

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Kombu 2.2.0rc2 documentation

Kombu Documentation

Contents:

	kombu - Messaging Framework for Python
	Synopsis

	Features

	Transport Comparison

	Installation

	Terminology

	Getting Help

	Bug tracker

	Contributing

	License

	User Guide
	Introduction

	Connections and transports

	Producers

	Consumers

	Examples

	Simple Interface

	Connection and Producer Pools

	Serialization

	Frequently Asked Questions
	Questions

	API Reference
	kombu.connection

	kombu.simple

	kombu.messaging

	kombu.entity

	Common Utilities - kombu.common

	Mixin Classes - kombu.mixins

	Clocks and Synchronization - kombu.clocks

	kombu.compat

	kombu.pidbox

	kombu.exceptions

	Logging - kombu.log

	kombu.transport

	kombu.transport.amqplib

	kombu.transport.pika

	kombu.transport.memory

	kombu.transport.redis

	kombu.transport.django

	Django Models - kombu.transport.django.models

	Django Managers - kombu.transport.django.managers

	Django Management - clean_kombu_messages

	kombu.transport.sqlalchemy

	kombu.transport.base

	kombu.transport.virtual

	kombu.transport.virtual.exchange

	kombu.transport.virtual.scheduling

	kombu.serialization

	kombu.compression

	General Pools - kombu.pools

	kombu.compression

	Async Utilities - kombu.syn

	Utilities - kombu.utils

	Rate limiting - kombu.utils.limits

	Compat. utilities - kombu.utils.compat

	Debugging - kombu.utils.debug

	String Encoding - kombu.utils.encoding

	kombu.utils.functional

	Finalize - kombu.utils.finalize

	kombu.utils.url

	Change history
	2.1.7

	2.1.6

	2.1.5

	2.1.4

	2.1.3

	2.1.2

	2.1.1

	2.1.0

	2.0.0

	1.5.1

	1.5.0

	1.4.3

	1.4.2

	1.4.1

	1.4.0

	1.3.5

	1.3.4

	1.3.3

	1.3.2

	1.3.1

	1.3.0

	1.2.1

	1.2.0

	1.1.6

	1.1.5

	1.1.4

	1.1.3

	1.1.2

	1.1.1

	1.1.0

	1.0.7

	1.0.6

	1.0.5

	1.0.4

	1.0.3

	1.0.2

	1.0.1

	1.0.0

	0.1.0

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2009-2012, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.0

 kombu - Messaging Framework for Python

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kombu 2.2.0rc2 documentation

kombu - Messaging Framework for Python

	Version:	2.2.0rc2

Synopsis

Kombu is an AMQP [http://amqp.org] messaging framework for Python.

AMQP is the Advanced Message Queuing Protocol, an open standard protocol
for message orientation, queuing, routing, reliability and security.

One of the most popular implementations of AMQP is RabbitMQ [http://www.rabbitmq.com/].

The aim of Kombu is to make messaging in Python as easy as possible by
providing an idiomatic high-level interface for the AMQP protocol, and also
provide proven and tested solutions to common messaging problems.

Features

	Allows application authors to support several message server
solutions by using pluggable transports.

	AMQP transports for both the amqplib [http://barryp.org/software/py-amqplib/] (sync) and
pika [http://github.com/pika/pika] (sync + async) clients.

	Virtual transports makes it really easy to add support for non-AMQP
transports. There is already built-in support for Redis [http://code.google.com/p/redis/],
Beanstalk [http://kr.github.com/beanstalkd/], Amazon SQS [http://aws.amazon.com/sqs/], CouchDB [http://couchdb.apache.org/], and MongoDB [http://www.mongodb.org/].

	SQLAlchemy and Django ORM transports exists as plug-ins (
kombu-sqlalchemy [http://github.com/ask/kombu-sqlalchemy/] and django-kombu [http://github.com/ask/django-kombu/]).

	In-memory transport for unit testing.

	Supports automatic encoding, serialization and compression of message
payloads.

	Consistent exception handling across transports.

	The ability to ensure that an operation is performed by gracefully
handling connection and channel errors.

	Several annoyances with amqplib [http://barryp.org/software/py-amqplib/] has been fixed, like supporting
timeouts and the ability to wait for events on more than one channel.

	Projects already using carrot [http://pypi.python.org/pypi/carrot/] can easily be ported by using
a compatibility layer.

For an introduction to AMQP you should read the article Rabbits and warrens [http://blogs.digitar.com/jjww/2009/01/rabbits-and-warrens/],
and the Wikipedia article about AMQP [http://en.wikipedia.org/wiki/AMQP].

Transport Comparison

	Client
	Type
	Direct
	Topic
	Fanout

	amqplib
	Native
	Yes
	Yes
	Yes

	pika
	Native
	Yes
	Yes
	Yes

	redis
	Virtual
	Yes
	Yes
	Yes (PUB/SUB)

	mongodb
	Virtual
	Yes
	Yes
	Yes

	beanstalk
	Virtual
	Yes
	Yes [1]
	No

	SQS
	Virtual
	Yes
	Yes [1]
	Yes [2]

	couchdb
	Virtual
	Yes
	Yes [1]
	No

	in-memory
	Virtual
	Yes
	Yes [1]
	No

	django
	Virtual
	Yes
	Yes [1]
	No

	sqlalchemy
	Virtual
	Yes
	Yes [1]
	No

	[1]	(1, 2, 3, 4, 5, 6) Declarations only kept in memory, so exchanges/queues
must be declared by all clients that needs them.

	[2]	Fanout supported via storing routing tables in SimpleDB.
Disabled by default, but can be enabled by using the
supports_fanout transport option.

Documentation

Kombu is using Sphinx, and the latest documentation is available at GitHub:

http://ask.github.com/kombu

Quick overview

from kombu import BrokerConnection, Exchange, Queue

media_exchange = Exchange("media", "direct", durable=True)
video_queue = Queue("video", exchange=media_exchange, routing_key="video")

def process_media(body, message):
 print body
 message.ack()

connections
with BrokerConnection("amqp://guest:guest@localhost//") as conn:

 # Declare the video queue so that the messages can be delivered.
 # It is a best practice in Kombu to have both publishers and
 # consumers declare the queue.
 video_queue(conn.channel()).declare()

 # produce
 with conn.Producer(exchange=media_exchange,
 serializer="json", routing_key="video") as producer:
 producer.publish({"name": "/tmp/lolcat1.avi", "size": 1301013})

 # consume
 with conn.Consumer(video_queue, callbacks=[process_media]) as consumer:
 # Process messages and handle events on all channels
 while True:
 conn.drain_events()

Consume from several queues on the same channel:
video_queue = Queue("video", exchange=media_exchange, key="video")
image_queue = Queue("image", exchange=media_exchange, key="image")

with connection.Consumer([video_queue, image_queue],
 callbacks=[process_media]) as consumer:
 while True:
 connection.drain_events()

Or handle channels manually:

with connection.channel() as channel:
 producer = Producer(channel, ...)
 consumer = Producer(channel)

All objects can be used outside of with statements too,
just remember to close the objects after use:

from kombu import BrokerConnection, Consumer, Producer

connection = BrokerConnection()
 # ...
connection.close()

consumer = Consumer(channel_or_connection, ...)
consumer.register_callback(my_callback)
consumer.consume()
 #
consumer.cancel()

producer = Producer(channel_or_connection, ...)
 #
producer.close()

Exchange and Queue are simply declarations that can be pickled
and used in configuration files etc.

