open(
 self.filename, protocol=self.protocol, writeback=True,
)

[docs] def merge(self):
 self._merge_with(self.db)

[docs] def sync(self):
 self._sync_with(self.db)
 self.db.sync()

[docs] def close(self):
 if self._is_open:
 self.db.close()
 self._is_open = False

[docs] def save(self):
 self.sync()
 self.close()

 def _merge_with(self, d):
 self._merge_revoked(d)
 self._merge_clock(d)
 return d

 def _sync_with(self, d):
 self._revoked_tasks.purge()
 d.update({
 '__proto__': 3,
 'zrevoked': self.compress(self._dumps(self._revoked_tasks)),
 'clock': self.clock.forward() if self.clock else 0,
 })
 return d

 def _merge_clock(self, d):
 if self.clock:
 d['clock'] = self.clock.adjust(d.get('clock') or 0)

 def _merge_revoked(self, d):
 try:
 self._merge_revoked_v3(d['zrevoked'])
 except KeyError:
 try:
 self._merge_revoked_v2(d.pop('revoked'))
 except KeyError:
 pass
 # purge expired items at boot
 self._revoked_tasks.purge()

 def _merge_revoked_v3(self, zrevoked):
 if zrevoked:
 self._revoked_tasks.update(pickle.loads(self.decompress(zrevoked)))

 def _merge_revoked_v2(self, saved):
 if not isinstance(saved, LimitedSet):
 # (pre 3.0.18) used to be stored as a dict
 return self._merge_revoked_v1(saved)
 self._revoked_tasks.update(saved)

 def _merge_revoked_v1(self, saved):
 add = self._revoked_tasks.add
 for item in saved:
 add(item)

 def _dumps(self, obj):
 return pickle.dumps(obj, protocol=self.protocol)

 @property
 def _revoked_tasks(self):
 return self.state.revoked

[docs] @cached_property
 def db(self):
 self._is_open = True
 return self.open()

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.worker.strategy

"""Task execution strategy (optimization)."""
import logging

from kombu.asynchronous.timer import to_timestamp

from celery import signals
from celery.exceptions import InvalidTaskError
from celery.utils.imports import symbol_by_name
from celery.utils.log import get_logger
from celery.utils.saferepr import saferepr
from celery.utils.time import timezone

from .request import create_request_cls
from .state import task_reserved

__all__ = ('default',)

logger = get_logger(__name__)

pylint: disable=redefined-outer-name
We cache globals and attribute lookups, so disable this warning.

def hybrid_to_proto2(message, body):
 """Create a fresh protocol 2 message from a hybrid protocol 1/2 message."""
 try:
 args, kwargs = body.get('args', ()), body.get('kwargs', {})
 kwargs.items # pylint: disable=pointless-statement
 except KeyError:
 raise InvalidTaskError('Message does not have args/kwargs')
 except AttributeError:
 raise InvalidTaskError(
 'Task keyword arguments must be a mapping',
)

 headers = {
 'lang': body.get('lang'),
 'task': body.get('task'),
 'id': body.get('id'),
 'root_id': body.get('root_id'),
 'parent_id': body.get('parent_id'),
 'group': body.get('group'),
 'meth': body.get('meth'),
 'shadow': body.get('shadow'),
 'eta': body.get('eta'),
 'expires': body.get('expires'),
 'retries': body.get('retries', 0),
 'timelimit': body.get('timelimit', (None, None)),
 'argsrepr': body.get('argsrepr'),
 'kwargsrepr': body.get('kwargsrepr'),
 'origin': body.get('origin'),
 }
 headers.update(message.headers or {})

 embed = {
 'callbacks': body.get('callbacks'),
 'errbacks': body.get('errbacks'),
 'chord': body.get('chord'),
 'chain': None,
 }

 return (args, kwargs, embed), headers, True, body.get('utc', True)

def proto1_to_proto2(message, body):
 """Convert Task message protocol 1 arguments to protocol 2.

 Returns:
 Tuple: of ``(body, headers, already_decoded_status, utc)``
 """
 try:
 args, kwargs = body.get('args', ()), body.get('kwargs', {})
 kwargs.items # pylint: disable=pointless-statement
 except KeyError:
 raise InvalidTaskError('Message does not have args/kwargs')
 except AttributeError:
 raise InvalidTaskError(
 'Task keyword arguments must be a mapping',
)
 body.update(
 argsrepr=saferepr(args),
 kwargsrepr=saferepr(kwargs),
 headers=message.headers,
)
 try:
 body['group'] = body['taskset']
 except KeyError:
 pass
 embed = {
 'callbacks': body.get('callbacks'),
 'errbacks': body.get('errbacks'),
 'chord': body.get('chord'),
 'chain': None,
 }
 return (args, kwargs, embed), body, True, body.get('utc', True)

[docs]def default(task, app, consumer,
 info=logger.info, error=logger.error, task_reserved=task_reserved,
 to_system_tz=timezone.to_system, bytes=bytes,
 proto1_to_proto2=proto1_to_proto2):
 """Default task execution strategy.

 Note:
 Strategies are here as an optimization, so sadly
 it's not very easy to override.
 """
 hostname = consumer.hostname
 connection_errors = consumer.connection_errors
 _does_info = logger.isEnabledFor(logging.INFO)

 # task event related
 # (optimized to avoid calling request.send_event)
 eventer = consumer.event_dispatcher
 events = eventer and eventer.enabled
 send_event = eventer and eventer.send
 task_sends_events = events and task.send_events

 call_at = consumer.timer.call_at
 apply_eta_task = consumer.apply_eta_task
 rate_limits_enabled = not consumer.disable_rate_limits
 get_bucket = consumer.task_buckets.__getitem__
 handle = consumer.on_task_request
 limit_task = consumer._limit_task
 limit_post_eta = consumer._limit_post_eta
 Request = symbol_by_name(task.Request)
 Req = create_request_cls(Request, task, consumer.pool, hostname, eventer)

 revoked_tasks = consumer.controller.state.revoked

 def task_message_handler(message, body, ack, reject, callbacks,
 to_timestamp=to_timestamp):
 if body is None and 'args' not in message.payload:
 body, headers, decoded, utc = (
 message.body, message.headers, False, app.uses_utc_timezone(),
)
 else:
 if 'args' in message.payload:
 body, headers, decoded, utc = hybrid_to_proto2(message,
 message.payload)
 else:
 body, headers, decoded, utc = proto1_to_proto2(message, body)

 req = Req(
 message,
 on_ack=ack, on_reject=reject, app=app, hostname=hostname,
 eventer=eventer, task=task, connection_errors=connection_errors,
 body=body, headers=headers, decoded=decoded, utc=utc,
)
 if _does_info:
 info('Received task: %s', req)
 if (req.expires or req.id in revoked_tasks) and req.revoked():
 return

 signals.task_received.send(sender=consumer, request=req)

 if task_sends_events:
 send_event(
 'task-received',
 uuid=req.id, name=req.name,
 args=req.argsrepr, kwargs=req.kwargsrepr,
 root_id=req.root_id, parent_id=req.parent_id,
 retries=req.request_dict.get('retries', 0),
 eta=req.eta and req.eta.isoformat(),
 expires=req.expires and req.expires.isoformat(),
)

 bucket = None
 eta = None
 if req.eta:
 try:
 if req.utc:
 eta = to_timestamp(to_system_tz(req.eta))
 else:
 eta = to_timestamp(req.eta, app.timezone)
 except (OverflowError, ValueError) as exc:
 error("Couldn't convert ETA %r to timestamp: %r. Task: %r",
 req.eta, exc, req.info(safe=True), exc_info=True)
 req.reject(requeue=False)
 if rate_limits_enabled:
 bucket = get_bucket(task.name)

 if eta and bucket:
 consumer.qos.increment_eventually()
 return call_at(eta, limit_post_eta, (req, bucket, 1),
 priority=6)
 if eta:
 consumer.qos.increment_eventually()
 call_at(eta, apply_eta_task, (req,), priority=6)
 return task_message_handler
 if bucket:
 return limit_task(req, bucket, 1)

 task_reserved(req)
 if callbacks:
 [callback(req) for callback in callbacks]
 handle(req)
 return task_message_handler

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.worker.worker

"""WorkController can be used to instantiate in-process workers.

The command-line interface for the worker is in :mod:`celery.bin.worker`,
while the worker program is in :mod:`celery.apps.worker`.

The worker program is responsible for adding signal handlers,
setting up logging, etc. This is a bare-bones worker without
global side-effects (i.e., except for the global state stored in
:mod:`celery.worker.state`).

The worker consists of several components, all managed by bootsteps
(mod:`celery.bootsteps`).
"""

import os
import sys
from datetime import datetime

from billiard import cpu_count
from kombu.utils.compat import detect_environment

from celery import bootsteps
from celery import concurrency as _concurrency
from celery import signals
from celery.bootsteps import RUN, TERMINATE
from celery.exceptions import (ImproperlyConfigured, TaskRevokedError,
 WorkerTerminate)
from celery.platforms import EX_FAILURE, create_pidlock
from celery.utils.imports import reload_from_cwd
from celery.utils.log import mlevel
from celery.utils.log import worker_logger as logger
from celery.utils.nodenames import default_nodename, worker_direct
from celery.utils.text import str_to_list
from celery.utils.threads import default_socket_timeout

from . import state

try:
 import resource
except ImportError: # pragma: no cover
 resource = None # noqa

__all__ = ('WorkController',)

#: Default socket timeout at shutdown.
SHUTDOWN_SOCKET_TIMEOUT = 5.0

SELECT_UNKNOWN_QUEUE = """
Trying to select queue subset of {0!r}, but queue {1} isn't
defined in the `task_queues` setting.

If you want to automatically declare unknown queues you can
enable the `task_create_missing_queues` setting.
"""

DESELECT_UNKNOWN_QUEUE = """
Trying to deselect queue subset of {0!r}, but queue {1} isn't
defined in the `task_queues` setting.
"""

[docs]class WorkController:
 """Unmanaged worker instance."""

 app = None

 pidlock = None
 blueprint = None
 pool = None
 semaphore = None

 #: contains the exit code if a :exc:`SystemExit` event is handled.
 exitcode = None

[docs] class Blueprint(bootsteps.Blueprint):
 """Worker bootstep blueprint."""

 name = 'Worker'
 default_steps = {
 'celery.worker.components:Hub',
 'celery.worker.components:Pool',
 'celery.worker.components:Beat',
 'celery.worker.components:Timer',
 'celery.worker.components:StateDB',
 'celery.worker.components:Consumer',
 'celery.worker.autoscale:WorkerComponent',
 }

 def __init__(self, app=None, hostname=None, **kwargs):
 self.app = app or self.app
 self.hostname = default_nodename(hostname)
 self.startup_time = datetime.utcnow()
 self.app.loader.init_worker()
 self.on_before_init(**kwargs)
 self.setup_defaults(**kwargs)
 self.on_after_init(**kwargs)

 self.setup_instance(**self.prepare_args(**kwargs))

[docs] def setup_instance(self, queues=None, ready_callback=None, pidfile=None,
 include=None, use_eventloop=None, exclude_queues=None,
 **kwargs):
 self.pidfile = pidfile
 self.setup_queues(queues, exclude_queues)
 self.setup_includes(str_to_list(include))

 # Set default concurrency
 if not self.concurrency:
 try:
 self.concurrency = cpu_count()
 except NotImplementedError:
 self.concurrency = 2

 # Options
 self.loglevel = mlevel(self.loglevel)
 self.ready_callback = ready_callback or self.on_consumer_ready

 # this connection won't establish, only used for params
 self._conninfo = self.app.connection_for_read()
 self.use_eventloop = (
 self.should_use_eventloop() if use_eventloop is None
 else use_eventloop
)
 self.options = kwargs

 signals.worker_init.send(sender=self)

 # Initialize bootsteps
 self.pool_cls = _concurrency.get_implementation(self.pool_cls)
 self.steps = []
 self.on_init_blueprint()
 self.blueprint = self.Blueprint(
 steps=self.app.steps['worker'],
 on_start=self.on_start,
 on_close=self.on_close,
 on_stopped=self.on_stopped,
)
 self.blueprint.apply(self, **kwargs)

[docs] def on_init_blueprint(self):
 pass

[docs] def on_before_init(self, **kwargs):
 pass

[docs] def on_after_init(self, **kwargs):
 pass

[docs] def on_start(self):
 if self.pidfile:
 self.pidlock = create_pidlock(self.pidfile)

[docs] def on_consumer_ready(self, consumer):
 pass

[docs] def on_close(self):
 self.app.loader.shutdown_worker()

[docs] def on_stopped(self):
 self.timer.stop()
 self.consumer.shutdown()

 if self.pidlock:
 self.pidlock.release()

[docs] def setup_queues(self, include, exclude=None):
 include = str_to_list(include)
 exclude = str_to_list(exclude)
 try:
 self.app.amqp.queues.select(include)
 except KeyError as exc:
 raise ImproperlyConfigured(
 SELECT_UNKNOWN_QUEUE.strip().format(include, exc))
 try:
 self.app.amqp.queues.deselect(exclude)
 except KeyError as exc:
 raise ImproperlyConfigured(
 DESELECT_UNKNOWN_QUEUE.strip().format(exclude, exc))
 if self.app.conf.worker_direct:
 self.app.amqp.queues.select_add(worker_direct(self.hostname))

[docs] def setup_includes(self, includes):
 # Update celery_include to have all known task modules, so that we
 # ensure all task modules are imported in case an execv happens.
 prev = tuple(self.app.conf.include)
 if includes:
 prev += tuple(includes)
 [self.app.loader.import_task_module(m) for m in includes]
 self.include = includes
 task_modules = {task.__class__.__module__
 for task in self.app.tasks.values()}
 self.app.conf.include = tuple(set(prev) | task_modules)

[docs] def prepare_args(self, **kwargs):
 return kwargs

 def _send_worker_shutdown(self):
 signals.worker_shutdown.send(sender=self)

[docs] def start(self):
 try:
 self.blueprint.start(self)
 except WorkerTerminate:
 self.terminate()
 except Exception as exc:
 logger.critical('Unrecoverable error: %r', exc, exc_info=True)
 self.stop(exitcode=EX_FAILURE)
 except SystemExit as exc:
 self.stop(exitcode=exc.code)
 except KeyboardInterrupt:
 self.stop(exitcode=EX_FAILURE)

[docs] def register_with_event_loop(self, hub):
 self.blueprint.send_all(
 self, 'register_with_event_loop', args=(hub,),
 description='hub.register',
)

 def _process_task_sem(self, req):
 return self._quick_acquire(self._process_task, req)

 def _process_task(self, req):
 """Process task by sending it to the pool of workers."""
 try:
 req.execute_using_pool(self.pool)
 except TaskRevokedError:
 try:
 self._quick_release() # Issue 877
 except AttributeError:
 pass

[docs] def signal_consumer_close(self):
 try:
 self.consumer.close()
 except AttributeError:
 pass

[docs] def should_use_eventloop(self):
 return (detect_environment() == 'default' and
 self._conninfo.transport.implements.asynchronous and
 not self.app.IS_WINDOWS)

[docs] def stop(self, in_sighandler=False, exitcode=None):
 """Graceful shutdown of the worker server."""
 if exitcode is not None:
 self.exitcode = exitcode
 if self.blueprint.state == RUN:
 self.signal_consumer_close()
 if not in_sighandler or self.pool.signal_safe:
 self._shutdown(warm=True)
 self._send_worker_shutdown()

[docs] def terminate(self, in_sighandler=False):
 """Not so graceful shutdown of the worker server."""
 if self.blueprint.state != TERMINATE:
 self.signal_consumer_close()
 if not in_sighandler or self.pool.signal_safe:
 self._shutdown(warm=False)

 def _shutdown(self, warm=True):
 # if blueprint does not exist it means that we had an
 # error before the bootsteps could be initialized.
 if self.blueprint is not None:
 with default_socket_timeout(SHUTDOWN_SOCKET_TIMEOUT): # Issue 975
 self.blueprint.stop(self, terminate=not warm)
 self.blueprint.join()

[docs] def reload(self, modules=None, reload=False, reloader=None):
 list(self._reload_modules(
 modules, force_reload=reload, reloader=reloader))

 if self.consumer:
 self.consumer.update_strategies()
 self.consumer.reset_rate_limits()
 try:
 self.pool.restart()
 except NotImplementedError:
 pass

 def _reload_modules(self, modules=None, **kwargs):
 return (
 self._maybe_reload_module(m, **kwargs)
 for m in set(self.app.loader.task_modules
 if modules is None else (modules or ()))
)

 def _maybe_reload_module(self, module, force_reload=False, reloader=None):
 if module not in sys.modules:
 logger.debug('importing module %s', module)
 return self.app.loader.import_from_cwd(module)
 elif force_reload:
 logger.debug('reloading module %s', module)
 return reload_from_cwd(sys.modules[module], reloader)

[docs] def info(self):
 uptime = datetime.utcnow() - self.startup_time
 return {'total': self.state.total_count,
 'pid': os.getpid(),
 'clock': str(self.app.clock),
 'uptime': round(uptime.total_seconds())}

[docs] def rusage(self):
 if resource is None:
 raise NotImplementedError('rusage not supported by this platform')
 s = resource.getrusage(resource.RUSAGE_SELF)
 return {
 'utime': s.ru_utime,
 'stime': s.ru_stime,
 'maxrss': s.ru_maxrss,
 'ixrss': s.ru_ixrss,
 'idrss': s.ru_idrss,
 'isrss': s.ru_isrss,
 'minflt': s.ru_minflt,
 'majflt': s.ru_majflt,
 'nswap': s.ru_nswap,
 'inblock': s.ru_inblock,
 'oublock': s.ru_oublock,
 'msgsnd': s.ru_msgsnd,
 'msgrcv': s.ru_msgrcv,
 'nsignals': s.ru_nsignals,
 'nvcsw': s.ru_nvcsw,
 'nivcsw': s.ru_nivcsw,
 }

[docs] def stats(self):
 info = self.info()
 info.update(self.blueprint.info(self))
 info.update(self.consumer.blueprint.info(self.consumer))
 try:
 info['rusage'] = self.rusage()
 except NotImplementedError:
 info['rusage'] = 'N/A'
 return info

 def __repr__(self):
 """``repr(worker)``."""
 return '<Worker: {self.hostname} ({state})>'.format(
 self=self,
 state=self.blueprint.human_state() if self.blueprint else 'INIT',
)

 def __str__(self):
 """``str(worker) == worker.hostname``."""
 return self.hostname

 @property
 def state(self):
 return state

[docs] def setup_defaults(self, concurrency=None, loglevel='WARN', logfile=None,
 task_events=None, pool=None, consumer_cls=None,
 timer_cls=None, timer_precision=None,
 autoscaler_cls=None,
 pool_putlocks=None,
 pool_restarts=None,
 optimization=None, O=None, # O maps to -O=fair
 statedb=None,
 time_limit=None,
 soft_time_limit=None,
 scheduler=None,
 pool_cls=None, # XXX use pool
 state_db=None, # XXX use statedb
 task_time_limit=None, # XXX use time_limit
 task_soft_time_limit=None, # XXX use soft_time_limit
 scheduler_cls=None, # XXX use scheduler
 schedule_filename=None,
 max_tasks_per_child=None,
 prefetch_multiplier=None, disable_rate_limits=None,
 worker_lost_wait=None,
 max_memory_per_child=None, **_kw):
 either = self.app.either
 self.loglevel = loglevel
 self.logfile = logfile

 self.concurrency = either('worker_concurrency', concurrency)
 self.task_events = either('worker_send_task_events', task_events)
 self.pool_cls = either('worker_pool', pool, pool_cls)
 self.consumer_cls = either('worker_consumer', consumer_cls)
 self.timer_cls = either('worker_timer', timer_cls)
 self.timer_precision = either(
 'worker_timer_precision', timer_precision,
)
 self.optimization = optimization or O
 self.autoscaler_cls = either('worker_autoscaler', autoscaler_cls)
 self.pool_putlocks = either('worker_pool_putlocks', pool_putlocks)
 self.pool_restarts = either('worker_pool_restarts', pool_restarts)
 self.statedb = either('worker_state_db', statedb, state_db)
 self.schedule_filename = either(
 'beat_schedule_filename', schedule_filename,
)
 self.scheduler = either('beat_scheduler', scheduler, scheduler_cls)
 self.time_limit = either(
 'task_time_limit', time_limit, task_time_limit)
 self.soft_time_limit = either(
 'task_soft_time_limit', soft_time_limit, task_soft_time_limit,
)
 self.max_tasks_per_child = either(
 'worker_max_tasks_per_child', max_tasks_per_child,
)
 self.max_memory_per_child = either(
 'worker_max_memory_per_child', max_memory_per_child,
)
 self.prefetch_multiplier = int(either(
 'worker_prefetch_multiplier', prefetch_multiplier,
))
 self.disable_rate_limits = either(
 'worker_disable_rate_limits', disable_rate_limits,
)
 self.worker_lost_wait = either('worker_lost_wait', worker_lost_wait)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.worker.consumer.agent

"""Celery + :pypi:`cell` integration."""
from celery import bootsteps

from .connection import Connection

__all__ = ('Agent',)

[docs]class Agent(bootsteps.StartStopStep):
 """Agent starts :pypi:`cell` actors."""

 conditional = True
 requires = (Connection,)

 def __init__(self, c, **kwargs):
 self.agent_cls = self.enabled = c.app.conf.worker_agent
 super().__init__(c, **kwargs)

[docs] def create(self, c):
 agent = c.agent = self.instantiate(self.agent_cls, c.connection)
 return agent

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.worker.consumer.connection

"""Consumer Broker Connection Bootstep."""
from kombu.common import ignore_errors

from celery import bootsteps
from celery.utils.log import get_logger

__all__ = ('Connection',)

logger = get_logger(__name__)
info = logger.info

[docs]class Connection(bootsteps.StartStopStep):
 """Service managing the consumer broker connection."""

 def __init__(self, c, **kwargs):
 c.connection = None
 super().__init__(c, **kwargs)

[docs] def start(self, c):
 c.connection = c.connect()
 info('Connected to %s', c.connection.as_uri())

[docs] def shutdown(self, c):
 # We must set self.connection to None here, so
 # that the green pidbox thread exits.
 connection, c.connection = c.connection, None
 if connection:
 ignore_errors(connection, connection.close)

[docs] def info(self, c):
 params = 'N/A'
 if c.connection:
 params = c.connection.info()
 params.pop('password', None) # don't send password.
 return {'broker': params}

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.worker.consumer.consumer

"""Worker Consumer Blueprint.

This module contains the components responsible for consuming messages
from the broker, processing the messages and keeping the broker connections
up and running.
"""
import errno
import logging
import os
from collections import defaultdict
from time import sleep

from billiard.common import restart_state
from billiard.exceptions import RestartFreqExceeded
from kombu.asynchronous.semaphore import DummyLock
from kombu.exceptions import ContentDisallowed, DecodeError
from kombu.utils.compat import _detect_environment
from kombu.utils.encoding import safe_repr
from kombu.utils.limits import TokenBucket
from vine import ppartial, promise

from celery import bootsteps, signals
from celery.app.trace import build_tracer
from celery.exceptions import InvalidTaskError, NotRegistered
from celery.utils.functional import noop
from celery.utils.log import get_logger
from celery.utils.nodenames import gethostname
from celery.utils.objects import Bunch
from celery.utils.text import truncate
from celery.utils.time import humanize_seconds, rate
from celery.worker import loops
from celery.worker.state import (maybe_shutdown, reserved_requests,
 task_reserved)

__all__ = ('Consumer', 'Evloop', 'dump_body')

CLOSE = bootsteps.CLOSE
TERMINATE = bootsteps.TERMINATE
STOP_CONDITIONS = {CLOSE, TERMINATE}
logger = get_logger(__name__)
debug, info, warn, error, crit = (logger.debug, logger.info, logger.warning,
 logger.error, logger.critical)

CONNECTION_RETRY = """\
consumer: Connection to broker lost. \
Trying to re-establish the connection...\
"""

CONNECTION_RETRY_STEP = """\
Trying again {when}... ({retries}/{max_retries})\
"""

CONNECTION_ERROR = """\
consumer: Cannot connect to %s: %s.
%s
"""

CONNECTION_FAILOVER = """\
Will retry using next failover.\
"""

UNKNOWN_FORMAT = """\
Received and deleted unknown message. Wrong destination?!?

The full contents of the message body was: %s
"""

#: Error message for when an unregistered task is received.
UNKNOWN_TASK_ERROR = """\
Received unregistered task of type %s.
The message has been ignored and discarded.

Did you remember to import the module containing this task?
Or maybe you're using relative imports?

Please see
http://docs.celeryq.org/en/latest/internals/protocol.html
for more information.

The full contents of the message body was:
%s
"""

#: Error message for when an invalid task message is received.
INVALID_TASK_ERROR = """\
Received invalid task message: %s
The message has been ignored and discarded.

Please ensure your message conforms to the task
message protocol as described here:
http://docs.celeryq.org/en/latest/internals/protocol.html

The full contents of the message body was:
%s
"""

MESSAGE_DECODE_ERROR = """\
Can't decode message body: %r [type:%r encoding:%r headers:%s]

body: %s
"""

MESSAGE_REPORT = """\
body: {0}
{{content_type:{1} content_encoding:{2}
 delivery_info:{3} headers={4}}}
"""

[docs]def dump_body(m, body):
 """Format message body for debugging purposes."""
 # v2 protocol does not deserialize body
 body = m.body if body is None else body
 return '{} ({}b)'.format(truncate(safe_repr(body), 1024),
 len(m.body))

[docs]class Consumer:
 """Consumer blueprint."""

 Strategies = dict

 #: Optional callback called the first time the worker
 #: is ready to receive tasks.
 init_callback = None

 #: The current worker pool instance.
 pool = None

 #: A timer used for high-priority internal tasks, such
 #: as sending heartbeats.
 timer = None

 restart_count = -1 # first start is the same as a restart

[docs] class Blueprint(bootsteps.Blueprint):
 """Consumer blueprint."""

 name = 'Consumer'
 default_steps = [
 'celery.worker.consumer.connection:Connection',
 'celery.worker.consumer.mingle:Mingle',
 'celery.worker.consumer.events:Events',
 'celery.worker.consumer.gossip:Gossip',
 'celery.worker.consumer.heart:Heart',
 'celery.worker.consumer.control:Control',
 'celery.worker.consumer.tasks:Tasks',
 'celery.worker.consumer.consumer:Evloop',
 'celery.worker.consumer.agent:Agent',
]

[docs] def shutdown(self, parent):
 self.send_all(parent, 'shutdown')

 def __init__(self, on_task_request,
 init_callback=noop, hostname=None,
 pool=None, app=None,
 timer=None, controller=None, hub=None, amqheartbeat=None,
 worker_options=None, disable_rate_limits=False,
 initial_prefetch_count=2, prefetch_multiplier=1, **kwargs):
 self.app = app
 self.controller = controller
 self.init_callback = init_callback
 self.hostname = hostname or gethostname()
 self.pid = os.getpid()
 self.pool = pool
 self.timer = timer
 self.strategies = self.Strategies()
 self.conninfo = self.app.connection_for_read()
 self.connection_errors = self.conninfo.connection_errors
 self.channel_errors = self.conninfo.channel_errors
 self._restart_state = restart_state(maxR=5, maxT=1)

 self._does_info = logger.isEnabledFor(logging.INFO)
 self._limit_order = 0
 self.on_task_request = on_task_request
 self.on_task_message = set()
 self.amqheartbeat_rate = self.app.conf.broker_heartbeat_checkrate
 self.disable_rate_limits = disable_rate_limits
 self.initial_prefetch_count = initial_prefetch_count
 self.prefetch_multiplier = prefetch_multiplier

 # this contains a tokenbucket for each task type by name, used for
 # rate limits, or None if rate limits are disabled for that task.
 self.task_buckets = defaultdict(lambda: None)
 self.reset_rate_limits()

 self.hub = hub
 if self.hub or getattr(self.pool, 'is_green', False):
 self.amqheartbeat = amqheartbeat
 if self.amqheartbeat is None:
 self.amqheartbeat = self.app.conf.broker_heartbeat
 else:
 self.amqheartbeat = 0

 if not hasattr(self, 'loop'):
 self.loop = loops.asynloop if hub else loops.synloop

 if _detect_environment() == 'gevent':
 # there's a gevent bug that causes timeouts to not be reset,
 # so if the connection timeout is exceeded once, it can NEVER
 # connect again.
 self.app.conf.broker_connection_timeout = None

 self._pending_operations = []

 self.steps = []
 self.blueprint = self.Blueprint(
 steps=self.app.steps['consumer'],
 on_close=self.on_close,
)
 self.blueprint.apply(self, **dict(worker_options or {}, **kwargs))

[docs] def call_soon(self, p, *args, **kwargs):
 p = ppartial(p, *args, **kwargs)
 if self.hub:
 return self.hub.call_soon(p)
 self._pending_operations.append(p)
 return p

[docs] def perform_pending_operations(self):
 if not self.hub:
 while self._pending_operations:
 try:
 self._pending_operations.pop()()
 except Exception as exc: # pylint: disable=broad-except
 logger.exception('Pending callback raised: %r', exc)

[docs] def bucket_for_task(self, type):
 limit = rate(getattr(type, 'rate_limit', None))
 return TokenBucket(limit, capacity=1) if limit else None

[docs] def reset_rate_limits(self):
 self.task_buckets.update(
 (n, self.bucket_for_task(t)) for n, t in self.app.tasks.items()
)

 def _update_prefetch_count(self, index=0):
 """Update prefetch count after pool/shrink grow operations.

 Index must be the change in number of processes as a positive
 (increasing) or negative (decreasing) number.