They also support operations, but to do so they need to be bound
to a channel:

>>> exchange = Exchange("tasks", "direct")

>>> connection = BrokerConnection()
>>> channel = connection.channel()
>>> bound_exchange = exchange(channel)
>>> bound_exchange.delete()

the original exchange is not affected, and stays unbound.
>>> exchange.delete()
raise NotBoundError: Can't call delete on Exchange not bound to
 a channel.

Installation

You can install Kombu either via the Python Package Index (PyPI)
or from source.

To install using pip,:

$ pip install kombu

To install using easy_install,:

$ easy_install kombu

If you have downloaded a source tarball you can install it
by doing the following,:

$ python setup.py build
python setup.py install # as root

Terminology

There are some concepts you should be familiar with before starting:

	Producers

Producers sends messages to an exchange.

	Exchanges

Messages are sent to exchanges. Exchanges are named and can be
configured to use one of several routing algorithms. The exchange
routes the messages to consumers by matching the routing key in the
message with the routing key the consumer provides when binding to
the exchange.

	Consumers

Consumers declares a queue, binds it to a exchange and receives
messages from it.

	Queues

Queues receive messages sent to exchanges. The queues are declared
by consumers.

	Routing keys

Every message has a routing key. The interpretation of the routing
key depends on the exchange type. There are four default exchange
types defined by the AMQP standard, and vendors can define custom
types (so see your vendors manual for details).

These are the default exchange types defined by AMQP/0.8:

	Direct exchange

Matches if the routing key property of the message and
the routing_key attribute of the consumer are identical.

	Fan-out exchange

Always matches, even if the binding does not have a routing
key.

	Topic exchange

Matches the routing key property of the message by a primitive
pattern matching scheme. The message routing key then consists
of words separated by dots (”.”, like domain names), and
two special characters are available; star (“*”) and hash
(“#”). The star matches any word, and the hash matches
zero or more words. For example “*.stock.#” matches the
routing keys “usd.stock” and “eur.stock.db” but not
“stock.nasdaq”.

Getting Help

Mailing list

Join the carrot-users [http://groups.google.com/group/carrot-users/] mailing list.

Bug tracker

If you have any suggestions, bug reports or annoyances please report them
to our issue tracker at http://github.com/ask/kombu/issues/

Contributing

Development of Kombu happens at Github: http://github.com/ask/kombu

You are highly encouraged to participate in the development. If you don’t
like Github (for some reason) you’re welcome to send regular patches.

License

This software is licensed under the New BSD License. See the LICENSE
file in the top distribution directory for the full license text.

 Copyright 2009-2012, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.0

 User Guide

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kombu 2.2.0rc2 documentation

User Guide

	Release:	2.2

	Date:	June 06, 2012

	Introduction
	What is messaging?

	Messaging Scenarios

	Reliability

	Connections and transports
	Basics

	URLs

	Keyword arguments

	Transport Comparison

	Producers
	Basics

	Serialization

	Reference

	Consumers
	Basics

	Reference

	Examples
	Task Queue Example

	Simple Interface
	Sending and receiving messages

	Connection and Producer Pools
	Default Pools

	The producer pool group

	Custom Pool Groups

	Serialization
	Serializers

	Sending raw data without Serialization

 Copyright 2009-2012, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.0

 Introduction

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kombu 2.2.0rc2 documentation

 	User Guide

Introduction

What is messaging?

In times long ago people didn’t have email.
They had the postal service, which with great courage would deliver mail
from hand to hand all over the globe. Soldiers deployed at wars far away could only
communicate with their families through the postal service, and
posting a letter would mean that the recipient wouldn’t actually
receive the letter until weeks or months, sometimes years later.

It’s hard to imagine this today when people are expected to be available
for phone calls every minute of the day.

So humans need to communicate with each other, this shouldn’t
be news to anyone, but why would applications?

One example is banks.
When you transfer money from one bank to another, your bank sends
a message to the banks messaging central. The messaging central
then record and coordinate the transaction. Banks
need to send and receive millions and millions of
messages every day, and losing a single message would mean either losing
your money (bad) or the banks money (very bad)

Another example is the stock exchanges, which also have a need
for very high message throughputs and have strict reliability
requirements.

Email is a great way for people to communicate. It is much faster
than using the postal service, but still using email as a means for
programs to communicate would be like the soldier above, waiting
for signs of life from his girlfriend back home.

Messaging Scenarios

	Request/Reply

The request/reply pattern works like the postal service example.
A message is addressed to a single recipient, with a return address
printed on the back. The recipient may or may not reply to the
message by sending it back to the original sender.

Request-Reply is achieved using direct exchanges.

	Broadcast

In a broadcast scenario a message is sent to all parties.
This could be none, one or many recipients.

Broadcast is achieved using fanout exchanges.

	Publish/Subscribe

In a publish/subscribe scenario producers publish messages
to topics, and consumers subscribe to the topics they are
interested in.

If no consumers subscribe to the topic, then the message
will not be delivered to anyone. If several consumers
subscribe to the topic, then the message will be delivered
to all of them.

Pub-sub is achieved using topic exchanges.

Reliability

For some applications reliability is very important. Losing a message is
a critical situation that must never happen. For other applications
losing a message is fine, it can maybe recover in other ways,
or the message is resent anyway as periodic updates.

AMQP defines two built-in delivery modes:

	persistent

Messages are written to disk and survives a broker restart.

	transient

Messages may or may not be written to disk, as the broker sees fit
to optimize memory contents. The messages will not survive a broker
restart.

Transient messaging is by far the fastest way to send and receive messages,
so having persistent messages comes with a price, but for some
applications this is a necessary cost.

 Copyright 2009-2012, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.0

 Connections and transports

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kombu 2.2.0rc2 documentation

 	User Guide

Connections and transports

Basics

To send and receive messages you need a transport and a connection.
There are several transports to choose from (amqplib, pika, redis, in-memory),
and you can even create your own. The default transport is amqplib.

Create a connection using the default transport:

>>> from kombu import BrokerConnection
>>> connection = BrokerConnection("amqp://guest:guest@localhost:5672//")

The connection will not be established yet, as the connection is established
when needed. If you want to explicitly establish the connection
you have to call the connect()
method:

>>> connection.connect()

You can also check whether the connection is connected:

>>> connection.connected()
True

Connections must always be closed after use:

>>> connection.close()

But best practice is to release the connection instead,
this will release the resource if the connection is associated
with a connection pool, or close the connection if not,
and makes it easier to do the transition to connection pools later:

>>> connection.release()

See also

Connection and Producer Pools

Of course, the connection can be used as a context, and you are
encouraged to do so as it makes it harder to forget releasing open
resources:

with BrokerConnection() as connection:
 # work with connection

URLs

Connection parameters can be provided as an URL in the format:

transport://userid:password@hostname:port/virtual_host

All of these are valid URLs:

Specifies using the amqp transport only, default values
are taken from the keyword arguments.
amqp://

Using Redis
redis://localhost:6379/

Using virtual host '/foo'
amqp://localhost//foo

Using virtual host 'foo'
amqp://localhost/foo

The query part of the URL can also be used to set options, e.g.:

amqp://localhost/myvhost?ssl=1

See Keyword arguments for a list of supported options.

A connection without options will use the default connection settings,
which is using the localhost host, default port, user name guest,
password guest and virtual host “/”. A connection without arguments
is the same as:

>>> BrokerConnection("amqp://guest:guest@localhost:5672//")

The default port is transport specific, for AMQP this is 5672.

Other fields may also have different meaning depending on the transport
used. For example, the Redis transport uses the virtual_host argument as
the redis database number.

Keyword arguments

The BrokerConnection class supports additional
keyword arguments, these are:

	hostname:	Default host name if not provided in the URL.

	userid:	Default user name if not provided in the URL.

	password:	Default password if not provided in the URL.

	virtual_host:	Default virtual host if not provided in the URL.

	port:	Default port if not provided in the URL.

	transport:	Default transport if not provided in the URL.
Can be a string specifying the path to the class. (e.g.
kombu.transport.pyamqplib.Transport), or one of the aliases:
amqplib, pika, redis, memory, and so on.

	ssl:	Use SSL to connect to the server. Default is False.
Only supported by the amqp transport.

	insist:	Insist on connecting to a server.
In a configuration with multiple load-sharing servers, the insist
option tells the server that the client is insisting on a connection
to the specified server. Default is False.
Only supported by the amqp and pika transports, and not by AMQP 0-9-1.

	connect_timeout:

		Timeout in seconds for connecting to the
server. May not be supported by the specified transport.

	transport_options:

		A dict of additional connection arguments to
pass to alternate kombu channel implementations. Consult the transport
documentation for available options.

Transport Comparison

	Client
	Type
	Direct
	Topic
	Fanout

	amqplib
	Native
	Yes
	Yes
	Yes

	pika
	Native
	Yes
	Yes
	Yes

	redis
	Virtual
	Yes
	Yes [1]
	Yes (PUB/SUB)

	beanstalk
	Virtual
	Yes
	Yes [1]
	No

	SQS
	Virtual
	Yes
	Yes [1]
	Yes [2]

	mongodb
	Virtual
	Yes
	Yes [1]
	No

	couchdb
	Virtual
	Yes
	Yes [1]
	No

	in-memory
	Virtual
	Yes
	Yes [1]
	No

	[1]	(1, 2, 3, 4, 5, 6) Declarations only kept in memory, so exchanges/queues
must be declared by all clients that needs them.

	[2]	Fanout supported via storing routing tables in SimpleDB.
Can be disabled by setting the supports_fanout transport option.

 Copyright 2009-2012, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.0

 Producers

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kombu 2.2.0rc2 documentation

 	User Guide

Producers

Basics

Serialization

See Serialization.

Reference

	
class kombu.messaging.Producer(channel, exchange=None, routing_key=None, serializer=None, auto_declare=None, compression=None, on_return=None)

	Message Producer.

	Parameters:	
	channel – Connection or channel.

	exchange – Optional default exchange.

	routing_key – Optional default routing key.

	serializer – Default serializer. Default is “json”.

	compression – Default compression method. Default is no
compression.

	auto_declare – Automatically declare the default exchange
at instantiation. Default is True.

	on_return – Callback to call for undeliverable messages,
when the mandatory or immediate arguments to
publish() is used. This callback needs the following
signature: (exception, exchange, routing_key, message).
Note that the producer needs to drain events to use this feature.

	
Producer.auto_declare = True

	By default the exchange is declared at instantiation.
If you want to declare manually then you can set this
to False.

	
Producer.channel = None

	The connection channel used.

	
Producer.compression = None

	Default compression method. Disabled by default.

	
Producer.declare()

	Declare the exchange.

This happens automatically at instantiation if
auto_declare is enabled.

	
Producer.exchange = None

	Default exchange.

	
Producer.maybe_declare(entity, retry=False, **retry_policy)

	Declare the exchange if it hasn’t already been declared
during this session.

	
Producer.on_return = None

	Basic return callback.

	
Producer.publish(body, routing_key=None, delivery_mode=None, mandatory=False, immediate=False, priority=0, content_type=None, content_encoding=None, serializer=None, headers=None, compression=None, exchange=None, retry=False, retry_policy=None, declare=[], **properties)

	Publish message to the specified exchange.

	Parameters:	
	body – Message body.

	routing_key – Message routing key.

	delivery_mode – See delivery_mode.

	mandatory – Currently not supported.

	immediate – Currently not supported.

	priority – Message priority. A number between 0 and 9.

	content_type – Content type. Default is auto-detect.

	content_encoding – Content encoding. Default is auto-detect.

	serializer – Serializer to use. Default is auto-detect.

	compression – Compression method to use. Default is none.

	headers – Mapping of arbitrary headers to pass along
with the message body.

	exchange – Override the exchange. Note that this exchange
must have been declared.

	declare – Optional list of required entities that must
have been declared before publishing the message. The entities
will be declared using maybe_declare().

	retry – Retry publishing, or declaring entities if the
connection is lost.

	retry_policy – Retry configuration, this is the keywords
supported by ensure().

	**properties – Additional message properties, see AMQP spec.

	
Producer.revive(channel)

	Revive the producer after connection loss.

	
Producer.serializer = None

	Default serializer to use. Default is JSON.

 Copyright 2009-2012, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.0

 Consumers

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kombu 2.2.0rc2 documentation

 	User Guide

Consumers

Basics

The Consumer takes a connection (or channel) and a list of queues to
consume from. Several consumers can be mixed to consume from different
channels, as they all bind to the same connection, and drain_events will
drain events from all channels on that connection.

Draining events from a single consumer:

with Consumer(connection, queues):
 connection.drain_events(timeout=1)

Draining events from several consumers:

from kombu.utils import nested

with connection.channel(), connection.channel() as (channel1, channel2):
 consumers = [Consumer(channel1, queues1),
 Consumer(channel2, queues2)]
 with nested(*consumers):
 connection.drain_events(timeout=1)

Or using ConsumerMixin:

from kombu.mixins import ConsumerMixin

class C(ConsumerMixin):

 def __init__(self, connection):
 self.connection = connection

 def get_consumers(self, Consumer, channel):
 return [Consumer(queues, callbacks=[self.on_message])]

 def on_message(self, body, message):
 print("RECEIVED MESSAGE: %r" % (body,))
 message.ack()

C(connection).run()

and with multiple channels again:

from kombu.messaging import Consumer
from kombu.mixins import ConsumerMixin

class C(ConsumerMixin):
 channel2 = None

 def __init__(self, connection):
 self.connection = connection

 def get_consumers(self, _, default_channel):
 self.channel2 = default_channel.connection.channel()
 return [Consumer(default_channel, queues1,
 callbacks=[self.on_message]),
 Consumer(self.channel2, queues2,
 callbacks=[self.on_special_message])]

 def on_consumer_end(self, connection, default_channel):
 if self.channel2:
 self.channel2.close()

C(connection).run()

Reference

	
class kombu.messaging.Consumer(channel, queues=None, no_ack=None, auto_declare=None, callbacks=None, on_decode_error=None)

	Message consumer.