 Note:
 Currently pool grow operations will end up with an offset
 of +1 if the initial size of the pool was 0 (e.g.
 :option:`--autoscale=1,0 <celery worker --autoscale>`).
 """
 num_processes = self.pool.num_processes
 if not self.initial_prefetch_count or not num_processes:
 return # prefetch disabled
 self.initial_prefetch_count = (
 self.pool.num_processes * self.prefetch_multiplier
)
 return self._update_qos_eventually(index)

 def _update_qos_eventually(self, index):
 return (self.qos.decrement_eventually if index < 0
 else self.qos.increment_eventually)(
 abs(index) * self.prefetch_multiplier)

 def _limit_move_to_pool(self, request):
 task_reserved(request)
 self.on_task_request(request)

 def _schedule_bucket_request(self, bucket):
 while True:
 try:
 request, tokens = bucket.pop()
 except IndexError:
 # no request, break
 break

 if bucket.can_consume(tokens):
 self._limit_move_to_pool(request)
 continue
 else:
 # requeue to head, keep the order.
 bucket.contents.appendleft((request, tokens))

 pri = self._limit_order = (self._limit_order + 1) % 10
 hold = bucket.expected_time(tokens)
 self.timer.call_after(
 hold, self._schedule_bucket_request, (bucket,),
 priority=pri,
)
 # no tokens, break
 break

 def _limit_task(self, request, bucket, tokens):
 bucket.add((request, tokens))
 return self._schedule_bucket_request(bucket)

 def _limit_post_eta(self, request, bucket, tokens):
 self.qos.decrement_eventually()
 bucket.add((request, tokens))
 return self._schedule_bucket_request(bucket)

[docs] def start(self):
 blueprint = self.blueprint
 while blueprint.state not in STOP_CONDITIONS:
 maybe_shutdown()
 if self.restart_count:
 try:
 self._restart_state.step()
 except RestartFreqExceeded as exc:
 crit('Frequent restarts detected: %r', exc, exc_info=1)
 sleep(1)
 self.restart_count += 1
 try:
 blueprint.start(self)
 except self.connection_errors as exc:
 # If we're not retrying connections, no need to catch
 # connection errors
 if not self.app.conf.broker_connection_retry:
 raise
 if isinstance(exc, OSError) and exc.errno == errno.EMFILE:
 raise # Too many open files
 maybe_shutdown()
 if blueprint.state not in STOP_CONDITIONS:
 if self.connection:
 self.on_connection_error_after_connected(exc)
 else:
 self.on_connection_error_before_connected(exc)
 self.on_close()
 blueprint.restart(self)

[docs] def on_connection_error_before_connected(self, exc):
 error(CONNECTION_ERROR, self.conninfo.as_uri(), exc,
 'Trying to reconnect...')

[docs] def on_connection_error_after_connected(self, exc):
 warn(CONNECTION_RETRY, exc_info=True)
 try:
 self.connection.collect()
 except Exception: # pylint: disable=broad-except
 pass

[docs] def register_with_event_loop(self, hub):
 self.blueprint.send_all(
 self, 'register_with_event_loop', args=(hub,),
 description='Hub.register',
)

[docs] def shutdown(self):
 self.blueprint.shutdown(self)

[docs] def stop(self):
 self.blueprint.stop(self)

[docs] def on_ready(self):
 callback, self.init_callback = self.init_callback, None
 if callback:
 callback(self)

[docs] def loop_args(self):
 return (self, self.connection, self.task_consumer,
 self.blueprint, self.hub, self.qos, self.amqheartbeat,
 self.app.clock, self.amqheartbeat_rate)

[docs] def on_decode_error(self, message, exc):
 """Callback called if an error occurs while decoding a message.

 Simply logs the error and acknowledges the message so it
 doesn't enter a loop.

 Arguments:
 message (kombu.Message): The message received.
 exc (Exception): The exception being handled.
 """
 crit(MESSAGE_DECODE_ERROR,
 exc, message.content_type, message.content_encoding,
 safe_repr(message.headers), dump_body(message, message.body),
 exc_info=1)
 message.ack()

[docs] def on_close(self):
 # Clear internal queues to get rid of old messages.
 # They can't be acked anyway, as a delivery tag is specific
 # to the current channel.
 if self.controller and self.controller.semaphore:
 self.controller.semaphore.clear()
 if self.timer:
 self.timer.clear()
 for bucket in self.task_buckets.values():
 if bucket:
 bucket.clear_pending()
 reserved_requests.clear()
 if self.pool and self.pool.flush:
 self.pool.flush()

[docs] def connect(self):
 """Establish the broker connection used for consuming tasks.

 Retries establishing the connection if the
 :setting:`broker_connection_retry` setting is enabled
 """
 conn = self.connection_for_read(heartbeat=self.amqheartbeat)
 if self.hub:
 conn.transport.register_with_event_loop(conn.connection, self.hub)
 return conn

[docs] def connection_for_read(self, heartbeat=None):
 return self.ensure_connected(
 self.app.connection_for_read(heartbeat=heartbeat))

[docs] def connection_for_write(self, heartbeat=None):
 return self.ensure_connected(
 self.app.connection_for_write(heartbeat=heartbeat))

[docs] def ensure_connected(self, conn):
 # Callback called for each retry while the connection
 # can't be established.
 def _error_handler(exc, interval, next_step=CONNECTION_RETRY_STEP):
 if getattr(conn, 'alt', None) and interval == 0:
 next_step = CONNECTION_FAILOVER
 next_step = next_step.format(
 when=humanize_seconds(interval, 'in', ' '),
 retries=int(interval / 2),
 max_retries=self.app.conf.broker_connection_max_retries)
 error(CONNECTION_ERROR, conn.as_uri(), exc, next_step)

 # remember that the connection is lazy, it won't establish
 # until needed.
 if not self.app.conf.broker_connection_retry:
 # retry disabled, just call connect directly.
 conn.connect()
 return conn

 conn = conn.ensure_connection(
 _error_handler, self.app.conf.broker_connection_max_retries,
 callback=maybe_shutdown,
)
 return conn

 def _flush_events(self):
 if self.event_dispatcher:
 self.event_dispatcher.flush()

[docs] def on_send_event_buffered(self):
 if self.hub:
 self.hub._ready.add(self._flush_events)

[docs] def add_task_queue(self, queue, exchange=None, exchange_type=None,
 routing_key=None, **options):
 cset = self.task_consumer
 queues = self.app.amqp.queues
 # Must use in' here, as __missing__ will automatically
 # create queues when :setting:`task_create_missing_queues` is enabled.
 # (Issue #1079)
 if queue in queues:
 q = queues[queue]
 else:
 exchange = queue if exchange is None else exchange
 exchange_type = ('direct' if exchange_type is None
 else exchange_type)
 q = queues.select_add(queue,
 exchange=exchange,
 exchange_type=exchange_type,
 routing_key=routing_key, **options)
 if not cset.consuming_from(queue):
 cset.add_queue(q)
 cset.consume()
 info('Started consuming from %s', queue)

[docs] def cancel_task_queue(self, queue):
 info('Canceling queue %s', queue)
 self.app.amqp.queues.deselect(queue)
 self.task_consumer.cancel_by_queue(queue)

[docs] def apply_eta_task(self, task):
 """Method called by the timer to apply a task with an ETA/countdown."""
 task_reserved(task)
 self.on_task_request(task)
 self.qos.decrement_eventually()

 def _message_report(self, body, message):
 return MESSAGE_REPORT.format(dump_body(message, body),
 safe_repr(message.content_type),
 safe_repr(message.content_encoding),
 safe_repr(message.delivery_info),
 safe_repr(message.headers))

[docs] def on_unknown_message(self, body, message):
 warn(UNKNOWN_FORMAT, self._message_report(body, message))
 message.reject_log_error(logger, self.connection_errors)
 signals.task_rejected.send(sender=self, message=message, exc=None)

[docs] def on_unknown_task(self, body, message, exc):
 error(UNKNOWN_TASK_ERROR, exc, dump_body(message, body), exc_info=True)
 try:
 id_, name = message.headers['id'], message.headers['task']
 root_id = message.headers.get('root_id')
 except KeyError: # proto1
 payload = message.payload
 id_, name = payload['id'], payload['task']
 root_id = None
 request = Bunch(
 name=name, chord=None, root_id=root_id,
 correlation_id=message.properties.get('correlation_id'),
 reply_to=message.properties.get('reply_to'),
 errbacks=None,
)
 message.reject_log_error(logger, self.connection_errors)
 self.app.backend.mark_as_failure(
 id_, NotRegistered(name), request=request,
)
 if self.event_dispatcher:
 self.event_dispatcher.send(
 'task-failed', uuid=id_,
 exception=f'NotRegistered({name!r})',
)
 signals.task_unknown.send(
 sender=self, message=message, exc=exc, name=name, id=id_,
)

[docs] def on_invalid_task(self, body, message, exc):
 error(INVALID_TASK_ERROR, exc, dump_body(message, body), exc_info=True)
 message.reject_log_error(logger, self.connection_errors)
 signals.task_rejected.send(sender=self, message=message, exc=exc)

[docs] def update_strategies(self):
 loader = self.app.loader
 for name, task in self.app.tasks.items():
 self.strategies[name] = task.start_strategy(self.app, self)
 task.__trace__ = build_tracer(name, task, loader, self.hostname,
 app=self.app)

[docs] def create_task_handler(self, promise=promise):
 strategies = self.strategies
 on_unknown_message = self.on_unknown_message
 on_unknown_task = self.on_unknown_task
 on_invalid_task = self.on_invalid_task
 callbacks = self.on_task_message
 call_soon = self.call_soon

 def on_task_received(message):
 # payload will only be set for v1 protocol, since v2
 # will defer deserializing the message body to the pool.
 payload = None
 try:
 type_ = message.headers['task'] # protocol v2
 except TypeError:
 return on_unknown_message(None, message)
 except KeyError:
 try:
 payload = message.decode()
 except Exception as exc: # pylint: disable=broad-except
 return self.on_decode_error(message, exc)
 try:
 type_, payload = payload['task'], payload # protocol v1
 except (TypeError, KeyError):
 return on_unknown_message(payload, message)
 try:
 strategy = strategies[type_]
 except KeyError as exc:
 return on_unknown_task(None, message, exc)
 else:
 try:
 strategy(
 message, payload,
 promise(call_soon, (message.ack_log_error,)),
 promise(call_soon, (message.reject_log_error,)),
 callbacks,
)
 except (InvalidTaskError, ContentDisallowed) as exc:
 return on_invalid_task(payload, message, exc)
 except DecodeError as exc:
 return self.on_decode_error(message, exc)

 return on_task_received

 def __repr__(self):
 """``repr(self)``."""
 return '<Consumer: {self.hostname} ({state})>'.format(
 self=self, state=self.blueprint.human_state(),
)

[docs]class Evloop(bootsteps.StartStopStep):
 """Event loop service.

 Note:
 This is always started last.
 """

 label = 'event loop'
 last = True

[docs] def start(self, c):
 self.patch_all(c)
 c.loop(*c.loop_args())

[docs] def patch_all(self, c):
 c.qos._mutex = DummyLock()

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.worker.consumer.control

"""Worker Remote Control Bootstep.

``Control`` -> :mod:`celery.worker.pidbox` -> :mod:`kombu.pidbox`.

The actual commands are implemented in :mod:`celery.worker.control`.
"""
from celery import bootsteps
from celery.utils.log import get_logger
from celery.worker import pidbox

from .tasks import Tasks

__all__ = ('Control',)

logger = get_logger(__name__)

[docs]class Control(bootsteps.StartStopStep):
 """Remote control command service."""

 requires = (Tasks,)

 def __init__(self, c, **kwargs):
 self.is_green = c.pool is not None and c.pool.is_green
 self.box = (pidbox.gPidbox if self.is_green else pidbox.Pidbox)(c)
 self.start = self.box.start
 self.stop = self.box.stop
 self.shutdown = self.box.shutdown
 super().__init__(c, **kwargs)

[docs] def include_if(self, c):
 return (c.app.conf.worker_enable_remote_control and
 c.conninfo.supports_exchange_type('fanout'))

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.worker.consumer.events

"""Worker Event Dispatcher Bootstep.

``Events`` -> :class:`celery.events.EventDispatcher`.
"""
from kombu.common import ignore_errors

from celery import bootsteps

from .connection import Connection

__all__ = ('Events',)

[docs]class Events(bootsteps.StartStopStep):
 """Service used for sending monitoring events."""

 requires = (Connection,)

 def __init__(self, c,
 task_events=True,
 without_heartbeat=False,
 without_gossip=False,
 **kwargs):
 self.groups = None if task_events else ['worker']
 self.send_events = (
 task_events or
 not without_gossip or
 not without_heartbeat
)
 self.enabled = self.send_events
 c.event_dispatcher = None
 super().__init__(c, **kwargs)

[docs] def start(self, c):
 # flush events sent while connection was down.
 prev = self._close(c)
 dis = c.event_dispatcher = c.app.events.Dispatcher(
 c.connection_for_write(),
 hostname=c.hostname,
 enabled=self.send_events,
 groups=self.groups,
 # we currently only buffer events when the event loop is enabled
 # XXX This excludes eventlet/gevent, which should actually buffer.
 buffer_group=['task'] if c.hub else None,
 on_send_buffered=c.on_send_event_buffered if c.hub else None,
)
 if prev:
 dis.extend_buffer(prev)
 dis.flush()

[docs] def stop(self, c):
 pass

 def _close(self, c):
 if c.event_dispatcher:
 dispatcher = c.event_dispatcher
 # remember changes from remote control commands:
 self.groups = dispatcher.groups

 # close custom connection
 if dispatcher.connection:
 ignore_errors(c, dispatcher.connection.close)
 ignore_errors(c, dispatcher.close)
 c.event_dispatcher = None
 return dispatcher

[docs] def shutdown(self, c):
 self._close(c)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.worker.consumer.gossip

"""Worker <-> Worker communication Bootstep."""
from collections import defaultdict
from functools import partial
from heapq import heappush
from operator import itemgetter

from kombu import Consumer
from kombu.asynchronous.semaphore import DummyLock
from kombu.exceptions import ContentDisallowed, DecodeError

from celery import bootsteps
from celery.utils.log import get_logger
from celery.utils.objects import Bunch

from .mingle import Mingle

__all__ = ('Gossip',)

logger = get_logger(__name__)
debug, info = logger.debug, logger.info

[docs]class Gossip(bootsteps.ConsumerStep):
 """Bootstep consuming events from other workers.

 This keeps the logical clock value up to date.
 """

 label = 'Gossip'
 requires = (Mingle,)
 _cons_stamp_fields = itemgetter(
 'id', 'clock', 'hostname', 'pid', 'topic', 'action', 'cver',
)
 compatible_transports = {'amqp', 'redis'}

 def __init__(self, c, without_gossip=False,
 interval=5.0, heartbeat_interval=2.0, **kwargs):
 self.enabled = not without_gossip and self.compatible_transport(c.app)
 self.app = c.app
 c.gossip = self
 self.Receiver = c.app.events.Receiver
 self.hostname = c.hostname
 self.full_hostname = '.'.join([self.hostname, str(c.pid)])
 self.on = Bunch(
 node_join=set(),
 node_leave=set(),
 node_lost=set(),
)

 self.timer = c.timer
 if self.enabled:
 self.state = c.app.events.State(
 on_node_join=self.on_node_join,
 on_node_leave=self.on_node_leave,
 max_tasks_in_memory=1,
)
 if c.hub:
 c._mutex = DummyLock()
 self.update_state = self.state.event
 self.interval = interval
 self.heartbeat_interval = heartbeat_interval
 self._tref = None
 self.consensus_requests = defaultdict(list)
 self.consensus_replies = {}
 self.event_handlers = {
 'worker.elect': self.on_elect,
 'worker.elect.ack': self.on_elect_ack,
 }
 self.clock = c.app.clock

 self.election_handlers = {
 'task': self.call_task
 }

 super().__init__(c, **kwargs)

[docs] def compatible_transport(self, app):
 with app.connection_for_read() as conn:
 return conn.transport.driver_type in self.compatible_transports

[docs] def election(self, id, topic, action=None):
 self.consensus_replies[id] = []
 self.dispatcher.send(
 'worker-elect',
 id=id, topic=topic, action=action, cver=1,
)

[docs] def call_task(self, task):
 try:
 self.app.signature(task).apply_async()
 except Exception as exc: # pylint: disable=broad-except
 logger.exception('Could not call task: %r', exc)

[docs] def on_elect(self, event):
 try:
 (id_, clock, hostname, pid,
 topic, action, _) = self._cons_stamp_fields(event)
 except KeyError as exc:
 return logger.exception('election request missing field %s', exc)
 heappush(
 self.consensus_requests[id_],
 (clock, f'{hostname}.{pid}', topic, action),
)
 self.dispatcher.send('worker-elect-ack', id=id_)

[docs] def start(self, c):
 super().start(c)
 self.dispatcher = c.event_dispatcher

[docs] def on_elect_ack(self, event):
 id = event['id']
 try:
 replies = self.consensus_replies[id]
 except KeyError:
 return # not for us
 alive_workers = set(self.state.alive_workers())
 replies.append(event['hostname'])

 if len(replies) >= len(alive_workers):
 _, leader, topic, action = self.clock.sort_heap(
 self.consensus_requests[id],
)
 if leader == self.full_hostname:
 info('I won the election %r', id)
 try:
 handler = self.election_handlers[topic]
 except KeyError:
 logger.exception('Unknown election topic %r', topic)
 else:
 handler(action)
 else:
 info('node %s elected for %r', leader, id)
 self.consensus_requests.pop(id, None)
 self.consensus_replies.pop(id, None)

[docs] def on_node_join(self, worker):
 debug('%s joined the party', worker.hostname)
 self._call_handlers(self.on.node_join, worker)

[docs] def on_node_leave(self, worker):
 debug('%s left', worker.hostname)
 self._call_handlers(self.on.node_leave, worker)

[docs] def on_node_lost(self, worker):
 info('missed heartbeat from %s', worker.hostname)
 self._call_handlers(self.on.node_lost, worker)

 def _call_handlers(self, handlers, *args, **kwargs):
 for handler in handlers:
 try:
 handler(*args, **kwargs)
 except Exception as exc: # pylint: disable=broad-except
 logger.exception(
 'Ignored error from handler %r: %r', handler, exc)

[docs] def register_timer(self):
 if self._tref is not None:
 self._tref.cancel()
 self._tref = self.timer.call_repeatedly(self.interval, self.periodic)

[docs] def periodic(self):
 workers = self.state.workers
 dirty = set()
 for worker in workers.values():
 if not worker.alive:
 dirty.add(worker)
 self.on_node_lost(worker)
 for worker in dirty:
 workers.pop(worker.hostname, None)

[docs] def get_consumers(self, channel):
 self.register_timer()
 ev = self.Receiver(channel, routing_key='worker.#',
 queue_ttl=self.heartbeat_interval)
 return [Consumer(
 channel,
 queues=[ev.queue],
 on_message=partial(self.on_message, ev.event_from_message),
 no_ack=True
)]

[docs] def on_message(self, prepare, message):
 _type = message.delivery_info['routing_key']

 # For redis when `fanout_patterns=False` (See Issue #1882)
 if _type.split('.', 1)[0] == 'task':
 return
 try:
 handler = self.event_handlers[_type]
 except KeyError:
 pass
 else:
 return handler(message.payload)

 # proto2: hostname in header; proto1: in body
 hostname = (message.headers.get('hostname') or
 message.payload['hostname'])
 if hostname != self.hostname:
 try:
 _, event = prepare(message.payload)
 self.update_state(event)
 except (DecodeError, ContentDisallowed, TypeError) as exc:
 logger.error(exc)
 else:
 self.clock.forward()

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.worker.consumer.heart

"""Worker Event Heartbeat Bootstep."""
from celery import bootsteps
from celery.worker import heartbeat

from .events import Events

__all__ = ('Heart',)

[docs]class Heart(bootsteps.StartStopStep):
 """Bootstep sending event heartbeats.

 This service sends a ``worker-heartbeat`` message every n seconds.

 Note:
 Not to be confused with AMQP protocol level heartbeats.
 """

 requires = (Events,)

 def __init__(self, c,
 without_heartbeat=False, heartbeat_interval=None, **kwargs):
 self.enabled = not without_heartbeat
 self.heartbeat_interval = heartbeat_interval
 c.heart = None
 super().__init__(c, **kwargs)

[docs] def start(self, c):
 c.heart = heartbeat.Heart(
 c.timer, c.event_dispatcher, self.heartbeat_interval,
)
 c.heart.start()

[docs] def stop(self, c):
 c.heart = c.heart and c.heart.stop()

 shutdown = stop

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.worker.consumer.mingle

"""Worker <-> Worker Sync at startup (Bootstep)."""
from celery import bootsteps
from celery.utils.log import get_logger

from .events import Events

__all__ = ('Mingle',)

logger = get_logger(__name__)
debug, info, exception = logger.debug, logger.info, logger.exception

[docs]class Mingle(bootsteps.StartStopStep):
 """Bootstep syncing state with neighbor workers.

 At startup, or upon consumer restart, this will:

 - Sync logical clocks.
 - Sync revoked tasks.

 """

 label = 'Mingle'
 requires = (Events,)
 compatible_transports = {'amqp', 'redis'}

 def __init__(self, c, without_mingle=False, **kwargs):
 self.enabled = not without_mingle and self.compatible_transport(c.app)
 super().__init__(
 c, without_mingle=without_mingle, **kwargs)

[docs] def compatible_transport(self, app):
 with app.connection_for_read() as conn:
 return conn.transport.driver_type in self.compatible_transports

[docs] def start(self, c):
 self.sync(c)

[docs] def sync(self, c):
 info('mingle: searching for neighbors')
 replies = self.send_hello(c)
 if replies:
 info('mingle: sync with %s nodes',
 len([reply for reply, value in replies.items() if value]))
 [self.on_node_reply(c, nodename, reply)
 for nodename, reply in replies.items() if reply]
 info('mingle: sync complete')
 else:
 info('mingle: all alone')

[docs] def send_hello(self, c):
 inspect = c.app.control.inspect(timeout=1.0, connection=c.connection)
 our_revoked = c.controller.state.revoked
 replies = inspect.hello(c.hostname, our_revoked._data) or {}
 replies.pop(c.hostname, None) # delete my own response
 return replies

[docs] def on_node_reply(self, c, nodename, reply):
 debug('mingle: processing reply from %s', nodename)
 try:
 self.sync_with_node(c, **reply)
 except MemoryError:
 raise
 except Exception as exc: # pylint: disable=broad-except
 exception('mingle: sync with %s failed: %r', nodename, exc)

[docs] def sync_with_node(self, c, clock=None, revoked=None, **kwargs):
 self.on_clock_event(c, clock)
 self.on_revoked_received(c, revoked)

[docs] def on_clock_event(self, c, clock):
 c.app.clock.adjust(clock) if clock else c.app.clock.forward()

[docs] def on_revoked_received(self, c, revoked):
 if revoked:
 c.controller.state.revoked.update(revoked)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for celery.worker.consumer.tasks

"""Worker Task Consumer Bootstep."""
from kombu.common import QoS, ignore_errors

from celery import bootsteps
from celery.utils.log import get_logger

from .mingle import Mingle

__all__ = ('Tasks',)

logger = get_logger(__name__)
debug = logger.debug

[docs]class Tasks(bootsteps.StartStopStep):
 """Bootstep starting the task message consumer."""

 requires = (Mingle,)

 def __init__(self, c, **kwargs):
 c.task_consumer = c.qos = None
 super().__init__(c, **kwargs)

[docs] def start(self, c):
 """Start task consumer."""
 c.update_strategies()

 # - RabbitMQ 3.3 completely redefines how basic_qos works..
 # This will detect if the new qos smenatics is in effect,
 # and if so make sure the 'apply_global' flag is set on qos updates.
 qos_global = not c.connection.qos_semantics_matches_spec

 # set initial prefetch count
 c.connection.default_channel.basic_qos(
 0, c.initial_prefetch_count, qos_global,
)

 c.task_consumer = c.app.amqp.TaskConsumer(
 c.connection, on_decode_error=c.on_decode_error,
)

 def set_prefetch_count(prefetch_count):
 return c.task_consumer.qos(
 prefetch_count=prefetch_count,
 apply_global=qos_global,
)
 c.qos = QoS(set_prefetch_count, c.initial_prefetch_count)

[docs] def stop(self, c):
 """Stop task consumer."""
 if c.task_consumer:
 debug('Canceling task consumer...')
 ignore_errors(c, c.task_consumer.cancel)

[docs] def shutdown(self, c):
 """Shutdown task consumer."""
 if c.task_consumer:
 self.stop(c)
 debug('Closing consumer channel...')
 ignore_errors(c, c.task_consumer.close)
 c.task_consumer = None

[docs] def info(self, c):
 """Return task consumer info."""
 return {'prefetch_count': c.qos.value if c.qos else 'N/A'}

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for kombu.connection

"""Client (Connection)."""

import os
import socket

from collections import OrderedDict
from contextlib import contextmanager
from itertools import count, cycle
from operator import itemgetter

try:
 from ssl import CERT_NONE
 ssl_available = True
except ImportError: # pragma: no cover
 CERT_NONE = None
 ssl_available = False

jython breaks on relative import for .exceptions for some reason
(Issue #112)
from kombu import exceptions

from .log import get_logger
from .resource import Resource
from .transport import get_transport_cls, supports_librabbitmq
from .utils.collections import HashedSeq
from .utils.functional import dictfilter, lazy, retry_over_time, shufflecycle
from .utils.objects import cached_property
from .utils.url import as_url, parse_url, quote, urlparse, maybe_sanitize_url

__all__ = ('Connection', 'ConnectionPool', 'ChannelPool')

logger = get_logger(__name__)

roundrobin_failover = cycle

resolve_aliases = {
 'pyamqp': 'amqp',
 'librabbitmq': 'amqp',
}

failover_strategies = {
 'round-robin': roundrobin_failover,
 'shuffle': shufflecycle,
}

_log_connection = os.environ.get('KOMBU_LOG_CONNECTION', False)
_log_channel = os.environ.get('KOMBU_LOG_CHANNEL', False)

class Connection:
 """A connection to the broker.

 Example:
 >>> Connection('amqp://guest:guest@localhost:5672//')
 >>> Connection('amqp://foo;amqp://bar',
 ... failover_strategy='round-robin')
 >>> Connection('redis://', transport_options={
 ... 'visibility_timeout': 3000,
 ... })

 >>> import ssl
 >>> Connection('amqp://', login_method='EXTERNAL', ssl={
 ... 'ca_certs': '/etc/pki/tls/certs/something.crt',
 ... 'keyfile': '/etc/something/system.key',
 ... 'certfile': '/etc/something/system.cert',
 ... 'cert_reqs': ssl.CERT_REQUIRED,
 ... })

 Note:
 SSL currently only works with the py-amqp, and qpid
 transports. For other transports you can use stunnel.

 Arguments:
 URL (str, Sequence): Broker URL, or a list of URLs.

 Keyword Arguments:
 ssl (bool): Use SSL to connect to the server. Default is ``False``.
 May not be supported by the specified transport.
 transport (Transport): Default transport if not specified in the URL.
 connect_timeout (float): Timeout in seconds for connecting to the
 server. May not be supported by the specified transport.
 transport_options (Dict): A dict of additional connection arguments to
 pass to alternate kombu channel implementations. Consult the
 transport documentation for available options.
 heartbeat (float): Heartbeat interval in int/float seconds.
 Note that if heartbeats are enabled then the
 :meth:`heartbeat_check` method must be called regularly,
 around once per second.

 Note:
 The connection is established lazily when needed. If you need the
 connection to be established, then force it by calling
 :meth:`connect`::

 >>> conn = Connection('amqp://')
 >>> conn.connect()

 and always remember to close the connection::

 >>> conn.release()

 These options have been replaced by the URL argument, but are still
 supported for backwards compatibility:

 :keyword hostname: Host name/address.
 NOTE: You cannot specify both the URL argument and use the hostname
 keyword argument at the same time.
 :keyword userid: Default user name if not provided in the URL.
 :keyword password: Default password if not provided in the URL.
 :keyword virtual_host: Default virtual host if not provided in the URL.
 :keyword port: Default port if not provided in the URL.
 """

 port = None
 virtual_host = '/'
 connect_timeout = 5

 _closed = None
 _connection = None
 _default_channel = None
 _transport = None
 _logger = False
 uri_prefix = None

 #: The cache of declared entities is per connection,
 #: in case the server loses data.
 declared_entities = None

 #: Iterator returning the next broker URL to try in the event
 #: of connection failure (initialized by :attr:`failover_strategy`).
 cycle = None

 #: Additional transport specific options,
 #: passed on to the transport instance.
 transport_options = None

 #: Strategy used to select new hosts when reconnecting after connection
 #: failure. One of "round-robin", "shuffle" or any custom iterator
 #: constantly yielding new URLs to try.
 failover_strategy = 'round-robin'

 #: Heartbeat value, currently only supported by the py-amqp transport.
 heartbeat = None

 resolve_aliases = resolve_aliases
 failover_strategies = failover_strategies

 hostname = userid = password = ssl = login_method = None

 def __init__(self, hostname='localhost', userid=None,
 password=None, virtual_host=None, port=None, insist=False,
 ssl=False, transport=None, connect_timeout=5,
 transport_options=None, login_method=None, uri_prefix=None,
 heartbeat=0, failover_strategy='round-robin',
 alternates=None, **kwargs):
 alt = [] if alternates is None else alternates
 # have to spell the args out, just to get nice docstrings :(
 params = self._initial_params = {
 'hostname': hostname, 'userid': userid,
 'password': password, 'virtual_host': virtual_host,
 'port': port, 'insist': insist, 'ssl': ssl,
 'transport': transport, 'connect_timeout': connect_timeout,
 'login_method': login_method, 'heartbeat': heartbeat
 }

 if hostname and not isinstance(hostname, str):
 alt.extend(hostname)
 hostname = alt[0]
 params.update(hostname=hostname)
 if hostname:
 if ';' in hostname:
 alt = hostname.split(';') + alt
 hostname = alt[0]
 params.update(hostname=hostname)
 if '://' in hostname and '+' in hostname[:hostname.index('://')]:
 # e.g. sqla+mysql://root:masterkey@localhost/
 params['transport'], params['hostname'] = \
 hostname.split('+', 1)
 self.uri_prefix = params['transport']
 elif '://' in hostname:
 transport = transport or urlparse(hostname).scheme
 if not get_transport_cls(transport).can_parse_url:
 # we must parse the URL
 url_params = parse_url(hostname)
 params.update(
 dictfilter(url_params),
 hostname=url_params['hostname'],
)

 params['transport'] = transport

 self._init_params(**params)

 # fallback hosts
 self.alt = alt
 # keep text representation for .info
 # only temporary solution as this won't work when
 # passing a custom object (Issue celery/celery#3320).
 self._failover_strategy = failover_strategy or 'round-robin'
 self.failover_strategy = self.failover_strategies.get(
 self._failover_strategy) or self._failover_strategy
 if self.alt:
 self.cycle = self.failover_strategy(self.alt)
 next(self.cycle) # skip first entry

 if transport_options is None:
 transport_options = {}
 self.transport_options = transport_options

 if _log_connection: # pragma: no cover
 self._logger = True

 if uri_prefix:
 self.uri_prefix = uri_prefix

 self.declared_entities = set()

 def switch(self, conn_str):
 """Switch connection parameters to use a new URL or hostname.