	Parameters:	
	channel – see channel.

	queues – see queues.

	no_ack – see no_ack.

	auto_declare – see auto_declare

	callbacks – see callbacks.

	on_decode_error – see on_decode_error.

	
Consumer.auto_declare = True

	By default all entities will be declared at instantiation, if you
want to handle this manually you can set this to False.

	
Consumer.callbacks = None

	List of callbacks called in order when a message is received.

The signature of the callbacks must take two arguments:
(body, message), which is the decoded message body and
the Message instance (a subclass of
Message).

	
Consumer.cancel()

	End all active queue consumers.

This does not affect already delivered messages, but it does
mean the server will not send any more messages for this consumer.

	
Consumer.cancel_by_queue(queue)

	Cancel consumer by queue name.

	
Consumer.channel = None

	The connection/channel to use for this consumer.

	
Consumer.close()

	End all active queue consumers.

This does not affect already delivered messages, but it does
mean the server will not send any more messages for this consumer.

	
Consumer.declare()

	Declare queues, exchanges and bindings.

This is done automatically at instantiation if auto_declare
is set.

	
Consumer.flow(active)

	Enable/disable flow from peer.

This is a simple flow-control mechanism that a peer can use
to avoid overflowing its queues or otherwise finding itself
receiving more messages than it can process.

The peer that receives a request to stop sending content
will finish sending the current content (if any), and then wait
until flow is reactivated.

	
Consumer.no_ack = None

	Flag for message acknowledgment disabled/enabled.
Enabled by default.

	
Consumer.on_decode_error = None

	Callback called when a message can’t be decoded.

The signature of the callback must take two arguments: (message,
exc), which is the message that can’t be decoded and the exception
that occurred while trying to decode it.

	
Consumer.purge()

	Purge messages from all queues.

Warning

This will delete all ready messages, there is no
undo operation.

	
Consumer.qos(prefetch_size=0, prefetch_count=0, apply_global=False)

	Specify quality of service.

The client can request that messages should be sent in
advance so that when the client finishes processing a message,
the following message is already held locally, rather than needing
to be sent down the channel. Prefetching gives a performance
improvement.

The prefetch window is Ignored if the no_ack option is set.

	Parameters:	
	prefetch_size – Specify the prefetch window in octets.
The server will send a message in advance if it is equal to
or smaller in size than the available prefetch size (and
also falls within other prefetch limits). May be set to zero,
meaning “no specific limit”, although other prefetch limits
may still apply.

	prefetch_count – Specify the prefetch window in terms of
whole messages.

	apply_global – Apply new settings globally on all channels.
Currently not supported by RabbitMQ.

	
Consumer.queues = None

	A single Queue, or a list of queues to
consume from.

	
Consumer.receive(body, message)

	Method called when a message is received.

This dispatches to the registered callbacks.

	Parameters:	
	body – The decoded message body.

	message – The Message instance.

	Raises NotImplementedError:

		If no consumer callbacks have been
registered.

	
Consumer.recover(requeue=False)

	Redeliver unacknowledged messages.

Asks the broker to redeliver all unacknowledged messages
on the specified channel.

	Parameters:	requeue – By default the messages will be redelivered
to the original recipient. With requeue set to true, the
server will attempt to requeue the message, potentially then
delivering it to an alternative subscriber.

	
Consumer.register_callback(callback)

	Register a new callback to be called when a message
is received.

The signature of the callback needs to accept two arguments:
(body, message), which is the decoded message body
and the Message instance (a subclass of
Message.

	
Consumer.revive(channel)

	Revive consumer after connection loss.

 Copyright 2009-2012, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.0

 Examples

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kombu 2.2.0rc2 documentation

 	User Guide

Examples

Task Queue Example

Very simple task queue using pickle, with primitive support
for priorities using different queues.

queues.py:

from kombu import Exchange, Queue

task_exchange = Exchange("tasks", type="direct")
task_queues = [Queue("hipri", task_exchange, routing_key="hipri"),
 Queue("midpri", task_exchange, routing_key="midpri"),
 Queue("lopri", task_exchange, routing_key="lopri")]

worker.py:

from __future__ import with_statement

from kombu.mixins import ConsumerMixin
from kombu.utils import kwdict, reprcall

from queues import task_queues

class Worker(ConsumerMixin):

 def __init__(self, connection):
 self.connection = connection

 def get_consumers(self, Consumer, channel):
 return [Consumer(queues=task_queues,
 callbacks=[self.process_task])]

 def process_task(self, body, message):
 fun = body["fun"]
 args = body["args"]
 kwargs = body["kwargs"]
 self.info("Got task: %s", reprcall(fun.__name__, args, kwargs))
 try:
 fun(*args, **kwdict(kwargs))
 except Exception, exc:
 self.error("task raised exception: %r", exc)
 message.ack()

if __name__ == "__main__":
 from kombu import BrokerConnection
 from kombu.utils.debug import setup_logging
 setup_logging(loglevel="INFO")

 with BrokerConnection("amqp://guest:guest@localhost:5672//") as conn:
 try:
 Worker(conn).run()
 except KeyboardInterrupt:
 print("bye bye")

tasks.py:

def hello_task(who="world"):
 print("Hello %s" % (who,))

client.py:

from __future__ import with_statement

from kombu.common import maybe_declare
from kombu.pools import producers

from queues import task_exchange

priority_to_routing_key = {"high": "hipri",
 "mid": "midpri",
 "low": "lopri"}

def send_as_task(connection, fun, args=(), kwargs={}, priority="mid"):
 payload = {"fun": fun, "args": args, "kwargs": kwargs}
 routing_key = priority_to_routing_key[priority]

 with producers[connection].acquire(block=True) as producer:
 maybe_declare(task_exchange, producer.channel)
 producer.publish(payload, serializer="pickle",
 compression="bzip2",
 routing_key=routing_key)

if __name__ == "__main__":
 from kombu import BrokerConnection
 from tasks import hello_task

 connection = BrokerConnection("amqp://guest:guest@localhost:5672//")
 send_as_task(connection, fun=hello_task, args=("Kombu",), kwargs={},
 priority="high")

 Copyright 2009-2012, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.0

 Simple Interface

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kombu 2.2.0rc2 documentation

 	User Guide

Simple Interface

	Sending and receiving messages

kombu.simple is a simple interface to AMQP queueing.
It is only slightly different from the Queue class in the
Python Standard Library, which makes it excellent for users with basic
messaging needs.

Instead of defining exchanges and queues, the simple classes only requires
two arguments, a connection channel and a name. The name is used as the
queue, exchange and routing key. If the need arises, you can specify
a Queue as the name argument instead.

In addition, the BrokerConnection comes with
shortcuts to create simple queues using the current connection:

>>> queue = connection.SimpleQueue("myqueue")
>>> # ... do something with queue
>>> queue.close()

This is equivalent to:

>>> from kombu import SimpleQueue, SimpleBuffer

>>> channel = connection.channel()
>>> queue = SimpleBuffer(channel)
>>> # ... do something with queue
>>> channel.close()
>>> queue.close()

Sending and receiving messages

The simple interface defines two classes; SimpleQueue,
and SimpleBuffer. The former is used for persistent
messages, and the latter is used for transient, buffer-like queues.
They both have the same interface, so you can use them interchangeably.

Here is an example using the SimpleQueue class
to produce and consume logging messages:

from __future__ import with_statement

from socket import gethostname
from time import time

from kombu import BrokerConnection

class Logger(object):

 def __init__(self, connection, queue_name="log_queue",
 serializer="json", compression=None):
 self.queue = connection.SimpleQueue(self.queue_name)
 self.serializer = serializer
 self.compression = compression

 def log(self, message, level="INFO", context={}):
 self.queue.put({"message": message,
 "level": level,
 "context": context,
 "hostname": socket.gethostname(),
 "timestamp": time()},
 serializer=self.serializer,
 compression=self.compression)

 def process(self, callback, n=1, timeout=1):
 for i in xrange(n):
 log_message = self.queue.get(block=True, timeout=1)
 entry = log_message.payload # deserialized data.
 callback(entry)
 log_message.ack() # remove message from queue

 def close(self):
 self.queue.close()

if __name__ == "__main__":
 from contextlib import closing

 with BrokerConnection("amqp://guest:guest@localhost:5672//") as conn:
 with closing(Logger(connection)) as logger:

 # Send message
 logger.log("Error happened while encoding video",
 level="ERROR",
 context={"filename": "cutekitten.mpg"})

 # Consume and process message

 # This is the callback called when a log message is
 # received.
 def dump_entry(entry):
 date = datetime.fromtimestamp(entry["timestamp"])
 print("[%s %s %s] %s %r" % (date,
 entry["hostname"],
 entry["level"],
 entry["message"],
 entry["context"]))

 # Process a single message using the callback above.
 logger.process(dump_entry, n=1)

 Copyright 2009-2012, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.0

 Connection and Producer Pools

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kombu 2.2.0rc2 documentation

 	User Guide

Connection and Producer Pools

Default Pools

Kombu ships with two global pools: one connection pool,
and one producer pool.

These are convenient and the fact that they are global
may not be an issue as connections should often be limited
at the process level, rather than per thread/application
and so on, but if you need custom pools per thread
see Custom Pool Groups.

The connection pool group

The connection pools are available as kombu.pools.connections.
This is a pool group, which means you give it a connection instance,
and you get a pool instance back. We have one pool per connection
instance to support multiple connections in the same app.
All connection instances with the same connection parameters will
get the same pool:

>>> from kombu import BrokerConnection
>>> from kombu.pools import connections

>>> connections[BrokerConnection("redis://localhost:6379")]
<kombu.connection.ConnectionPool object at 0x101805650>
>>> connections[BrokerConnection("redis://localhost:6379")]
<kombu.connection.ConnectionPool object at 0x101805650>

Let’s acquire and release a connection:

from kombu import BrokerConnection
from kombu.pools import connections

connection = BrokerConnection("redis://localhost:6379")

with connections[connection].acquire(block=True) as conn:
 print("Got connection: %r" % (connection.as_uri(),))

Note

The block=True here means that the acquire call will block
until a connection is available in the pool.
Note that this will block forever in case there is a deadlock
in your code where a connection is not released. There
is a timeout argument you can use to safeguard against this
(see kombu.connection.Resource.acquire()).

If blocking is disabled and there aren’t any connections
left in the pool an kombu.exceptions.ConnectionLimitExceeded
exception will be raised.

That’s about it. If you need to connect to multiple brokers
at once you can do that too:

from kombu import BrokerConnection
from kombu.pools import connections

c1 = BrokerConnection("amqp://")
c2 = BrokerConnection("redis://")

with connections[c1].acquire(block=True) as conn1:
 with connections[c2].acquire(block=True) as conn2:
 #

The producer pool group

This is a pool group just like the connections, except
that it manages Producer instances
used to publish messages.

Here is an example using the producer pool to publish a message
to the news exchange:

from kombu import BrokerConnection, Exchange
from kombu.common import maybe_declare
from kombu.pools import producers

The exchange we send our news articles to.
news_exchange = Exchange("news")

The article we want to send
article = {"title": "No cellular coverage on the tube for 2012",
 "ingress": "yadda yadda yadda"}

The broker where our exchange is.
connection = BrokerConnection("amqp://guest:guest@localhost:5672//")

with producers[connection].acquire(block=True) as producer:
 # maybe_declare knows what entities have already been declared
 # so we don't have to do so multiple times in the same process.
 maybe_declare(news_exchange)
 producer.publish(article, routing_key="domestic",
 serializer="json",
 compression="zlib")

Setting pool limits

By default every connection instance has a limit of 200 connections.
You can change this limit using kombu.pools.set_limit().
You are able to grow the pool at runtime, but you can’t shrink it,
so it is best to set the limit as early as possible after your application
starts:

>>> from kombu import pools
>>> pools.set_limit()

Resetting all pools

You can close all active connections and reset all pool groups by
using the kombu.pools.reset() function. Note that this
will not respect anything currently using these connections,
so will just drag the connections away from under their feet:
you should be very careful before you use this.

Kombu will reset the pools if the process is forked,
so that forked processes start with clean pool groups.

Custom Pool Groups

To maintain your own pool groups you should create your own
Connections and kombu.pools.Producers
instances:

from kombu import pools
from kombu import BrokerConnection

connections = pools.Connection(limit=100)
producers = pools.Producers(limit=connections.limit)

connection = BrokerConnection("amqp://guest:guest@localhost:5672//")

with connections[connection].acquire(block=True):
 # ...

If you want to use the global limit that can be set with
set_limit() you can use a special value as the limit
argument:

from kombu import pools

connections = pools.Connections(limit=pools.use_default_limit)

 Copyright 2009-2012, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.0

 Serialization

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kombu 2.2.0rc2 documentation

 	User Guide

Serialization

Serializers

By default every message is encoded using JSON [http://www.json.org/], so sending
Python data structures like dictionaries and lists works.
YAML [http://yaml.org/], msgpack [http://msgpack.sourceforge.net/] and Python’s built-in pickle module is also supported,
and if needed you can register any custom serialization scheme you
want to use.

Each option has its advantages and disadvantages.

	json – JSON is supported in many programming languages, is now

	a standard part of Python (since 2.6), and is fairly fast to
decode using the modern Python libraries such as cjson or
simplejson.

The primary disadvantage to JSON is that it limits you to
the following data types: strings, Unicode, floats, boolean,
dictionaries, and lists. Decimals and dates are notably missing.

Also, binary data will be transferred using Base64 encoding, which
will cause the transferred data to be around 34% larger than an
encoding which supports native binary types.