 Note:
 Does not reconnect!

 Arguments:
 conn_str (str): either a hostname or URL.
 """
 self.close()
 self.declared_entities.clear()
 self._closed = False
 conn_params = (
 parse_url(conn_str) if "://" in conn_str else {"hostname": conn_str} # noqa
)
 self._init_params(**dict(self._initial_params, **conn_params))

 def maybe_switch_next(self):
 """Switch to next URL given by the current failover strategy."""
 if self.cycle:
 self.switch(next(self.cycle))

 def _init_params(self, hostname, userid, password, virtual_host, port,
 insist, ssl, transport, connect_timeout,
 login_method, heartbeat):
 transport = transport or 'amqp'
 if transport == 'amqp' and supports_librabbitmq():
 transport = 'librabbitmq'
 if transport == 'rediss' and ssl_available and not ssl:
 logger.warning(
 'Secure redis scheme specified (rediss) with no ssl '
 'options, defaulting to insecure SSL behaviour.'
)
 ssl = {'ssl_cert_reqs': CERT_NONE}
 self.hostname = hostname
 self.userid = userid
 self.password = password
 self.login_method = login_method
 self.virtual_host = virtual_host or self.virtual_host
 self.port = port or self.port
 self.insist = insist
 self.connect_timeout = connect_timeout
 self.ssl = ssl
 self.transport_cls = transport
 self.heartbeat = heartbeat and float(heartbeat)

 def register_with_event_loop(self, loop):
 self.transport.register_with_event_loop(self.connection, loop)

 def _debug(self, msg, *args, **kwargs):
 if self._logger: # pragma: no cover
 fmt = '[Kombu connection:{id:#x}] {msg}'
 logger.debug(fmt.format(id=id(self), msg=str(msg)),
 *args, **kwargs)

 def connect(self):
 """Establish connection to server immediately."""
 return self._ensure_connection(
 max_retries=1, reraise_as_library_errors=False
)

 def channel(self):
 """Create and return a new channel."""
 self._debug('create channel')
 chan = self.transport.create_channel(self.connection)
 if _log_channel: # pragma: no cover
 from .utils.debug import Logwrapped
 return Logwrapped(chan, 'kombu.channel',
 '[Kombu channel:{0.channel_id}] ')
 return chan

 def heartbeat_check(self, rate=2):
 """Check heartbeats.

 Allow the transport to perform any periodic tasks
 required to make heartbeats work. This should be called
 approximately every second.

 If the current transport does not support heartbeats then
 this is a noop operation.

 Arguments:
 rate (int): Rate is how often the tick is called
 compared to the actual heartbeat value. E.g. if
 the heartbeat is set to 3 seconds, and the tick
 is called every 3 / 2 seconds, then the rate is 2.
 This value is currently unused by any transports.
 """
 return self.transport.heartbeat_check(self.connection, rate=rate)

 def drain_events(self, **kwargs):
 """Wait for a single event from the server.

 Arguments:
 timeout (float): Timeout in seconds before we give up.

 Raises:
 socket.timeout: if the timeout is exceeded.
 """
 return self.transport.drain_events(self.connection, **kwargs)

 def maybe_close_channel(self, channel):
 """Close given channel, but ignore connection and channel errors."""
 try:
 channel.close()
 except (self.connection_errors + self.channel_errors):
 pass

 def _do_close_self(self):
 # Close only connection and channel(s), but not transport.
 self.declared_entities.clear()
 if self._default_channel:
 self.maybe_close_channel(self._default_channel)
 if self._connection:
 try:
 self.transport.close_connection(self._connection)
 except self.connection_errors + (AttributeError, socket.error):
 pass
 self._connection = None

 def _close(self):
 """Really close connection, even if part of a connection pool."""
 self._do_close_self()
 self._do_close_transport()
 self._debug('closed')
 self._closed = True

 def _do_close_transport(self):
 if self._transport:
 self._transport.client = None
 self._transport = None

 def collect(self, socket_timeout=None):
 # amqp requires communication to close, we don't need that just
 # to clear out references, Transport._collect can also be implemented
 # by other transports that want fast after fork
 try:
 gc_transport = self._transport._collect
 except AttributeError:
 _timeo = socket.getdefaulttimeout()
 socket.setdefaulttimeout(socket_timeout)
 try:
 self._do_close_self()
 except socket.timeout:
 pass
 finally:
 socket.setdefaulttimeout(_timeo)
 else:
 gc_transport(self._connection)

 self._do_close_transport()
 self.declared_entities.clear()
 self._connection = None

 def release(self):
 """Close the connection (if open)."""
 self._close()
 close = release

 def ensure_connection(self, *args, **kwargs):
 """Public interface of _ensure_connection for retro-compatibility.

 Returns kombu.Connection instance.
 """
 self._ensure_connection(*args, **kwargs)
 return self

 def _ensure_connection(
 self, errback=None, max_retries=None,
 interval_start=2, interval_step=2, interval_max=30,
 callback=None, reraise_as_library_errors=True,
 timeout=None
):
 """Ensure we have a connection to the server.

 If not retry establishing the connection with the settings
 specified.

 Arguments:
 errback (Callable): Optional callback called each time the
 connection can't be established. Arguments provided are
 the exception raised and the interval that will be
 slept ``(exc, interval)``.

 max_retries (int): Maximum number of times to retry.
 If this limit is exceeded the connection error
 will be re-raised.

 interval_start (float): The number of seconds we start
 sleeping for.
 interval_step (float): How many seconds added to the interval
 for each retry.
 interval_max (float): Maximum number of seconds to sleep between
 each retry.
 callback (Callable): Optional callback that is called for every
 internal iteration (1 s).
 timeout (int): Maximum amount of time in seconds to spend
 waiting for connection
 """
 if self.connected:
 return self._connection

 def on_error(exc, intervals, retries, interval=0):
 round = self.completes_cycle(retries)
 if round:
 interval = next(intervals)
 if errback:
 errback(exc, interval)
 self.maybe_switch_next() # select next host

 return interval if round else 0

 ctx = self._reraise_as_library_errors
 if not reraise_as_library_errors:
 ctx = self._dummy_context
 with ctx():
 return retry_over_time(
 self._connection_factory, self.recoverable_connection_errors,
 (), {}, on_error, max_retries,
 interval_start, interval_step, interval_max,
 callback, timeout=timeout
)

 @contextmanager
 def _reraise_as_library_errors(
 self,
 ConnectionError=exceptions.OperationalError,
 ChannelError=exceptions.OperationalError):
 try:
 yield
 except (ConnectionError, ChannelError):
 raise
 except self.recoverable_connection_errors as exc:
 raise ConnectionError(str(exc)) from exc
 except self.recoverable_channel_errors as exc:
 raise ChannelError(str(exc)) from exc

 @contextmanager
 def _dummy_context(self):
 yield

 def completes_cycle(self, retries):
 """Return true if the cycle is complete after number of `retries`."""
 return not (retries + 1) % len(self.alt) if self.alt else True

 def revive(self, new_channel):
 """Revive connection after connection re-established."""
 if self._default_channel and new_channel is not self._default_channel:
 self.maybe_close_channel(self._default_channel)
 self._default_channel = None

 def ensure(self, obj, fun, errback=None, max_retries=None,
 interval_start=1, interval_step=1, interval_max=1,
 on_revive=None):
 """Ensure operation completes.

 Regardless of any channel/connection errors occurring.

 Retries by establishing the connection, and reapplying
 the function.

 Arguments:
 obj: The object to ensure an action on.
 fun (Callable): Method to apply.

 errback (Callable): Optional callback called each time the
 connection can't be established. Arguments provided are
 the exception raised and the interval that will
 be slept ``(exc, interval)``.

 max_retries (int): Maximum number of times to retry.
 If this limit is exceeded the connection error
 will be re-raised.

 interval_start (float): The number of seconds we start
 sleeping for.
 interval_step (float): How many seconds added to the interval
 for each retry.
 interval_max (float): Maximum number of seconds to sleep between
 each retry.
 on_revive (Callable): Optional callback called whenever
 revival completes successfully

 Examples:
 >>> from kombu import Connection, Producer
 >>> conn = Connection('amqp://')
 >>> producer = Producer(conn)

 >>> def errback(exc, interval):
 ... logger.error('Error: %r', exc, exc_info=1)
 ... logger.info('Retry in %s seconds.', interval)

 >>> publish = conn.ensure(producer, producer.publish,
 ... errback=errback, max_retries=3)
 >>> publish({'hello': 'world'}, routing_key='dest')
 """
 def _ensured(*args, **kwargs):
 got_connection = 0
 conn_errors = self.recoverable_connection_errors
 chan_errors = self.recoverable_channel_errors
 has_modern_errors = hasattr(
 self.transport, 'recoverable_connection_errors',
)
 with self._reraise_as_library_errors():
 for retries in count(0): # for infinity
 try:
 return fun(*args, **kwargs)
 except conn_errors as exc:
 if got_connection and not has_modern_errors:
 # transport can not distinguish between
 # recoverable/irrecoverable errors, so we propagate
 # the error if it persists after a new connection
 # was successfully established.
 raise
 if max_retries is not None and retries > max_retries:
 raise
 self._debug('ensure connection error: %r',
 exc, exc_info=1)
 self.collect()
 errback and errback(exc, 0)
 remaining_retries = None
 if max_retries is not None:
 remaining_retries = max(max_retries - retries, 1)
 self._ensure_connection(
 errback,
 remaining_retries,
 interval_start, interval_step, interval_max,
 reraise_as_library_errors=False,
)
 channel = self.default_channel
 obj.revive(channel)
 if on_revive:
 on_revive(channel)
 got_connection += 1
 except chan_errors as exc:
 if max_retries is not None and retries > max_retries:
 raise
 self._debug('ensure channel error: %r',
 exc, exc_info=1)
 errback and errback(exc, 0)
 _ensured.__name__ = f'{fun.__name__}(ensured)'
 _ensured.__doc__ = fun.__doc__
 _ensured.__module__ = fun.__module__
 return _ensured

 def autoretry(self, fun, channel=None, **ensure_options):
 """Decorator for functions supporting a ``channel`` keyword argument.

 The resulting callable will retry calling the function if
 it raises connection or channel related errors.
 The return value will be a tuple of ``(retval, last_created_channel)``.

 If a ``channel`` is not provided, then one will be automatically
 acquired (remember to close it afterwards).

 See Also:
 :meth:`ensure` for the full list of supported keyword arguments.

 Example:
 >>> channel = connection.channel()
 >>> try:
 ... ret, channel = connection.autoretry(
 ... publish_messages, channel)
 ... finally:
 ... channel.close()
 """
 channels = [channel]

 class Revival:
 __name__ = getattr(fun, '__name__', None)
 __module__ = getattr(fun, '__module__', None)
 __doc__ = getattr(fun, '__doc__', None)

 def __init__(self, connection):
 self.connection = connection

 def revive(self, channel):
 channels[0] = channel

 def __call__(self, *args, **kwargs):
 if channels[0] is None:
 self.revive(self.connection.default_channel)
 return fun(*args, channel=channels[0], **kwargs), channels[0]

 revive = Revival(self)
 return self.ensure(revive, revive, **ensure_options)

 def create_transport(self):
 return self.get_transport_cls()(client=self)

 def get_transport_cls(self):
 """Get the currently used transport class."""
 transport_cls = self.transport_cls
 if not transport_cls or isinstance(transport_cls, str):
 transport_cls = get_transport_cls(transport_cls)
 return transport_cls

 def clone(self, **kwargs):
 """Create a copy of the connection with same settings."""
 return self.__class__(**dict(self._info(resolve=False), **kwargs))

 def get_heartbeat_interval(self):
 return self.transport.get_heartbeat_interval(self.connection)

 def _info(self, resolve=True):
 transport_cls = self.transport_cls
 if resolve:
 transport_cls = self.resolve_aliases.get(
 transport_cls, transport_cls)
 D = self.transport.default_connection_params

 hostname = self.hostname or D.get('hostname')
 if self.uri_prefix:
 hostname = f'{self.uri_prefix}+{hostname}'

 info = (
 ('hostname', hostname),
 ('userid', self.userid or D.get('userid')),
 ('password', self.password or D.get('password')),
 ('virtual_host', self.virtual_host or D.get('virtual_host')),
 ('port', self.port or D.get('port')),
 ('insist', self.insist),
 ('ssl', self.ssl),
 ('transport', transport_cls),
 ('connect_timeout', self.connect_timeout),
 ('transport_options', self.transport_options),
 ('login_method', self.login_method or D.get('login_method')),
 ('uri_prefix', self.uri_prefix),
 ('heartbeat', self.heartbeat),
 ('failover_strategy', self._failover_strategy),
 ('alternates', self.alt),
)
 return info

 def info(self):
 """Get connection info."""
 return OrderedDict(self._info())

 def __eqhash__(self):
 return HashedSeq(self.transport_cls, self.hostname, self.userid,
 self.password, self.virtual_host, self.port,
 repr(self.transport_options))

 def as_uri(self, include_password=False, mask='**',
 getfields=itemgetter('port', 'userid', 'password',
 'virtual_host', 'transport')):
 """Convert connection parameters to URL form."""
 hostname = self.hostname or 'localhost'
 if self.transport.can_parse_url:
 connection_as_uri = self.hostname
 if self.uri_prefix:
 connection_as_uri = f'{self.uri_prefix}+{hostname}'
 if not include_password:
 connection_as_uri = maybe_sanitize_url(connection_as_uri)
 return connection_as_uri
 if self.uri_prefix:
 connection_as_uri = f'{self.uri_prefix}+{hostname}'
 if not include_password:
 connection_as_uri = maybe_sanitize_url(connection_as_uri)
 return connection_as_uri
 fields = self.info()
 port, userid, password, vhost, transport = getfields(fields)

 return as_url(
 transport, hostname, port, userid, password, quote(vhost),
 sanitize=not include_password, mask=mask,
)

 def Pool(self, limit=None, **kwargs):
 """Pool of connections.

 See Also:
 :class:`ConnectionPool`.

 Arguments:
 limit (int): Maximum number of active connections.
 Default is no limit.

 Example:
 >>> connection = Connection('amqp://')
 >>> pool = connection.Pool(2)
 >>> c1 = pool.acquire()
 >>> c2 = pool.acquire()
 >>> c3 = pool.acquire()
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "kombu/connection.py", line 354, in acquire
 raise ConnectionLimitExceeded(self.limit)
 kombu.exceptions.ConnectionLimitExceeded: 2
 >>> c1.release()
 >>> c3 = pool.acquire()
 """
 return ConnectionPool(self, limit, **kwargs)

 def ChannelPool(self, limit=None, **kwargs):
 """Pool of channels.

 See Also:
 :class:`ChannelPool`.

 Arguments:
 limit (int): Maximum number of active channels.
 Default is no limit.

 Example:
 >>> connection = Connection('amqp://')
 >>> pool = connection.ChannelPool(2)
 >>> c1 = pool.acquire()
 >>> c2 = pool.acquire()
 >>> c3 = pool.acquire()
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "kombu/connection.py", line 354, in acquire
 raise ChannelLimitExceeded(self.limit)
 kombu.connection.ChannelLimitExceeded: 2
 >>> c1.release()
 >>> c3 = pool.acquire()
 """
 return ChannelPool(self, limit, **kwargs)

 def Producer(self, channel=None, *args, **kwargs):
 """Create new :class:`kombu.Producer` instance."""
 from .messaging import Producer
 return Producer(channel or self, *args, **kwargs)

 def Consumer(self, queues=None, channel=None, *args, **kwargs):
 """Create new :class:`kombu.Consumer` instance."""
 from .messaging import Consumer
 return Consumer(channel or self, queues, *args, **kwargs)

 def SimpleQueue(self, name, no_ack=None, queue_opts=None,
 queue_args=None,
 exchange_opts=None, channel=None, **kwargs):
 """Simple persistent queue API.

 Create new :class:`~kombu.simple.SimpleQueue`, using a channel
 from this connection.

 If ``name`` is a string, a queue and exchange will be automatically
 created using that name as the name of the queue and exchange,
 also it will be used as the default routing key.

 Arguments:
 name (str, kombu.Queue): Name of the queue/or a queue.
 no_ack (bool): Disable acknowledgments. Default is false.
 queue_opts (Dict): Additional keyword arguments passed to the
 constructor of the automatically created :class:`~kombu.Queue`.
 queue_args (Dict): Additional keyword arguments passed to the
 constructor of the automatically created :class:`~kombu.Queue`
 for setting implementation extensions (e.g., in RabbitMQ).
 exchange_opts (Dict): Additional keyword arguments passed to the
 constructor of the automatically created
 :class:`~kombu.Exchange`.
 channel (ChannelT): Custom channel to use. If not specified the
 connection default channel is used.
 """
 from .simple import SimpleQueue
 return SimpleQueue(channel or self, name, no_ack, queue_opts,
 queue_args,
 exchange_opts, **kwargs)

 def SimpleBuffer(self, name, no_ack=None, queue_opts=None,
 queue_args=None,
 exchange_opts=None, channel=None, **kwargs):
 """Simple ephemeral queue API.

 Create new :class:`~kombu.simple.SimpleQueue` using a channel
 from this connection.

 See Also:
 Same as :meth:`SimpleQueue`, but configured with buffering
 semantics. The resulting queue and exchange will not be durable,
 also auto delete is enabled. Messages will be transient (not
 persistent), and acknowledgments are disabled (``no_ack``).
 """
 from .simple import SimpleBuffer
 return SimpleBuffer(channel or self, name, no_ack, queue_opts,
 queue_args,
 exchange_opts, **kwargs)

 def _establish_connection(self):
 self._debug('establishing connection...')
 conn = self.transport.establish_connection()
 self._debug('connection established: %r', self)
 return conn

 def supports_exchange_type(self, exchange_type):
 return exchange_type in self.transport.implements.exchange_type

 def __repr__(self):
 return '<Connection: {} at {:#x}>'.format(self.as_uri(), id(self))

 def __copy__(self):
 return self.clone()

 def __reduce__(self):
 return self.__class__, tuple(self.info().values()), None

 def __enter__(self):
 return self

 def __exit__(self, *args):
 self.release()

 @property
 def qos_semantics_matches_spec(self):
 return self.transport.qos_semantics_matches_spec(self.connection)

 def _extract_failover_opts(self):
 conn_opts = {}
 transport_opts = self.transport_options
 if transport_opts:
 if 'max_retries' in transport_opts:
 conn_opts['max_retries'] = transport_opts['max_retries']
 if 'interval_start' in transport_opts:
 conn_opts['interval_start'] = transport_opts['interval_start']
 if 'interval_step' in transport_opts:
 conn_opts['interval_step'] = transport_opts['interval_step']
 if 'interval_max' in transport_opts:
 conn_opts['interval_max'] = transport_opts['interval_max']
 return conn_opts

 @property
 def connected(self):
 """Return true if the connection has been established."""
 return (not self._closed and
 self._connection is not None and
 self.transport.verify_connection(self._connection))

 @property
 def connection(self):
 """The underlying connection object.

 Warning:
 This instance is transport specific, so do not
 depend on the interface of this object.
 """
 if not self._closed:
 if not self.connected:
 return self._ensure_connection(
 max_retries=1, reraise_as_library_errors=False
)
 return self._connection

 def _connection_factory(self):
 self.declared_entities.clear()
 self._default_channel = None
 self._connection = self._establish_connection()
 self._closed = False
 return self._connection

 @property
 def default_channel(self):
 """Default channel.

 Created upon access and closed when the connection is closed.

 Note:
 Can be used for automatic channel handling when you only need one
 channel, and also it is the channel implicitly used if
 a connection is passed instead of a channel, to functions that
 require a channel.
 """
 # make sure we're still connected, and if not refresh.
 conn_opts = self._extract_failover_opts()
 self._ensure_connection(**conn_opts)

 if self._default_channel is None:
 self._default_channel = self.channel()
 return self._default_channel

 @property
 def host(self):
 """The host as a host name/port pair separated by colon."""
 return ':'.join([self.hostname, str(self.port)])

 @property
 def transport(self):
 if self._transport is None:
 self._transport = self.create_transport()
 return self._transport

 @cached_property
 def manager(self):
 """AMQP Management API.

 Experimental manager that can be used to manage/monitor the broker
 instance.

 Not available for all transports.
 """
 return self.transport.manager

 def get_manager(self, *args, **kwargs):
 return self.transport.get_manager(*args, **kwargs)

 @cached_property
 def recoverable_connection_errors(self):
 """Recoverable connection errors.

 List of connection related exceptions that can be recovered from,
 but where the connection must be closed and re-established first.
 """
 try:
 return self.transport.recoverable_connection_errors
 except AttributeError:
 # There were no such classification before,
 # and all errors were assumed to be recoverable,
 # so this is a fallback for transports that do
 # not support the new recoverable/irrecoverable classes.
 return self.connection_errors + self.channel_errors

 @cached_property
 def recoverable_channel_errors(self):
 """Recoverable channel errors.

 List of channel related exceptions that can be automatically
 recovered from without re-establishing the connection.
 """
 try:
 return self.transport.recoverable_channel_errors
 except AttributeError:
 return ()

 @cached_property
 def connection_errors(self):
 """List of exceptions that may be raised by the connection."""
 return self.transport.connection_errors

 @cached_property
 def channel_errors(self):
 """List of exceptions that may be raised by the channel."""
 return self.transport.channel_errors

 @property
 def supports_heartbeats(self):
 return self.transport.implements.heartbeats

 @property
 def is_evented(self):
 return self.transport.implements.asynchronous

BrokerConnection = Connection # noqa: E305

class ConnectionPool(Resource):
 """Pool of connections."""

 LimitExceeded = exceptions.ConnectionLimitExceeded
 close_after_fork = True

 def __init__(self, connection, limit=None, **kwargs):
 self.connection = connection
 super().__init__(limit=limit)

 def new(self):
 return self.connection.clone()

 def release_resource(self, resource):
 try:
 resource._debug('released')
 except AttributeError:
 pass

 def close_resource(self, resource):
 resource._close()

 def collect_resource(self, resource, socket_timeout=0.1):
 if not isinstance(resource, lazy):
 return resource.collect(socket_timeout)

 @contextmanager
 def acquire_channel(self, block=False):
 with self.acquire(block=block) as connection:
 yield connection, connection.default_channel

 def setup(self):
 if self.limit:
 q = self._resource.queue
 while len(q) < self.limit:
 self._resource.put_nowait(lazy(self.new))

 def prepare(self, resource):
 if callable(resource):
 resource = resource()
 resource._debug('acquired')
 return resource

class ChannelPool(Resource):
 """Pool of channels."""

 LimitExceeded = exceptions.ChannelLimitExceeded

 def __init__(self, connection, limit=None, **kwargs):
 self.connection = connection
 super().__init__(limit=limit)

 def new(self):
 return lazy(self.connection.channel)

 def setup(self):
 channel = self.new()
 if self.limit:
 q = self._resource.queue
 while len(q) < self.limit:
 self._resource.put_nowait(lazy(channel))

 def prepare(self, channel):
 if callable(channel):
 channel = channel()
 return channel

def maybe_channel(channel):
 """Get channel from object.

 Return the default channel if argument is a connection instance,
 otherwise just return the channel given.
 """
 if is_connection(channel):
 return channel.default_channel
 return channel

def is_connection(obj):
 return isinstance(obj, Connection)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for kombu.entity

"""Exchange and Queue declarations."""

import numbers

from .abstract import MaybeChannelBound, Object
from .exceptions import ContentDisallowed
from .serialization import prepare_accept_content

TRANSIENT_DELIVERY_MODE = 1
PERSISTENT_DELIVERY_MODE = 2
DELIVERY_MODES = {'transient': TRANSIENT_DELIVERY_MODE,
 'persistent': PERSISTENT_DELIVERY_MODE}

__all__ = ('Exchange', 'Queue', 'binding', 'maybe_delivery_mode')

INTERNAL_EXCHANGE_PREFIX = ('amq.',)

def _reprstr(s):
 s = repr(s)
 if isinstance(s, str) and s.startswith("u'"):
 return s[2:-1]
 return s[1:-1]

def pretty_bindings(bindings):
 return '[{}]'.format(', '.join(map(str, bindings)))

def maybe_delivery_mode(
 v, modes=None, default=PERSISTENT_DELIVERY_MODE):
 """Get delivery mode by name (or none if undefined)."""
 modes = DELIVERY_MODES if not modes else modes
 if v:
 return v if isinstance(v, numbers.Integral) else modes[v]
 return default

class Exchange(MaybeChannelBound):
 """An Exchange declaration.

 Arguments:
 name (str): See :attr:`name`.
 type (str): See :attr:`type`.
 channel (kombu.Connection, ChannelT): See :attr:`channel`.
 durable (bool): See :attr:`durable`.
 auto_delete (bool): See :attr:`auto_delete`.
 delivery_mode (enum): See :attr:`delivery_mode`.
 arguments (Dict): See :attr:`arguments`.
 no_declare (bool): See :attr:`no_declare`

 Attributes:
 name (str): Name of the exchange.
 Default is no name (the default exchange).

 type (str):
 *This description of AMQP exchange types was shamelessly stolen
 from the blog post `AMQP in 10 minutes: Part 4`_ by
 Rajith Attapattu. Reading this article is recommended if you're
 new to amqp.*

 "AMQP defines four default exchange types (routing algorithms) that
 covers most of the common messaging use cases. An AMQP broker can
 also define additional exchange types, so see your broker
 manual for more information about available exchange types.

 * `direct` (*default*)

 Direct match between the routing key in the message,
 and the routing criteria used when a queue is bound to
 this exchange.

 * `topic`

 Wildcard match between the routing key and the routing
 pattern specified in the exchange/queue binding.
 The routing key is treated as zero or more words delimited
 by `"."` and supports special wildcard characters. `"*"`
 matches a single word and `"#"` matches zero or more words.

 * `fanout`

 Queues are bound to this exchange with no arguments. Hence
 any message sent to this exchange will be forwarded to all
 queues bound to this exchange.

 * `headers`

 Queues are bound to this exchange with a table of arguments
 containing headers and values (optional). A special
 argument named "x-match" determines the matching algorithm,
 where `"all"` implies an `AND` (all pairs must match) and
 `"any"` implies `OR` (at least one pair must match).

 :attr:`arguments` is used to specify the arguments.

 .. _`AMQP in 10 minutes: Part 4`:
 https://bit.ly/2rcICv5

 channel (ChannelT): The channel the exchange is bound to (if bound).

 durable (bool): Durable exchanges remain active when a server restarts.
 Non-durable exchanges (transient exchanges) are purged when a
 server restarts. Default is :const:`True`.

 auto_delete (bool): If set, the exchange is deleted when all queues
 have finished using it. Default is :const:`False`.

 delivery_mode (enum): The default delivery mode used for messages.
 The value is an integer, or alias string.

 * 1 or `"transient"`

 The message is transient. Which means it is stored in
 memory only, and is lost if the server dies or restarts.

 * 2 or "persistent" (*default*)
 The message is persistent. Which means the message is
 stored both in-memory, and on disk, and therefore
 preserved if the server dies or restarts.

 The default value is 2 (persistent).

 arguments (Dict): Additional arguments to specify when the exchange
 is declared.

 no_declare (bool): Never declare this exchange
 (:meth:`declare` does nothing).
 """

 TRANSIENT_DELIVERY_MODE = TRANSIENT_DELIVERY_MODE
 PERSISTENT_DELIVERY_MODE = PERSISTENT_DELIVERY_MODE

 name = ''
 type = 'direct'
 durable = True
 auto_delete = False
 passive = False
 delivery_mode = None
 no_declare = False

 attrs = (
 ('name', None),
 ('type', None),
 ('arguments', None),
 ('durable', bool),
 ('passive', bool),
 ('auto_delete', bool),
 ('delivery_mode', lambda m: DELIVERY_MODES.get(m) or m),
 ('no_declare', bool),
)

 def __init__(self, name='', type='', channel=None, **kwargs):
 super().__init__(**kwargs)
 self.name = name or self.name
 self.type = type or self.type
 self.maybe_bind(channel)

 def __hash__(self):
 return hash(f'E|{self.name}')

 def _can_declare(self):
 return not self.no_declare and (
 self.name and not self.name.startswith(
 INTERNAL_EXCHANGE_PREFIX))

 def declare(self, nowait=False, passive=None, channel=None):
 """Declare the exchange.

 Creates the exchange on the broker, unless passive is set
 in which case it will only assert that the exchange exists.

 Argument:
 nowait (bool): If set the server will not respond, and a
 response will not be waited for. Default is :const:`False`.
 """
 if self._can_declare():
 passive = self.passive if passive is None else passive
 return (channel or self.channel).exchange_declare(
 exchange=self.name, type=self.type, durable=self.durable,
 auto_delete=self.auto_delete, arguments=self.arguments,
 nowait=nowait, passive=passive,
)

 def bind_to(self, exchange='', routing_key='',
 arguments=None, nowait=False, channel=None, **kwargs):
 """Bind the exchange to another exchange.

 Arguments:
 nowait (bool): If set the server will not respond, and the call
 will not block waiting for a response.
 Default is :const:`False`.
 """
 if isinstance(exchange, Exchange):
 exchange = exchange.name
 return (channel or self.channel).exchange_bind(
 destination=self.name,
 source=exchange,
 routing_key=routing_key,
 nowait=nowait,
 arguments=arguments,
)

 def unbind_from(self, source='', routing_key='',
 nowait=False, arguments=None, channel=None):
 """Delete previously created exchange binding from the server."""
 if isinstance(source, Exchange):
 source = source.name
 return (channel or self.channel).exchange_unbind(
 destination=self.name,
 source=source,
 routing_key=routing_key,
 nowait=nowait,
 arguments=arguments,
)

 def Message(self, body, delivery_mode=None, properties=None, **kwargs):
 """Create message instance to be sent with :meth:`publish`.