However, if your data fits inside the above constraints and
you need cross-language support, the default setting of JSON
is probably your best choice.

	pickle – If you have no desire to support any language other than

	Python, then using the pickle encoding will gain you
the support of all built-in Python data types (except class instances),
smaller messages when sending binary files, and a slight speedup
over JSON processing.

	yaml – YAML has many of the same characteristics as json,

	except that it natively supports more data types (including dates,
recursive references, etc.)

However, the Python libraries for YAML are a good bit slower
than the libraries for JSON.

If you need a more expressive set of data types and need to maintain
cross-language compatibility, then YAML may be a better fit
than the above.

To instruct Kombu to use an alternate serialization method,
use one of the following options.

	Set the serialization option on a per-producer basis:

>>> producer = Producer(channel,
... exchange=exchange,
... serializer="yaml")

	Set the serialization option per message:

>>> producer.publish(message, routing_key=rkey,
... serializer="pickle")

Note that a Consumer do not need the serialization method specified.
They can auto-detect the serialization method as the
content-type is sent as a message header.

Sending raw data without Serialization

In some cases, you don’t need your message data to be serialized. If you
pass in a plain string or Unicode object as your message, then Kombu will
not waste cycles serializing/deserializing the data.

You can optionally specify a content_type and content_encoding
for the raw data:

>>> with open("~/my_picture.jpg", "rb") as fh:
... producer.publish(fh.read(),
 content_type="image/jpeg",
 content_encoding="binary",
 routing_key=rkey)

The Message object returned by the Consumer class will have a
content_type and content_encoding attribute.

 Copyright 2009-2012, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.0

 Frequently Asked Questions

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kombu 2.2.0rc2 documentation

Frequently Asked Questions

Questions

Q: Message.reject doesn’t work?

Answer: Earlier versions of RabbitMQ did not implement basic.reject,
so make sure your version is recent enough to support it.

Q: Message.requeue doesn’t work?

Answer: See Message.reject doesn’t work?

 Copyright 2009-2012, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.0

 API Reference

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kombu 2.2.0rc2 documentation

API Reference

	Release:	2.2

	Date:	June 06, 2012

	kombu.connection
	Connection

	Pools

	kombu.simple
	Persistent

	Buffer

	kombu.messaging
	Message Producer

	Message Consumer

	kombu.entity
	Exchange

	Queue

	Common Utilities - kombu.common
	kombu.common

	Mixin Classes - kombu.mixins
	kombu.mixins

	Clocks and Synchronization - kombu.clocks
	kombu.clocks

	kombu.compat
	Publisher

	Consumer

	ConsumerSet

	kombu.pidbox
	Introduction

	Mailbox

	Node

	kombu.exceptions

	Logging - kombu.log

	kombu.transport
	Data

	Functions

	kombu.transport.amqplib
	Transport

	Connection

	Channel

	Message

	kombu.transport.pika

	kombu.transport.memory
	Transport

	Channel

	kombu.transport.redis
	Transport

	Channel

	kombu.transport.django
	Transport

	Channel

	Django Models - kombu.transport.django.models

	Django Managers - kombu.transport.django.managers

	Django Management - clean_kombu_messages

	kombu.transport.sqlalchemy

	kombu.transport.base
	Message

	Transport

	kombu.transport.virtual
	Transports

	Channel

	Message

	Quality Of Service

	In-memory State

	kombu.transport.virtual.exchange
	Direct

	Topic

	Fanout

	Interface

	kombu.transport.virtual.scheduling

	kombu.serialization
	Overview

	Exceptions

	Serialization

	Registry

	kombu.compression
	Encoding/decoding

	Registry

	General Pools - kombu.pools
	kombu.pools

	kombu.compression

	Async Utilities - kombu.syn
	kombu.syn

	Utilities - kombu.utils
	kombu.utils

	Rate limiting - kombu.utils.limits
	kombu.utils.limits

	Compat. utilities - kombu.utils.compat
	kombu.utils.compat

	Debugging - kombu.utils.debug
	kombu.utils.debug

	String Encoding - kombu.utils.encoding
	kombu.utils.encoding

	kombu.utils.functional

	Finalize - kombu.utils.finalize
	kombu.utils.finalize

	kombu.utils.url

 Copyright 2009-2012, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.0

 kombu.connection

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kombu 2.2.0rc2 documentation

 	API Reference

kombu.connection

Broker connection and pools.

	copyright:	
	2009 - 2012 by Ask Solem.

	license:	BSD, see LICENSE for more details.

	Connection

	Pools

Connection

	
class kombu.connection.BrokerConnection(hostname='localhost', userid=None, password=None, virtual_host=None, port=None, insist=False, ssl=False, transport=None, connect_timeout=5, transport_options=None, login_method=None, uri_prefix=None, **kwargs)

	A connection to the broker.

	Parameters:	
	URL – Connection URL.

	hostname – Default host name/address if not provided in the URL.

	userid – Default user name if not provided in the URL.

	password – Default password if not provided in the URL.

	virtual_host – Default virtual host if not provided in the URL.

	port – Default port if not provided in the URL.

	ssl – Use SSL to connect to the server. Default is False.
May not be supported by the specified transport.

	transport – Default transport if not specified in the URL.

	connect_timeout – Timeout in seconds for connecting to the
server. May not be supported by the specified transport.

	transport_options – A dict of additional connection arguments to
pass to alternate kombu channel implementations. Consult the transport
documentation for available options.

	insist – Deprecated

Note

The connection is established lazily when needed. If you need the
connection to be established, then force it to do so using
connect():

>>> conn.connect()

Remember to always close the connection:

>>> conn.release()

Attributes

	
connection_errors

	List of exceptions that may be raised by the connection.

	
channel_errors

	List of exceptions that may be raised by the channel.

	
transport

	

	
host

	The host as a host name/port pair separated by colon.

	
connection

	The underlying connection object.

Warning

This instance is transport specific, so do not
depend on the interface of this object.

Methods

	
connect()

	Establish connection to server immediately.

	
channel()

	Request a new channel.

	
drain_events(**kwargs)

	Wait for a single event from the server.

	Parameters:	timeout – Timeout in seconds before we give up.
Raises socket.timeout if the timeout is exceeded.

Usually used from an event loop.

	
release()

	Close the connection (if open).

	
ensure_connection(errback=None, max_retries=None, interval_start=2, interval_step=2, interval_max=30, callback=None)

	Ensure we have a connection to the server.

If not retry establishing the connection with the settings
specified.

	Parameters:	
	errback – Optional callback called each time the connection
can’t be established. Arguments provided are the exception
raised and the interval that will be slept (exc, interval).

	max_retries – Maximum number of times to retry.
If this limit is exceeded the connection error will be re-raised.

	interval_start – The number of seconds we start sleeping for.

	interval_step – How many seconds added to the interval
for each retry.

	interval_max – Maximum number of seconds to sleep between
each retry.

	callback – Optional callback that is called for every
internal iteration (1 s)

	callback – Optional callback that is called for every
internal iteration (1 s).

	
ensure(obj, fun, errback=None, max_retries=None, interval_start=1, interval_step=1, interval_max=1, on_revive=None)

	Ensure operation completes, regardless of any channel/connection
errors occurring.

Will retry by establishing the connection, and reapplying
the function.

	Parameters:	
	fun – Method to apply.

	errback – Optional callback called each time the connection
can’t be established. Arguments provided are the exception
raised and the interval that will be slept (exc, interval).

	max_retries – Maximum number of times to retry.
If this limit is exceeded the connection error will be re-raised.

	interval_start – The number of seconds we start sleeping for.

	interval_step – How many seconds added to the interval
for each retry.

	interval_max – Maximum number of seconds to sleep between
each retry.

Example

This is an example ensuring a publish operation:

>>> def errback(exc, interval):
... print("Couldn't publish message: %r. Retry in %ds" % (
... exc, interval))
>>> publish = conn.ensure(producer, producer.publish,
... errback=errback, max_retries=3)
>>> publish(message, routing_key)

	
create_transport()

	

	
get_transport_cls()

	Get the currently used transport class.

	
clone(**kwargs)

	Create a copy of the connection with the same connection
settings.

	
info()

	Get connection info.

	
Pool(limit=None, preload=None)

	Pool of connections.

See ConnectionPool.

	Parameters:	
	limit – Maximum number of active connections.
Default is no limit.

	preload – Number of connections to preload
when the pool is created. Default is 0.

Example usage:

>>> pool = connection.Pool(2)
>>> c1 = pool.acquire()
>>> c2 = pool.acquire()
>>> c3 = pool.acquire()
>>> c1.release()
>>> c3 = pool.acquire()

	
ChannelPool(limit=None, preload=None)

	Pool of channels.

See ChannelPool.

	Parameters:	
	limit – Maximum number of active channels.
Default is no limit.

	preload – Number of channels to preload
when the pool is created. Default is 0.

Example usage:

>>> pool = connection.ChannelPool(2)
>>> c1 = pool.acquire()
>>> c2 = pool.acquire()
>>> c3 = pool.acquire()
>>> c1.release()
>>> c3 = pool.acquire()

	
SimpleQueue(name, no_ack=None, queue_opts=None, exchange_opts=None, channel=None, **kwargs)

	Create new SimpleQueue, using a channel
from this connection.

If name is a string, a queue and exchange will be automatically
created using that name as the name of the queue and exchange,
also it will be used as the default routing key.

	Parameters:	
	name – Name of the queue/or a Queue.

	no_ack – Disable acknowledgements. Default is false.

	queue_opts – Additional keyword arguments passed to the
constructor of the automatically created
Queue.

	exchange_opts – Additional keyword arguments passed to the
constructor of the automatically created
Exchange.

	channel – Channel to use. If not specified a new channel
from the current connection will be used. Remember to call
close() when done with the
object.

	
SimpleBuffer(name, no_ack=None, queue_opts=None, exchange_opts=None, channel=None, **kwargs)

	Create new SimpleQueue using a channel
from this connection.

Same as SimpleQueue(), but configured with buffering
semantics. The resulting queue and exchange will not be durable, also
auto delete is enabled. Messages will be transient (not persistent),
and acknowledgements are disabled (no_ack).

Pools

See also

The shortcut methods BrokerConnection.Pool() and
BrokerConnection.ChannelPool() is the recommended way
to instantiate these classes.

	
class kombu.connection.ConnectionPool(connection, limit=None, preload=None)

	
	
LimitExceeded = <class 'kombu.exceptions.ConnectionLimitExceeded'>

	

	
acquire(block=False, timeout=None)

	Acquire resource.

	Parameters:	
	block – If the limit is exceeded,
block until there is an available item.

	timeout – Timeout to wait
if block is true. Default is None (forever).

	Raises LimitExceeded:

		if block is false
and the limit has been exceeded.

	
release(resource)

	

	
class kombu.connection.ChannelPool(connection, limit=None, preload=None)

	
	
LimitExceeded = <class 'kombu.exceptions.ChannelLimitExceeded'>

	

	
acquire(block=False, timeout=None)

	Acquire resource.

	Parameters:	
	block – If the limit is exceeded,
block until there is an available item.

	timeout – Timeout to wait
if block is true. Default is None (forever).

	Raises LimitExceeded:

		if block is false
and the limit has been exceeded.

	
release(resource)

	

 Copyright 2009-2012, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.0

 kombu.simple

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kombu 2.2.0rc2 documentation

 	API Reference

kombu.simple

Simple interface.

	copyright:	
	2009 - 2012 by Ask Solem.

	license:	BSD, see LICENSE for more details.

	Persistent

	Buffer

Persistent

	
class kombu.simple.SimpleQueue(channel, name, no_ack=None, queue_opts=None, exchange_opts=None, serializer=None, compression=None, **kwargs)

	
	
channel

	Current channel

	
producer

	Producer used to publish messages.

	
consumer

	Consumer used to receive messages.

	
no_ack

	flag to enable/disable acknowledgements.

	
queue

	Queue to consume from (if consuming).

	
queue_opts

	
Additional options for the queue declaration.

	
exchange_opts

	Additional options for the exchange declaration.

	
get(block=True, timeout=None)

	

	
get_nowait()

	

	
put(message, serializer=None, headers=None, compression=None, routing_key=None, **kwargs)

	

	
clear()

	

	
__len__()

	len(self) -> self.qsize()

	
qsize()

	

	
close()

	

Buffer

	
class kombu.simple.SimpleBuffer(channel, name, no_ack=None, queue_opts=None, exchange_opts=None, serializer=None, compression=None, **kwargs)

	
	
channel

	Current channel

	
producer

	Producer used to publish messages.

	
consumer

	Consumer used to receive messages.

	
no_ack

	flag to enable/disable acknowledgements.

	
queue

	Queue to consume from (if consuming).

	
queue_opts

	
Additional options for the queue declaration.

	
exchange_opts

	Additional options for the exchange declaration.

	
get(block=True, timeout=None)

	

	
get_nowait()

	

	
put(message, serializer=None, headers=None, compression=None, routing_key=None, **kwargs)

	

	
clear()

	

	
__len__()

	len(self) -> self.qsize()

	
qsize()

	

	
close()

	

 Copyright 2009-2012, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.0

 kombu.messaging

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kombu 2.2.0rc2 documentation

 	API Reference

kombu.messaging

Sending and receiving messages.

	copyright:	
	2009 - 2012 by Ask Solem.

	license:	BSD, see LICENSE for more details.

	Message Producer

	Message Consumer

Message Producer

	
class kombu.messaging.Producer(channel, exchange=None, routing_key=None, serializer=None, auto_declare=None, compression=None, on_return=None)

	Message Producer.

	Parameters:	
	channel – Connection or channel.

	exchange – Optional default exchange.

	routing_key – Optional default routing key.

	serializer – Default serializer. Default is “json”.

	compression – Default compression method. Default is no
compression.

	auto_declare – Automatically declare the default exchange
at instantiation. Default is True.

	on_return – Callback to call for undeliverable messages,
when the mandatory or immediate arguments to
publish() is used. This callback needs the following
signature: (exception, exchange, routing_key, message).
Note that the producer needs to drain events to use this feature.

	
channel = None

	The connection channel used.

	
exchange = None

	Default exchange.

	
routing_key = ''

	

	
serializer = None

	Default serializer to use. Default is JSON.

	
compression = None

	Default compression method. Disabled by default.

	
auto_declare = True

	By default the exchange is declared at instantiation.
If you want to declare manually then you can set this
to False.

	
on_return = None

	Basic return callback.

	
declare()

	Declare the exchange.