 Arguments:
 body (Any): Message body.

 delivery_mode (bool): Set custom delivery mode.
 Defaults to :attr:`delivery_mode`.

 priority (int): Message priority, 0 to broker configured
 max priority, where higher is better.

 content_type (str): The messages content_type. If content_type
 is set, no serialization occurs as it is assumed this is either
 a binary object, or you've done your own serialization.
 Leave blank if using built-in serialization as our library
 properly sets content_type.

 content_encoding (str): The character set in which this object
 is encoded. Use "binary" if sending in raw binary objects.
 Leave blank if using built-in serialization as our library
 properly sets content_encoding.

 properties (Dict): Message properties.

 headers (Dict): Message headers.
 """
 properties = {} if properties is None else properties
 properties['delivery_mode'] = maybe_delivery_mode(self.delivery_mode)
 if (isinstance(body, str) and
 properties.get('content_encoding', None)) is None:
 kwargs['content_encoding'] = 'utf-8'
 return self.channel.prepare_message(
 body,
 properties=properties,
 **kwargs)

 def publish(self, message, routing_key=None, mandatory=False,
 immediate=False, exchange=None):
 """Publish message.

 Arguments:
 message (Union[kombu.Message, str, bytes]):
 Message to publish.
 routing_key (str): Message routing key.
 mandatory (bool): Currently not supported.
 immediate (bool): Currently not supported.
 """
 if isinstance(message, str):
 message = self.Message(message)
 exchange = exchange or self.name
 return self.channel.basic_publish(
 message,
 exchange=exchange,
 routing_key=routing_key,
 mandatory=mandatory,
 immediate=immediate,
)

 def delete(self, if_unused=False, nowait=False):
 """Delete the exchange declaration on server.

 Arguments:
 if_unused (bool): Delete only if the exchange has no bindings.
 Default is :const:`False`.
 nowait (bool): If set the server will not respond, and a
 response will not be waited for. Default is :const:`False`.
 """
 return self.channel.exchange_delete(exchange=self.name,
 if_unused=if_unused,
 nowait=nowait)

 def binding(self, routing_key='', arguments=None, unbind_arguments=None):
 return binding(self, routing_key, arguments, unbind_arguments)

 def __eq__(self, other):
 if isinstance(other, Exchange):
 return (self.name == other.name and
 self.type == other.type and
 self.arguments == other.arguments and
 self.durable == other.durable and
 self.auto_delete == other.auto_delete and
 self.delivery_mode == other.delivery_mode)
 return NotImplemented

 def __ne__(self, other):
 return not self.__eq__(other)

 def __repr__(self):
 return self._repr_entity(self)

 def __str__(self):
 return 'Exchange {}({})'.format(
 _reprstr(self.name) or repr(''), self.type,
)

 @property
 def can_cache_declaration(self):
 return not self.auto_delete

class binding(Object):
 """Represents a queue or exchange binding.

 Arguments:
 exchange (Exchange): Exchange to bind to.
 routing_key (str): Routing key used as binding key.
 arguments (Dict): Arguments for bind operation.
 unbind_arguments (Dict): Arguments for unbind operation.
 """

 attrs = (
 ('exchange', None),
 ('routing_key', None),
 ('arguments', None),
 ('unbind_arguments', None)
)

 def __init__(self, exchange=None, routing_key='',
 arguments=None, unbind_arguments=None):
 self.exchange = exchange
 self.routing_key = routing_key
 self.arguments = arguments
 self.unbind_arguments = unbind_arguments

 def declare(self, channel, nowait=False):
 """Declare destination exchange."""
 if self.exchange and self.exchange.name:
 self.exchange.declare(channel=channel, nowait=nowait)

 def bind(self, entity, nowait=False, channel=None):
 """Bind entity to this binding."""
 entity.bind_to(exchange=self.exchange,
 routing_key=self.routing_key,
 arguments=self.arguments,
 nowait=nowait,
 channel=channel)

 def unbind(self, entity, nowait=False, channel=None):
 """Unbind entity from this binding."""
 entity.unbind_from(self.exchange,
 routing_key=self.routing_key,
 arguments=self.unbind_arguments,
 nowait=nowait,
 channel=channel)

 def __repr__(self):
 return f'<binding: {self}>'

 def __str__(self):
 return '{}->{}'.format(
 _reprstr(self.exchange.name), _reprstr(self.routing_key),
)

class Queue(MaybeChannelBound):
 """A Queue declaration.

 Arguments:
 name (str): See :attr:`name`.
 exchange (Exchange, str): See :attr:`exchange`.
 routing_key (str): See :attr:`routing_key`.
 channel (kombu.Connection, ChannelT): See :attr:`channel`.
 durable (bool): See :attr:`durable`.
 exclusive (bool): See :attr:`exclusive`.
 auto_delete (bool): See :attr:`auto_delete`.
 queue_arguments (Dict): See :attr:`queue_arguments`.
 binding_arguments (Dict): See :attr:`binding_arguments`.
 consumer_arguments (Dict): See :attr:`consumer_arguments`.
 no_declare (bool): See :attr:`no_declare`.
 on_declared (Callable): See :attr:`on_declared`.
 expires (float): See :attr:`expires`.
 message_ttl (float): See :attr:`message_ttl`.
 max_length (int): See :attr:`max_length`.
 max_length_bytes (int): See :attr:`max_length_bytes`.
 max_priority (int): See :attr:`max_priority`.

 Attributes:
 name (str): Name of the queue.
 Default is no name (default queue destination).

 exchange (Exchange): The :class:`Exchange` the queue binds to.

 routing_key (str): The routing key (if any), also called *binding key*.

 The interpretation of the routing key depends on
 the :attr:`Exchange.type`.

 * direct exchange

 Matches if the routing key property of the message and
 the :attr:`routing_key` attribute are identical.

 * fanout exchange

 Always matches, even if the binding does not have a key.

 * topic exchange

 Matches the routing key property of the message by a primitive
 pattern matching scheme. The message routing key then consists
 of words separated by dots (`"."`, like domain names), and
 two special characters are available; star (`"*"`) and hash
 (`"#"`). The star matches any word, and the hash matches
 zero or more words. For example `"*.stock.#"` matches the
 routing keys `"usd.stock"` and `"eur.stock.db"` but not
 `"stock.nasdaq"`.

 channel (ChannelT): The channel the Queue is bound to (if bound).

 durable (bool): Durable queues remain active when a server restarts.
 Non-durable queues (transient queues) are purged if/when
 a server restarts.
 Note that durable queues do not necessarily hold persistent
 messages, although it does not make sense to send
 persistent messages to a transient queue.

 Default is :const:`True`.

 exclusive (bool): Exclusive queues may only be consumed from by the
 current connection. Setting the 'exclusive' flag
 always implies 'auto-delete'.

 Default is :const:`False`.

 auto_delete (bool): If set, the queue is deleted when all consumers
 have finished using it. Last consumer can be canceled
 either explicitly or because its channel is closed. If
 there was no consumer ever on the queue, it won't be
 deleted.

 expires (float): Set the expiry time (in seconds) for when this
 queue should expire.

 The expiry time decides how long the queue can stay unused
 before it's automatically deleted.
 Unused means the queue has no consumers, the queue has not been
 redeclared, and ``Queue.get`` has not been invoked for a duration
 of at least the expiration period.

 See https://www.rabbitmq.com/ttl.html#queue-ttl

 RabbitMQ extension: Only available when using RabbitMQ.

 message_ttl (float): Message time to live in seconds.

 This setting controls how long messages can stay in the queue
 unconsumed. If the expiry time passes before a message consumer
 has received the message, the message is deleted and no consumer
 will see the message.

 See https://www.rabbitmq.com/ttl.html#per-queue-message-ttl

 RabbitMQ extension: Only available when using RabbitMQ.

 max_length (int): Set the maximum number of messages that the
 queue can hold.

 If the number of messages in the queue size exceeds this limit,
 new messages will be dropped (or dead-lettered if a dead letter
 exchange is active).

 See https://www.rabbitmq.com/maxlength.html

 RabbitMQ extension: Only available when using RabbitMQ.

 max_length_bytes (int): Set the max size (in bytes) for the total
 of messages in the queue.

 If the total size of all the messages in the queue exceeds this
 limit, new messages will be dropped (or dead-lettered if a dead
 letter exchange is active).

 RabbitMQ extension: Only available when using RabbitMQ.

 max_priority (int): Set the highest priority number for this queue.

 For example if the value is 10, then messages can delivered to
 this queue can have a ``priority`` value between 0 and 10,
 where 10 is the highest priority.

 RabbitMQ queues without a max priority set will ignore
 the priority field in the message, so if you want priorities
 you need to set the max priority field to declare the queue
 as a priority queue.

 RabbitMQ extension: Only available when using RabbitMQ.

 queue_arguments (Dict): Additional arguments used when declaring
 the queue. Can be used to to set the arguments value
 for RabbitMQ/AMQP's ``queue.declare``.

 binding_arguments (Dict): Additional arguments used when binding
 the queue. Can be used to to set the arguments value
 for RabbitMQ/AMQP's ``queue.declare``.

 consumer_arguments (Dict): Additional arguments used when consuming
 from this queue. Can be used to to set the arguments value
 for RabbitMQ/AMQP's ``basic.consume``.

 alias (str): Unused in Kombu, but applications can take advantage
 of this, for example to give alternate names to queues with
 automatically generated queue names.

 on_declared (Callable): Optional callback to be applied when the
 queue has been declared (the ``queue_declare`` operation is
 complete). This must be a function with a signature that
 accepts at least 3 positional arguments:
 ``(name, messages, consumers)``.

 no_declare (bool): Never declare this queue, nor related
 entities (:meth:`declare` does nothing).
 """

 ContentDisallowed = ContentDisallowed

 name = ''
 exchange = Exchange('')
 routing_key = ''

 durable = True
 exclusive = False
 auto_delete = False
 no_ack = False

 attrs = (
 ('name', None),
 ('exchange', None),
 ('routing_key', None),
 ('queue_arguments', None),
 ('binding_arguments', None),
 ('consumer_arguments', None),
 ('durable', bool),
 ('exclusive', bool),
 ('auto_delete', bool),
 ('no_ack', None),
 ('alias', None),
 ('bindings', list),
 ('no_declare', bool),
 ('expires', float),
 ('message_ttl', float),
 ('max_length', int),
 ('max_length_bytes', int),
 ('max_priority', int)
)

 def __init__(self, name='', exchange=None, routing_key='',
 channel=None, bindings=None, on_declared=None,
 **kwargs):
 super().__init__(**kwargs)
 self.name = name or self.name
 if isinstance(exchange, str):
 self.exchange = Exchange(exchange)
 elif isinstance(exchange, Exchange):
 self.exchange = exchange
 self.routing_key = routing_key or self.routing_key
 self.bindings = set(bindings or [])
 self.on_declared = on_declared

 # allows Queue('name', [binding(...), binding(...), ...])
 if isinstance(exchange, (list, tuple, set)):
 self.bindings |= set(exchange)
 if self.bindings:
 self.exchange = None

 # exclusive implies auto-delete.
 if self.exclusive:
 self.auto_delete = True
 self.maybe_bind(channel)

 def bind(self, channel):
 on_declared = self.on_declared
 bound = super().bind(channel)
 bound.on_declared = on_declared
 return bound

 def __hash__(self):
 return hash(f'Q|{self.name}')

 def when_bound(self):
 if self.exchange:
 self.exchange = self.exchange(self.channel)

 def declare(self, nowait=False, channel=None):
 """Declare queue and exchange then binds queue to exchange."""
 if not self.no_declare:
 # - declare main binding.
 self._create_exchange(nowait=nowait, channel=channel)
 self._create_queue(nowait=nowait, channel=channel)
 self._create_bindings(nowait=nowait, channel=channel)
 return self.name

 def _create_exchange(self, nowait=False, channel=None):
 if self.exchange:
 self.exchange.declare(nowait=nowait, channel=channel)

 def _create_queue(self, nowait=False, channel=None):
 self.queue_declare(nowait=nowait, passive=False, channel=channel)
 if self.exchange and self.exchange.name:
 self.queue_bind(nowait=nowait, channel=channel)

 def _create_bindings(self, nowait=False, channel=None):
 for B in self.bindings:
 channel = channel or self.channel
 B.declare(channel)
 B.bind(self, nowait=nowait, channel=channel)

 def queue_declare(self, nowait=False, passive=False, channel=None):
 """Declare queue on the server.

 Arguments:
 nowait (bool): Do not wait for a reply.
 passive (bool): If set, the server will not create the queue.
 The client can use this to check whether a queue exists
 without modifying the server state.
 """
 channel = channel or self.channel
 queue_arguments = channel.prepare_queue_arguments(
 self.queue_arguments or {},
 expires=self.expires,
 message_ttl=self.message_ttl,
 max_length=self.max_length,
 max_length_bytes=self.max_length_bytes,
 max_priority=self.max_priority,
)
 ret = channel.queue_declare(
 queue=self.name,
 passive=passive,
 durable=self.durable,
 exclusive=self.exclusive,
 auto_delete=self.auto_delete,
 arguments=queue_arguments,
 nowait=nowait,
)
 if not self.name:
 self.name = ret[0]
 if self.on_declared:
 self.on_declared(*ret)
 return ret

 def queue_bind(self, nowait=False, channel=None):
 """Create the queue binding on the server."""
 return self.bind_to(self.exchange, self.routing_key,
 self.binding_arguments,
 channel=channel, nowait=nowait)

 def bind_to(self, exchange='', routing_key='',
 arguments=None, nowait=False, channel=None):
 if isinstance(exchange, Exchange):
 exchange = exchange.name

 return (channel or self.channel).queue_bind(
 queue=self.name,
 exchange=exchange,
 routing_key=routing_key,
 arguments=arguments,
 nowait=nowait,
)

 def get(self, no_ack=None, accept=None):
 """Poll the server for a new message.

 This method provides direct access to the messages in a
 queue using a synchronous dialogue, designed for
 specific types of applications where synchronous functionality
 is more important than performance.

 Returns:
 ~kombu.Message: if a message was available,
 or :const:`None` otherwise.

 Arguments:
 no_ack (bool): If enabled the broker will
 automatically ack messages.
 accept (Set[str]): Custom list of accepted content types.
 """
 no_ack = self.no_ack if no_ack is None else no_ack
 message = self.channel.basic_get(queue=self.name, no_ack=no_ack)
 if message is not None:
 m2p = getattr(self.channel, 'message_to_python', None)
 if m2p:
 message = m2p(message)
 if message.errors:
 message._reraise_error()
 message.accept = prepare_accept_content(accept)
 return message

 def purge(self, nowait=False):
 """Remove all ready messages from the queue."""
 return self.channel.queue_purge(queue=self.name,
 nowait=nowait) or 0

 def consume(self, consumer_tag='', callback=None,
 no_ack=None, nowait=False):
 """Start a queue consumer.

 Consumers last as long as the channel they were created on, or
 until the client cancels them.

 Arguments:
 consumer_tag (str): Unique identifier for the consumer.
 The consumer tag is local to a connection, so two clients
 can use the same consumer tags. If this field is empty
 the server will generate a unique tag.

 no_ack (bool): If enabled the broker will automatically
 ack messages.

 nowait (bool): Do not wait for a reply.

 callback (Callable): callback called for each delivered message.
 """
 if no_ack is None:
 no_ack = self.no_ack
 return self.channel.basic_consume(
 queue=self.name,
 no_ack=no_ack,
 consumer_tag=consumer_tag or '',
 callback=callback,
 nowait=nowait,
 arguments=self.consumer_arguments)

 def cancel(self, consumer_tag):
 """Cancel a consumer by consumer tag."""
 return self.channel.basic_cancel(consumer_tag)

 def delete(self, if_unused=False, if_empty=False, nowait=False):
 """Delete the queue.

 Arguments:
 if_unused (bool): If set, the server will only delete the queue
 if it has no consumers. A channel error will be raised
 if the queue has consumers.

 if_empty (bool): If set, the server will only delete the queue if
 it is empty. If it is not empty a channel error will be raised.

 nowait (bool): Do not wait for a reply.
 """
 return self.channel.queue_delete(queue=self.name,
 if_unused=if_unused,
 if_empty=if_empty,
 nowait=nowait)

 def queue_unbind(self, arguments=None, nowait=False, channel=None):
 return self.unbind_from(self.exchange, self.routing_key,
 arguments, nowait, channel)

 def unbind_from(self, exchange='', routing_key='',
 arguments=None, nowait=False, channel=None):
 """Unbind queue by deleting the binding from the server."""
 return (channel or self.channel).queue_unbind(
 queue=self.name,
 exchange=exchange.name,
 routing_key=routing_key,
 arguments=arguments,
 nowait=nowait,
)

 def __eq__(self, other):
 if isinstance(other, Queue):
 return (self.name == other.name and
 self.exchange == other.exchange and
 self.routing_key == other.routing_key and
 self.queue_arguments == other.queue_arguments and
 self.binding_arguments == other.binding_arguments and
 self.consumer_arguments == other.consumer_arguments and
 self.durable == other.durable and
 self.exclusive == other.exclusive and
 self.auto_delete == other.auto_delete)
 return NotImplemented

 def __ne__(self, other):
 return not self.__eq__(other)

 def __repr__(self):
 if self.bindings:
 return self._repr_entity('Queue {name} -> {bindings}'.format(
 name=_reprstr(self.name),
 bindings=pretty_bindings(self.bindings),
))
 return self._repr_entity(
 'Queue {name} -> {0.exchange!r} -> {routing_key}'.format(
 self, name=_reprstr(self.name),
 routing_key=_reprstr(self.routing_key),
),
)

 @property
 def can_cache_declaration(self):
 if self.queue_arguments:
 expiring_queue = "x-expires" in self.queue_arguments
 else:
 expiring_queue = False
 return not expiring_queue and not self.auto_delete

 @classmethod
 def from_dict(cls, queue, **options):
 binding_key = options.get('binding_key') or options.get('routing_key')

 e_durable = options.get('exchange_durable')
 if e_durable is None:
 e_durable = options.get('durable')

 e_auto_delete = options.get('exchange_auto_delete')
 if e_auto_delete is None:
 e_auto_delete = options.get('auto_delete')

 q_durable = options.get('queue_durable')
 if q_durable is None:
 q_durable = options.get('durable')

 q_auto_delete = options.get('queue_auto_delete')
 if q_auto_delete is None:
 q_auto_delete = options.get('auto_delete')

 e_arguments = options.get('exchange_arguments')
 q_arguments = options.get('queue_arguments')
 b_arguments = options.get('binding_arguments')
 c_arguments = options.get('consumer_arguments')
 bindings = options.get('bindings')

 exchange = Exchange(options.get('exchange'),
 type=options.get('exchange_type'),
 delivery_mode=options.get('delivery_mode'),
 routing_key=options.get('routing_key'),
 durable=e_durable,
 auto_delete=e_auto_delete,
 arguments=e_arguments)
 return Queue(queue,
 exchange=exchange,
 routing_key=binding_key,
 durable=q_durable,
 exclusive=options.get('exclusive'),
 auto_delete=q_auto_delete,
 no_ack=options.get('no_ack'),
 queue_arguments=q_arguments,
 binding_arguments=b_arguments,
 consumer_arguments=c_arguments,
 bindings=bindings)

 def as_dict(self, recurse=False):
 res = super().as_dict(recurse)
 if not recurse:
 return res
 bindings = res.get('bindings')
 if bindings:
 res['bindings'] = [b.as_dict(recurse=True) for b in bindings]
 return res

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for kombu.exceptions

"""Exceptions."""

from socket import timeout as TimeoutError # noqa

from amqp import ChannelError, ConnectionError, ResourceError

__all__ = (
 'reraise', 'KombuError', 'OperationalError',
 'NotBoundError', 'MessageStateError', 'TimeoutError',
 'LimitExceeded', 'ConnectionLimitExceeded',
 'ChannelLimitExceeded', 'ConnectionError', 'ChannelError',
 'VersionMismatch', 'SerializerNotInstalled', 'ResourceError',
 'SerializationError', 'EncodeError', 'DecodeError', 'HttpError',
 'InconsistencyError',
)

def reraise(tp, value, tb=None):
 """Reraise exception."""
 if value.__traceback__ is not tb:
 raise value.with_traceback(tb)
 raise value

class KombuError(Exception):
 """Common subclass for all Kombu exceptions."""

[docs]class OperationalError(KombuError):
 """Recoverable message transport connection error."""

class SerializationError(KombuError):
 """Failed to serialize/deserialize content."""

class EncodeError(SerializationError):
 """Cannot encode object."""

class DecodeError(SerializationError):
 """Cannot decode object."""

class NotBoundError(KombuError):
 """Trying to call channel dependent method on unbound entity."""

class MessageStateError(KombuError):
 """The message has already been acknowledged."""

class LimitExceeded(KombuError):
 """Limit exceeded."""

class ConnectionLimitExceeded(LimitExceeded):
 """Maximum number of simultaneous connections exceeded."""

class ChannelLimitExceeded(LimitExceeded):
 """Maximum number of simultaneous channels exceeded."""

class VersionMismatch(KombuError):
 """Library dependency version mismatch."""

class SerializerNotInstalled(KombuError):
 """Support for the requested serialization type is not installed."""

class ContentDisallowed(SerializerNotInstalled):
 """Consumer does not allow this content-type."""

class InconsistencyError(ConnectionError):
 """Data or environment has been found to be inconsistent.

 Depending on the cause it may be possible to retry the operation.
 """

class HttpError(Exception):
 """HTTP Client Error."""

 def __init__(self, code, message=None, response=None):
 self.code = code
 self.message = message
 self.response = response
 super().__init__(code, message, response)

 def __str__(self):
 return 'HTTP {0.code}: {0.message}'.format(self)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for kombu.messaging

"""Sending and receiving messages."""

from itertools import count

from .common import maybe_declare
from .compression import compress
from .connection import maybe_channel, is_connection
from .entity import Exchange, Queue, maybe_delivery_mode
from .exceptions import ContentDisallowed
from .serialization import dumps, prepare_accept_content
from .utils.functional import ChannelPromise, maybe_list

__all__ = ('Exchange', 'Queue', 'Producer', 'Consumer')

class Producer:
 """Message Producer.

 Arguments:
 channel (kombu.Connection, ChannelT): Connection or channel.
 exchange (kombu.entity.Exchange, str): Optional default exchange.
 routing_key (str): Optional default routing key.
 serializer (str): Default serializer. Default is `"json"`.
 compression (str): Default compression method.
 Default is no compression.
 auto_declare (bool): Automatically declare the default exchange
 at instantiation. Default is :const:`True`.
 on_return (Callable): Callback to call for undeliverable messages,
 when the `mandatory` or `immediate` arguments to
 :meth:`publish` is used. This callback needs the following
 signature: `(exception, exchange, routing_key, message)`.
 Note that the producer needs to drain events to use this feature.
 """

 #: Default exchange
 exchange = None

 #: Default routing key.
 routing_key = ''

 #: Default serializer to use. Default is JSON.
 serializer = None

 #: Default compression method. Disabled by default.
 compression = None

 #: By default, if a defualt exchange is set,
 #: that exchange will be declare when publishing a message.
 auto_declare = True

 #: Basic return callback.
 on_return = None

 #: Set if channel argument was a Connection instance (using
 #: default_channel).
 __connection__ = None

 def __init__(self, channel, exchange=None, routing_key=None,
 serializer=None, auto_declare=None, compression=None,
 on_return=None):
 self._channel = channel
 self.exchange = exchange
 self.routing_key = routing_key or self.routing_key
 self.serializer = serializer or self.serializer
 self.compression = compression or self.compression
 self.on_return = on_return or self.on_return
 self._channel_promise = None
 if self.exchange is None:
 self.exchange = Exchange('')
 if auto_declare is not None:
 self.auto_declare = auto_declare

 if self._channel:
 self.revive(self._channel)

 def __repr__(self):
 return f'<Producer: {self._channel}>'

 def __reduce__(self):
 return self.__class__, self.__reduce_args__()

 def __reduce_args__(self):
 return (None, self.exchange, self.routing_key, self.serializer,
 self.auto_declare, self.compression)

 def declare(self):
 """Declare the exchange.

 Note:
 This happens automatically at instantiation when
 the :attr:`auto_declare` flag is enabled.
 """
 if self.exchange.name:
 self.exchange.declare()

 def maybe_declare(self, entity, retry=False, **retry_policy):
 """Declare exchange if not already declared during this session."""
 if entity:
 return maybe_declare(entity, self.channel, retry, **retry_policy)

 def _delivery_details(self, exchange, delivery_mode=None,
 maybe_delivery_mode=maybe_delivery_mode,
 Exchange=Exchange):
 if isinstance(exchange, Exchange):
 return exchange.name, maybe_delivery_mode(
 delivery_mode or exchange.delivery_mode,
)
 # exchange is string, so inherit the delivery
 # mode of our default exchange.
 return exchange, maybe_delivery_mode(
 delivery_mode or self.exchange.delivery_mode,
)

 def publish(self, body, routing_key=None, delivery_mode=None,
 mandatory=False, immediate=False, priority=0,
 content_type=None, content_encoding=None, serializer=None,
 headers=None, compression=None, exchange=None, retry=False,
 retry_policy=None, declare=None, expiration=None,
 **properties):
 """Publish message to the specified exchange.

 Arguments:
 body (Any): Message body.
 routing_key (str): Message routing key.
 delivery_mode (enum): See :attr:`delivery_mode`.
 mandatory (bool): Currently not supported.
 immediate (bool): Currently not supported.
 priority (int): Message priority. A number between 0 and 9.
 content_type (str): Content type. Default is auto-detect.
 content_encoding (str): Content encoding. Default is auto-detect.
 serializer (str): Serializer to use. Default is auto-detect.
 compression (str): Compression method to use. Default is none.
 headers (Dict): Mapping of arbitrary headers to pass along
 with the message body.
 exchange (kombu.entity.Exchange, str): Override the exchange.
 Note that this exchange must have been declared.
 declare (Sequence[EntityT]): Optional list of required entities
 that must have been declared before publishing the message.
 The entities will be declared using
 :func:`~kombu.common.maybe_declare`.
 retry (bool): Retry publishing, or declaring entities if the
 connection is lost.
 retry_policy (Dict): Retry configuration, this is the keywords
 supported by :meth:`~kombu.Connection.ensure`.
 expiration (float): A TTL in seconds can be specified per message.
 Default is no expiration.
 **properties (Any): Additional message properties, see AMQP spec.
 """
 _publish = self._publish

 declare = [] if declare is None else declare
 headers = {} if headers is None else headers
 retry_policy = {} if retry_policy is None else retry_policy
 routing_key = self.routing_key if routing_key is None else routing_key
 compression = self.compression if compression is None else compression

 exchange_name, properties['delivery_mode'] = self._delivery_details(
 exchange or self.exchange, delivery_mode,
)

 if expiration is not None:
 properties['expiration'] = str(int(expiration * 1000))

 body, content_type, content_encoding = self._prepare(
 body, serializer, content_type, content_encoding,
 compression, headers)

 if self.auto_declare and self.exchange.name:
 if self.exchange not in declare:
 # XXX declare should be a Set.
 declare.append(self.exchange)

 if retry:
 _publish = self.connection.ensure(self, _publish, **retry_policy)
 return _publish(
 body, priority, content_type, content_encoding,
 headers, properties, routing_key, mandatory, immediate,
 exchange_name, declare,
)

 def _publish(self, body, priority, content_type, content_encoding,
 headers, properties, routing_key, mandatory,
 immediate, exchange, declare):
 channel = self.channel
 message = channel.prepare_message(
 body, priority, content_type,
 content_encoding, headers, properties,
)
 if declare:
 maybe_declare = self.maybe_declare
 [maybe_declare(entity) for entity in declare]

 # handle autogenerated queue names for reply_to
 reply_to = properties.get('reply_to')
 if isinstance(reply_to, Queue):
 properties['reply_to'] = reply_to.name
 return channel.basic_publish(
 message,
 exchange=exchange, routing_key=routing_key,
 mandatory=mandatory, immediate=immediate,
)

 def _get_channel(self):
 channel = self._channel
 if isinstance(channel, ChannelPromise):
 channel = self._channel = channel()
 self.exchange.revive(channel)
 if self.on_return:
 channel.events['basic_return'].add(self.on_return)
 return channel

 def _set_channel(self, channel):
 self._channel = channel
 channel = property(_get_channel, _set_channel)

 def revive(self, channel):
 """Revive the producer after connection loss."""
 if is_connection(channel):
 connection = channel
 self.__connection__ = connection
 channel = ChannelPromise(lambda: connection.default_channel)
 if isinstance(channel, ChannelPromise):
 self._channel = channel
 self.exchange = self.exchange(channel)
 else:
 # Channel already concrete
 self._channel = channel
 if self.on_return:
 self._channel.events['basic_return'].add(self.on_return)
 self.exchange = self.exchange(channel)

 def __enter__(self):
 return self

 def __exit__(self, *exc_info):
 self.release()

 def release(self):
 pass
 close = release

 def _prepare(self, body, serializer=None, content_type=None,
 content_encoding=None, compression=None, headers=None):

 # No content_type? Then we're serializing the data internally.
 if not content_type:
 serializer = serializer or self.serializer
 (content_type, content_encoding,
 body) = dumps(body, serializer=serializer)
 else:
 # If the programmer doesn't want us to serialize,
 # make sure content_encoding is set.
 if isinstance(body, str):
 if not content_encoding:
 content_encoding = 'utf-8'
 body = body.encode(content_encoding)

 # If they passed in a string, we can't know anything
 # about it. So assume it's binary data.
 elif not content_encoding:
 content_encoding = 'binary'

 if compression:
 body, headers['compression'] = compress(body, compression)

 return body, content_type, content_encoding

 @property
 def connection(self):
 try:
 return self.__connection__ or self.channel.connection.client
 except AttributeError:
 pass

class Consumer:
 """Message consumer.

 Arguments:
 channel (kombu.Connection, ChannelT): see :attr:`channel`.
 queues (Sequence[kombu.Queue]): see :attr:`queues`.
 no_ack (bool): see :attr:`no_ack`.
 auto_declare (bool): see :attr:`auto_declare`
 callbacks (Sequence[Callable]): see :attr:`callbacks`.
 on_message (Callable): See :attr:`on_message`
 on_decode_error (Callable): see :attr:`on_decode_error`.
 prefetch_count (int): see :attr:`prefetch_count`.
 """

 ContentDisallowed = ContentDisallowed

 #: The connection/channel to use for this consumer.
 channel = None

 #: A single :class:`~kombu.Queue`, or a list of queues to
 #: consume from.
 queues = None

 #: Flag for automatic message acknowledgment.
 #: If enabled the messages are automatically acknowledged by the
 #: broker. This can increase performance but means that you
 #: have no control of when the message is removed.
 #:
 #: Disabled by default.
 no_ack = None

 #: By default all entities will be declared at instantiation, if you
 #: want to handle this manually you can set this to :const:`False`.
 auto_declare = True

 #: List of callbacks called in order when a message is received.
 #:
 #: The signature of the callbacks must take two arguments:
 #: `(body, message)`, which is the decoded message body and
 #: the :class:`~kombu.Message` instance.
 callbacks = None

 #: Optional function called whenever a message is received.
 #:
 #: When defined this function will be called instead of the
 #: :meth:`receive` method, and :attr:`callbacks` will be disabled.
 #:
 #: So this can be used as an alternative to :attr:`callbacks` when
 #: you don't want the body to be automatically decoded.
 #: Note that the message will still be decompressed if the message
 #: has the ``compression`` header set.
 #:
 #: The signature of the callback must take a single argument,
 #: which is the :class:`~kombu.Message` object.
 #:
 #: Also note that the ``message.body`` attribute, which is the raw
 #: contents of the message body, may in some cases be a read-only
 #: :class:`buffer` object.
 on_message = None

 #: Callback called when a message can't be decoded.
 #:
 #: The signature of the callback must take two arguments: `(message,
 #: exc)`, which is the message that can't be decoded and the exception
 #: that occurred while trying to decode it.
 on_decode_error = None

 #: List of accepted content-types.
 #:
 #: An exception will be raised if the consumer receives
 #: a message with an untrusted content type.
 #: By default all content-types are accepted, but not if
 #: :func:`kombu.disable_untrusted_serializers` was called,
 #: in which case only json is allowed.
 accept = None

 #: Initial prefetch count
 #:
 #: If set, the consumer will set the prefetch_count QoS value at startup.
 #: Can also be changed using :meth:`qos`.
 prefetch_count = None

 #: Mapping of queues we consume from.
 _queues = None

 _tags = count(1) # global

 def __init__(self, channel, queues=None, no_ack=None, auto_declare=None,
 callbacks=None, on_decode_error=None, on_message=None,
 accept=None, prefetch_count=None, tag_prefix=None):
 self.channel = channel
 self.queues = maybe_list(queues or [])
 self.no_ack = self.no_ack if no_ack is None else no_ack
 self.callbacks = (self.callbacks or [] if callbacks is None
 else callbacks)
 self.on_message = on_message
 self.tag_prefix = tag_prefix
 self._active_tags = {}
 if auto_declare is not None:
 self.auto_declare = auto_declare
 if on_decode_error is not None:
 self.on_decode_error = on_decode_error
 self.accept = prepare_accept_content(accept)
 self.prefetch_count = prefetch_count

 if self.channel:
 self.revive(self.channel)

 @property
 def queues(self):
 return list(self._queues.values())

 @queues.setter
 def queues(self, queues):
 self._queues = {q.name: q for q in queues}

 def revive(self, channel):
 """Revive consumer after connection loss."""
 self._active_tags.clear()
 channel = self.channel = maybe_channel(channel)
 # modify dict size while iterating over it is not allowed
 for qname, queue in list(self._queues.items()):
 # name may have changed after declare
 self._queues.pop(qname, None)
 queue = self._queues[queue.name] = queue(self.channel)
 queue.revive(channel)

 if self.auto_declare:
 self.declare()

 if self.prefetch_count is not None:
 self.qos(prefetch_count=self.prefetch_count)

 def declare(self):
 """Declare queues, exchanges and bindings.

 Note:
 This is done automatically at instantiation
 when :attr:`auto_declare` is set.
 """
 for queue in self._queues.values():
 queue.declare()

 def register_callback(self, callback):
 """Register a new callback to be called when a message is received.

 Note:
 The signature of the callback needs to accept two arguments:
 `(body, message)`, which is the decoded message body
 and the :class:`~kombu.Message` instance.
 """
 self.callbacks.append(callback)

 def __enter__(self):
 self.consume()
 return self

 def __exit__(self, exc_type, exc_val, exc_tb):
 if self.channel and self.channel.connection:
 conn_errors = self.channel.connection.client.connection_errors
 if not isinstance(exc_val, conn_errors):
 try:
 self.cancel()
 except Exception:
 pass

 def add_queue(self, queue):
 """Add a queue to the list of queues to consume from.

 Note:
 This will not start consuming from the queue,
 for that you will have to call :meth:`consume` after.
 """
 queue = queue(self.channel)
 if self.auto_declare:
 queue.declare()
 self._queues[queue.name] = queue
 return queue

 def consume(self, no_ack=None):
 """Start consuming messages.

 Can be called multiple times, but note that while it
 will consume from new queues added since the last call,
 it will not cancel consuming from removed queues (
 use :meth:`cancel_by_queue`).

 Arguments:
 no_ack (bool): See :attr:`no_ack`.
 """
 queues = list(self._queues.values())
 if queues:
 no_ack = self.no_ack if no_ack is None else no_ack

 H, T = queues[:-1], queues[-1]
 for queue in H:
 self._basic_consume(queue, no_ack=no_ack, nowait=True)
 self._basic_consume(T, no_ack=no_ack, nowait=False)

 def cancel(self):
 """End all active queue consumers.

 Note:
 This does not affect already delivered messages, but it does
 mean the server will not send any more messages for this consumer.
 """
 cancel = self.channel.basic_cancel
 for tag in self._active_tags.values():
 cancel(tag)
 self._active_tags.clear()
 close = cancel

 def cancel_by_queue(self, queue):
 """Cancel consumer by queue name."""
 qname = queue.name if isinstance(queue, Queue) else queue
 try:
 tag = self._active_tags.pop(qname)
 except KeyError:
 pass
 else:
 self.channel.basic_cancel(tag)
 finally:
 self._queues.pop(qname, None)

 def consuming_from(self, queue):
 """Return :const:`True` if currently consuming from queue'."""
 name = queue
 if isinstance(queue, Queue):
 name = queue.name
 return name in self._active_tags

 def purge(self):
 """Purge messages from all queues.

 Warning:
 This will *delete all ready messages*, there is no undo operation.
 """
 return sum(queue.purge() for queue in self._queues.values())

 def flow(self, active):
 """Enable/disable flow from peer.

 This is a simple flow-control mechanism that a peer can use
 to avoid overflowing its queues or otherwise finding itself
 receiving more messages than it can process.

 The peer that receives a request to stop sending content
 will finish sending the current content (if any), and then wait
 until flow is reactivated.
 """
 self.channel.flow(active)

 def qos(self, prefetch_size=0, prefetch_count=0, apply_global=False):
 """Specify quality of service.

 The client can request that messages should be sent in
 advance so that when the client finishes processing a message,
 the following message is already held locally, rather than needing
 to be sent down the channel. Prefetching gives a performance
 improvement.

 The prefetch window is Ignored if the :attr:`no_ack` option is set.

 Arguments:
 prefetch_size (int): Specify the prefetch window in octets.
 The server will send a message in advance if it is equal to
 or smaller in size than the available prefetch size (and
 also falls within other prefetch limits). May be set to zero,
 meaning "no specific limit", although other prefetch limits
 may still apply.

 prefetch_count (int): Specify the prefetch window in terms of
 whole messages.

 apply_global (bool): Apply new settings globally on all channels.
 """
 return self.channel.basic_qos(prefetch_size,
 prefetch_count,
 apply_global)

 def recover(self, requeue=False):
 """Redeliver unacknowledged messages.

 Asks the broker to redeliver all unacknowledged messages
 on the specified channel.

 Arguments:
 requeue (bool): By default the messages will be redelivered
 to the original recipient. With `requeue` set to true, the
 server will attempt to requeue the message, potentially then
 delivering it to an alternative subscriber.
 """
 return self.channel.basic_recover(requeue=requeue)

 def receive(self, body, message):
 """Method called when a message is received.

 This dispatches to the registered :attr:`callbacks`.

 Arguments:
 body (Any): The decoded message body.
 message (~kombu.Message): The message instance.

 Raises:
 NotImplementedError: If no consumer callbacks have been
 registered.
 """
 callbacks = self.callbacks
 if not callbacks:
 raise NotImplementedError('Consumer does not have any callbacks')
 [callback(body, message) for callback in callbacks]

 def _basic_consume(self, queue, consumer_tag=None,
 no_ack=no_ack, nowait=True):
 tag = self._active_tags.get(queue.name)
 if tag is None:
 tag = self._add_tag(queue, consumer_tag)
 queue.consume(tag, self._receive_callback,
 no_ack=no_ack, nowait=nowait)
 return tag

 def _add_tag(self, queue, consumer_tag=None):
 tag = consumer_tag or '{}{}'.format(
 self.tag_prefix, next(self._tags))
 self._active_tags[queue.name] = tag
 return tag

 def _receive_callback(self, message):
 accept = self.accept
 on_m, channel, decoded = self.on_message, self.channel, None
 try:
 m2p = getattr(channel, 'message_to_python', None)
 if m2p:
 message = m2p(message)
 if accept is not None:
 message.accept = accept
 if message.errors:
 return message._reraise_error(self.on_decode_error)
 decoded = None if on_m else message.decode()
 except Exception as exc:
 if not self.on_decode_error:
 raise
 self.on_decode_error(message, exc)
 else:
 return on_m(message) if on_m else self.receive(decoded, message)

 def __repr__(self):
 return '<{name}: {0.queues}>'.format(self, name=type(self).__name__)

 @property
 def connection(self):
 try:
 return self.channel.connection.client
 except AttributeError:
 pass

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for kombu.pidbox

"""Generic process mailbox."""

import socket
import warnings

from collections import defaultdict, deque
from contextlib import contextmanager
from copy import copy
from itertools import count
from threading import local
from time import time

from . import Exchange, Queue, Consumer, Producer
from .clocks import LamportClock
from .common import maybe_declare, oid_from
from .exceptions import InconsistencyError
from .log import get_logger
from .utils.functional import maybe_evaluate, reprcall
from .utils.objects import cached_property
from .utils.uuid import uuid
from .matcher import match

REPLY_QUEUE_EXPIRES = 10

W_PIDBOX_IN_USE = """\
A node named {node.hostname} is already using this process mailbox!

Maybe you forgot to shutdown the other node or did not do so properly?
Or if you meant to start multiple nodes on the same host please make sure
you give each node a unique node name!
"""

__all__ = ('Node', 'Mailbox')
logger = get_logger(__name__)
debug, error = logger.debug, logger.error

class Node:
 """Mailbox node."""

 #: hostname of the node.
 hostname = None

 #: the :class:`Mailbox` this is a node for.
 mailbox = None

 #: map of method name/handlers.
 handlers = None

 #: current context (passed on to handlers)
 state = None

 #: current channel.
 channel = None

 def __init__(self, hostname, state=None, channel=None,
 handlers=None, mailbox=None):
 self.channel = channel
 self.mailbox = mailbox
 self.hostname = hostname
 self.state = state
 self.adjust_clock = self.mailbox.clock.adjust
 if handlers is None:
 handlers = {}
 self.handlers = handlers

 def Consumer(self, channel=None, no_ack=True, accept=None, **options):
 queue = self.mailbox.get_queue(self.hostname)

 def verify_exclusive(name, messages, consumers):
 if consumers:
 warnings.warn(W_PIDBOX_IN_USE.format(node=self))
 queue.on_declared = verify_exclusive

 return Consumer(
 channel or self.channel, [queue], no_ack=no_ack,
 accept=self.mailbox.accept if accept is None else accept,
 **options
)

 def handler(self, fun):
 self.handlers[fun.__name__] = fun
 return fun

 def on_decode_error(self, message, exc):
 error('Cannot decode message: %r', exc, exc_info=1)

 def listen(self, channel=None, callback=None):
 consumer = self.Consumer(channel=channel,
 callbacks=[callback or self.handle_message],
 on_decode_error=self.on_decode_error)
 consumer.consume()
 return consumer

 def dispatch(self, method, arguments=None,
 reply_to=None, ticket=None, **kwargs):
 arguments = arguments or {}
 debug('pidbox received method %s [reply_to:%s ticket:%s]',
 reprcall(method, (), kwargs=arguments), reply_to, ticket)
 handle = reply_to and self.handle_call or self.handle_cast
 try:
 reply = handle(method, arguments)
 except SystemExit:
 raise
 except Exception as exc:
 error('pidbox command error: %r', exc, exc_info=1)
 reply = {'error': repr(exc)}

 if reply_to:
 self.reply({self.hostname: reply},
 exchange=reply_to['exchange'],
 routing_key=reply_to['routing_key'],
 ticket=ticket)
 return reply

 def handle(self, method, arguments=None):
 arguments = {} if not arguments else arguments
 return self.handlers[method](self.state, **arguments)

 def handle_call(self, method, arguments):
 return self.handle(method, arguments)

 def handle_cast(self, method, arguments):
 return self.handle(method, arguments)

 def handle_message(self, body, message=None):
 destination = body.get('destination')
 pattern = body.get('pattern')
 matcher = body.get('matcher')
 if message:
 self.adjust_clock(message.headers.get('clock') or 0)
 hostname = self.hostname
 run_dispatch = False
 if destination:
 if hostname in destination:
 run_dispatch = True
 elif pattern and matcher:
 if match(hostname, pattern, matcher):
 run_dispatch = True
 else:
 run_dispatch = True
 if run_dispatch:
 return self.dispatch(**body)
 dispatch_from_message = handle_message

 def reply(self, data, exchange, routing_key, ticket, **kwargs):
 self.mailbox._publish_reply(data, exchange, routing_key, ticket,
 channel=self.channel,
 serializer=self.mailbox.serializer)

class Mailbox:
 """Process Mailbox."""

 node_cls = Node
 exchange_fmt = '%s.pidbox'
 reply_exchange_fmt = 'reply.%s.pidbox'

 #: Name of application.
 namespace = None

 #: Connection (if bound).
 connection = None

 #: Exchange type (usually direct, or fanout for broadcast).
 type = 'direct'

 #: mailbox exchange (init by constructor).
 exchange = None

 #: exchange to send replies to.
 reply_exchange = None

 #: Only accepts json messages by default.
 accept = ['json']

 #: Message serializer
 serializer = None

 def __init__(self, namespace,
 type='direct', connection=None, clock=None,
 accept=None, serializer=None, producer_pool=None,
 queue_ttl=None, queue_expires=None,
 reply_queue_ttl=None, reply_queue_expires=10.0):
 self.namespace = namespace
 self.connection = connection
 self.type = type
 self.clock = LamportClock() if clock is None else clock
 self.exchange = self._get_exchange(self.namespace, self.type)
 self.reply_exchange = self._get_reply_exchange(self.namespace)
 self._tls = local()
 self.unclaimed = defaultdict(deque)
 self.accept = self.accept if accept is None else accept
 self.serializer = self.serializer if serializer is None else serializer
 self.queue_ttl = queue_ttl
 self.queue_expires = queue_expires
 self.reply_queue_ttl = reply_queue_ttl
 self.reply_queue_expires = reply_queue_expires
 self._producer_pool = producer_pool

 def __call__(self, connection):
 bound = copy(self)
 bound.connection = connection
 return bound

 def Node(self, hostname=None, state=None, channel=None, handlers=None):
 hostname = hostname or socket.gethostname()
 return self.node_cls(hostname, state, channel, handlers, mailbox=self)

 def call(self, destination, command, kwargs=None,
 timeout=None, callback=None, channel=None):
 kwargs = {} if not kwargs else kwargs
 return self._broadcast(command, kwargs, destination,
 reply=True, timeout=timeout,
 callback=callback,
 channel=channel)

 def cast(self, destination, command, kwargs=None):
 kwargs = {} if not kwargs else kwargs
 return self._broadcast(command, kwargs, destination, reply=False)

 def abcast(self, command, kwargs=None):
 kwargs = {} if not kwargs else kwargs
 return self._broadcast(command, kwargs, reply=False)

 def multi_call(self, command, kwargs=None, timeout=1,
 limit=None, callback=None, channel=None):
 kwargs = {} if not kwargs else kwargs
 return self._broadcast(command, kwargs, reply=True,
 timeout=timeout, limit=limit,
 callback=callback,
 channel=channel)

 def get_reply_queue(self):
 oid = self.oid
 return Queue(
 f'{oid}.{self.reply_exchange.name}',
 exchange=self.reply_exchange,
 routing_key=oid,
 durable=False,
 auto_delete=True,
 expires=self.reply_queue_expires,
 message_ttl=self.reply_queue_ttl,
)

 @cached_property
 def reply_queue(self):
 return self.get_reply_queue()

 def get_queue(self, hostname):
 return Queue(
 f'{hostname}.{self.namespace}.pidbox',
 exchange=self.exchange,
 durable=False,
 auto_delete=True,
 expires=self.queue_expires,
 message_ttl=self.queue_ttl,
)

 @contextmanager
 def producer_or_acquire(self, producer=None, channel=None):
 if producer:
 yield producer
 elif self.producer_pool:
 with self.producer_pool.acquire() as producer:
 yield producer
 else:
 yield Producer(channel, auto_declare=False)

 def _publish_reply(self, reply, exchange, routing_key, ticket,
 channel=None, producer=None, **opts):
 chan = channel or self.connection.default_channel
 exchange = Exchange(exchange, exchange_type='direct',
 delivery_mode='transient',
 durable=False)
 with self.producer_or_acquire(producer, chan) as producer:
 try:
 producer.publish(
 reply, exchange=exchange, routing_key=routing_key,
 declare=[exchange], headers={
 'ticket': ticket, 'clock': self.clock.forward(),
 }, retry=True,
 **opts
)
 except InconsistencyError:
 # queue probably deleted and no one is expecting a reply.
 pass

 def _publish(self, type, arguments, destination=None,
 reply_ticket=None, channel=None, timeout=None,
 serializer=None, producer=None, pattern=None, matcher=None):
 message = {'method': type,
 'arguments': arguments,
 'destination': destination,
 'pattern': pattern,
 'matcher': matcher}
 chan = channel or self.connection.default_channel
 exchange = self.exchange
 if reply_ticket:
 maybe_declare(self.reply_queue(channel))
 message.update(ticket=reply_ticket,
 reply_to={'exchange': self.reply_exchange.name,
 'routing_key': self.oid})
 serializer = serializer or self.serializer
 with self.producer_or_acquire(producer, chan) as producer:
 producer.publish(
 message, exchange=exchange.name, declare=[exchange],
 headers={'clock': self.clock.forward(),
 'expires': time() + timeout if timeout else 0},
 serializer=serializer, retry=True,
)

 def _broadcast(self, command, arguments=None, destination=None,
 reply=False, timeout=1, limit=None,
 callback=None, channel=None, serializer=None,
 pattern=None, matcher=None):
 if destination is not None and \
 not isinstance(destination, (list, tuple)):
 raise ValueError(
 'destination must be a list/tuple not {}'.format(
 type(destination)))
 if (pattern is not None and not isinstance(pattern, str) and
 matcher is not None and not isinstance(matcher, str)):
 raise ValueError(
 'pattern and matcher must be '
 'strings not {}, {}'.format(type(pattern), type(matcher))
)

 arguments = arguments or {}
 reply_ticket = reply and uuid() or None
 chan = channel or self.connection.default_channel

 # Set reply limit to number of destinations (if specified)
 if limit is None and destination:
 limit = destination and len(destination) or None

 serializer = serializer or self.serializer
 self._publish(command, arguments, destination=destination,
 reply_ticket=reply_ticket,
 channel=chan,
 timeout=timeout,
 serializer=serializer,
 pattern=pattern,
 matcher=matcher)

 if reply_ticket:
 return self._collect(reply_ticket, limit=limit,
 timeout=timeout,
 callback=callback,
 channel=chan)

 def _collect(self, ticket,
 limit=None, timeout=1, callback=None,
 channel=None, accept=None):
 if accept is None:
 accept = self.accept
 chan = channel or self.connection.default_channel
 queue = self.reply_queue
 consumer = Consumer(channel, [queue], accept=accept, no_ack=True)
 responses = []
 unclaimed = self.unclaimed
 adjust_clock = self.clock.adjust

 try:
 return unclaimed.pop(ticket)
 except KeyError:
 pass

 def on_message(body, message):
 # ticket header added in kombu 2.5
 header = message.headers.get
 adjust_clock(header('clock') or 0)
 expires = header('expires')
 if expires and time() > expires:
 return
 this_id = header('ticket', ticket)
 if this_id == ticket:
 if callback:
 callback(body)
 responses.append(body)
 else:
 unclaimed[this_id].append(body)

 consumer.register_callback(on_message)
 try:
 with consumer:
 for i in limit and range(limit) or count():
 try:
 self.connection.drain_events(timeout=timeout)
 except socket.timeout:
 break
 return responses
 finally:
 chan.after_reply_message_received(queue.name)

 def _get_exchange(self, namespace, type):
 return Exchange(self.exchange_fmt % namespace,
 type=type,
 durable=False,
 delivery_mode='transient')

 def _get_reply_exchange(self, namespace):
 return Exchange(self.reply_exchange_fmt % namespace,
 type='direct',
 durable=False,
 delivery_mode='transient')

 @cached_property
 def oid(self):
 try:
 return self._tls.OID
 except AttributeError:
 oid = self._tls.OID = oid_from(self)
 return oid

 @cached_property
 def producer_pool(self):
 return maybe_evaluate(self._producer_pool)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for kombu.asynchronous.timer

"""Timer scheduling Python callbacks."""

import heapq
import sys

from collections import namedtuple
from datetime import datetime
from functools import total_ordering
from weakref import proxy as weakrefproxy
from time import monotonic

from vine.utils import wraps

from kombu.log import get_logger
from time import time as _time

try:
 from pytz import utc
except ImportError: # pragma: no cover
 utc = None

__all__ = ('Entry', 'Timer', 'to_timestamp')

logger = get_logger(__name__)

DEFAULT_MAX_INTERVAL = 2
EPOCH = datetime.utcfromtimestamp(0).replace(tzinfo=utc)
IS_PYPY = hasattr(sys, 'pypy_version_info')

scheduled = namedtuple('scheduled', ('eta', 'priority', 'entry'))

[docs]def to_timestamp(d, default_timezone=utc, time=monotonic):
 """Convert datetime to timestamp.

 If d' is already a timestamp, then that will be used.
 """
 if isinstance(d, datetime):
 if d.tzinfo is None:
 d = d.replace(tzinfo=default_timezone)
 diff = _time() - time()
 return max((d - EPOCH).total_seconds() - diff, 0)
 return d

[docs]@total_ordering
class Entry:
 """Schedule Entry."""

 if not IS_PYPY: # pragma: no cover
 __slots__ = (
 'fun', 'args', 'kwargs', 'tref', 'canceled',
 '_last_run', '__weakref__',
)

 def __init__(self, fun, args=None, kwargs=None):
 self.fun = fun
 self.args = args or []
 self.kwargs = kwargs or {}
 self.tref = weakrefproxy(self)
 self._last_run = None
 self.canceled = False

 def __call__(self):
 return self.fun(*self.args, **self.kwargs)

[docs] def cancel(self):
 try:
 self.tref.canceled = True
 except ReferenceError: # pragma: no cover
 pass

 def __repr__(self):
 return '<TimerEntry: {}(*{!r}, **{!r})'.format(
 self.fun.__name__, self.args, self.kwargs)

 # must not use hash() to order entries
 def __lt__(self, other):
 return id(self) < id(other)

 @property
 def cancelled(self):
 return self.canceled

 @cancelled.setter
 def cancelled(self, value):
 self.canceled = value

class Timer:
 """Async timer implementation."""

 Entry = Entry

 on_error = None

 def __init__(self, max_interval=None, on_error=None, **kwargs):
 self.max_interval = float(max_interval or DEFAULT_MAX_INTERVAL)
 self.on_error = on_error or self.on_error
 self._queue = []

 def __enter__(self):
 return self

 def __exit__(self, *exc_info):
 self.stop()

 def call_at(self, eta, fun, args=(), kwargs=None, priority=0):
 kwargs = {} if not kwargs else kwargs
 return self.enter_at(self.Entry(fun, args, kwargs), eta, priority)

 def call_after(self, secs, fun, args=(), kwargs=None, priority=0):
 kwargs = {} if not kwargs else kwargs
 return self.enter_after(secs, self.Entry(fun, args, kwargs), priority)

 def call_repeatedly(self, secs, fun, args=(), kwargs=None, priority=0):
 kwargs = {} if not kwargs else kwargs
 tref = self.Entry(fun, args, kwargs)

 @wraps(fun)
 def _reschedules(*args, **kwargs):
 last, now = tref._last_run, monotonic()
 lsince = (now - tref._last_run) if last else secs
 try:
 if lsince and lsince >= secs:
 tref._last_run = now
 return fun(*args, **kwargs)
 finally:
 if not tref.canceled:
 last = tref._last_run
 next = secs - (now - last) if last else secs
 self.enter_after(next, tref, priority)

 tref.fun = _reschedules
 tref._last_run = None
 return self.enter_after(secs, tref, priority)

 def enter_at(self, entry, eta=None, priority=0, time=monotonic):
 """Enter function into the scheduler.

 Arguments:
 entry (~kombu.asynchronous.timer.Entry): Item to enter.
 eta (datetime.datetime): Scheduled time.
 priority (int): Unused.
 """
 if eta is None:
 eta = time()
 if isinstance(eta, datetime):
 try:
 eta = to_timestamp(eta)
 except Exception as exc:
 if not self.handle_error(exc):
 raise
 return
 return self._enter(eta, priority, entry)

 def enter_after(self, secs, entry, priority=0, time=monotonic):
 return self.enter_at(entry, time() + secs, priority)

 def _enter(self, eta, priority, entry, push=heapq.heappush):
 push(self._queue, scheduled(eta, priority, entry))
 return entry

 def apply_entry(self, entry):
 try:
 entry()
 except Exception as exc:
 if not self.handle_error(exc):
 logger.error('Error in timer: %r', exc, exc_info=True)

 def handle_error(self, exc_info):
 if self.on_error:
 self.on_error(exc_info)
 return True

 def stop(self):
 pass

 def __iter__(self, min=min, nowfun=monotonic,
 pop=heapq.heappop, push=heapq.heappush):
 """Iterate over schedule.

 This iterator yields a tuple of ``(wait_seconds, entry)``,
 where if entry is :const:`None` the caller should wait
 for ``wait_seconds`` until it polls the schedule again.
 """
 max_interval = self.max_interval
 queue = self._queue

 while 1:
 if queue:
 eventA = queue[0]
 now, eta = nowfun(), eventA[0]

 if now < eta:
 yield min(eta - now, max_interval), None
 else:
 eventB = pop(queue)

 if eventB is eventA:
 entry = eventA[2]
 if not entry.canceled:
 yield None, entry
 continue
 else:
 push(queue, eventB)
 else:
 yield None, None

 def clear(self):
 self._queue[:] = [] # atomic, without creating a new list.

 def cancel(self, tref):
 tref.cancel()

 def __len__(self):
 return len(self._queue)

 def __nonzero__(self):
 return True

 @property
 def queue(self, _pop=heapq.heappop):
 """Snapshot of underlying datastructure."""
 events = list(self._queue)
 return [_pop(v) for v in [events] * len(events)]

 @property
 def schedule(self):
 return self

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for kombu.utils.functional

"""Functional Utilities."""

from collections import OrderedDict, UserDict
from collections.abc import Iterable, Mapping
import random
import sys
import threading
import inspect

from itertools import count, repeat
from time import sleep, time

from vine.utils import wraps

from .encoding import safe_repr as _safe_repr

__all__ = (
 'LRUCache', 'memoize', 'lazy', 'maybe_evaluate',
 'is_list', 'maybe_list', 'dictfilter', 'retry_over_time',
)

KEYWORD_MARK = object()

class ChannelPromise:

 def __init__(self, contract):
 self.__contract__ = contract

 def __call__(self):
 try:
 return self.__value__
 except AttributeError:
 value = self.__value__ = self.__contract__()
 return value

 def __repr__(self):
 try:
 return repr(self.__value__)
 except AttributeError:
 return '<promise: 0x{:x}>'.format(id(self.__contract__))

[docs]class LRUCache(UserDict):
 """LRU Cache implementation using a doubly linked list to track access.

 Arguments:
 limit (int): The maximum number of keys to keep in the cache.
 When a new key is inserted and the limit has been exceeded,
 the *Least Recently Used* key will be discarded from the
 cache.
 """

 def __init__(self, limit=None):
 self.limit = limit
 self.mutex = threading.RLock()
 self.data = OrderedDict()

 def __getitem__(self, key):
 with self.mutex:
 value = self[key] = self.data.pop(key)
 return value

[docs] def update(self, *args, **kwargs):
 with self.mutex:
 data, limit = self.data, self.limit
 data.update(*args, **kwargs)
 if limit and len(data) > limit:
 # pop additional items in case limit exceeded
 for _ in range(len(data) - limit):
 data.popitem(last=False)

[docs] def popitem(self, last=True):
 with self.mutex:
 return self.data.popitem(last)

 def __setitem__(self, key, value):
 # remove least recently used key.
 with self.mutex:
 if self.limit and len(self.data) >= self.limit:
 self.data.pop(next(iter(self.data)))
 self.data[key] = value

 def __iter__(self):
 return iter(self.data)

 def _iterate_items(self):
 with self.mutex:
 for k in self:
 try:
 yield (k, self.data[k])
 except KeyError: # pragma: no cover
 pass
 iteritems = _iterate_items

 def _iterate_values(self):
 with self.mutex:
 for k in self:
 try:
 yield self.data[k]
 except KeyError: # pragma: no cover
 pass

 itervalues = _iterate_values

 def _iterate_keys(self):
 # userdict.keys in py3k calls __getitem__
 with self.mutex:
 return self.data.keys()
 iterkeys = _iterate_keys

[docs] def incr(self, key, delta=1):
 with self.mutex:
 # this acts as memcached does- store as a string, but return a
 # integer as long as it exists and we can cast it
 newval = int(self.data.pop(key)) + delta
 self[key] = str(newval)
 return newval

 def __getstate__(self):
 d = dict(vars(self))
 d.pop('mutex')
 return d

 def __setstate__(self, state):
 self.__dict__ = state
 self.mutex = threading.RLock()

 if sys.version_info[0] == 3: # pragma: no cover
 keys = _iterate_keys
 values = _iterate_values
 items = _iterate_items
 else: # noqa

[docs] def keys(self):
 return list(self._iterate_keys())

[docs] def values(self):
 return list(self._iterate_values())

[docs] def items(self):
 return list(self._iterate_items())

[docs]def memoize(maxsize=None, keyfun=None, Cache=LRUCache):
 """Decorator to cache function return value."""
 def _memoize(fun):
 mutex = threading.Lock()
 cache = Cache(limit=maxsize)

 @wraps(fun)
 def _M(*args, **kwargs):
 if keyfun:
 key = keyfun(args, kwargs)
 else:
 key = args + (KEYWORD_MARK,) + tuple(sorted(kwargs.items()))
 try:
 with mutex:
 value = cache[key]
 except KeyError:
 value = fun(*args, **kwargs)
 _M.misses += 1
 with mutex:
 cache[key] = value
 else:
 _M.hits += 1
 return value

 def clear():
 """Clear the cache and reset cache statistics."""
 cache.clear()
 _M.hits = _M.misses = 0

 _M.hits = _M.misses = 0
 _M.clear = clear
 _M.original_func = fun
 return _M

 return _memoize

[docs]class lazy:
 """Holds lazy evaluation.