This happens automatically at instantiation if
auto_declare is enabled.

	
publish(body, routing_key=None, delivery_mode=None, mandatory=False, immediate=False, priority=0, content_type=None, content_encoding=None, serializer=None, headers=None, compression=None, exchange=None, retry=False, retry_policy=None, declare=[], **properties)

	Publish message to the specified exchange.

	Parameters:	
	body – Message body.

	routing_key – Message routing key.

	delivery_mode – See delivery_mode.

	mandatory – Currently not supported.

	immediate – Currently not supported.

	priority – Message priority. A number between 0 and 9.

	content_type – Content type. Default is auto-detect.

	content_encoding – Content encoding. Default is auto-detect.

	serializer – Serializer to use. Default is auto-detect.

	compression – Compression method to use. Default is none.

	headers – Mapping of arbitrary headers to pass along
with the message body.

	exchange – Override the exchange. Note that this exchange
must have been declared.

	declare – Optional list of required entities that must
have been declared before publishing the message. The entities
will be declared using maybe_declare().

	retry – Retry publishing, or declaring entities if the
connection is lost.

	retry_policy – Retry configuration, this is the keywords
supported by ensure().

	**properties – Additional message properties, see AMQP spec.

	
revive(channel)

	Revive the producer after connection loss.

Message Consumer

	
class kombu.messaging.Consumer(channel, queues=None, no_ack=None, auto_declare=None, callbacks=None, on_decode_error=None)

	Message consumer.

	Parameters:	
	channel – see channel.

	queues – see queues.

	no_ack – see no_ack.

	auto_declare – see auto_declare

	callbacks – see callbacks.

	on_decode_error – see on_decode_error.

	
channel = None

	The connection/channel to use for this consumer.

	
queues = None

	A single Queue, or a list of queues to
consume from.

	
no_ack = None

	Flag for message acknowledgment disabled/enabled.
Enabled by default.

	
auto_declare = True

	By default all entities will be declared at instantiation, if you
want to handle this manually you can set this to False.

	
callbacks = None

	List of callbacks called in order when a message is received.

The signature of the callbacks must take two arguments:
(body, message), which is the decoded message body and
the Message instance (a subclass of
Message).

	
on_decode_error = None

	Callback called when a message can’t be decoded.

The signature of the callback must take two arguments: (message,
exc), which is the message that can’t be decoded and the exception
that occurred while trying to decode it.

	
declare()

	Declare queues, exchanges and bindings.

This is done automatically at instantiation if auto_declare
is set.

	
register_callback(callback)

	Register a new callback to be called when a message
is received.

The signature of the callback needs to accept two arguments:
(body, message), which is the decoded message body
and the Message instance (a subclass of
Message.

	
consume(no_ack=None)

	

	
cancel()

	End all active queue consumers.

This does not affect already delivered messages, but it does
mean the server will not send any more messages for this consumer.

	
cancel_by_queue(queue)

	Cancel consumer by queue name.

	
purge()

	Purge messages from all queues.

Warning

This will delete all ready messages, there is no
undo operation.

	
flow(active)

	Enable/disable flow from peer.

This is a simple flow-control mechanism that a peer can use
to avoid overflowing its queues or otherwise finding itself
receiving more messages than it can process.

The peer that receives a request to stop sending content
will finish sending the current content (if any), and then wait
until flow is reactivated.

	
qos(prefetch_size=0, prefetch_count=0, apply_global=False)

	Specify quality of service.

The client can request that messages should be sent in
advance so that when the client finishes processing a message,
the following message is already held locally, rather than needing
to be sent down the channel. Prefetching gives a performance
improvement.

The prefetch window is Ignored if the no_ack option is set.

	Parameters:	
	prefetch_size – Specify the prefetch window in octets.
The server will send a message in advance if it is equal to
or smaller in size than the available prefetch size (and
also falls within other prefetch limits). May be set to zero,
meaning “no specific limit”, although other prefetch limits
may still apply.

	prefetch_count – Specify the prefetch window in terms of
whole messages.

	apply_global – Apply new settings globally on all channels.
Currently not supported by RabbitMQ.

	
recover(requeue=False)

	Redeliver unacknowledged messages.

Asks the broker to redeliver all unacknowledged messages
on the specified channel.

	Parameters:	requeue – By default the messages will be redelivered
to the original recipient. With requeue set to true, the
server will attempt to requeue the message, potentially then
delivering it to an alternative subscriber.

	
receive(body, message)

	Method called when a message is received.

This dispatches to the registered callbacks.

	Parameters:	
	body – The decoded message body.

	message – The Message instance.

	Raises NotImplementedError:

		If no consumer callbacks have been
registered.

	
revive(channel)

	Revive consumer after connection loss.

 Copyright 2009-2012, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.0

 kombu.entity

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kombu 2.2.0rc2 documentation

 	API Reference

kombu.entity

Exchange and Queue declarations.

	copyright:	
	2009 - 2012 by Ask Solem.

	license:	BSD, see LICENSE for more details.

	Exchange

	Queue

Exchange

Example creating an exchange declaration:

>>> news_exchange = Exchange("news", type="topic")

For now news_exchange is just a declaration, you can’t perform
actions on it. It just describes the name and options for the exchange.

The exchange can be bound or unbound. Bound means the exchange is
associated with a channel and operations can be performed on it.
To bind the exchange you call the exchange with the channel as argument:

>>> bound_exchange = news_exchange(channel)

Now you can perform operations like declare() or delete():

>>> bound_exchange.declare()
>>> message = bound_exchange.Message("Cure for cancer found!")
>>> bound_exchange.publish(message, routing_key="news.science")
>>> bound_exchange.delete()

	
class kombu.entity.Exchange(name='', type='', channel=None, **kwargs)

	An Exchange declaration.

	Parameters:	
	name – See name.

	type – See type.

	channel – See channel.

	durable – See durable.

	auto_delete – See auto_delete.

	delivery_mode – See delivery_mode.

	arguments – See arguments.

	
name

	Name of the exchange. Default is no name (the default exchange).

	
type

	AMQP defines four default exchange types (routing algorithms) that
covers most of the common messaging use cases. An AMQP broker can
also define additional exchange types, so see your broker
manual for more information about available exchange types.

	direct (default)

Direct match between the routing key in the message, and the
routing criteria used when a queue is bound to this exchange.

	topic

Wildcard match between the routing key and the routing pattern
specified in the exchange/queue binding. The routing key is
treated as zero or more words delimited by ”.” and
supports special wildcard characters. “*” matches a
single word and “#” matches zero or more words.

	fanout

Queues are bound to this exchange with no arguments. Hence any
message sent to this exchange will be forwarded to all queues
bound to this exchange.

	headers

Queues are bound to this exchange with a table of arguments
containing headers and values (optional). A special argument
named “x-match” determines the matching algorith