 Evaluated when called or if the :meth:`evaluate` method is called.
 The function is re-evaluated on every call.

 Overloaded operations that will evaluate the promise:
 :meth:`__str__`, :meth:`__repr__`, :meth:`__cmp__`.
 """

 def __init__(self, fun, *args, **kwargs):
 self._fun = fun
 self._args = args
 self._kwargs = kwargs

 def __call__(self):
 return self.evaluate()

[docs] def evaluate(self):
 return self._fun(*self._args, **self._kwargs)

 def __str__(self):
 return str(self())

 def __repr__(self):
 return repr(self())

 def __eq__(self, rhs):
 return self() == rhs

 def __ne__(self, rhs):
 return self() != rhs

 def __deepcopy__(self, memo):
 memo[id(self)] = self
 return self

 def __reduce__(self):
 return (self.__class__, (self._fun,), {'_args': self._args,
 '_kwargs': self._kwargs})

[docs]def maybe_evaluate(value):
 """Evaluate value only if value is a :class:`lazy` instance."""
 if isinstance(value, lazy):
 return value.evaluate()
 return value

[docs]def is_list(obj, scalars=(Mapping, str), iters=(Iterable,)):
 """Return true if the object is iterable.

 Note:
 Returns false if object is a mapping or string.
 """
 return isinstance(obj, iters) and not isinstance(obj, scalars or ())

[docs]def maybe_list(obj, scalars=(Mapping, str)):
 """Return list of one element if ``l`` is a scalar."""
 return obj if obj is None or is_list(obj, scalars) else [obj]

[docs]def dictfilter(d=None, **kw):
 """Remove all keys from dict ``d`` whose value is :const:`None`."""
 d = kw if d is None else (dict(d, **kw) if kw else d)
 return {k: v for k, v in d.items() if v is not None}

def shufflecycle(it):
 it = list(it) # don't modify callers list
 shuffle = random.shuffle
 for _ in repeat(None):
 shuffle(it)
 yield it[0]

def fxrange(start=1.0, stop=None, step=1.0, repeatlast=False):
 cur = start * 1.0
 while 1:
 if not stop or cur <= stop:
 yield cur
 cur += step
 else:
 if not repeatlast:
 break
 yield cur - step

def fxrangemax(start=1.0, stop=None, step=1.0, max=100.0):
 sum_, cur = 0, start * 1.0
 while 1:
 if sum_ >= max:
 break
 yield cur
 if stop:
 cur = min(cur + step, stop)
 else:
 cur += step
 sum_ += cur

def retry_over_time(fun, catch, args=None, kwargs=None, errback=None,
 max_retries=None, interval_start=2, interval_step=2,
 interval_max=30, callback=None, timeout=None):
 """Retry the function over and over until max retries is exceeded.

 For each retry we sleep a for a while before we try again, this interval
 is increased for every retry until the max seconds is reached.

 Arguments:
 fun (Callable): The function to try
 catch (Tuple[BaseException]): Exceptions to catch, can be either
 tuple or a single exception class.

 Keyword Arguments:
 args (Tuple): Positional arguments passed on to the function.
 kwargs (Dict): Keyword arguments passed on to the function.
 errback (Callable): Callback for when an exception in ``catch``
 is raised. The callback must take three arguments:
 ``exc``, ``interval_range`` and ``retries``, where ``exc``
 is the exception instance, ``interval_range`` is an iterator
 which return the time in seconds to sleep next, and ``retries``
 is the number of previous retries.
 max_retries (int): Maximum number of retries before we give up.
 If neither of this and timeout is set, we will retry forever.
 If one of this and timeout is reached, stop.
 interval_start (float): How long (in seconds) we start sleeping
 between retries.
 interval_step (float): By how much the interval is increased for
 each retry.
 interval_max (float): Maximum number of seconds to sleep
 between retries.
 timeout (int): Maximum seconds waiting before we give up.
 """
 kwargs = {} if not kwargs else kwargs
 args = [] if not args else args
 interval_range = fxrange(interval_start,
 interval_max + interval_start,
 interval_step, repeatlast=True)
 end = time() + timeout if timeout else None
 for retries in count():
 try:
 return fun(*args, **kwargs)
 except catch as exc:
 if max_retries is not None and retries >= max_retries:
 raise
 if end and time() > end:
 raise
 if callback:
 callback()
 tts = float(errback(exc, interval_range, retries) if errback
 else next(interval_range))
 if tts:
 for _ in range(int(tts)):
 if callback:
 callback()
 sleep(1.0)
 # sleep remainder after int truncation above.
 sleep(abs(int(tts) - tts))

def reprkwargs(kwargs, sep=', ', fmt='{0}={1}'):
 return sep.join(fmt.format(k, _safe_repr(v)) for k, v in kwargs.items())

def reprcall(name, args=(), kwargs=None, sep=', '):
 kwargs = {} if not kwargs else kwargs
 return '{}({}{}{})'.format(
 name, sep.join(map(_safe_repr, args or ())),
 (args and kwargs) and sep or '',
 reprkwargs(kwargs, sep),
)

def accepts_argument(func, argument_name):
 argument_spec = inspect.getfullargspec(func)
 return (
 argument_name in argument_spec.args or
 argument_name in argument_spec.kwonlyargs
)

Compat names (before kombu 3.0)
promise = lazy
maybe_promise = maybe_evaluate

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for kombu.utils.imports

"""Import related utilities."""

import importlib
import sys

from kombu.exceptions import reraise

[docs]def symbol_by_name(name, aliases=None, imp=None, package=None,
 sep='.', default=None, **kwargs):
 """Get symbol by qualified name.

 The name should be the full dot-separated path to the class::

 modulename.ClassName

 Example::

 celery.concurrency.processes.TaskPool
 ^- class name

 or using ':' to separate module and symbol::

 celery.concurrency.processes:TaskPool

 If `aliases` is provided, a dict containing short name/long name
 mappings, the name is looked up in the aliases first.

 Examples:
 >>> symbol_by_name('celery.concurrency.processes.TaskPool')
 <class 'celery.concurrency.processes.TaskPool'>

 >>> symbol_by_name('default', {
 ... 'default': 'celery.concurrency.processes.TaskPool'})
 <class 'celery.concurrency.processes.TaskPool'>

 # Does not try to look up non-string names.
 >>> from celery.concurrency.processes import TaskPool
 >>> symbol_by_name(TaskPool) is TaskPool
 True
 """
 aliases = {} if not aliases else aliases
 if imp is None:
 imp = importlib.import_module

 if not isinstance(name, str):
 return name # already a class

 name = aliases.get(name) or name
 sep = ':' if ':' in name else sep
 module_name, _, cls_name = name.rpartition(sep)
 if not module_name:
 cls_name, module_name = None, package if package else cls_name
 try:
 try:
 module = imp(module_name, package=package, **kwargs)
 except ValueError as exc:
 reraise(ValueError,
 ValueError(f"Couldn't import {name!r}: {exc}"),
 sys.exc_info()[2])
 return getattr(module, cls_name) if cls_name else module
 except (ImportError, AttributeError):
 if default is None:
 raise
 return default

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for kombu.utils.objects

"""Object Utilities."""

[docs]class cached_property:
 """Cached property descriptor.

 Caches the return value of the get method on first call.

 Examples:
 .. code-block:: python

 @cached_property
 def connection(self):
 return Connection()

 @connection.setter # Prepares stored value
 def connection(self, value):
 if value is None:
 raise TypeError('Connection must be a connection')
 return value

 @connection.deleter
 def connection(self, value):
 # Additional action to do at del(self.attr)
 if value is not None:
 print('Connection {0!r} deleted'.format(value)
 """

 def __init__(self, fget=None, fset=None, fdel=None, doc=None):
 self.__get = fget
 self.__set = fset
 self.__del = fdel
 self.__doc__ = doc or fget.__doc__
 self.__name__ = fget.__name__
 self.__module__ = fget.__module__

 def __get__(self, obj, type=None):
 if obj is None:
 return self
 try:
 return obj.__dict__[self.__name__]
 except KeyError:
 value = obj.__dict__[self.__name__] = self.__get(obj)
 return value

 def __set__(self, obj, value):
 if obj is None:
 return self
 if self.__set is not None:
 value = self.__set(obj, value)
 obj.__dict__[self.__name__] = value

 def __delete__(self, obj, _sentinel=object()):
 if obj is None:
 return self
 value = obj.__dict__.pop(self.__name__, _sentinel)
 if self.__del is not None and value is not _sentinel:
 self.__del(obj, value)

[docs] def setter(self, fset):
 return self.__class__(self.__get, fset, self.__del)

[docs] def deleter(self, fdel):
 return self.__class__(self.__get, self.__set, fdel)

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for kombu.utils.uuid

"""UUID utilities."""

from uuid import uuid4

[docs]def uuid(_uuid=uuid4):
 """Generate unique id in UUID4 format.

 See Also:
 For now this is provided by :func:`uuid.uuid4`.
 """
 return str(_uuid())

 This document describes the current stable version of Celery (5.0).
 For development docs,
 go here.

 Source code for sqlalchemy.orm.attributes

orm/attributes.py
Copyright (C) 2005-2020 the SQLAlchemy authors and contributors
<see AUTHORS file>
#
This module is part of SQLAlchemy and is released under
the MIT License: http://www.opensource.org/licenses/mit-license.php

"""Defines instrumentation for class attributes and their interaction
with instances.

This module is usually not directly visible to user applications, but
defines a large part of the ORM's interactivity.

"""

import operator

from . import collections
from . import exc as orm_exc
from . import interfaces
from .base import ATTR_EMPTY
from .base import ATTR_WAS_SET
from .base import CALLABLES_OK
from .base import INIT_OK
from .base import instance_dict
from .base import instance_state
from .base import instance_str
from .base import LOAD_AGAINST_COMMITTED
from .base import manager_of_class
from .base import NEVER_SET
from .base import NO_AUTOFLUSH
from .base import NO_CHANGE # noqa
from .base import NO_RAISE
from .base import NO_VALUE
from .base import NON_PERSISTENT_OK # noqa
from .base import PASSIVE_CLASS_MISMATCH # noqa
from .base import PASSIVE_NO_FETCH
from .base import PASSIVE_NO_FETCH_RELATED # noqa
from .base import PASSIVE_NO_INITIALIZE
from .base import PASSIVE_NO_RESULT
from .base import PASSIVE_OFF
from .base import PASSIVE_ONLY_PERSISTENT
from .base import PASSIVE_RETURN_NEVER_SET
from .base import RELATED_OBJECT_OK # noqa
from .base import SQL_OK # noqa
from .base import state_str
from .. import event
from .. import inspection
from .. import util

@inspection._self_inspects
class QueryableAttribute(
 interfaces._MappedAttribute,
 interfaces.InspectionAttr,
 interfaces.PropComparator,
):
 """Base class for :term:`descriptor` objects that intercept
 attribute events on behalf of a :class:`.MapperProperty`
 object. The actual :class:`.MapperProperty` is accessible
 via the :attr:`.QueryableAttribute.property`
 attribute.

 .. seealso::

 :class:`.InstrumentedAttribute`

 :class:`.MapperProperty`

 :attr:`_orm.Mapper.all_orm_descriptors`

 :attr:`_orm.Mapper.attrs`
 """

 is_attribute = True

 def __init__(
 self,
 class_,
 key,
 impl=None,
 comparator=None,
 parententity=None,
 of_type=None,
):
 self.class_ = class_
 self.key = key
 self.impl = impl
 self.comparator = comparator
 self._parententity = parententity
 self._of_type = of_type

 manager = manager_of_class(class_)
 # manager is None in the case of AliasedClass
 if manager:
 # propagate existing event listeners from
 # immediate superclass
 for base in manager._bases:
 if key in base:
 self.dispatch._update(base[key].dispatch)
 if base[key].dispatch._active_history:
 self.dispatch._active_history = True

 @util.memoized_property
 def _supports_population(self):
 return self.impl.supports_population

 @property
 def _impl_uses_objects(self):
 return self.impl.uses_objects

 def get_history(self, instance, passive=PASSIVE_OFF):
 return self.impl.get_history(
 instance_state(instance), instance_dict(instance), passive
)

 def __selectable__(self):
 # TODO: conditionally attach this method based on clause_element ?
 return self

 @util.memoized_property
 def info(self):
 """Return the 'info' dictionary for the underlying SQL element.

 The behavior here is as follows:

 * If the attribute is a column-mapped property, i.e.
 :class:`.ColumnProperty`, which is mapped directly
 to a schema-level :class:`_schema.Column` object, this attribute
 will return the :attr:`.SchemaItem.info` dictionary associated
 with the core-level :class:`_schema.Column` object.

 * If the attribute is a :class:`.ColumnProperty` but is mapped to
 any other kind of SQL expression other than a
 :class:`_schema.Column`,
 the attribute will refer to the :attr:`.MapperProperty.info`
 dictionary associated directly with the :class:`.ColumnProperty`,
 assuming the SQL expression itself does not have its own ``.info``
 attribute (which should be the case, unless a user-defined SQL
 construct has defined one).

 * If the attribute refers to any other kind of
 :class:`.MapperProperty`, including :class:`.RelationshipProperty`,
 the attribute will refer to the :attr:`.MapperProperty.info`
 dictionary associated with that :class:`.MapperProperty`.

 * To access the :attr:`.MapperProperty.info` dictionary of the
 :class:`.MapperProperty` unconditionally, including for a
 :class:`.ColumnProperty` that's associated directly with a
 :class:`_schema.Column`, the attribute can be referred to using
 :attr:`.QueryableAttribute.property` attribute, as
 ``MyClass.someattribute.property.info``.

 .. seealso::

 :attr:`.SchemaItem.info`

 :attr:`.MapperProperty.info`

 """
 return self.comparator.info

 @util.memoized_property
 def parent(self):
 """Return an inspection instance representing the parent.

 This will be either an instance of :class:`_orm.Mapper`
 or :class:`.AliasedInsp`, depending upon the nature
 of the parent entity which this attribute is associated
 with.

 """
 return inspection.inspect(self._parententity)

 @property
 def expression(self):
 return self.comparator.__clause_element__()

 def __clause_element__(self):
 return self.comparator.__clause_element__()

 def _query_clause_element(self):
 """like __clause_element__(), but called specifically
 by :class:`_query.Query` to allow special behavior."""

 return self.comparator._query_clause_element()

 def _bulk_update_tuples(self, value):
 """Return setter tuples for a bulk UPDATE."""

 return self.comparator._bulk_update_tuples(value)

 def adapt_to_entity(self, adapt_to_entity):
 assert not self._of_type
 return self.__class__(
 adapt_to_entity.entity,
 self.key,
 impl=self.impl,
 comparator=self.comparator.adapt_to_entity(adapt_to_entity),
 parententity=adapt_to_entity,
)

 def of_type(self, cls):
 return QueryableAttribute(
 self.class_,
 self.key,
 self.impl,
 self.comparator.of_type(cls),
 self._parententity,
 of_type=cls,
)

 def label(self, name):
 return self._query_clause_element().label(name)

 def operate(self, op, *other, **kwargs):
 return op(self.comparator, *other, **kwargs)

 def reverse_operate(self, op, other, **kwargs):
 return op(other, self.comparator, **kwargs)

 def hasparent(self, state, optimistic=False):
 return self.impl.hasparent(state, optimistic=optimistic) is not False

 def __getattr__(self, key):
 try:
 return getattr(self.comparator, key)
 except AttributeError as err:
 util.raise_(
 AttributeError(
 "Neither %r object nor %r object associated with %s "
 "has an attribute %r"
 % (
 type(self).__name__,
 type(self.comparator).__name__,
 self,
 key,
)
),
 replace_context=err,
)

 def __str__(self):
 return "%s.%s" % (self.class_.__name__, self.key)

 @util.memoized_property
 def property(self):
 """Return the :class:`.MapperProperty` associated with this
 :class:`.QueryableAttribute`.

 Return values here will commonly be instances of
 :class:`.ColumnProperty` or :class:`.RelationshipProperty`.

 """
 return self.comparator.property

class InstrumentedAttribute(QueryableAttribute):
 """Class bound instrumented attribute which adds basic
 :term:`descriptor` methods.

 See :class:`.QueryableAttribute` for a description of most features.

 """

 def __set__(self, instance, value):
 self.impl.set(
 instance_state(instance), instance_dict(instance), value, None
)

 def __delete__(self, instance):
 self.impl.delete(instance_state(instance), instance_dict(instance))

 def __get__(self, instance, owner):
 if instance is None:
 return self

 dict_ = instance_dict(instance)
 if self._supports_population and self.key in dict_:
 return dict_[self.key]
 else:
 return self.impl.get(instance_state(instance), dict_)

def create_proxied_attribute(descriptor):
 """Create an QueryableAttribute / user descriptor hybrid.

 Returns a new QueryableAttribute type that delegates descriptor
 behavior and getattr() to the given descriptor.
 """

 # TODO: can move this to descriptor_props if the need for this
 # function is removed from ext/hybrid.py

 class Proxy(QueryableAttribute):
 """Presents the :class:`.QueryableAttribute` interface as a
 proxy on top of a Python descriptor / :class:`.PropComparator`
 combination.

 """

 def __init__(
 self,
 class_,
 key,
 descriptor,
 comparator,
 adapt_to_entity=None,
 doc=None,
 original_property=None,
):
 self.class_ = class_
 self.key = key
 self.descriptor = descriptor
 self.original_property = original_property
 self._comparator = comparator
 self._adapt_to_entity = adapt_to_entity
 self.__doc__ = doc

 _is_internal_proxy = True

 @property
 def _impl_uses_objects(self):
 return (
 self.original_property is not None
 and getattr(self.class_, self.key).impl.uses_objects
)

 @property
 def property(self):
 return self.comparator.property

 @util.memoized_property
 def comparator(self):
 if util.callable(self._comparator):
 self._comparator = self._comparator()
 if self._adapt_to_entity:
 self._comparator = self._comparator.adapt_to_entity(
 self._adapt_to_entity
)
 return self._comparator

 def adapt_to_entity(self, adapt_to_entity):
 return self.__class__(
 adapt_to_entity.entity,
 self.key,
 self.descriptor,
 self._comparator,
 adapt_to_entity,
)

 def __get__(self, instance, owner):
 retval = self.descriptor.__get__(instance, owner)
 # detect if this is a plain Python @property, which just returns
 # itself for class level access. If so, then return us.
 # Otherwise, return the object returned by the descriptor.
 if retval is self.descriptor and instance is None:
 return self
 else:
 return retval

 def __str__(self):
 return "%s.%s" % (self.class_.__name__, self.key)

 def __getattr__(self, attribute):
 """Delegate __getattr__ to the original descriptor and/or
 comparator."""
 try:
 return getattr(descriptor, attribute)
 except AttributeError as err:
 if attribute == "comparator":
 util.raise_(
 AttributeError("comparator"), replace_context=err
)
 try:
 # comparator itself might be unreachable
 comparator = self.comparator
 except AttributeError as err2:
 util.raise_(
 AttributeError(
 "Neither %r object nor unconfigured comparator "
 "object associated with %s has an attribute %r"
 % (type(descriptor).__name__, self, attribute)
),
 replace_context=err2,
)
 else:
 try:
 return getattr(comparator, attribute)
 except AttributeError as err3:
 util.raise_(
 AttributeError(
 "Neither %r object nor %r object "
 "associated with %s has an attribute %r"
 % (
 type(descriptor).__name__,
 type(comparator).__name__,
 self,
 attribute,
)
),
 replace_context=err3,
)

 Proxy.__name__ = type(descriptor).__name__ + "Proxy"

 util.monkeypatch_proxied_specials(
 Proxy, type(descriptor), name="descriptor", from_instance=descriptor
)
 return Proxy

OP_REMOVE = util.symbol("REMOVE")
OP_APPEND = util.symbol("APPEND")
OP_REPLACE = util.symbol("REPLACE")
OP_BULK_REPLACE = util.symbol("BULK_REPLACE")
OP_MODIFIED = util.symbol("MODIFIED")

class Event(object):
 """A token propagated throughout the course of a chain of attribute
 events.

 Serves as an indicator of the source of the event and also provides
 a means of controlling propagation across a chain of attribute
 operations.

 The :class:`.Event` object is sent as the ``initiator`` argument
 when dealing with events such as :meth:`.AttributeEvents.append`,
 :meth:`.AttributeEvents.set`,
 and :meth:`.AttributeEvents.remove`.

 The :class:`.Event` object is currently interpreted by the backref
 event handlers, and is used to control the propagation of operations
 across two mutually-dependent attributes.

 .. versionadded:: 0.9.0

 :attribute impl: The :class:`.AttributeImpl` which is the current event
 initiator.

 :attribute op: The symbol :attr:`.OP_APPEND`, :attr:`.OP_REMOVE`,
 :attr:`.OP_REPLACE`, or :attr:`.OP_BULK_REPLACE`, indicating the
 source operation.

 """

 __slots__ = "impl", "op", "parent_token"

 def __init__(self, attribute_impl, op):
 self.impl = attribute_impl
 self.op = op
 self.parent_token = self.impl.parent_token

 def __eq__(self, other):
 return (
 isinstance(other, Event)
 and other.impl is self.impl
 and other.op == self.op
)

 @property
 def key(self):
 return self.impl.key

 def hasparent(self, state):
 return self.impl.hasparent(state)

class AttributeImpl(object):
 """internal implementation for instrumented attributes."""

 def __init__(
 self,
 class_,
 key,
 callable_,
 dispatch,
 trackparent=False,
 extension=None,
 compare_function=None,
 active_history=False,
 parent_token=None,
 expire_missing=True,
 send_modified_events=True,
 accepts_scalar_loader=None,
 **kwargs
):
 r"""Construct an AttributeImpl.

 :param \class_: associated class

 :param key: string name of the attribute

 :param \callable_:
 optional function which generates a callable based on a parent
 instance, which produces the "default" values for a scalar or
 collection attribute when it's first accessed, if not present
 already.

 :param trackparent:
 if True, attempt to track if an instance has a parent attached
 to it via this attribute.

 :param extension:
 a single or list of AttributeExtension object(s) which will
 receive set/delete/append/remove/etc. events.
 The event package is now used.

 .. deprecated:: 1.3

 The :paramref:`.AttributeImpl.extension` parameter is deprecated
 and will be removed in a future release, corresponding to the
 "extension" parameter on the :class:`.MapperProprty` classes
 like :func:`.column_property` and :func:`_orm.relationship` The
 events system is now used.

 :param compare_function:
 a function that compares two values which are normally
 assignable to this attribute.

 :param active_history:
 indicates that get_history() should always return the "old" value,
 even if it means executing a lazy callable upon attribute change.

 :param parent_token:
 Usually references the MapperProperty, used as a key for
 the hasparent() function to identify an "owning" attribute.
 Allows multiple AttributeImpls to all match a single
 owner attribute.

 :param expire_missing:
 if False, don't add an "expiry" callable to this attribute
 during state.expire_attributes(None), if no value is present
 for this key.

 :param send_modified_events:
 if False, the InstanceState._modified_event method will have no
 effect; this means the attribute will never show up as changed in a
 history entry.

 """
 self.class_ = class_
 self.key = key
 self.callable_ = callable_
 self.dispatch = dispatch
 self.trackparent = trackparent
 self.parent_token = parent_token or self
 self.send_modified_events = send_modified_events
 if compare_function is None:
 self.is_equal = operator.eq
 else:
 self.is_equal = compare_function

 if accepts_scalar_loader is not None:
 self.accepts_scalar_loader = accepts_scalar_loader
 else:
 self.accepts_scalar_loader = self.default_accepts_scalar_loader

 # TODO: pass in the manager here
 # instead of doing a lookup
 attr = manager_of_class(class_)[key]

 for ext in util.to_list(extension or []):
 ext._adapt_listener(attr, ext)

 if active_history:
 self.dispatch._active_history = True

 self.expire_missing = expire_missing
 self._modified_token = Event(self, OP_MODIFIED)

 __slots__ = (
 "class_",
 "key",
 "callable_",
 "dispatch",
 "trackparent",
 "parent_token",
 "send_modified_events",
 "is_equal",
 "expire_missing",
 "_modified_token",
 "accepts_scalar_loader",
)

 def __str__(self):
 return "%s.%s" % (self.class_.__name__, self.key)

 def _get_active_history(self):
 """Backwards compat for impl.active_history"""

 return self.dispatch._active_history

 def _set_active_history(self, value):
 self.dispatch._active_history = value

 active_history = property(_get_active_history, _set_active_history)

 def hasparent(self, state, optimistic=False):
 """Return the boolean value of a `hasparent` flag attached to
 the given state.

 The `optimistic` flag determines what the default return value
 should be if no `hasparent` flag can be located.

 As this function is used to determine if an instance is an
 orphan, instances that were loaded from storage should be
 assumed to not be orphans, until a True/False value for this
 flag is set.

 An instance attribute that is loaded by a callable function
 will also not have a `hasparent` flag.

 """
 msg = "This AttributeImpl is not configured to track parents."
 assert self.trackparent, msg

 return (
 state.parents.get(id(self.parent_token), optimistic) is not False
)

 def sethasparent(self, state, parent_state, value):
 """Set a boolean flag on the given item corresponding to
 whether or not it is attached to a parent object via the
 attribute represented by this ``InstrumentedAttribute``.

 """
 msg = "This AttributeImpl is not configured to track parents."
 assert self.trackparent, msg

 id_ = id(self.parent_token)
 if value:
 state.parents[id_] = parent_state
 else:
 if id_ in state.parents:
 last_parent = state.parents[id_]

 if (
 last_parent is not False
 and last_parent.key != parent_state.key
):

 if last_parent.obj() is None:
 raise orm_exc.StaleDataError(
 "Removing state %s from parent "
 "state %s along attribute '%s', "
 "but the parent record "
 "has gone stale, can't be sure this "
 "is the most recent parent."
 % (
 state_str(state),
 state_str(parent_state),
 self.key,
)
)

 return

 state.parents[id_] = False

 def get_history(self, state, dict_, passive=PASSIVE_OFF):
 raise NotImplementedError()

 def get_all_pending(self, state, dict_, passive=PASSIVE_NO_INITIALIZE):
 """Return a list of tuples of (state, obj)
 for all objects in this attribute's current state
 + history.

 Only applies to object-based attributes.

 This is an inlining of existing functionality
 which roughly corresponds to:

 get_state_history(
 state,
 key,
 passive=PASSIVE_NO_INITIALIZE).sum()

 """
 raise NotImplementedError()

 def initialize(self, state, dict_):
 """Initialize the given state's attribute with an empty value."""

 value = None
 for fn in self.dispatch.init_scalar:
 ret = fn(state, value, dict_)
 if ret is not ATTR_EMPTY:
 value = ret

 return value

 def get(self, state, dict_, passive=PASSIVE_OFF):
 """Retrieve a value from the given object.
 If a callable is assembled on this object's attribute, and
 passive is False, the callable will be executed and the
 resulting value will be set as the new value for this attribute.
 """
 if self.key in dict_:
 return dict_[self.key]
 else:
 # if history present, don't load
 key = self.key
 if (
 key not in state.committed_state
 or state.committed_state[key] is NEVER_SET
):
 if not passive & CALLABLES_OK:
 return PASSIVE_NO_RESULT

 if key in state.expired_attributes:
 value = state._load_expired(state, passive)
 elif key in state.callables:
 callable_ = state.callables[key]
 value = callable_(state, passive)
 elif self.callable_:
 value = self.callable_(state, passive)
 else:
 value = ATTR_EMPTY

 if value is PASSIVE_NO_RESULT or value is NEVER_SET:
 return value
 elif value is ATTR_WAS_SET:
 try:
 return dict_[key]
 except KeyError as err:
 # TODO: no test coverage here.
 util.raise_(
 KeyError(
 "Deferred loader for attribute "
 "%r failed to populate "
 "correctly" % key
),
 replace_context=err,
)
 elif value is not ATTR_EMPTY:
 return self.set_committed_value(state, dict_, value)

 if not passive & INIT_OK:
 return NEVER_SET
 else:
 # Return a new, empty value
 return self.initialize(state, dict_)

 def append(self, state, dict_, value, initiator, passive=PASSIVE_OFF):
 self.set(state, dict_, value, initiator, passive=passive)

 def remove(self, state, dict_, value, initiator, passive=PASSIVE_OFF):
 self.set(
 state, dict_, None, initiator, passive=passive, check_old=value
)

 def pop(self, state, dict_, value, initiator, passive=PASSIVE_OFF):
 self.set(
 state,
 dict_,
 None,
 initiator,
 passive=passive,
 check_old=value,
 pop=True,
)

 def set(
 self,
 state,
 dict_,
 value,
 initiator,
 passive=PASSIVE_OFF,
 check_old=None,
 pop=False,
):
 raise NotImplementedError()

 def get_committed_value(self, state, dict_, passive=PASSIVE_OFF):
 """return the unchanged value of this attribute"""

 if self.key in state.committed_state:
 value = state.committed_state[self.key]
 if value in (NO_VALUE, NEVER_SET):
 return None
 else:
 return value
 else:
 return self.get(state, dict_, passive=passive)

 def set_committed_value(self, state, dict_, value):
 """set an attribute value on the given instance and 'commit' it."""

 dict_[self.key] = value
 state._commit(dict_, [self.key])
 return value

class ScalarAttributeImpl(AttributeImpl):
 """represents a scalar value-holding InstrumentedAttribute."""

 default_accepts_scalar_loader = True
 uses_objects = False
 supports_population = True
 collection = False
 dynamic = False

 __slots__ = "_replace_token", "_append_token", "_remove_token"

 def __init__(self, *arg, **kw):
 super(ScalarAttributeImpl, self).__init__(*arg, **kw)
 self._replace_token = self._append_token = Event(self, OP_REPLACE)
 self._remove_token = Event(self, OP_REMOVE)

 def delete(self, state, dict_):
 if self.dispatch._active_history:
 old = self.get(state, dict_, PASSIVE_RETURN_NEVER_SET)
 else:
 old = dict_.get(self.key, NO_VALUE)

 if self.dispatch.remove:
 self.fire_remove_event(state, dict_, old, self._remove_token)
 state._modified_event(dict_, self, old)

 existing = dict_.pop(self.key, NO_VALUE)
 if (
 existing is NO_VALUE
 and old is NO_VALUE
 and not state.expired
 and self.key not in state.expired_attributes
):
 raise AttributeError("%s object does not have a value" % self)

 def get_history(self, state, dict_, passive=PASSIVE_OFF):
 if self.key in dict_:
 return History.from_scalar_attribute(self, state, dict_[self.key])
 else:
 if passive & INIT_OK:
 passive ^= INIT_OK
 current = self.get(state, dict_, passive=passive)
 if current is PASSIVE_NO_RESULT:
 return HISTORY_BLANK
 else:
 return History.from_scalar_attribute(self, state, current)

 def set(
 self,
 state,
 dict_,
 value,
 initiator,
 passive=PASSIVE_OFF,
 check_old=None,
 pop=False,
):
 if self.dispatch._active_history:
 old = self.get(state, dict_, PASSIVE_RETURN_NEVER_SET)
 else:
 old = dict_.get(self.key, NO_VALUE)

 if self.dispatch.set:
 value = self.fire_replace_event(
 state, dict_, value, old, initiator
)
 state._modified_event(dict_, self, old)
 dict_[self.key] = value

 def fire_replace_event(self, state, dict_, value, previous, initiator):
 for fn in self.dispatch.set:
 value = fn(
 state, value, previous, initiator or self._replace_token
)
 return value

 def fire_remove_event(self, state, dict_, value, initiator):
 for fn in self.dispatch.remove:
 fn(state, value, initiator or self._remove_token)

 @property
 def type(self):
 self.property.columns[0].type

class ScalarObjectAttributeImpl(ScalarAttributeImpl):
 """represents a scalar-holding InstrumentedAttribute,
 where the target object is also instrumented.

 Adds events to delete/set operations.

 """

 default_accepts_scalar_loader = False
 uses_objects = True
 supports_population = True
 collection = False

 __slots__ = ()

 def delete(self, state, dict_):
 if self.dispatch._active_history:
 old = self.get(
 state,
 dict_,
 passive=PASSIVE_ONLY_PERSISTENT
 | NO_AUTOFLUSH
 | LOAD_AGAINST_COMMITTED,
)
 else:
 old = self.get(
 state,
 dict_,
 passive=PASSIVE_NO_FETCH ^ INIT_OK
 | LOAD_AGAINST_COMMITTED
 | NO_RAISE,
)

 self.fire_remove_event(state, dict_, old, self._remove_token)

 existing = dict_.pop(self.key, NO_VALUE)

 # if the attribute is expired, we currently have no way to tell
 # that an object-attribute was expired vs. not loaded. So
 # for this test, we look to see if the object has a DB identity.
 if (
 existing is NO_VALUE
 and old is not PASSIVE_NO_RESULT
 and state.key is None
):
 raise AttributeError("%s object does not have a value" % self)

 def get_history(self, state, dict_, passive=PASSIVE_OFF):
 if self.key in dict_:
 return History.from_object_attribute(self, state, dict_[self.key])
 else:
 if passive & INIT_OK:
 passive ^= INIT_OK
 current = self.get(state, dict_, passive=passive)
 if current is PASSIVE_NO_RESULT:
 return HISTORY_BLANK
 else:
 return History.from_object_attribute(self, state, current)

 def get_all_pending(self, state, dict_, passive=PASSIVE_NO_INITIALIZE):
 if self.key in dict_:
 current = dict_[self.key]
 elif passive & CALLABLES_OK:
 current = self.get(state, dict_, passive=passive)
 else:
 return []

 # can't use __hash__(), can't use __eq__() here
 if (
 current is not None
 and current is not PASSIVE_NO_RESULT
 and current is not NEVER_SET
):
 ret = [(instance_state(current), current)]
 else:
 ret = [(None, None)]

 if self.key in state.committed_state:
 original = state.committed_state[self.key]
 if (
 original is not None
 and original is not PASSIVE_NO_RESULT
 and original is not NEVER_SET
 and original is not current
):

 ret.append((instance_state(original), original))
 return ret

 def set(
 self,
 state,
 dict_,
 value,
 initiator,
 passive=PASSIVE_OFF,
 check_old=None,
 pop=False,
):
 """Set a value on the given InstanceState."""
 if self.dispatch._active_history:
 old = self.get(
 state,
 dict_,
 passive=PASSIVE_ONLY_PERSISTENT
 | NO_AUTOFLUSH
 | LOAD_AGAINST_COMMITTED,
)
 else:
 old = self.get(
 state,
 dict_,
 passive=PASSIVE_NO_FETCH ^ INIT_OK
 | LOAD_AGAINST_COMMITTED
 | NO_RAISE,
)

 if (
 check_old is not None
 and old is not PASSIVE_NO_RESULT
 and check_old is not old
):
 if pop:
 return
 else:
 raise ValueError(
 "Object %s not associated with %s on attribute '%s'"
 % (instance_str(check_old), state_str(state), self.key)
)

 value = self.fire_replace_event(state, dict_, value, old, initiator)
 dict_[self.key] = value

 def fire_remove_event(self, state, dict_, value, initiator):
 if self.trackparent and value is not None:
 self.sethasparent(instance_state(value), state, False)

 for fn in self.dispatch.remove:
 fn(state, value, initiator or self._remove_token)

 state._modified_event(dict_, self, value)

 def fire_replace_event(self, state, dict_, value, previous, initiator):
 if self.trackparent:
 if previous is not value and previous not in (
 None,
 PASSIVE_NO_RESULT,
 NEVER_SET,
):
 self.sethasparent(instance_state(previous), state, False)

 for fn in self.dispatch.set:
 value = fn(
 state, value, previous, initiator or self._replace_token
)

 state._modified_event(dict_, self, previous)

 if self.trackparent:
 if value is not None:
 self.sethasparent(instance_state(value), state, True)

 return value

class CollectionAttributeImpl(AttributeImpl):
 """A collection-holding attribute that instruments changes in membership.

 Only handles collections of instrumented objects.

 InstrumentedCollectionAttribute holds an arbitrary, user-specified
 container object (defaulting to a list) and brokers access to the
 CollectionAdapter, a "view" onto that object that presents consistent bag
 semantics to the orm layer independent of the user data implementation.

 """

 default_accepts_scalar_loader = False
 uses_objects = True
 supports_population = True
 collection = True
 dynamic = False

 __slots__ = (
 "copy",
 "collection_factory",
 "_append_token",
 "_remove_token",
 "_bulk_replace_token",
 "_duck_typed_as",
)

 def __init__(
 self,
 class_,
 key,
 callable_,
 dispatch,
 typecallable=None,
 trackparent=False,
 extension=None,
 copy_function=None,
 compare_function=None,
 **kwargs
):
 super(CollectionAttributeImpl, self).__init__(
 class_,
 key,
 callable_,
 dispatch,
 trackparent=trackparent,
 extension=extension,
 compare_function=compare_function,
 **kwargs
)

 if copy_function is None:
 copy_function = self.__copy
 self.copy = copy_function
 self.collection_factory = typecallable
 self._append_token = Event(self, OP_APPEND)
 self._remove_token = Event(self, OP_REMOVE)
 self._bulk_replace_token = Event(self, OP_BULK_REPLACE)
 self._duck_typed_as = util.duck_type_collection(
 self.collection_factory()
)

 if getattr(self.collection_factory, "_sa_linker", None):

 @event.listens_for(self, "init_collection")
 def link(target, collection, collection_adapter):
 collection._sa_linker(collection_adapter)

 @event.listens_for(self, "dispose_collection")
 def unlink(target, collection, collection_adapter):
 collection._sa_linker(None)

 def __copy(self, item):
 return [y for y in collections.collection_adapter(item)]

 def get_history(self, state, dict_, passive=PASSIVE_OFF):
 current = self.get(state, dict_, passive=passive)
 if current is PASSIVE_NO_RESULT:
 return HISTORY_BLANK
 else:
 return History.from_collection(self, state, current)

 def get_all_pending(self, state, dict_, passive=PASSIVE_NO_INITIALIZE):
 # NOTE: passive is ignored here at the moment

 if self.key not in dict_:
 return []

 current = dict_[self.key]
 current = getattr(current, "_sa_adapter")

 if self.key in state.committed_state:
 original = state.committed_state[self.key]
 if original not in (NO_VALUE, NEVER_SET):
 current_states = [
 ((c is not None) and instance_state(c) or None, c)
 for c in current
]
 original_states = [
 ((c is not None) and instance_state(c) or None, c)
 for c in original
]

 current_set = dict(current_states)
 original_set = dict(original_states)

 return (
 [
 (s, o)
 for s, o in current_states
 if s not in original_set
]
 + [(s, o) for s, o in current_states if s in original_set]
 + [
 (s, o)
 for s, o in original_states
 if s not in current_set
]
)

 return [(instance_state(o), o) for o in current]

 def fire_append_event(self, state, dict_, value, initiator):
 for fn in self.dispatch.append:
 value = fn(state, value, initiator or self._append_token)

 state._modified_event(dict_, self, NEVER_SET, True)

 if self.trackparent and value is not None:
 self.sethasparent(instance_state(value), state, True)

 return value

 def fire_pre_remove_event(self, state, dict_, initiator):
 """A special event used for pop() operations.

 The "remove" event needs to have the item to be removed passed to
 it, which in the case of pop from a set, we don't have a way to access
 the item before the operation. the event is used for all pop()
 operations (even though set.pop is the one where it is really needed).

 """
 state._modified_event(dict_, self, NEVER_SET, True)

 def fire_remove_event(self, state, dict_, value, initiator):
 if self.trackparent and value is not None:
 self.sethasparent(instance_state(value), state, False)

 for fn in self.dispatch.remove:
 fn(state, value, initiator or self._remove_token)

 state._modified_event(dict_, self, NEVER_SET, True)

 def delete(self, state, dict_):
 if self.key not in dict_:
 return

 state._modified_event(dict_, self, NEVER_SET, True)

 collection = self.get_collection(state, state.dict)
 collection.clear_with_event()

 # key is always present because we checked above. e.g.
 # del is a no-op if collection not present.
 del dict_[self.key]

 def initialize(self, state, dict_):
 """Initialize this attribute with an empty collection."""

 _, user_data = self._initialize_collection(state)
 dict_[self.key] = user_data
 return user_data

 def _initialize_collection(self, state):

 adapter, collection = state.manager.initialize_collection(
 self.key, state, self.collection_factory
)

 self.dispatch.init_collection(state, collection, adapter)

 return adapter, collection

 def append(self, state, dict_, value, initiator, passive=PASSIVE_OFF):
 collection = self.get_collection(state, dict_, passive=passive)
 if collection is PASSIVE_NO_RESULT:
 value = self.fire_append_event(state, dict_, value, initiator)
 assert (
 self.key not in dict_
), "Collection was loaded during event handling."
 state._get_pending_mutation(self.key).append(value)
 else:
 collection.append_with_event(value, initiator)

 def remove(self, state, dict_, value, initiator, passive=PASSIVE_OFF):
 collection = self.get_collection(state, state.dict, passive=passive)
 if collection is PASSIVE_NO_RESULT:
 self.fire_remove_event(state, dict_, value, initiator)
 assert (
 self.key not in dict_
), "Collection was loaded during event handling."
 state._get_pending_mutation(self.key).remove(value)
 else:
 collection.remove_with_event(value, initiator)

 def pop(self, state, dict_, value, initiator, passive=PASSIVE_OFF):
 try:
 # TODO: better solution here would be to add
 # a "popper" role to collections.py to complement
 # "remover".
 self.remove(state, dict_, value, initiator, passive=passive)
 except (ValueError, KeyError, IndexError):
 pass

 def set(
 self,
 state,
 dict_,
 value,
 initiator=None,
 passive=PASSIVE_OFF,
 pop=False,
 _adapt=True,
):
 iterable = orig_iterable = value

 # pulling a new collection first so that an adaptation exception does
 # not trigger a lazy load of the old collection.
 new_collection, user_data = self._initialize_collection(state)
 if _adapt:
 if new_collection._converter is not None:
 iterable = new_collection._converter(iterable)
 else:
 setting_type = util.duck_type_collection(iterable)
 receiving_type = self._duck_typed_as

 if setting_type is not receiving_type:
 given = (
 iterable is None
 and "None"
 or iterable.__class__.__name__
)
 wanted = self._duck_typed_as.__name__
 raise TypeError(
 "Incompatible collection type: %s is not %s-like"
 % (given, wanted)
)

 # If the object is an adapted collection, return the (iterable)
 # adapter.
 if hasattr(iterable, "_sa_iterator"):
 iterable = iterable._sa_iterator()
 elif setting_type is dict:
 if util.py3k:
 iterable = iterable.values()
 else:
 iterable = getattr(
 iterable, "itervalues", iterable.values
)()
 else:
 iterable = iter(iterable)
 new_values = list(iterable)

 evt = self._bulk_replace_token

 self.dispatch.bulk_replace(state, new_values, evt)

 old = self.get(state, dict_, passive=PASSIVE_ONLY_PERSISTENT)
 if old is PASSIVE_NO_RESULT:
 old = self.initialize(state, dict_)
 elif old is orig_iterable:
 # ignore re-assignment of the current collection, as happens
 # implicitly with in-place operators (foo.collection |= other)
 return

 # place a copy of "old" in state.committed_state
 state._modified_event(dict_, self, old, True)

 old_collection = old._sa_adapter

 dict_[self.key] = user_data

 collections.bulk_replace(
 new_values, old_collection, new_collection, initiator=evt
)

 del old._sa_adapter
 self.dispatch.dispose_collection(state, old, old_collection)

 def _invalidate_collection(self, collection):
 adapter = getattr(collection, "_sa_adapter")
 adapter.invalidated = True

 def set_committed_value(self, state, dict_, value):
 """Set an attribute value on the given instance and 'commit' it."""

 collection, user_data = self._initialize_collection(state)

 if value:
 collection.append_multiple_without_event(value)

 state.dict[self.key] = user_data

 state._commit(dict_, [self.key])

 if self.key in state._pending_mutations:
 # pending items exist. issue a modified event,
 # add/remove new items.
 state._modified_event(dict_, self, user_data, True)

 pending = state._pending_mutations.pop(self.key)
 added = pending.added_items
 removed = pending.deleted_items
 for item in added:
 collection.append_without_event(item)
 for item in removed:
 collection.remove_without_event(item)

 return user_data

 def get_collection(
 self, state, dict_, user_data=None, passive=PASSIVE_OFF
):
 """Retrieve the CollectionAdapter associated with the given state.

 Creates a new CollectionAdapter if one does not exist.

 """
 if user_data is None:
 user_data = self.get(state, dict_, passive=passive)
 if user_data is PASSIVE_NO_RESULT:
 return user_data

 return getattr(user_data, "_sa_adapter")

def backref_listeners(attribute, key, uselist):
 """Apply listeners to synchronize a two-way relationship."""

 # use easily recognizable names for stack traces.

 # in the sections marked "tokens to test for a recursive loop",
 # this is somewhat brittle and very performance-sensitive logic
 # that is specific to how we might arrive at each event. a marker
 # that can target us directly to arguments being invoked against
 # the impl might be simpler, but could interfere with other systems.

 parent_token = attribute.impl.parent_token
 parent_impl = attribute.impl

 def _acceptable_key_err(child_state, initiator, child_impl):
 raise ValueError(
 "Bidirectional attribute conflict detected: "
 'Passing object %s to attribute "%s" '
 'triggers a modify event on attribute "%s" '
 'via the backref "%s".'
 % (
 state_str(child_state),
 initiator.parent_token,
 child_impl.parent_token,
 attribute.impl.parent_token,
)
)

 def emit_backref_from_scalar_set_event(state, child, oldchild, initiator):
 if oldchild is child:
 return child
 if (
 oldchild is not None
 and oldchild is not PASSIVE_NO_RESULT
 and oldchild is not NEVER_SET
):
 # With lazy=None, there's no guarantee that the full collection is
 # present when updating via a backref.
 old_state, old_dict = (
 instance_state(oldchild),
 instance_dict(oldchild),
)
 impl = old_state.manager[key].impl

 # tokens to test for a recursive loop.
 if not impl.collection and not impl.dynamic:
 check_recursive_token = impl._replace_token
 else:
 check_recursive_token = impl._remove_token

 if initiator is not check_recursive_token:
 impl.pop(
 old_state,
 old_dict,
 state.obj(),
 parent_impl._append_token,
 passive=PASSIVE_NO_FETCH,
)

 if child is not None:
 child_state, child_dict = (
 instance_state(child),
 instance_dict(child),
)
 child_impl = child_state.manager[key].impl

 if (
 initiator.parent_token is not parent_token
 and initiator.parent_token is not child_impl.parent_token
):
 _acceptable_key_err(state, initiator, child_impl)

 # tokens to test for a recursive loop.
 check_append_token = child_impl._append_token
 check_bulk_replace_token = (
 child_impl._bulk_replace_token
 if child_impl.collection
 else None
)

 if (
 initiator is not check_append_token
 and initiator is not check_bulk_replace_token
):
 child_impl.append(
 child_state,
 child_dict,
 state.obj(),
 initiator,
 passive=PASSIVE_NO_FETCH,
)
 return child

 def emit_backref_from_collection_append_event(state, child, initiator):
 if child is None:
 return

 child_state, child_dict = instance_state(child), instance_dict(child)
 child_impl = child_state.manager[key].impl

 if (
 initiator.parent_token is not parent_token
 and initiator.parent_token is not child_impl.parent_token
):
 _acceptable_key_err(state, initiator, child_impl)

 # tokens to test for a recursive loop.
 check_append_token = child_impl._append_token
 check_bulk_replace_token = (
 child_impl._bulk_replace_token if child_impl.collection else None
)

 if (
 initiator is not check_append_token
 and initiator is not check_bulk_replace_token
):
 child_impl.append(
 child_state,
 child_dict,
 state.obj(),
 initiator,
 passive=PASSIVE_NO_FETCH,
)
 return child

 def emit_backref_from_collection_remove_event(state, child, initiator):
 if (
 child is not None
 and child is not PASSIVE_NO_RESULT
 and child is not NEVER_SET
):
 child_state, child_dict = (
 instance_state(child),
 instance_dict(child),
)
 child_impl = child_state.manager[key].impl

 # tokens to test for a recursive loop.
 if not child_impl.collection and not child_impl.dynamic:
 check_remove_token = child_impl._remove_token
 check_replace_token = child_impl._replace_token
 check_for_dupes_on_remove = uselist and not parent_impl.dynamic
 else:
 check_remove_token = child_impl._remove_token
 check_replace_token = (
 child_impl._bulk_replace_token
 if child_impl.collection
 else None
)
 check_for_dupes_on_remove = False

 if (
 initiator is not check_remove_token
 and initiator is not check_replace_token
):

 if not check_for_dupes_on_remove or not util.has_dupes(
 # when this event is called, the item is usually
 # present in the list, except for a pop() operation.
 state.dict[parent_impl.key],
 child,
):
 child_impl.pop(
 child_state,
 child_dict,
 state.obj(),
 initiator,
 passive=PASSIVE_NO_FETCH,
)

 if uselist:
 event.listen(
 attribute,
 "append",
 emit_backref_from_collection_append_event,
 retval=True,
 raw=True,
)
 else:
 event.listen(
 attribute,
 "set",
 emit_backref_from_scalar_set_event,
 retval=True,
 raw=True,
)
 # TODO: need coverage in test/orm/ of remove event
 event.listen(
 attribute,
 "remove",
 emit_backref_from_collection_remove_event,
 retval=True,
 raw=True,
)

_NO_HISTORY = util.symbol("NO_HISTORY")
_NO_STATE_SYMBOLS = frozenset(
 [id(PASSIVE_NO_RESULT), id(NO_VALUE), id(NEVER_SET)]
)

History = util.namedtuple("History", ["added", "unchanged", "deleted"])

class History(History):
 """A 3-tuple of added, unchanged and deleted values,
 representing the changes which have occurred on an instrumented
 attribute.

 The easiest way to get a :class:`.History` object for a particular
 attribute on an object is to use the :func:`_sa.inspect` function::

 from sqlalchemy import inspect

 hist = inspect(myobject).attrs.myattribute.history

 Each tuple member is an iterable sequence:

 * ``added`` - the collection of items added to the attribute (the first
 tuple element).

 * ``unchanged`` - the collection of items that have not changed on the
 attribute (the second tuple element).

 * ``deleted`` - the collection of items that have been removed from the
 attribute (the third tuple element).

 """

 def __bool__(self):
 return self != HISTORY_BLANK

 __nonzero__ = __bool__

 def empty(self):
 """Return True if this :class:`.History` has no changes
 and no existing, unchanged state.

 """

 return not bool((self.added or self.deleted) or self.unchanged)

 def sum(self):
 """Return a collection of added + unchanged + deleted."""

 return (
 (self.added or []) + (self.unchanged or []) + (self.deleted or [])
)

 def non_deleted(self):
 """Return a collection of added + unchanged."""

 return (self.added or []) + (self.unchanged or [])

 def non_added(self):
 """Return a collection of unchanged + deleted."""

 return (self.unchanged or []) + (self.deleted or [])

 def has_changes(self):
 """Return True if this :class:`.History` has changes."""

 return bool(self.added or self.deleted)

 def as_state(self):
 return History(
 [
 (c is not None) and instance_state(c) or None
 for c in self.added
],
 [
 (c is not None) and instance_state(c) or None
 for c in self.unchanged
],
 [
 (c is not None) and instance_state(c) or None
 for c in self.deleted
],
)

 @classmethod
 def from_scalar_attribute(cls, attribute, state, current):
 original = state.committed_state.get(attribute.key, _NO_HISTORY)

 if original is _NO_HISTORY:
 if current is NEVER_SET:
 return cls((), (), ())
 else:
 return cls((), [current], ())
 # don't let ClauseElement expressions here trip things up
 elif attribute.is_equal(current, original) is True:
 return cls((), [current], ())
 else:
 # current convention on native scalars is to not
 # include information
 # about missing previous value in "deleted", but
 # we do include None, which helps in some primary
 # key situations
 if id(original) in _NO_STATE_SYMBOLS:
 deleted = ()
 # indicate a "del" operation occurred when we don't have
 # the previous value as: ([None], (), ())
 if id(current) in _NO_STATE_SYMBOLS:
 current = None
 else:
 deleted = [original]
 if current is NEVER_SET:
 return cls((), (), deleted)
 else:
 return cls([current], (), deleted)

 @classmethod
 def from_object_attribute(cls, attribute, state, current):
 original = state.committed_state.get(attribute.key, _NO_HISTORY)

 if original is _NO_HISTORY:
 if current is NO_VALUE or current is NEVER_SET:
 return cls((), (), ())
 else:
 return cls((), [current], ())
 elif current is original and current is not NEVER_SET:
 return cls((), [current], ())
 else:
 # current convention on related objects is to not
 # include information
 # about missing previous value in "deleted", and
 # to also not include None - the dependency.py rules
 # ignore the None in any case.
 if id(original) in _NO_STATE_SYMBOLS or original is None:
 deleted = ()
 # indicate a "del" operation occurred when we don't have
 # the previous value as: ([None], (), ())
 if id(current) in _NO_STATE_SYMBOLS:
 current = None
 else:
 deleted = [original]
 if current is NO_VALUE or current is NEVER_SET:
 return cls((), (), deleted)
 else:
 return cls([current], (), deleted)

 @classmethod
 def from_collection(cls, attribute, state, current):
 original = state.committed_state.get(attribute.key, _NO_HISTORY)

 if current is NO_VALUE or current is NEVER_SET:
 return cls((), (), ())

 current = getattr(current, "_sa_adapter")
 if original in (NO_VALUE, NEVER_SET):
 return cls(list(current), (), ())
 elif original is _NO_HISTORY:
 return cls((), list(current), ())
 else:

 current_states = [
 ((c is not None) and instance_state(c) or None, c)
 for c in current
]
 original_states = [
 ((c is not None) and instance_state(c) or None, c)
 for c in original
]

 current_set = dict(current_states)
 original_set = dict(original_states)

 return cls(
 [o for s, o in current_states if s not in original_set],
 [o for s, o in current_states if s in original_set],
 [o for s, o in original_states if s not in current_set],
)

HISTORY_BLANK = History(None, None, None)

def get_history(obj, key, passive=PASSIVE_OFF):
 """Return a :class:`.History` record for the given object
 and attribute key.

 This is the **pre-flush** history for a given attribute, which is
 reset each time the :class:`.Session` flushes changes to the
 current database transaction.

 .. note::

 Prefer to use the :attr:`.AttributeState.history` and
 :meth:`.AttributeState.load_history` accessors to retrieve the
 :class:`.History` for instance attributes.

 :param obj: an object whose class is instrumented by the
 attributes package.

 :param key: string attribute name.

 :param passive: indicates loading behavior for the attribute
 if the value is not already present. This is a
 bitflag attribute, which defaults to the symbol
 :attr:`.PASSIVE_OFF` indicating all necessary SQL
 should be emitted.

 .. seealso::

 :attr:`.AttributeState.history`

 :meth:`.AttributeState.load_history` - retrieve history
 using loader callables if the value is not locally present.

 """
 if passive is True:
 util.warn_deprecated(
 "Passing True for 'passive' is deprecated. "
 "Use attributes.PASSIVE_NO_INITIALIZE"
)
 passive = PASSIVE_NO_INITIALIZE
 elif passive is False:
 util.warn_deprecated(
 "Passing False for 'passive' is "
 "deprecated. Use attributes.PASSIVE_OFF"
)
 passive = PASSIVE_OFF

 return get_state_history(instance_state(obj), key, passive)

def get_state_history(state, key, passive=PASSIVE_OFF):
 return state.get_history(key, passive)

def has_parent(cls, obj, key, optimistic=False):
 """TODO"""
 manager = manager_of_class(cls)
 state = instance_state(obj)
 return manager.has_parent(state, key, optimistic)

def register_attribute(class_, key, **kw):
 comparator = kw.pop("comparator", None)
 parententity = kw.pop("parententity", None)
 doc = kw.pop("doc", None)
 desc = register_descriptor(class_, key, comparator, parententity, doc=doc)
 register_attribute_impl(class_, key, **kw)
 return desc

def register_attribute_impl(
 class_,
 key,
 uselist=False,
 callable_=None,
 useobject=False,
 impl_class=None,
 backref=None,
 **kw
):

 manager = manager_of_class(class_)
 if uselist:
 factory = kw.pop("typecallable", None)
 typecallable = manager.instrument_collection_class(
 key, factory or list
)
 else:
 typecallable = kw.pop("typecallable", None)

 dispatch = manager[key].dispatch

 if impl_class:
 impl = impl_class(class_, key, typecallable, dispatch, **kw)
 elif uselist:
 impl = CollectionAttributeImpl(
 class_, key, callable_, dispatch, typecallable=typecallable, **kw
)
 elif useobject:
 impl = ScalarObjectAttributeImpl(
 class_, key, callable_, dispatch, **kw
)
 else:
 impl = ScalarAttributeImpl(class_, key, callable_, dispatch, **kw)

 manager[key].impl = impl

 if backref:
 backref_listeners(manager[key], backref, uselist)

 manager.post_configure_attribute(key)
 return manager[key]

def register_descriptor(
 class_, key, comparator=None, parententity=None, doc=None
):
 manager = manager_of_class(class_)

 descriptor = InstrumentedAttribute(
 class_, key, comparator=comparator, parententity=parententity
)

 descriptor.__doc__ = doc

 manager.instrument_attribute(key, descriptor)
 return descriptor

def unregister_attribute(class_, key):
 manager_of_class(class_).uninstrument_attribute(key)

def init_collection(obj, key):
 """Initialize a collection attribute and return the collection adapter.

 This function is used to provide direct access to collection internals
 for a previously unloaded attribute. e.g.::

 collection_adapter = init_collection(someobject, 'elements')
 for elem in values:
 collection_adapter.append_without_event(elem)

 For an easier way to do the above, see
 :func:`~sqlalchemy.orm.attributes.set_committed_value`.

 :param obj: a mapped object

 :param key: string attribute name where the collection is located.

 """
 state = instance_state(obj)
 dict_ = state.dict
 return init_state_collection(state, dict_, key)

def init_state_collection(state, dict_, key):
 """Initialize a collection attribute and return the collection adapter."""

 attr = state.manager[key].impl
 user_data = attr.initialize(state, dict_)
 return attr.get_collection(state, dict_, user_data)

def set_committed_value(instance, key, value):
 """Set the value of an attribute with no history events.

 Cancels any previous history present. The value should be
 a scalar value for scalar-holding attributes, or
 an iterable for any collection-holding attribute.

 This is the same underlying method used when a lazy loader
 fires off and loads additional data from the database.
 In particular, this method can be used by application code
 which has loaded additional attributes or collections through
 separate queries, which can then be attached to an instance
 as though it were part of its original loaded state.

 """
 state, dict_ = instance_state(instance), instance_dict(instance)
 state.manager[key].impl.set_committed_value(state, dict_, value)

def set_attribute(instance, key, value, initiator=None):
 """Set the value of an attribute, firing history events.

 This function may be used regardless of instrumentation
 applied directly to the class, i.e. no descriptors are required.
 Custom attribute management schemes will need to make usage
 of this method to establish attribute state as understood
 by SQLAlchemy.

 :param instance: the object that will be modified

 :param key: string name of the attribute

 :param value: value to assign

 :param initiator: an instance of :class:`.Event` that would have
 been propagated from a previous event listener. This argument
 is used when the :func:`.set_attribute` function is being used within
 an existing event listening function where an :class:`.Event` object
 is being supplied; the object may be used to track the origin of the
 chain of events.

 .. versionadded:: 1.2.3

 """
 state, dict_ = instance_state(instance), instance_dict(instance)
 state.manager[key].impl.set(state, dict_, value, initiator)

def get_attribute(instance, key):
 """Get the value of an attribute, firing any callables required.

 This function may be used regardless of instrumentation
 applied directly to the class, i.e. no descriptors are required.
 Custom attribute management schemes will need to make usage
 of this method to make usage of attribute state as understood
 by SQLAlchemy.

 """
 state, dict_ = instance_state(instance), instance_dict(instance)
 return state.manager[key].impl.get(state, dict_)

def del_attribute(instance, key):
 """Delete the value of an attribute, firing history events.

 This function may be used regardless of instrumentation
 applied directly to the class, i.e. no descriptors are required.
 Custom attribute management schemes will need to make usage
 of this method to establish attribute state as understood
 by SQLAlchemy.

 """
 state, dict_ = instance_state(instance), instance_dict(instance)
 state.manager[key].impl.delete(state, dict_)

def flag_modified(instance, key):
 """Mark an attribute on an instance as 'modified'.

 This sets the 'modified' flag on the instance and
 establishes an unconditional change event for the given attribute.
 The attribute must have a value present, else an
 :class:`.InvalidRequestError` is raised.

 To mark an object "dirty" without referring to any specific attribute
 so that it is considered within a flush, use the
 :func:`.attributes.flag_dirty` call.

 .. seealso::

 :func:`.attributes.flag_dirty`

 """
 state, dict_ = instance_state(instance), instance_dict(instance)
 impl = state.manager[key].impl
 impl.dispatch.modified(state, impl._modified_token)
 state._modified_event(dict_, impl, NO_VALUE, is_userland=True)

def flag_dirty(instance):
 """Mark an instance as 'dirty' without any specific attribute mentioned.

 This is a special operation that will allow the object to travel through
 the flush process for interception by events such as
 :meth:`.SessionEvents.before_flush`. Note that no SQL will be emitted in
 the flush process for an object that has no changes, even if marked dirty
 via this method. However, a :meth:`.SessionEvents.before_flush` handler
 will be able to see the object in the :attr:`.Session.dirty` collection and
 may establish changes on it, which will then be included in the SQL
 emitted.

 .. versionadded:: 1.2

 .. seealso::

 :func:`.attributes.flag_modified`

 """

 state, dict_ = instance_state(instance), instance_dict(instance)
 state._modified_event(dict_, None, NO_VALUE, is_userland=True)

 _static/minus.png

_static/plus.png

_static/celery_512.png

_static/file.png

_images/celeryevshotsm.jpg
celeryev 1.1.1

wn

TASK

STATE

32220721 173e-4cae-8882-GFFFTe2c030E

2509b117-3c10-4533-8544-20630284c06¢
7207 fcc—7a13-4878-8226-738673e4c3d9
75486d0d-aaed-4129-beS5-Febadazabedd
£4762069-32bf-4af3-293d-cIer 67 Fd12c
387267597 a8-48ec-9789-b222acd3bASt
91 Fecb6-6996-41£9-2337-000adecs 1834
Fda2193-c24b-492¢-b948-9F0b1945e8d
62742826-30ed-4c b-ad6 4386305826068
8720520-71b6-4287-a24d-d0f dadeBebe
cBd0ale-aac2-4F3a-0d6-Feedbodcasca
1cOd67d8-0b8f-47d0-8d30-e72694526d3
6b179786-dbes-bde-a1b-e25525¢3a028
€027d1d-36a8-4bcd-asa1-Saedfcoabeeh
3795b272-bSed-429e-84e3-58340e022615
5410ee05-Gea7-47F8-bA0d-4cae23038 e
614daF2-5025-48ea-bAd5-cadbifecsies

Tasks
tasks.

tasks.
tasks.
tasks.
tasks.
tasks.
tasks.
tasks.
tasks.
tasks.
tasks.
tasks.
task.
tasks.
tasks.
tasks.
tasks.
tasks.

STeeptask
slecptask

Sleeptask
sleeptask
sleeptask
sleeptask
sleeptask
sleeptask
sleeptask
sleeptask
sleeptask
sleeptask
sleeptask
sleeptask
sleeptask
sleeptask
sleeptask
sleeptask
sleeptask

casper-
casper

casper-
casper.
casper.
casper..
casper.
casper..
casper.
casper..
casper.
casper.
casper.
casper.
casper..
casper.
casper..
casper.
casper..

Tocal

Tocal
Tocal
locsl
local
local
local
local
locsl
Tocal
locsl

Tlocal

local
local
locsl
local
Tocal
locsl

SUCCESS

SUCCESS
success

RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECETVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED

Success

Selected: runtine-3.01s eta
Workers online: casper. local
Info: avents:43 tasks:20 workers:1/1
3iup kidown 1:info t:traceback

010-06-

AT10:02:21.513155 arg:

3 result=3 kwarg:

riresult cirevoke fc: quit

_images/celeryevshotsm1.jpg
celeryev 1.1.1

wn

TASK

STATE

32220721 173e-4cae-8882-GFFFTe2c030E

2509b117-3c10-4533-8544-20630284c06¢
7207 fcc—7a13-4878-8226-738673e4c3d9
75486d0d-aaed-4129-beS5-Febadazabedd
£4762069-32bf-4af3-293d-cIer 67 Fd12c
387267597 a8-48ec-9789-b222acd3bASt
91 Fecb6-6996-41£9-2337-000adecs 1834
Fda2193-c24b-492¢-b948-9F0b1945e8d
62742826-30ed-4c b-ad6 4386305826068
8720520-71b6-4287-a24d-d0f dadeBebe
cBd0ale-aac2-4F3a-0d6-Feedbodcasca
1cOd67d8-0b8f-47d0-8d30-e72694526d3
6b179786-dbes-bde-a1b-e25525¢3a028
€027d1d-36a8-4bcd-asa1-Saedfcoabeeh
3795b272-bSed-429e-84e3-58340e022615
5410ee05-Gea7-47F8-bA0d-4cae23038 e
614daF2-5025-48ea-bAd5-cadbifecsies

Tasks
tasks.

tasks.
tasks.
tasks.
tasks.
tasks.
tasks.
tasks.
tasks.
tasks.
tasks.
tasks.
task.
tasks.
tasks.
tasks.
tasks.
tasks.

STeeptask
slecptask

Sleeptask
sleeptask
sleeptask
sleeptask
sleeptask
sleeptask
sleeptask
sleeptask
sleeptask
sleeptask
sleeptask
sleeptask
sleeptask
sleeptask
sleeptask
sleeptask
sleeptask

casper-
casper

casper-
casper.
casper.
casper..
casper.
casper..
casper.
casper..
casper.
casper.
casper.
casper.
casper..
casper.
casper..
casper.
casper..

Tocal

Tocal
Tocal
locsl
local
local
local
local
locsl
Tocal
locsl

Tlocal

local
local
locsl
local
Tocal
locsl

SUCCESS

SUCCESS
success

RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECETVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED
RECEIVED

Success

Selected: runtine-3.01s eta
Workers online: casper. local
Info: avents:43 tasks:20 workers:1/1
3iup kidown 1:info t:traceback

010-06-

AT10:02:21.513155 arg:

3 result=3 kwarg:

riresult cirevoke fc: quit

_images/celery-banner-small.png

_images/celery-banner.png

_images/result_graph.png
272981c1-a480-4a09-b247-a7¢8d1506d50

_ 6dB7alc2-4bfe-47af-939a-ea01a5b3666¢ 7,,

Y
69c1a41b-391c-4605-96ee-d700c0a7b532

_images/worker_graph_full.png

_images/dashboard.png
oo

Celery Flower | W

O [celery Flower
€ € | [1 localhost:5555 /workers

x

Workers

O 00O o0 o0 o0 0 0O

H

Offine

Concurrency

N

n

Monitor Docs About

Completed Tasks

13902
13900
13826
1989
1983

2245

Running Tasks

0

0

Queues
images, data, video
images, data, video
images, data, video
data

data

celery, data

celery

_images/monitor.png
€ - C [J localhost:5555/monitor

Celery Flower

Succeeded tasks
600

V'8 coleryd.pliocal
celoryt.pliocal
'8 coleryzpliocal
v B colery7.pliocal
celory8.plocal
celorys.pliocal
V'8 colery3.pliocal
'8 coleryd.pliocal
'8 coleryt.pliocal

_images/math/3c92a196461843c26825eb716980c76c131d3cfd.png
2+ 2

_images/math/5121aa6410cb52f2ef7c903f90d70d8f3e7c365e.png
(2+2)+ 16 = 20

_images/math/601d199617873d2556c6af00c20f9b97751a04a5.png
marsmain_1

nav.xhtml

 Table of Contents

 		
 Celery - Distributed Task Queue

 		
 Copyright

 		
 Getting Started

 		
 Introduction to Celery

 		
 What’s a Task Queue?

 		
 What do I need?

 		
 Get Started

 		
 Celery is…

 		
 Features

 		
 Framework Integration

 		
 Quick Jump

 		
 Installation

 		
 Brokers

 		
 Broker Instructions

 		
 Broker Overview

 		
 First Steps with Celery

 		
 Choosing a Broker

 		
 Installing Celery

 		
 Application

 		
 Running the Celery worker server

 		
 Calling the task

 		
 Keeping Results

 		
 Configuration

 		
 Where to go from here

 		
 Troubleshooting

 		
 Next Steps

 		
 Using Celery in your Application

 		
 Calling Tasks

 		
 Canvas: Designing Work-flows

 		
 Routing

 		
 Remote Control

 		
 Timezone

 		
 Optimization

 		
 What to do now?

 		
 Resources

 		
 Getting Help

 		
 Bug tracker

 		
 Wiki

 		
 Contributing

 		
 License

 		
 User Guide

 		
 Application

 		
 Main Name

 		
 Configuration

 		
 Laziness

 		
 Breaking the chain

 		
 Abstract Tasks

 		
 Tasks

 		
 Basics

 		
 Names

 		
 Task Request

 		
 Logging

 		
 Retrying

 		
 List of Options

 		
 States

 		
 Semipredicates

 		
 Custom task classes

 		
 How it works

 		
 Tips and Best Practices

 		
 Performance and Strategies

 		
 Example

 		
 Calling Tasks

 		
 Basics

 		
 Linking (callbacks/errbacks)

 		
 On message

 		
 ETA and Countdown

 		
 Expiration

 		
 Message Sending Retry

 		
 Connection Error Handling

 		
 Serializers

 		
 Compression

 		
 Connections

 		
 Routing options

 		
 Results options

 		
 Canvas: Designing Work-flows

 		
 Signatures

 		
 The Primitives

 		
 Workers Guide

 		
 Starting the worker

 		
 Stopping the worker

 		
 Restarting the worker

 		
 Process Signals

 		
 Variables in file paths

 		
 Concurrency

 		
 Remote control

 		
 Commands

 		
 Time Limits

 		
 Rate Limits

 		
 Max tasks per child setting

 		
 Max memory per child setting

 		
 Autoscaling

 		
 Queues

 		
 Inspecting workers

 		
 Additional Commands

 		
 Writing your own remote control commands

 		
 Daemonization

 		
 Generic init-scripts

 		
 Usage systemd

 		
 Running the worker with superuser privileges (root)

 		
 supervisor

 		
 launchd (macOS)

 		
 Periodic Tasks

 		
 Introduction

 		
 Time Zones

 		
 Entries

 		
 Crontab schedules

 		
 Solar schedules

 		
 Starting the Scheduler

 		
 Routing Tasks

 		
 Basics

 		
 Special Routing Options

 		
 AMQP Primer

 		
 Routing Tasks

 		
 Monitoring and Management Guide

 		
 Introduction

 		
 Workers

 		
 RabbitMQ

 		
 Redis

 		
 Munin

 		
 Events

 		
 Event Reference

 		
 Security

 		
 Introduction

 		
 Areas of Concern

 		
 Serializers

 		
 Message Signing

 		
 Intrusion Detection

 		
 Optimizing

 		
 Introduction

 		
 Ensuring Operations

 		
 General Settings

 		
 Worker Settings

 		
 Debugging

 		
 Debugging Tasks Remotely (using pdb)

 		
 Concurrency

 		
 Concurrency with Eventlet

 		
 Signals

 		
 Basics

 		
 Signals

 		
 Testing with Celery

 		
 Tasks and unit tests

 		
 pytest

 		
 Extensions and Bootsteps

 		
 Custom Message Consumers

 		
 Blueprints

 		
 Worker

 		
 Consumer

 		
 Installing Bootsteps

 		
 Command-line programs

 		
 Worker API

 		
 Configuration and defaults

 		
 Example configuration file

 		
 New lowercase settings

 		
 Configuration Directives

 		
 Documenting Tasks with Sphinx

 		
 celery.contrib.sphinx

 		
 Django

 		
 First steps with Django

 		
 Using Celery with Django

 		
 Extensions

 		
 Starting the worker process

 		
 Where to go from here

 		
 Contributing

 		
 Community Code of Conduct

 		
 Be considerate

 		
 Be respectful

 		
 Be collaborative

 		
 When you disagree, consult others

 		
 When you’re unsure, ask for help

 		
 Step down considerately

 		
 Reporting Bugs

 		
 Security

 		
 Other bugs

 		
 Issue Trackers

 		
 Contributors guide to the code base

 		
 Versions

 		
 Branches

 		
 dev branch

 		
 Maintenance branches

 		
 Archived branches

 		
 Feature branches

 		
 Tags

 		
 Working on Features & Patches

 		
 Forking and setting up the repository

 		
 Developing and Testing with Docker

 		
 Running the unit test suite

 		
 Building the documentation

 		
 Verifying your contribution

 		
 Creating pull requests

 		
 Coding Style

 		
 Contributing features requiring additional libraries

 		
 Contacts

 		
 Committers

 		
 Website

 		
 Packages

 		
 celery

 		
 kombu

 		
 amqp

 		
 vine

 		
 billiard

 		
 django-celery-beat

 		
 django-celery-results

 		
 librabbitmq

 		
 cell

 		
 cyme

 		
 Deprecated

 		
 Release Procedure

 		
 Updating the version number

 		
 Releasing

 		
 Community Resources

 		
 Resources

 		
 Who’s using Celery

 		
 Wiki

 		
 Celery questions on Stack Overflow

 		
 Mailing-list Archive: celery-users

 		
 News

 		
 Tutorials

 		
 Task Cookbook

 		
 Ensuring a task is only executed one at a time

 		
 Frequently Asked Questions

 		
 General

 		
 What kinds of things should I use Celery for?

 		
 Misconceptions

 		
 Does Celery really consist of 50.000 lines of code?

 		
 Does Celery have many dependencies?

 		
 Is Celery heavy-weight?

 		
 Is Celery dependent on pickle?

 		
 Is Celery for Django only?

 		
 Do I have to use AMQP/RabbitMQ?

 		
 Is Celery multilingual?

 		
 Troubleshooting

 		
 MySQL is throwing deadlock errors, what can I do?

 		
 The worker isn’t doing anything, just hanging

 		
 Task results aren’t reliably returning

 		
 Why is Task.delay/apply*/the worker just hanging?

 		
 Does it work on FreeBSD?

 		
 I’m having IntegrityError: Duplicate Key errors. Why?

 		
 Why aren’t my tasks processed?

 		
 Why won’t my Task run?

 		
 Why won’t my periodic task run?

 		
 How do I purge all waiting tasks?

 		
 I’ve purged messages, but there are still messages left in the queue?

 		
 Results

 		
 How do I get the result of a task if I have the ID that points there?

 		
 Security

 		
 Isn’t using pickle a security concern?

 		
 Can messages be encrypted?

 		
 Is it safe to run celery worker as root?

 		
 Brokers

 		
 Why is RabbitMQ crashing?

 		
 Can I use Celery with ActiveMQ/STOMP?

 		
 What features aren’t supported when not using an AMQP broker?

 		
 Tasks

 		
 How can I reuse the same connection when calling tasks?

 		
 sudo in a subprocess returns None

 		
 Why do workers delete tasks from the queue if they’re unable to process them?

 		
 Can I call a task by name?

 		
 Can I get the task id of the current task?

 		
 Can I specify a custom task_id?

 		
 Can I use decorators with tasks?

 		
 Can I use natural task ids?

 		
 Can I run a task once another task has finished?

 		
 Can I cancel the execution of a task?

 		
 Why aren’t my remote control commands received by all workers?

 		
 Can I send some tasks to only some servers?

 		
 Can I disable prefetching of tasks?

 		
 Can I change the interval of a periodic task at runtime?

 		
 Does Celery support task priorities?

 		
 Should I use retry or acks_late?

 		
 Can I schedule tasks to execute at a specific time?

 		
 Can I safely shut down the worker?

 		
 Can I run the worker in the background on [platform]?

 		
 Django

 		
 What purpose does the database tables created by django-celery-beat have?

 		
 What purpose does the database tables created by django-celery-results have?

 		
 Windows

 		
 Does Celery support Windows?

 		
 Change history

 		
 5.0.1

 		
 5.0.0

 		
 5.0.0rc3

 		
 5.0.0rc2

 		
 5.0.0rc1

 		
 5.0.0b1

 		
 5.0.0a2

 		
 5.0.0a1

 		
 What’s new in Celery 5.0 (singularity)

 		
 Preface

 		
 Long Term Support Policy

 		
 Wall of Contributors

 		
 Upgrading from Celery 4.x

 		
 Step 1: Adjust your command line invocation

 		
 Step 2: Update your configuration with the new setting names

 		
 Step 3: Read the important notes in this document

 		
 Step 4: Migrate your code to Python 3

 		
 Step 5: Upgrade to Celery 5.0

 		
 Important Notes

 		
 Supported Python Versions

 		
 Dropped support for Python 2.7 & 3.5

 		
 Kombu

 		
 Billiard

 		
 Eventlet Workers Pool

 		
 Gevent Workers Pool

 		
 Couchbase Result Backend

 		
 Riak Result Backend

 		
 AMQP Result Backend

 		
 Removed Deprecated Modules

 		
 New Command Line Interface

 		
 Pytest Integration

 		
 Ordered Group Results for the Redis Result Backend

 		
 News

 		
 Retry Policy for the Redis Result Backend

 		
 API Reference

 		
 Command Line Interface

 		
 celery

 		
 celery — Distributed processing

 		
 Celery application objects

 		
 Canvas primitives

 		
 Proxies

 		
 Proxies

 		
 Functions

 		
 celery.app.task

 		
 AMQP

 		
 Queues

 		
 celery.app.defaults

 		
 celery.app.control

 		
 celery.app.registry

 		
 celery.app.backends

 		
 celery.app.builtins

 		
 celery.app.events

 		
 celery.app.log

 		
 celery.app.utils

 		
 celery.app.autoretry

 		
 celery.bootsteps

 		
 celery.result

 		
 celery.schedules

 		
 celery.signals

 		
 celery.security

 		
 celery.utils.debug

 		
 Sampling Memory Usage

 		
 API Reference

 		
 celery.exceptions

 		
 Error Hierarchy

 		
 celery.loaders

 		
 celery.loaders.app

 		
 celery.loaders.default

 		
 celery.loaders.base

 		
 States

 		
 Sets

 		
 READY_STATES

 		
 UNREADY_STATES

 		
 EXCEPTION_STATES

 		
 PROPAGATE_STATES

 		
 ALL_STATES

 		
 Misc

 		
 celery.contrib.abortable

 		
 Abortable tasks overview

 		
 celery.contrib.migrate

 		
 celery.contrib.pytest

 		
 API Reference

 		
 celery.contrib.sphinx

 		
 Introduction

 		
 celery.contrib.testing.worker

 		
 API Reference

 		
 celery.contrib.testing.app

 		
 API Reference

 		
 celery.contrib.testing.manager

 		
 API Reference

 		
 celery.contrib.testing.mocks

 		
 API Reference

 		
 celery.contrib.rdb

 		
 Introduction

 		
 Environment Variables

 		
 celery.events

 		
 celery.events.receiver

 		
 celery.events.state

 		
 celery.events.event

 		
 celery.events.state

 		
 celery.beat

 		
 celery.apps.worker

 		
 celery.apps.beat

 		
 celery.apps.multi

 		
 celery.worker

 		
 celery.worker.request

 		
 celery.worker.state

 		
 celery.worker.strategy

 		
 celery.worker.consumer

 		
 celery.worker.consumer.agent

 		
 celery.worker.consumer.connection

 		
 celery.worker.consumer.consumer

 		
 celery.worker.consumer.control

 		
 celery.worker.consumer.events

 		
 celery.worker.consumer.gossip

 		
 celery.worker.consumer.heart

 		
 celery.worker.consumer.mingle

 		
 celery.worker.consumer.tasks

 		
 celery.worker.worker

 		
 celery.bin.base

 		
 celery.bin.celery

 		
 celery.bin.worker

 		
 celery.bin.beat

 		
 celery.bin.events

 		
 celery.bin.logtool

 		
 celery.bin.amqp

 		
 celery.bin.graph

 		
 celery.bin.multi

 		
 celery.bin.call

 		
 celery.bin.control

 		
 celery.bin.list

 		
 celery.bin.migrate

 		
 celery.bin.purge

 		
 celery.bin.result

 		
 celery.bin.shell

 		
 celery.bin.upgrade

 		
 Internals

 		
 Contributors Guide to the Code

 		
 Philosophy

 		
 Conventions and Idioms Used

 		
 Applications vs. “single mode”

 		
 Module Overview

 		
 Worker overview

 		
 Celery Deprecation Time-line

 		
 Removals for version 5.0

 		
 Removals for version 2.0

 		
 Internals: The worker

 		
 Introduction

 		
 Data structures

 		
 Components

 		
 Message Protocol

 		
 Task messages

 		
 Event Messages

 		
 “The Big Instance” Refactor

 		
 Examples

 		
 Deprecated

 		
 Aliases (Pending deprecation)

 		
 Default App Usage

 		
 Internal Module Reference

 		
 celery.worker.components

 		
 celery.worker.loops

 		
 celery.worker.heartbeat

 		
 celery.worker.control

 		
 celery.worker.pidbox

 		
 celery.worker.autoscale

 		
 celery.concurrency

 		
 celery.concurrency.solo

 		
 celery.concurrency.prefork

 		
 celery.concurrency.eventlet

 		
 celery.concurrency.gevent

 		
 celery.concurrency.thread

 		
 celery.concurrency.base

 		
 celery.backends

 		
 celery.backends.base

 		
 celery.backends.asynchronous

 		
 celery.backends.azureblockblob

 		
 celery.backends.rpc

 		
 celery.backends.database

 		
 celery.backends.cache

 		
 celery.backends.consul

 		
 celery.backends.couchdb

 		
 celery.backends.mongodb

 		
 celery.backends.elasticsearch

 		
 celery.backends.redis

 		
 celery.backends.cassandra

 		
 celery.backends.couchbase

 		
 celery.backends.arangodb

 		
 celery.backends.dynamodb

 		
 celery.backends.filesystem

 		
 celery.backends.cosmosdbsql

 		
 celery.backends.s3

 		
 celery.app.trace

 		
 celery.app.annotations

 		
 celery.app.routes

 		
 celery.security.certificate

 		
 celery.security.key

 		
 celery.security.serialization

 		
 celery.security.utils

 		
 celery.events.snapshot

 		
 celery.events.cursesmon

 		
 celery.events.dumper

 		
 celery.backends.database.models

 		
 celery.backends.database.session

 		
 celery.utils

 		
 celery.utils.abstract

 		
 celery.utils.collections

 		
 celery.utils.nodenames

 		
 celery.utils.deprecated

 		
 celery.utils.functional

 		
 celery.utils.graph

 		
 celery.utils.objects

 		
 celery.utils.term

 		
 celery.utils.time

 		
 celery.utils.iso8601

 		
 celery.utils.saferepr

 		
 celery.utils.serialization

 		
 celery.utils.sysinfo

 		
 celery.utils.threads

 		
 celery.utils.timer2

 		
 celery.utils.imports

 		
 celery.utils.log

 		
 celery.utils.text

 		
 celery.utils.dispatch

 		
 celery.utils.dispatch.signal

 		
 celery.platforms

 		
 celery._state

 		
 History

 		
 What’s new in Celery 4.4 (Cliffs)

 		
 Preface

 		
 Upgrading from Celery 4.3

 		
 Important Notes

 		
 News

 		
 Change history

 		
 4.4.7

 		
 4.4.6

 		
 4.4.5

 		
 4.4.4

 		
 4.4.3

 		
 4.4.0

 		
 4.4.0rc5

 		
 4.4.0rc4

 		
 4.4.0rc3

 		
 4.4.0rc2

 		
 4.4.0rc1

 		
 4.3.0

 		
 4.3.0 RC2

 		
 4.3.0 RC1

 		
 What’s new in Celery 4.3 (rhubarb)

 		
 Preface

 		
 Upgrading from Celery 4.2

 		
 Important Notes

 		
 News

 		
 Change history

 		
 4.3.1

 		
 4.3.0

 		
 4.3.0 RC2

 		
 4.3.0 RC1

 		
 What’s new in Celery 4.2 (windowlicker)

 		
 Preface

 		
 Important Notes

 		
 News

 		
 Change history

 		
 4.2.1

 		
 4.2.0

 		
 What’s new in Celery 4.1 (latentcall)

 		
 Preface

 		
 Important Notes

 		
 News

 		
 Change history

 		
 4.1.1

 		
 4.1.0

 		
 What’s new in Celery 4.0 (latentcall)

 		
 Preface

 		
 Upgrading from Celery 3.1

 		
 Important Notes

 		
 News

 		
 Reorganization, Deprecations, and Removals

 		
 Deprecation Time-line Changes

 		
 Change history

 		
 4.0.2

 		
 4.0.1

 		
 4.0.0

 		
 4.0.0rc7

 		
 What’s new in Celery 3.1 (Cipater)

 		
 Preface

 		
 Important Notes

 		
 News

 		
 Scheduled Removals

 		
 Deprecation Time-line Changes

 		
 Fixes

 		
 Internal changes

 		
 Change history

 		
 3.1.26

 		
 3.1.25

 		
 3.1.24

 		
 3.1.23

 		
 3.1.22

 		
 3.1.21

 		
 3.1.20

 		
 3.1.19

 		
 3.1.18

 		
 3.1.17

 		
 3.1.16

 		
 3.1.15

 		
 3.1.14

 		
 3.1.13

 		
 3.1.12

 		
 3.1.11

 		
 3.1.10

 		
 3.1.9

 		
 3.1.8

 		
 3.1.7

 		
 3.1.6

 		
 3.1.5

 		
 3.1.4

 		
 3.1.3

 		
 3.1.2

 		
 3.1.1

 		
 3.1.0

 		
 What’s new in Celery 3.0 (Chiastic Slide)

 		
 Highlights

 		
 Important Notes

 		
 News

 		
 Experimental

 		
 Unscheduled Removals

 		
 Deprecation Time-line Changes

 		
 Fixes

 		
 Change history for Celery 3.0

 		
 3.0.24

 		
 3.0.23

 		
 3.0.22

 		
 3.0.21

 		
 3.0.20

 		
 3.0.19

 		
 3.0.18

 		
 3.0.17

 		
 3.0.16

 		
 3.0.15

 		
 3.0.14

 		
 3.0.13

 		
 3.0.12

 		
 3.0.11

 		
 3.0.10

 		
 3.0.9

 		
 3.0.8

 		
 3.0.7

 		
 3.0.6

 		
 3.0.5

 		
 3.0.4

 		
 3.0.3

 		
 3.0.2

 		
 3.0.1

 		
 3.0.0 (Chiastic Slide)

 		
 What’s new in Celery 2.5

 		
 Important Notes

 		
 Optimization

 		
 Deprecation Time-line Changes

 		
 News

 		
 Fixes

 		
 Change history for Celery 2.5

 		
 2.5.5

 		
 2.5.3

 		
 2.5.2

 		
 2.5.1

 		
 2.5.0

 		
 Change history for Celery 2.4

 		
 2.4.5

 		
 2.4.4

 		
 2.4.3

 		
 2.4.2

 		
 2.4.1

 		
 2.4.0

 		
 Change history for Celery 2.3

 		
 2.3.4

 		
 2.3.3

 		
 2.3.2

 		
 2.3.1

 		
 2.3.0

 		
 Change history for Celery 2.2

 		
 2.2.8

 		
 2.2.7

 		
 2.2.6

 		
 2.2.5

 		
 2.2.4

 		
 2.2.3

 		
 2.2.2

 		
 2.2.1

 		
 2.2.0

 		
 Change history for Celery 2.1

 		
 2.1.4

 		
 2.1.3

 		
 2.1.2

 		
 2.1.1

 		
 2.1.0

 		
 Change history for Celery 2.0

 		
 2.0.3

 		
 2.0.2

 		
 2.0.1

 		
 2.0.0

 		
 Change history for Celery 1.0

 		
 1.0.6

 		
 1.0.5

 		
 1.0.4

 		
 1.0.3

 		
 1.0.2

 		
 1.0.1

 		
 1.0.0

 		
 0.8.4

 		
 0.8.3

 		
 0.8.2

 		
 0.8.1

 		
 0.8.0

 		
 0.6.0

 		
 0.4.1

 		
 0.4.0

 		
 0.3.20

 		
 0.3.7

 		
 0.3.3

 		
 0.3.2

 		
 0.3.1

 		
 0.3.0

 		
 0.2.0

 		
 0.2.0-pre3

 		
 0.2.0-pre2

 		
 0.2.0-pre1

 		
 0.1.15

 		
 0.1.14

 		
 0.1.13

 		
 0.1.12

 		
 0.1.11

 		
 0.1.10

 		
 0.1.8

 		
 0.1.7

 		
 0.1.6

 		
 0.1.0

 		
 Glossary

_images/math/e0abf23a503127a1d8599dafa280120f05847d71.png

_images/math/f2385d1c1d45440e90b16ad7a6dff38dd360c90b.png
((2+2) +4)

_images/math/71761d65f6fe91dc46537e1d388b51ba92e9e5bc.png
44+ 5

_images/math/cc1b1451797ebb0d616b161570e0ae4adac7e0db.png
Y(2+2)+(4+4))

